2.5
[blender-staging.git] / source / blender / editors / sculpt_paint / paint_image.c
1 /**
2  * $Id$
3  * imagepaint.c
4  *
5  * Functions to paint images in 2D and 3D.
6  * 
7  * ***** BEGIN GPL LICENSE BLOCK *****
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version 2
12  * of the License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software Foundation,
21  * Inc., 59 Temple Place - Suite 330, Boston, MA        02111-1307, USA.
22  *
23  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
24  * All rights reserved.
25  *
26  * The Original Code is: some of this file.
27  *
28  * Contributor(s): Jens Ole Wund (bjornmose), Campbell Barton (ideasman42)
29  *
30  * ***** END GPL LICENSE BLOCK *****
31  */
32
33 #include <float.h>
34 #include <string.h>
35 #include <stdio.h>
36 #include <math.h>
37
38 #include "MEM_guardedalloc.h"
39
40 #ifdef WIN32
41 #include "BLI_winstuff.h"
42 #endif
43 #include "BLI_arithb.h"
44 #include "BLI_blenlib.h"
45 #include "BLI_dynstr.h"
46 #include "BLI_linklist.h"
47 #include "BLI_memarena.h"
48 #include "PIL_time.h"
49 #include "BLI_threads.h"
50
51 #include "IMB_imbuf.h"
52 #include "IMB_imbuf_types.h"
53
54 #include "DNA_brush_types.h"
55 #include "DNA_image_types.h"
56 #include "DNA_mesh_types.h"
57 #include "DNA_meshdata_types.h"
58 #include "DNA_node_types.h"
59 #include "DNA_object_types.h"
60 #include "DNA_scene_types.h"
61 #include "DNA_screen_types.h"
62 #include "DNA_space_types.h"
63 #include "DNA_userdef_types.h"
64 #include "DNA_view3d_types.h"
65 #include "DNA_windowmanager_types.h"
66
67 #include "BKE_context.h"
68 #include "BKE_brush.h"
69 #include "BKE_global.h"
70 #include "BKE_image.h"
71 #include "BKE_main.h"
72 #include "BKE_mesh.h"
73 #include "BKE_node.h"
74 #include "BKE_utildefines.h"
75 #include "BKE_DerivedMesh.h"
76 #include "BKE_report.h"
77 #include "BKE_depsgraph.h"
78
79 #include "BIF_gl.h"
80 #include "BIF_glutil.h"
81
82 #include "UI_interface.h"
83 #include "UI_view2d.h"
84
85 #include "ED_image.h"
86 #include "ED_object.h"
87 #include "ED_screen.h"
88 #include "ED_view3d.h"
89
90 #include "WM_api.h"
91 #include "WM_types.h"
92
93 #include "RNA_access.h"
94 #include "RNA_define.h"
95
96 #include "GPU_draw.h"
97
98 #include "paint_intern.h"
99
100 /* Defines and Structs */
101
102 #define IMAPAINT_CHAR_TO_FLOAT(c) ((c)/255.0f)
103
104 #define IMAPAINT_FLOAT_RGB_TO_CHAR(c, f) { (c)[0]=FTOCHAR((f)[0]); (c)[1]=FTOCHAR((f)[1]); (c)[2]=FTOCHAR((f)[2]); }
105 #define IMAPAINT_FLOAT_RGBA_TO_CHAR(c, f) { (c)[0]=FTOCHAR((f)[0]); (c)[1]=FTOCHAR((f)[1]); (c)[2]=FTOCHAR((f)[2]); (c)[3]=FTOCHAR((f)[3]); }
106
107 #define IMAPAINT_CHAR_RGB_TO_FLOAT(f, c) { (f)[0]=IMAPAINT_CHAR_TO_FLOAT((c)[0]); (f)[1]=IMAPAINT_CHAR_TO_FLOAT((c)[1]); (f)[2]=IMAPAINT_CHAR_TO_FLOAT((c)[2]); }
108 #define IMAPAINT_CHAR_RGBA_TO_FLOAT(f, c) { (f)[0]=IMAPAINT_CHAR_TO_FLOAT((c)[0]); (f)[1]=IMAPAINT_CHAR_TO_FLOAT((c)[1]); (f)[2]=IMAPAINT_CHAR_TO_FLOAT((c)[2]); (f)[3]=IMAPAINT_CHAR_TO_FLOAT((c)[3]); }
109 #define IMAPAINT_FLOAT_RGB_COPY(a, b) VECCOPY(a, b)
110
111 #define IMAPAINT_TILE_BITS                      6
112 #define IMAPAINT_TILE_SIZE                      (1 << IMAPAINT_TILE_BITS)
113 #define IMAPAINT_TILE_NUMBER(size)      (((size)+IMAPAINT_TILE_SIZE-1) >> IMAPAINT_TILE_BITS)
114
115 #define MAXUNDONAME     64
116
117 static void imapaint_image_update(SpaceImage *sima, Image *image, ImBuf *ibuf, short texpaint);
118
119
120 typedef struct ImagePaintState {
121         SpaceImage *sima;
122         View2D *v2d;
123         Scene *scene;
124         bScreen *screen;
125
126         Brush *brush;
127         short tool, blend;
128         Image *image;
129         ImBuf *canvas;
130         ImBuf *clonecanvas;
131         short clonefreefloat;
132         char *warnpackedfile;
133         char *warnmultifile;
134
135         /* texture paint only */
136         Object *ob;
137         Mesh *me;
138         int faceindex;
139         float uv[2];
140 } ImagePaintState;
141
142 typedef struct ImagePaintPartialRedraw {
143         int x1, y1, x2, y2;
144         int enabled;
145 } ImagePaintPartialRedraw;
146
147
148 /* ProjectionPaint defines */
149
150 /* approx the number of buckets to have under the brush,
151  * used with the brush size to set the ps->buckets_x and ps->buckets_y value.
152  * 
153  * When 3 - a brush should have ~9 buckets under it at once
154  * ...this helps for threading while painting as well as
155  * avoiding initializing pixels that wont touch the brush */
156 #define PROJ_BUCKET_BRUSH_DIV 4
157
158 #define PROJ_BUCKET_RECT_MIN 4
159 #define PROJ_BUCKET_RECT_MAX 256
160
161 #define PROJ_BOUNDBOX_DIV 8
162 #define PROJ_BOUNDBOX_SQUARED  (PROJ_BOUNDBOX_DIV * PROJ_BOUNDBOX_DIV)
163
164 //#define PROJ_DEBUG_PAINT 1
165 //#define PROJ_DEBUG_NOSEAMBLEED 1
166 //#define PROJ_DEBUG_PRINT_CLIP 1
167 #define PROJ_DEBUG_WINCLIP 1
168
169 /* projectFaceSeamFlags options */
170 //#define PROJ_FACE_IGNORE      1<<0    /* When the face is hidden, backfacing or occluded */
171 //#define PROJ_FACE_INIT        1<<1    /* When we have initialized the faces data */
172 #define PROJ_FACE_SEAM1 1<<0    /* If this face has a seam on any of its edges */
173 #define PROJ_FACE_SEAM2 1<<1
174 #define PROJ_FACE_SEAM3 1<<2
175 #define PROJ_FACE_SEAM4 1<<3
176
177 #define PROJ_FACE_NOSEAM1       1<<4
178 #define PROJ_FACE_NOSEAM2       1<<5
179 #define PROJ_FACE_NOSEAM3       1<<6
180 #define PROJ_FACE_NOSEAM4       1<<7
181
182 /* a slightly scaled down face is used to get fake 3D location for edge pixels in the seams
183  * as this number approaches  1.0f the likelihood increases of float precision errors where
184  * it is occluded by an adjacent face */
185 #define PROJ_FACE_SCALE_SEAM    0.99f
186
187 #define PROJ_BUCKET_NULL                0
188 #define PROJ_BUCKET_INIT                1<<0
189 // #define PROJ_BUCKET_CLONE_INIT       1<<1
190
191 /* used for testing doubles, if a point is on a line etc */
192 #define PROJ_GEOM_TOLERANCE 0.0002f
193
194 /* vert flags */
195 #define PROJ_VERT_CULL 1
196
197 #define PI_80_DEG ((M_PI_2 / 9) * 8)
198
199 /* This is mainly a convenience struct used so we can keep an array of images we use
200  * Thir imbufs, etc, in 1 array, When using threads this array is copied for each thread
201  * because 'partRedrawRect' and 'touch' values would not be thread safe */
202 typedef struct ProjPaintImage {
203         Image *ima;
204         ImBuf *ibuf;
205         ImagePaintPartialRedraw *partRedrawRect;
206         struct UndoTile **undoRect; /* only used to build undo tiles after painting */
207         int touch;
208 } ProjPaintImage;
209
210 /* Main projection painting struct passed to all projection painting functions */
211 typedef struct ProjPaintState {
212         View3D *v3d;
213         RegionView3D *rv3d;
214         ARegion *ar;
215         Scene *scene;
216
217         Brush *brush;
218         short tool, blend;
219         Object *ob;
220         /* end similarities with ImagePaintState */
221         
222         DerivedMesh    *dm;
223         int                     dm_totface;
224         int                     dm_totvert;
225         
226         MVert              *dm_mvert;
227         MFace              *dm_mface;
228         MTFace             *dm_mtface;
229         MTFace             *dm_mtface_clone;    /* other UV layer, use for cloning between layers */
230         MTFace             *dm_mtface_mask;
231         
232         /* projection painting only */
233         MemArena *arena_mt[BLENDER_MAX_THREADS];/* for multithreading, the first item is sometimes used for non threaded cases too */
234         LinkNode **bucketRect;                          /* screen sized 2D array, each pixel has a linked list of ProjPixel's */
235         LinkNode **bucketFaces;                         /* bucketRect aligned array linkList of faces overlapping each bucket */
236         unsigned char *bucketFlags;                                     /* store if the bucks have been initialized  */
237 #ifndef PROJ_DEBUG_NOSEAMBLEED
238         char *faceSeamFlags;                            /* store info about faces, if they are initialized etc*/
239         float (*faceSeamUVs)[4][2];                     /* expanded UVs for faces to use as seams */
240         LinkNode **vertFaces;                           /* Only needed for when seam_bleed_px is enabled, use to find UV seams */
241         char *vertFlags;                                        /* store options per vert, now only store if the vert is pointing away from the view */
242 #endif
243         int buckets_x;                                          /* The size of the bucket grid, the grid span's screenMin/screenMax so you can paint outsize the screen or with 2 brushes at once */
244         int buckets_y;
245         
246         ProjPaintImage *projImages;
247         
248         int image_tot;                          /* size of projectImages array */
249         
250         float (*screenCoords)[4];       /* verts projected into floating point screen space */
251         
252         float screenMin[2];                     /* 2D bounds for mesh verts on the screen's plane (screenspace) */
253         float screenMax[2]; 
254         float screen_width;                     /* Calculated from screenMin & screenMax */
255         float screen_height;
256         
257         /* options for projection painting */
258         int do_layer_clone;
259         int do_layer_mask;
260         int do_layer_mask_inv;
261         
262         short do_occlude;                       /* Use raytraced occlusion? - ortherwise will paint right through to the back*/
263         short do_backfacecull;  /* ignore faces with normals pointing away, skips a lot of raycasts if your normals are correctly flipped */
264         short do_mask_normal;                   /* mask out pixels based on their normals */
265         float normal_angle;                             /* what angle to mask at*/
266         float normal_angle_inner;
267         float normal_angle_range;               /* difference between normal_angle and normal_angle_inner, for easy access */
268         
269         short is_ortho;
270         short is_airbrush;                                      /* only to avoid using (ps.brush->flag & BRUSH_AIRBRUSH) */
271         short is_texbrush;                                      /* only to avoid running  */
272 #ifndef PROJ_DEBUG_NOSEAMBLEED
273         float seam_bleed_px;
274 #endif
275         /* clone vars */
276         float cloneOffset[2];
277         
278         float projectMat[4][4];         /* Projection matrix, use for getting screen coords */
279         float viewDir[3];                       /* View vector, use for do_backfacecull and for ray casting with an ortho viewport  */
280         float viewPos[3];                       /* View location in object relative 3D space, so can compare to verts  */
281         float clipsta, clipend;
282         
283         /* threads */
284         int thread_tot;
285         int bucketMin[2];
286         int bucketMax[2];
287         int context_bucket_x, context_bucket_y; /* must lock threads while accessing these */
288 } ProjPaintState;
289
290 typedef union pixelPointer
291 {
292         float *f_pt;                    /* float buffer */
293         unsigned int *uint_pt; /* 2 ways to access a char buffer */
294         unsigned char *ch_pt;
295 } PixelPointer;
296
297 typedef union pixelStore
298 {
299         unsigned char ch[4];
300         unsigned int uint;
301         float f[4];
302 } PixelStore;
303
304 typedef struct ProjPixel {
305         float projCoSS[2]; /* the floating point screen projection of this pixel */
306         
307         /* Only used when the airbrush is disabled.
308          * Store the max mask value to avoid painting over an area with a lower opacity
309          * with an advantage that we can avoid touching the pixel at all, if the 
310          * new mask value is lower then mask_max */
311         unsigned short mask_max;
312         
313         /* for various reasons we may want to mask out painting onto this pixel */
314         unsigned short mask;
315         
316         short x_px, y_px;
317         
318         PixelStore origColor;
319         PixelStore newColor;
320         PixelPointer pixel;
321         
322         short image_index; /* if anyone wants to paint onto more then 32768 images they can bite me */
323         unsigned char bb_cell_index;
324 } ProjPixel;
325
326 typedef struct ProjPixelClone {
327         struct ProjPixel __pp;
328         PixelStore clonepx;
329 } ProjPixelClone;
330
331 /* Finish projection painting structs */
332
333
334 typedef struct UndoTile {
335         struct UndoTile *next, *prev;
336         ID id;
337         void *rect;
338         int x, y;
339 } UndoTile;
340
341 typedef struct UndoElem {
342         struct UndoElem *next, *prev;
343         char name[MAXUNDONAME];
344         unsigned long undosize;
345
346         ImBuf *ibuf;
347         ListBase tiles;
348 } UndoElem;
349
350 static ListBase undobase = {NULL, NULL};
351 static UndoElem *curundo = NULL;
352 static ImagePaintPartialRedraw imapaintpartial = {0, 0, 0, 0, 0};
353
354 /* UNDO */
355
356 /* internal functions */
357
358 static void undo_copy_tile(UndoTile *tile, ImBuf *tmpibuf, ImBuf *ibuf, int restore)
359 {
360         /* copy or swap contents of tile->rect and region in ibuf->rect */
361         IMB_rectcpy(tmpibuf, ibuf, 0, 0, tile->x*IMAPAINT_TILE_SIZE,
362                 tile->y*IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE);
363
364         if(ibuf->rect_float) {
365                 SWAP(void*, tmpibuf->rect_float, tile->rect);
366         } else {
367                 SWAP(void*, tmpibuf->rect, tile->rect);
368         }
369         
370         if(restore)
371                 IMB_rectcpy(ibuf, tmpibuf, tile->x*IMAPAINT_TILE_SIZE,
372                         tile->y*IMAPAINT_TILE_SIZE, 0, 0, IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE);
373 }
374
375 static UndoTile *undo_init_tile(ID *id, ImBuf *ibuf, ImBuf **tmpibuf, int x_tile, int y_tile)
376 {
377         UndoTile *tile;
378         int allocsize;
379         
380         if (*tmpibuf==NULL)
381                 *tmpibuf = IMB_allocImBuf(IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE, 32, IB_rectfloat|IB_rect, 0);
382         
383         tile= MEM_callocN(sizeof(UndoTile), "ImaUndoTile");
384         tile->id= *id;
385         tile->x= x_tile;
386         tile->y= y_tile;
387
388         allocsize= IMAPAINT_TILE_SIZE*IMAPAINT_TILE_SIZE*4;
389         allocsize *= (ibuf->rect_float)? sizeof(float): sizeof(char);
390         tile->rect= MEM_mapallocN(allocsize, "ImaUndoRect");
391
392         undo_copy_tile(tile, *tmpibuf, ibuf, 0);
393         curundo->undosize += allocsize;
394
395         BLI_addtail(&curundo->tiles, tile);
396         
397         return tile;
398 }
399
400 static void undo_restore(UndoElem *undo)
401 {
402         Image *ima = NULL;
403         ImBuf *ibuf, *tmpibuf;
404         UndoTile *tile;
405
406         if(!undo)
407                 return;
408
409         tmpibuf= IMB_allocImBuf(IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE, 32,
410                                 IB_rectfloat|IB_rect, 0);
411         
412         for(tile=undo->tiles.first; tile; tile=tile->next) {
413                 /* find image based on name, pointer becomes invalid with global undo */
414                 if(ima && strcmp(tile->id.name, ima->id.name)==0);
415                 else {
416                         for(ima=G.main->image.first; ima; ima=ima->id.next)
417                                 if(strcmp(tile->id.name, ima->id.name)==0)
418                                         break;
419                 }
420
421                 ibuf= BKE_image_get_ibuf(ima, NULL);
422
423                 if (!ima || !ibuf || !(ibuf->rect || ibuf->rect_float))
424                         continue;
425
426                 undo_copy_tile(tile, tmpibuf, ibuf, 1);
427
428                 GPU_free_image(ima); /* force OpenGL reload */
429                 if(ibuf->rect_float)
430                         imb_freerectImBuf(ibuf); /* force recreate of char rect */
431         }
432
433         IMB_freeImBuf(tmpibuf);
434 }
435
436 static void undo_free(UndoElem *undo)
437 {
438         UndoTile *tile;
439
440         for(tile=undo->tiles.first; tile; tile=tile->next)
441                 MEM_freeN(tile->rect);
442         BLI_freelistN(&undo->tiles);
443 }
444
445 static void undo_imagepaint_push_begin(char *name)
446 {
447         UndoElem *uel;
448         int nr;
449         
450         /* Undo push is split up in begin and end, the reason is that as painting
451          * happens more tiles are added to the list, and at the very end we know
452          * how much memory the undo used to remove old undo elements */
453
454         /* remove all undos after (also when curundo==NULL) */
455         while(undobase.last != curundo) {
456                 uel= undobase.last;
457                 undo_free(uel);
458                 BLI_freelinkN(&undobase, uel);
459         }
460         
461         /* make new */
462         curundo= uel= MEM_callocN(sizeof(UndoElem), "undo file");
463         BLI_addtail(&undobase, uel);
464
465         /* name can be a dynamic string */
466         strncpy(uel->name, name, MAXUNDONAME-1);
467         
468         /* limit amount to the maximum amount*/
469         nr= 0;
470         uel= undobase.last;
471         while(uel) {
472                 nr++;
473                 if(nr==U.undosteps) break;
474                 uel= uel->prev;
475         }
476         if(uel) {
477                 while(undobase.first!=uel) {
478                         UndoElem *first= undobase.first;
479                         undo_free(first);
480                         BLI_freelinkN(&undobase, first);
481                 }
482         }
483 }
484
485 static void undo_imagepaint_push_end()
486 {
487         UndoElem *uel;
488         unsigned long totmem, maxmem;
489
490         if(U.undomemory != 0) {
491                 /* limit to maximum memory (afterwards, we can't know in advance) */
492                 totmem= 0;
493                 maxmem= ((unsigned long)U.undomemory)*1024*1024;
494
495                 uel= undobase.last;
496                 while(uel) {
497                         totmem+= uel->undosize;
498                         if(totmem>maxmem) break;
499                         uel= uel->prev;
500                 }
501
502                 if(uel) {
503                         while(undobase.first!=uel) {
504                                 UndoElem *first= undobase.first;
505                                 undo_free(first);
506                                 BLI_freelinkN(&undobase, first);
507                         }
508                 }
509         }
510 }
511
512 void undo_imagepaint_step(int step)
513 {
514         UndoElem *undo;
515
516         if(step==1) {
517                 if(curundo==NULL);
518                 else {
519                         if(G.f & G_DEBUG) printf("undo %s\n", curundo->name);
520                         undo_restore(curundo);
521                         curundo= curundo->prev;
522                 }
523         }
524         else if(step==-1) {
525                 if((curundo!=NULL && curundo->next==NULL) || undobase.first==NULL);
526                 else {
527                         undo= (curundo && curundo->next)? curundo->next: undobase.first;
528                         undo_restore(undo);
529                         curundo= undo;
530                         if(G.f & G_DEBUG) printf("redo %s\n", undo->name);
531                 }
532         }
533 }
534
535 void undo_imagepaint_clear(void)
536 {
537         UndoElem *uel;
538         
539         uel= undobase.first;
540         while(uel) {
541                 undo_free(uel);
542                 uel= uel->next;
543         }
544
545         BLI_freelistN(&undobase);
546         curundo= NULL;
547 }
548
549 /* fast projection bucket array lookup, use the safe version for bound checking  */
550 static int project_bucket_offset(const ProjPaintState *ps, const float projCoSS[2])
551 {
552         /* If we were not dealing with screenspace 2D coords we could simple do...
553          * ps->bucketRect[x + (y*ps->buckets_y)] */
554         
555         /* please explain?
556          * projCoSS[0] - ps->screenMin[0]       : zero origin
557          * ... / ps->screen_width                               : range from 0.0 to 1.0
558          * ... * ps->buckets_x          : use as a bucket index
559          *
560          * Second multiplication does similar but for vertical offset
561          */
562         return  (       (int)(((projCoSS[0] - ps->screenMin[0]) / ps->screen_width)  * ps->buckets_x)) + 
563                 (       (       (int)(((projCoSS[1] - ps->screenMin[1])  / ps->screen_height) * ps->buckets_y)) * ps->buckets_x);
564 }
565
566 static int project_bucket_offset_safe(const ProjPaintState *ps, const float projCoSS[2])
567 {
568         int bucket_index = project_bucket_offset(ps, projCoSS);
569         
570         if (bucket_index < 0 || bucket_index >= ps->buckets_x*ps->buckets_y) {  
571                 return -1;
572         }
573         else {
574                 return bucket_index;
575         }
576 }
577
578 #define SIDE_OF_LINE(pa, pb, pp)        ((pa[0]-pp[0])*(pb[1]-pp[1]))-((pb[0]-pp[0])*(pa[1]-pp[1]))
579
580 static float AreaSignedF2Dfl(float *v1, float *v2, float *v3)
581 {
582    return (float)(0.5f*((v1[0]-v2[0])*(v2[1]-v3[1]) +
583 (v1[1]-v2[1])*(v3[0]-v2[0])));
584 }
585
586 static void BarycentricWeights2f(float pt[2], float v1[2], float v2[2], float v3[2], float w[3])
587 {
588    float wtot_inv, wtot;
589
590    w[0] = AreaSignedF2Dfl(v2, v3, pt);
591    w[1] = AreaSignedF2Dfl(v3, v1, pt);
592    w[2] = AreaSignedF2Dfl(v1, v2, pt);
593    wtot = w[0]+w[1]+w[2];
594
595    if (wtot != 0.0f) {
596        wtot_inv = 1.0f/wtot;
597
598        w[0] = w[0]*wtot_inv;
599        w[1] = w[1]*wtot_inv;
600        w[2] = w[2]*wtot_inv;
601    }
602    else /* dummy values for zero area face */
603        w[0] = w[1] = w[2] = 1.0f/3.0f;
604 }
605
606 /* still use 2D X,Y space but this works for verts transformed by a perspective matrix, using their 4th component as a weight */
607 static void BarycentricWeightsPersp2f(float pt[2], float v1[4], float v2[4], float v3[4], float w[3])
608 {
609    float wtot_inv, wtot;
610
611    w[0] = AreaSignedF2Dfl(v2, v3, pt) / v1[3];
612    w[1] = AreaSignedF2Dfl(v3, v1, pt) / v2[3];
613    w[2] = AreaSignedF2Dfl(v1, v2, pt) / v3[3];
614    wtot = w[0]+w[1]+w[2];
615
616    if (wtot != 0.0f) {
617        wtot_inv = 1.0f/wtot;
618
619        w[0] = w[0]*wtot_inv;
620        w[1] = w[1]*wtot_inv;
621        w[2] = w[2]*wtot_inv;
622    }
623    else /* dummy values for zero area face */
624        w[0] = w[1] = w[2] = 1.0f/3.0f;
625 }
626
627 static void VecWeightf(float p[3], const float v1[3], const float v2[3], const float v3[3], const float w[3])
628 {
629         p[0] = v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2];
630         p[1] = v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2];
631         p[2] = v1[2]*w[0] + v2[2]*w[1] + v3[2]*w[2];
632 }
633
634 static void Vec2Weightf(float p[2], const float v1[2], const float v2[2], const float v3[2], const float w[3])
635 {
636         p[0] = v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2];
637         p[1] = v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2];
638 }
639
640 static float VecZDepthOrtho(float pt[2], float v1[3], float v2[3], float v3[3], float w[3])
641 {
642         BarycentricWeights2f(pt, v1, v2, v3, w);
643         return (v1[2]*w[0]) + (v2[2]*w[1]) + (v3[2]*w[2]);
644 }
645
646 static float VecZDepthPersp(float pt[2], float v1[3], float v2[3], float v3[3], float w[3])
647 {
648         BarycentricWeightsPersp2f(pt, v1, v2, v3, w);
649         return (v1[2]*w[0]) + (v2[2]*w[1]) + (v3[2]*w[2]);
650 }
651
652
653 /* Return the top-most face index that the screen space coord 'pt' touches (or -1) */
654 static int project_paint_PickFace(const ProjPaintState *ps, float pt[2], float w[3], int *side)
655 {
656         LinkNode *node;
657         float w_tmp[3];
658         float *v1, *v2, *v3, *v4;
659         int bucket_index;
660         int face_index;
661         int best_side = -1;
662         int best_face_index = -1;
663         float z_depth_best = FLT_MAX, z_depth;
664         MFace *mf;
665         
666         bucket_index = project_bucket_offset_safe(ps, pt);
667         if (bucket_index==-1)
668                 return -1;
669         
670         
671         
672         /* we could return 0 for 1 face buckets, as long as this function assumes
673          * that the point its testing is only every originated from an existing face */
674         
675         for (node= ps->bucketFaces[bucket_index]; node; node= node->next) {
676                 face_index = GET_INT_FROM_POINTER(node->link);
677                 mf= ps->dm_mface + face_index;
678                 
679                 v1= ps->screenCoords[mf->v1];
680                 v2= ps->screenCoords[mf->v2];
681                 v3= ps->screenCoords[mf->v3];
682                 
683                 if (IsectPT2Df(pt, v1, v2, v3)) {
684                         if (ps->is_ortho)       z_depth= VecZDepthOrtho(pt, v1, v2, v3, w_tmp);
685                         else                            z_depth= VecZDepthPersp(pt, v1, v2, v3, w_tmp);
686                         
687                         if (z_depth < z_depth_best) {
688                                 best_face_index = face_index;
689                                 best_side = 0;
690                                 z_depth_best = z_depth;
691                                 VECCOPY(w, w_tmp);
692                         }
693                 }
694                 else if (mf->v4) {
695                         v4= ps->screenCoords[mf->v4];
696                         
697                         if (IsectPT2Df(pt, v1, v3, v4)) {
698                                 if (ps->is_ortho)       z_depth= VecZDepthOrtho(pt, v1, v3, v4, w_tmp);
699                                 else                            z_depth= VecZDepthPersp(pt, v1, v3, v4, w_tmp);
700
701                                 if (z_depth < z_depth_best) {
702                                         best_face_index = face_index;
703                                         best_side= 1;
704                                         z_depth_best = z_depth;
705                                         VECCOPY(w, w_tmp);
706                                 }
707                         }
708                 }
709         }
710         
711         *side = best_side;
712         return best_face_index; /* will be -1 or a valid face */
713 }
714
715 /* Converts a uv coord into a pixel location wrapping if the uv is outside 0-1 range */
716 static void uvco_to_wrapped_pxco(float uv[2], int ibuf_x, int ibuf_y, float *x, float *y)
717 {
718         /* use */
719         *x = (float)fmod(uv[0], 1.0f);
720         *y = (float)fmod(uv[1], 1.0f);
721         
722         if (*x < 0.0f) *x += 1.0f;
723         if (*y < 0.0f) *y += 1.0f;
724         
725         *x = *x * ibuf_x - 0.5f;
726         *y = *y * ibuf_y - 0.5f;
727 }
728
729 /* Set the top-most face color that the screen space coord 'pt' touches (or return 0 if none touch) */
730 static int project_paint_PickColor(const ProjPaintState *ps, float pt[2], float *rgba_fp, unsigned char *rgba, const int interp)
731 {
732         float w[3], uv[2];
733         int side;
734         int face_index;
735         MTFace *tf;
736         ImBuf *ibuf;
737         int xi, yi;
738         
739         
740         face_index = project_paint_PickFace(ps, pt, w, &side);
741         
742         if (face_index == -1)
743                 return 0;
744         
745         tf = ps->dm_mtface + face_index;
746         
747         if (side == 0) {
748                 Vec2Weightf(uv, tf->uv[0], tf->uv[1], tf->uv[2], w);
749         }
750         else { /* QUAD */
751                 Vec2Weightf(uv, tf->uv[0], tf->uv[2], tf->uv[3], w);
752         }
753         
754         ibuf = BKE_image_get_ibuf((Image *)tf->tpage, NULL); /* TODO - this may be slow, the only way around it is to have an ibuf index per face */
755         if (!ibuf) return 0;
756         
757         if (interp) {
758                 float x, y;
759                 uvco_to_wrapped_pxco(uv, ibuf->x, ibuf->y, &x, &y);
760                 
761                 if (ibuf->rect_float) {
762                         if (rgba_fp) {
763                                 bilinear_interpolation_color(ibuf, NULL, rgba_fp, x, y);
764                         }
765                         else {
766                                 float rgba_tmp_f[4];
767                                 bilinear_interpolation_color(ibuf, NULL, rgba_tmp_f, x, y);
768                                 IMAPAINT_FLOAT_RGBA_TO_CHAR(rgba, rgba_tmp_f);
769                         }
770                 }
771                 else {
772                         if (rgba) {
773                                 bilinear_interpolation_color(ibuf, rgba, NULL, x, y);
774                         }
775                         else {
776                                 unsigned char rgba_tmp[4];
777                                 bilinear_interpolation_color(ibuf, rgba_tmp, NULL, x, y);
778                                 IMAPAINT_CHAR_RGBA_TO_FLOAT(rgba_fp, rgba_tmp);
779                         }
780                 }
781         }
782         else {
783                 xi = (uv[0]*ibuf->x) + 0.5f;
784                 yi = (uv[1]*ibuf->y) + 0.5f;
785                 
786                 //if (xi<0 || xi>=ibuf->x  ||  yi<0 || yi>=ibuf->y) return 0;
787                 
788                 /* wrap */
789                 xi = ((int)(uv[0]*ibuf->x)) % ibuf->x;
790                 if (xi<0) xi += ibuf->x;
791                 yi = ((int)(uv[1]*ibuf->y)) % ibuf->y;
792                 if (yi<0) yi += ibuf->y;
793                 
794                 
795                 if (rgba) {
796                         if (ibuf->rect_float) {
797                                 float *rgba_tmp_fp = ibuf->rect_float + (xi + yi * ibuf->x * 4);
798                                 IMAPAINT_FLOAT_RGBA_TO_CHAR(rgba, rgba_tmp_fp);
799                         }
800                         else {
801                                 *((unsigned int *)rgba) = *(unsigned int *)(((char *)ibuf->rect) + ((xi + yi * ibuf->x) * 4));
802                         }
803                 }
804                 
805                 if (rgba_fp) {
806                         if (ibuf->rect_float) {
807                                 QUATCOPY(rgba_fp, ((float *)ibuf->rect_float + ((xi + yi * ibuf->x) * 4)));
808                         }
809                         else {
810                                 char *tmp_ch= ((char *)ibuf->rect) + ((xi + yi * ibuf->x) * 4);
811                                 IMAPAINT_CHAR_RGBA_TO_FLOAT(rgba_fp, tmp_ch);
812                         }
813                 }
814         }
815         return 1;
816 }
817
818 /* Check if 'pt' is infront of the 3 verts on the Z axis (used for screenspace occlusuion test)
819  * return...
820  *  0   : no occlusion
821  * -1   : no occlusion but 2D intersection is true (avoid testing the other half of a quad)
822  *  1   : occluded
823     2   : occluded with w[3] weights set (need to know in some cases) */
824
825 static int project_paint_occlude_ptv(float pt[3], float v1[3], float v2[3], float v3[3], float w[3], int is_ortho)
826 {
827         /* if all are behind us, return false */
828         if(v1[2] > pt[2] && v2[2] > pt[2] && v3[2] > pt[2])
829                 return 0;
830                 
831         /* do a 2D point in try intersection */
832         if (!IsectPT2Df(pt, v1, v2, v3))
833                 return 0; /* we know there is  */
834         
835
836         /* From here on we know there IS an intersection */
837         /* if ALL of the verts are infront of us then we know it intersects ? */
838         if(v1[2] < pt[2] && v2[2] < pt[2] && v3[2] < pt[2]) {
839                 return 1;
840         }
841         else {
842                 /* we intersect? - find the exact depth at the point of intersection */
843                 /* Is this point is occluded by another face? */
844                 if (is_ortho) {
845                         if (VecZDepthOrtho(pt, v1, v2, v3, w) < pt[2]) return 2;
846                 }
847                 else {
848                         if (VecZDepthPersp(pt, v1, v2, v3, w) < pt[2]) return 2;
849                 }
850         }
851         return -1;
852 }
853
854
855 static int project_paint_occlude_ptv_clip(
856                 const ProjPaintState *ps, const MFace *mf,
857                 float pt[3], float v1[3], float v2[3], float v3[3],
858                 const int side )
859 {
860         float w[3], wco[3];
861         int ret = project_paint_occlude_ptv(pt, v1, v2, v3, w, ps->is_ortho);
862
863         if (ret <= 0)
864                 return ret;
865
866         if (ret==1) { /* weights not calculated */
867                 if (ps->is_ortho)       BarycentricWeights2f(pt, v1, v2, v3, w);
868                 else                            BarycentricWeightsPersp2f(pt, v1, v2, v3, w);
869         }
870
871         /* Test if we're in the clipped area, */
872         if (side)       VecWeightf(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v3].co, ps->dm_mvert[mf->v4].co, w);
873         else            VecWeightf(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v2].co, ps->dm_mvert[mf->v3].co, w);
874         
875         Mat4MulVecfl(ps->ob->obmat, wco);
876         if(!view3d_test_clipping(ps->rv3d, wco)) {
877                 return 1;
878         }
879         
880         return -1;
881 }
882
883
884 /* Check if a screenspace location is occluded by any other faces
885  * check, pixelScreenCo must be in screenspace, its Z-Depth only needs to be used for comparison
886  * and dosn't need to be correct in relation to X and Y coords (this is the case in perspective view) */
887 static int project_bucket_point_occluded(const ProjPaintState *ps, LinkNode *bucketFace, const int orig_face, float pixelScreenCo[4])
888 {
889         MFace *mf;
890         int face_index;
891         int isect_ret;
892         float w[3]; /* not needed when clipping */
893         
894         /* we could return 0 for 1 face buckets, as long as this function assumes
895          * that the point its testing is only every originated from an existing face */
896
897         for (; bucketFace; bucketFace = bucketFace->next) {
898                 face_index = GET_INT_FROM_POINTER(bucketFace->link);
899
900                 if (orig_face != face_index) {
901                         mf = ps->dm_mface + face_index;
902                         if(ps->rv3d->rflag & RV3D_CLIPPING)
903                                 isect_ret = project_paint_occlude_ptv_clip(ps, mf, pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v2], ps->screenCoords[mf->v3], 0);
904                         else
905                                 isect_ret = project_paint_occlude_ptv(pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v2], ps->screenCoords[mf->v3], w, ps->is_ortho);
906
907                         /* Note, if isect_ret==-1 then we dont want to test the other side of the quad */
908                         if (isect_ret==0 && mf->v4) {
909                                 if(ps->rv3d->rflag & RV3D_CLIPPING)
910                                         isect_ret = project_paint_occlude_ptv_clip(ps, mf, pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v3], ps->screenCoords[mf->v4], 1);
911                                 else
912                                         isect_ret = project_paint_occlude_ptv(pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v3], ps->screenCoords[mf->v4], w, ps->is_ortho);
913                         }
914                         if (isect_ret==1) {
915                                 /* TODO - we may want to cache the first hit,
916                                  * it is not possible to swap the face order in the list anymore */
917                                 return 1;
918                         }
919                 }
920         }
921         return 0;
922 }
923
924 /* basic line intersection, could move to arithb.c, 2 points with a horiz line
925  * 1 for an intersection, 2 if the first point is aligned, 3 if the second point is aligned */
926 #define ISECT_TRUE 1
927 #define ISECT_TRUE_P1 2
928 #define ISECT_TRUE_P2 3
929 static int line_isect_y(const float p1[2], const float p2[2], const float y_level, float *x_isect)
930 {
931         float y_diff;
932         
933         if (y_level==p1[1]) { /* are we touching the first point? - no interpolation needed */
934                 *x_isect = p1[0];
935                 return ISECT_TRUE_P1;
936         }
937         if (y_level==p2[1]) { /* are we touching the second point? - no interpolation needed */
938                 *x_isect = p2[0];
939                 return ISECT_TRUE_P2;
940         }
941         
942         y_diff= fabs(p1[1]-p2[1]); /* yuck, horizontal line, we cant do much here */
943         
944         if (y_diff < 0.000001f) {
945                 *x_isect = (p1[0]+p2[0]) * 0.5f;
946                 return ISECT_TRUE;              
947         }
948         
949         if (p1[1] > y_level && p2[1] < y_level) {
950                 *x_isect = (p2[0]*(p1[1]-y_level) + p1[0]*(y_level-p2[1])) / y_diff;  /*(p1[1]-p2[1]);*/
951                 return ISECT_TRUE;
952         }
953         else if (p1[1] < y_level && p2[1] > y_level) {
954                 *x_isect = (p2[0]*(y_level-p1[1]) + p1[0]*(p2[1]-y_level)) / y_diff;  /*(p2[1]-p1[1]);*/
955                 return ISECT_TRUE;
956         }
957         else {
958                 return 0;
959         }
960 }
961
962 static int line_isect_x(const float p1[2], const float p2[2], const float x_level, float *y_isect)
963 {
964         float x_diff;
965         
966         if (x_level==p1[0]) { /* are we touching the first point? - no interpolation needed */
967                 *y_isect = p1[1];
968                 return ISECT_TRUE_P1;
969         }
970         if (x_level==p2[0]) { /* are we touching the second point? - no interpolation needed */
971                 *y_isect = p2[1];
972                 return ISECT_TRUE_P2;
973         }
974         
975         x_diff= fabs(p1[0]-p2[0]); /* yuck, horizontal line, we cant do much here */
976         
977         if (x_diff < 0.000001) { /* yuck, vertical line, we cant do much here */
978                 *y_isect = (p1[0]+p2[0]) * 0.5f;
979                 return ISECT_TRUE;              
980         }
981         
982         if (p1[0] > x_level && p2[0] < x_level) {
983                 *y_isect = (p2[1]*(p1[0]-x_level) + p1[1]*(x_level-p2[0])) / x_diff; /*(p1[0]-p2[0]);*/
984                 return ISECT_TRUE;
985         }
986         else if (p1[0] < x_level && p2[0] > x_level) {
987                 *y_isect = (p2[1]*(x_level-p1[0]) + p1[1]*(p2[0]-x_level)) / x_diff; /*(p2[0]-p1[0]);*/
988                 return ISECT_TRUE;
989         }
990         else {
991                 return 0;
992         }
993 }
994
995 /* simple func use for comparing UV locations to check if there are seams.
996  * Its possible this gives incorrect results, when the UVs for 1 face go into the next 
997  * tile, but do not do this for the adjacent face, it could return a false positive.
998  * This is so unlikely that Id not worry about it. */
999 static int cmp_uv(const float vec2a[2], const float vec2b[2])
1000 {
1001         /* if the UV's are not between 0.0 and 1.0 */
1002         float xa = (float)fmod(vec2a[0], 1.0f);
1003         float ya = (float)fmod(vec2a[1], 1.0f);
1004         
1005         float xb = (float)fmod(vec2b[0], 1.0f);
1006         float yb = (float)fmod(vec2b[1], 1.0f); 
1007         
1008         if (xa < 0.0f) xa += 1.0f;
1009         if (ya < 0.0f) ya += 1.0f;
1010         
1011         if (xb < 0.0f) xb += 1.0f;
1012         if (yb < 0.0f) yb += 1.0f;
1013         
1014         return ((fabs(xa-xb) < PROJ_GEOM_TOLERANCE) && (fabs(ya-yb) < PROJ_GEOM_TOLERANCE)) ? 1:0;
1015 }
1016
1017
1018 /* set min_px and max_px to the image space bounds of the UV coords 
1019  * return zero if there is no area in the returned rectangle */
1020 static int pixel_bounds_uv(
1021                 const float uv1[2], const float uv2[2], const float uv3[2], const float uv4[2],
1022                 rcti *bounds_px,
1023                 const int ibuf_x, const int ibuf_y,
1024                 int is_quad
1025 ) {
1026         float min_uv[2], max_uv[2]; /* UV bounds */
1027         
1028         INIT_MINMAX2(min_uv, max_uv);
1029         
1030         DO_MINMAX2(uv1, min_uv, max_uv);
1031         DO_MINMAX2(uv2, min_uv, max_uv);
1032         DO_MINMAX2(uv3, min_uv, max_uv);
1033         if (is_quad)
1034                 DO_MINMAX2(uv4, min_uv, max_uv);
1035         
1036         bounds_px->xmin = (int)(ibuf_x * min_uv[0]);
1037         bounds_px->ymin = (int)(ibuf_y * min_uv[1]);
1038         
1039         bounds_px->xmax = (int)(ibuf_x * max_uv[0]) +1;
1040         bounds_px->ymax = (int)(ibuf_y * max_uv[1]) +1;
1041         
1042         /*printf("%d %d %d %d \n", min_px[0], min_px[1], max_px[0], max_px[1]);*/
1043         
1044         /* face uses no UV area when quantized to pixels? */
1045         return (bounds_px->xmin == bounds_px->xmax || bounds_px->ymin == bounds_px->ymax) ? 0 : 1;
1046 }
1047
1048 static int pixel_bounds_array(float (* uv)[2], rcti *bounds_px, const int ibuf_x, const int ibuf_y, int tot)
1049 {
1050         float min_uv[2], max_uv[2]; /* UV bounds */
1051         
1052         if (tot==0) {
1053                 return 0;
1054         }
1055         
1056         INIT_MINMAX2(min_uv, max_uv);
1057         
1058         while (tot--) {
1059                 DO_MINMAX2((*uv), min_uv, max_uv);
1060                 uv++;
1061         }
1062         
1063         bounds_px->xmin = (int)(ibuf_x * min_uv[0]);
1064         bounds_px->ymin = (int)(ibuf_y * min_uv[1]);
1065         
1066         bounds_px->xmax = (int)(ibuf_x * max_uv[0]) +1;
1067         bounds_px->ymax = (int)(ibuf_y * max_uv[1]) +1;
1068         
1069         /*printf("%d %d %d %d \n", min_px[0], min_px[1], max_px[0], max_px[1]);*/
1070         
1071         /* face uses no UV area when quantized to pixels? */
1072         return (bounds_px->xmin == bounds_px->xmax || bounds_px->ymin == bounds_px->ymax) ? 0 : 1;
1073 }
1074
1075 #ifndef PROJ_DEBUG_NOSEAMBLEED
1076
1077 /* This function returns 1 if this face has a seam along the 2 face-vert indicies
1078  * 'orig_i1_fidx' and 'orig_i2_fidx' */
1079 static int check_seam(const ProjPaintState *ps, const int orig_face, const int orig_i1_fidx, const int orig_i2_fidx, int *other_face, int *orig_fidx)
1080 {
1081         LinkNode *node;
1082         int face_index;
1083         int i1, i2;
1084         int i1_fidx = -1, i2_fidx = -1; /* index in face */
1085         MFace *mf;
1086         MTFace *tf;
1087         const MFace *orig_mf = ps->dm_mface + orig_face;  
1088         const MTFace *orig_tf = ps->dm_mtface + orig_face;
1089         
1090         /* vert indicies from face vert order indicies */
1091         i1 = (*(&orig_mf->v1 + orig_i1_fidx));
1092         i2 = (*(&orig_mf->v1 + orig_i2_fidx));
1093         
1094         for (node = ps->vertFaces[i1]; node; node = node->next) {
1095                 face_index = GET_INT_FROM_POINTER(node->link);
1096
1097                 if (face_index != orig_face) {
1098                         mf = ps->dm_mface + face_index;
1099                         /* could check if the 2 faces images match here,
1100                          * but then there wouldn't be a way to return the opposite face's info */
1101                         
1102                         
1103                         /* We need to know the order of the verts in the adjacent face 
1104                          * set the i1_fidx and i2_fidx to (0,1,2,3) */
1105                         if              (mf->v1==i1)                    i1_fidx = 0;
1106                         else if (mf->v2==i1)                    i1_fidx = 1;
1107                         else if (mf->v3==i1)                    i1_fidx = 2;
1108                         else if (mf->v4 && mf->v4==i1)  i1_fidx = 3;
1109                         
1110                         if              (mf->v1==i2)                    i2_fidx = 0;
1111                         else if (mf->v2==i2)                    i2_fidx = 1;
1112                         else if (mf->v3==i2)                    i2_fidx = 2;
1113                         else if (mf->v4 && mf->v4==i2)  i2_fidx = 3;
1114                         
1115                         /* Only need to check if 'i2_fidx' is valid because we know i1_fidx is the same vert on both faces */
1116                         if (i2_fidx != -1) {
1117                                 /* This IS an adjacent face!, now lets check if the UVs are ok */
1118                                 tf = ps->dm_mtface + face_index;
1119                                 
1120                                 /* set up the other face */
1121                                 *other_face = face_index;
1122                                 *orig_fidx = (i1_fidx < i2_fidx) ? i1_fidx : i2_fidx;
1123                                 
1124                                 /* first test if they have the same image */
1125                                 if (    (orig_tf->tpage == tf->tpage) &&
1126                                                 cmp_uv(orig_tf->uv[orig_i1_fidx], tf->uv[i1_fidx]) &&
1127                                                 cmp_uv(orig_tf->uv[orig_i2_fidx], tf->uv[i2_fidx]) )
1128                                 {
1129                                         // printf("SEAM (NONE)\n");
1130                                         return 0;
1131                                         
1132                                 }
1133                                 else {
1134                                         // printf("SEAM (UV GAP)\n");
1135                                         return 1;
1136                                 }
1137                         }
1138                 }
1139         }
1140         // printf("SEAM (NO FACE)\n");
1141         *other_face = -1;
1142         return 1;
1143 }
1144
1145 /* TODO - move to arithb.c */
1146 /* Converts an angle to a length that can be used for maintaining an even margin around UV's */
1147 static float angleToLength(float angle)
1148 {
1149         // already accounted for
1150         if (angle < 0.000001f) {
1151                 return 1.0f;
1152         }
1153         else {
1154                 return fabs(1.0f / cos(angle * (M_PI/180.0f)));
1155         }
1156 }
1157
1158 /* Calculate outset UV's, this is not the same as simply scaling the UVs,
1159  * since the outset coords are a margin that keep an even distance from the original UV's,
1160  * note that the image aspect is taken into account */
1161 static void uv_image_outset(float (*orig_uv)[2], float (*outset_uv)[2], const float scaler, const int ibuf_x, const int ibuf_y, const int is_quad)
1162 {
1163         float a1, a2, a3, a4=0.0f;
1164         float puv[4][2]; /* pixelspace uv's */
1165         float no1[2], no2[2], no3[2], no4[2]; /* normals */
1166         float dir1[2], dir2[2], dir3[2], dir4[2];
1167         float ibuf_x_inv = 1.0f / (float)ibuf_x; 
1168         float ibuf_y_inv = 1.0f / (float)ibuf_y; 
1169         
1170         /* make UV's in pixel space so we can */
1171         puv[0][0] = orig_uv[0][0] * ibuf_x;
1172         puv[0][1] = orig_uv[0][1] * ibuf_y;
1173         
1174         puv[1][0] = orig_uv[1][0] * ibuf_x;
1175         puv[1][1] = orig_uv[1][1] * ibuf_y;
1176         
1177         puv[2][0] = orig_uv[2][0] * ibuf_x;
1178         puv[2][1] = orig_uv[2][1] * ibuf_y;
1179         
1180         if (is_quad) {
1181                 puv[3][0] = orig_uv[3][0] * ibuf_x;
1182                 puv[3][1] = orig_uv[3][1] * ibuf_y;
1183         }
1184         
1185         /* face edge directions */
1186         Vec2Subf(dir1, puv[1], puv[0]);
1187         Vec2Subf(dir2, puv[2], puv[1]);
1188         Normalize2(dir1);
1189         Normalize2(dir2);
1190         
1191         if (is_quad) {
1192                 Vec2Subf(dir3, puv[3], puv[2]);
1193                 Vec2Subf(dir4, puv[0], puv[3]);
1194                 Normalize2(dir3);
1195                 Normalize2(dir4);
1196         }
1197         else {
1198                 Vec2Subf(dir3, puv[0], puv[2]);
1199                 Normalize2(dir3);
1200         }
1201         
1202         if (is_quad) {
1203                 a1 = angleToLength(NormalizedVecAngle2_2D(dir4, dir1));
1204                 a2 = angleToLength(NormalizedVecAngle2_2D(dir1, dir2));
1205                 a3 = angleToLength(NormalizedVecAngle2_2D(dir2, dir3));
1206                 a4 = angleToLength(NormalizedVecAngle2_2D(dir3, dir4));
1207         }
1208         else {
1209                 a1 = angleToLength(NormalizedVecAngle2_2D(dir3, dir1));
1210                 a2 = angleToLength(NormalizedVecAngle2_2D(dir1, dir2));
1211                 a3 = angleToLength(NormalizedVecAngle2_2D(dir2, dir3));
1212         }
1213         
1214         if (is_quad) {
1215                 Vec2Subf(no1, dir4, dir1);
1216                 Vec2Subf(no2, dir1, dir2);
1217                 Vec2Subf(no3, dir2, dir3);
1218                 Vec2Subf(no4, dir3, dir4);
1219                 Normalize2(no1);
1220                 Normalize2(no2);
1221                 Normalize2(no3);
1222                 Normalize2(no4);
1223                 Vec2Mulf(no1, a1*scaler);
1224                 Vec2Mulf(no2, a2*scaler);
1225                 Vec2Mulf(no3, a3*scaler);
1226                 Vec2Mulf(no4, a4*scaler);
1227                 Vec2Addf(outset_uv[0], puv[0], no1);
1228                 Vec2Addf(outset_uv[1], puv[1], no2);
1229                 Vec2Addf(outset_uv[2], puv[2], no3);
1230                 Vec2Addf(outset_uv[3], puv[3], no4);
1231                 outset_uv[0][0] *= ibuf_x_inv;
1232                 outset_uv[0][1] *= ibuf_y_inv;
1233                 
1234                 outset_uv[1][0] *= ibuf_x_inv;
1235                 outset_uv[1][1] *= ibuf_y_inv;
1236                 
1237                 outset_uv[2][0] *= ibuf_x_inv;
1238                 outset_uv[2][1] *= ibuf_y_inv;
1239                 
1240                 outset_uv[3][0] *= ibuf_x_inv;
1241                 outset_uv[3][1] *= ibuf_y_inv;
1242         }
1243         else {
1244                 Vec2Subf(no1, dir3, dir1);
1245                 Vec2Subf(no2, dir1, dir2);
1246                 Vec2Subf(no3, dir2, dir3);
1247                 Normalize2(no1);
1248                 Normalize2(no2);
1249                 Normalize2(no3);
1250                 Vec2Mulf(no1, a1*scaler);
1251                 Vec2Mulf(no2, a2*scaler);
1252                 Vec2Mulf(no3, a3*scaler);
1253                 Vec2Addf(outset_uv[0], puv[0], no1);
1254                 Vec2Addf(outset_uv[1], puv[1], no2);
1255                 Vec2Addf(outset_uv[2], puv[2], no3);
1256                 outset_uv[0][0] *= ibuf_x_inv;
1257                 outset_uv[0][1] *= ibuf_y_inv;
1258                 
1259                 outset_uv[1][0] *= ibuf_x_inv;
1260                 outset_uv[1][1] *= ibuf_y_inv;
1261                 
1262                 outset_uv[2][0] *= ibuf_x_inv;
1263                 outset_uv[2][1] *= ibuf_y_inv;
1264         }
1265 }
1266
1267 /* 
1268  * Be tricky with flags, first 4 bits are PROJ_FACE_SEAM1 to 4, last 4 bits are PROJ_FACE_NOSEAM1 to 4
1269  * 1<<i - where i is (0-3) 
1270  * 
1271  * If we're multithreadng, make sure threads are locked when this is called
1272  */
1273 static void project_face_seams_init(const ProjPaintState *ps, const int face_index, const int is_quad)
1274 {
1275         int other_face, other_fidx; /* vars for the other face, we also set its flag */
1276         int fidx1 = is_quad ? 3 : 2;
1277         int fidx2 = 0; /* next fidx in the face (0,1,2,3) -> (1,2,3,0) or (0,1,2) -> (1,2,0) for a tri */
1278         
1279         do {
1280                 if ((ps->faceSeamFlags[face_index] & (1<<fidx1|16<<fidx1)) == 0) {
1281                         if (check_seam(ps, face_index, fidx1, fidx2, &other_face, &other_fidx)) {
1282                                 ps->faceSeamFlags[face_index] |= 1<<fidx1;
1283                                 if (other_face != -1)
1284                                         ps->faceSeamFlags[other_face] |= 1<<other_fidx;
1285                         }
1286                         else {
1287                                 ps->faceSeamFlags[face_index] |= 16<<fidx1;
1288                                 if (other_face != -1)
1289                                         ps->faceSeamFlags[other_face] |= 16<<other_fidx; /* second 4 bits for disabled */
1290                         }
1291                 }
1292                 
1293                 fidx2 = fidx1;
1294         } while (fidx1--);
1295 }
1296 #endif // PROJ_DEBUG_NOSEAMBLEED
1297
1298
1299 /* TODO - move to arithb.c */
1300
1301 /* little sister we only need to know lambda */
1302 static float lambda_cp_line2(const float p[2], const float l1[2], const float l2[2])
1303 {
1304         float h[2], u[2];
1305         
1306         u[0] = l2[0] - l1[0];
1307         u[1] = l2[1] - l1[1];
1308
1309         h[0] = p[0] - l1[0];
1310         h[1] = p[1] - l1[1];
1311         
1312         return(Inp2f(u, h)/Inp2f(u, u));
1313 }
1314
1315
1316 /* Converts a UV location to a 3D screenspace location
1317  * Takes a 'uv' and 3 UV coords, and sets the values of pixelScreenCo
1318  * 
1319  * This is used for finding a pixels location in screenspace for painting */
1320 static void screen_px_from_ortho(
1321                 float uv[2],
1322                 float v1co[3], float v2co[3], float v3co[3], /* Screenspace coords */
1323                 float uv1co[2], float uv2co[2], float uv3co[2],
1324                 float pixelScreenCo[4],
1325                 float w[3])
1326 {
1327         BarycentricWeights2f(uv, uv1co, uv2co, uv3co, w);
1328         VecWeightf(pixelScreenCo, v1co, v2co, v3co, w);
1329 }
1330
1331 /* same as screen_px_from_ortho except we need to take into account
1332  * the perspective W coord for each vert */
1333 static void screen_px_from_persp(
1334                 float uv[2],
1335                 float v1co[3], float v2co[3], float v3co[3], /* screenspace coords */
1336                 float uv1co[2], float uv2co[2], float uv3co[2],
1337                 float pixelScreenCo[4],
1338                 float w[3])
1339 {
1340
1341         float wtot_inv, wtot;
1342         BarycentricWeights2f(uv, uv1co, uv2co, uv3co, w);
1343         
1344         /* re-weight from the 4th coord of each screen vert */
1345         w[0] *= v1co[3];
1346         w[1] *= v2co[3];
1347         w[2] *= v3co[3];
1348         
1349         wtot = w[0]+w[1]+w[2];
1350         
1351         if (wtot > 0.0f) {
1352                 wtot_inv = 1.0f / wtot;
1353                 w[0] *= wtot_inv;
1354                 w[1] *= wtot_inv;
1355                 w[2] *= wtot_inv;
1356         }
1357         else {
1358                 w[0] = w[1] = w[2] = 1.0/3.0; /* dummy values for zero area face */
1359         }
1360         /* done re-weighting */
1361         
1362         VecWeightf(pixelScreenCo, v1co, v2co, v3co, w);
1363 }
1364
1365 static void project_face_pixel(const MTFace *tf_other, ImBuf *ibuf_other, const float w[3], int side, unsigned char rgba_ub[4], float rgba_f[4])
1366 {
1367         float *uvCo1, *uvCo2, *uvCo3;
1368         float uv_other[2], x, y;
1369         
1370         uvCo1 =  (float *)tf_other->uv[0];
1371         if (side==1) {
1372                 uvCo2 =  (float *)tf_other->uv[2];
1373                 uvCo3 =  (float *)tf_other->uv[3];
1374         }
1375         else {
1376                 uvCo2 =  (float *)tf_other->uv[1];
1377                 uvCo3 =  (float *)tf_other->uv[2];
1378         }
1379         
1380         Vec2Weightf(uv_other, uvCo1, uvCo2, uvCo3, w);
1381         
1382         /* use */
1383         uvco_to_wrapped_pxco(uv_other, ibuf_other->x, ibuf_other->y, &x, &y);
1384         
1385         
1386         if (ibuf_other->rect_float) { /* from float to float */
1387                 bilinear_interpolation_color(ibuf_other, NULL, rgba_f, x, y);
1388         }
1389         else { /* from char to float */
1390                 bilinear_interpolation_color(ibuf_other, rgba_ub, NULL, x, y);
1391         }
1392                 
1393 }
1394
1395 /* run this outside project_paint_uvpixel_init since pixels with mask 0 dont need init */
1396 float project_paint_uvpixel_mask(
1397                 const ProjPaintState *ps,
1398                 const int face_index,
1399                 const int side,
1400                 const float w[3])
1401 {
1402         float mask;
1403         
1404         /* Image Mask */
1405         if (ps->do_layer_mask) {
1406                 /* another UV layers image is masking this one's */
1407                 ImBuf *ibuf_other;
1408                 const MTFace *tf_other = ps->dm_mtface_mask + face_index;
1409                 
1410                 if (tf_other->tpage && (ibuf_other = BKE_image_get_ibuf((Image *)tf_other->tpage, NULL))) {
1411                         /* BKE_image_get_ibuf - TODO - this may be slow */
1412                         unsigned char rgba_ub[4];
1413                         float rgba_f[4];
1414                         
1415                         project_face_pixel(tf_other, ibuf_other, w, side, rgba_ub, rgba_f);
1416                         
1417                         if (ibuf_other->rect_float) { /* from float to float */
1418                                 mask = ((rgba_f[0]+rgba_f[1]+rgba_f[2])/3.0f) * rgba_f[3];
1419                         }
1420                         else { /* from char to float */
1421                                 mask = ((rgba_ub[0]+rgba_ub[1]+rgba_ub[2])/(256*3.0f)) * (rgba_ub[3]/256.0f);
1422                         }
1423                         
1424                         if (!ps->do_layer_mask_inv) /* matching the gimps layer mask black/white rules, white==full opacity */
1425                                 mask = (1.0f - mask);
1426
1427                         if (mask == 0.0f) {
1428                                 return 0.0f;
1429                         }
1430                 }
1431                 else {
1432                         return 0.0f;
1433                 }
1434         } else {
1435                 mask = 1.0f;
1436         }
1437         
1438         /* calculate mask */
1439         if (ps->do_mask_normal) {
1440                 MFace *mf = ps->dm_mface + face_index;
1441                 short *no1, *no2, *no3;
1442                 float no[3], angle;
1443                 no1 = ps->dm_mvert[mf->v1].no;
1444                 if (side==1) {
1445                         no2 = ps->dm_mvert[mf->v3].no;
1446                         no3 = ps->dm_mvert[mf->v4].no;
1447                 }
1448                 else {
1449                         no2 = ps->dm_mvert[mf->v2].no;
1450                         no3 = ps->dm_mvert[mf->v3].no;
1451                 }
1452                 
1453                 no[0] = w[0]*no1[0] + w[1]*no2[0] + w[2]*no3[0];
1454                 no[1] = w[0]*no1[1] + w[1]*no2[1] + w[2]*no3[1];
1455                 no[2] = w[0]*no1[2] + w[1]*no2[2] + w[2]*no3[2];
1456                 Normalize(no);
1457                 
1458                 /* now we can use the normal as a mask */
1459                 if (ps->is_ortho) {
1460                         angle = NormalizedVecAngle2((float *)ps->viewDir, no);
1461                 }
1462                 else {
1463                         /* Annoying but for the perspective view we need to get the pixels location in 3D space :/ */
1464                         float viewDirPersp[3];
1465                         float *co1, *co2, *co3;
1466                         co1 = ps->dm_mvert[mf->v1].co;
1467                         if (side==1) {
1468                                 co2 = ps->dm_mvert[mf->v3].co;
1469                                 co3 = ps->dm_mvert[mf->v4].co;
1470                         }
1471                         else {
1472                                 co2 = ps->dm_mvert[mf->v2].co;
1473                                 co3 = ps->dm_mvert[mf->v3].co;
1474                         }
1475
1476                         /* Get the direction from the viewPoint to the pixel and normalize */
1477                         viewDirPersp[0] = (ps->viewPos[0] - (w[0]*co1[0] + w[1]*co2[0] + w[2]*co3[0]));
1478                         viewDirPersp[1] = (ps->viewPos[1] - (w[0]*co1[1] + w[1]*co2[1] + w[2]*co3[1]));
1479                         viewDirPersp[2] = (ps->viewPos[2] - (w[0]*co1[2] + w[1]*co2[2] + w[2]*co3[2]));
1480                         Normalize(viewDirPersp);
1481                         
1482                         angle = NormalizedVecAngle2(viewDirPersp, no);
1483                 }
1484                 
1485                 if (angle >= ps->normal_angle) {
1486                         return 0.0f; /* outsize the normal limit*/
1487                 }
1488                 else if (angle > ps->normal_angle_inner) {
1489                         mask *= (ps->normal_angle - angle) / ps->normal_angle_range;
1490                 } /* otherwise no mask normal is needed, were within the limit */
1491         }
1492         
1493         // This only works when the opacity dosnt change while painting, stylus pressure messes with this
1494         // so dont use it.
1495         // if (ps->is_airbrush==0) mask *= ps->brush->alpha;
1496         
1497         return mask;
1498 }
1499
1500 /* run this function when we know a bucket's, face's pixel can be initialized,
1501  * return the ProjPixel which is added to 'ps->bucketRect[bucket_index]' */
1502 static ProjPixel *project_paint_uvpixel_init(
1503                 const ProjPaintState *ps,
1504                 MemArena *arena,
1505                 const ImBuf *ibuf,
1506                 short x_px, short y_px,
1507                 const float mask,
1508                 const int face_index,
1509                 const int image_index,
1510                 const float pixelScreenCo[4],
1511                 const int side,
1512                 const float w[3])
1513 {
1514         ProjPixel *projPixel;
1515         short size;
1516         
1517         /* wrap pixel location */
1518         x_px = x_px % ibuf->x;
1519         if (x_px<0) x_px += ibuf->x;
1520         y_px = y_px % ibuf->y;
1521         if (y_px<0) y_px += ibuf->y;
1522         
1523         if (ps->tool==PAINT_TOOL_CLONE) {
1524                 size = sizeof(ProjPixelClone);
1525         }
1526         else if (ps->tool==PAINT_TOOL_SMEAR) {
1527                 size = sizeof(ProjPixelClone);
1528         }
1529         else {
1530                 size = sizeof(ProjPixel);
1531         }
1532         
1533         projPixel = (ProjPixel *)BLI_memarena_alloc(arena, size);
1534         //memset(projPixel, 0, size);
1535         
1536         if (ibuf->rect_float) {
1537                 projPixel->pixel.f_pt = (float *)ibuf->rect_float + ((x_px + y_px * ibuf->x) * 4);
1538                 projPixel->origColor.f[0] = projPixel->newColor.f[0] = projPixel->pixel.f_pt[0];  
1539                 projPixel->origColor.f[1] = projPixel->newColor.f[1] = projPixel->pixel.f_pt[1];  
1540                 projPixel->origColor.f[2] = projPixel->newColor.f[2] = projPixel->pixel.f_pt[2];  
1541                 projPixel->origColor.f[3] = projPixel->newColor.f[3] = projPixel->pixel.f_pt[3];  
1542         }
1543         else {
1544                 projPixel->pixel.ch_pt = ((unsigned char *)ibuf->rect + ((x_px + y_px * ibuf->x) * 4));
1545                 projPixel->origColor.uint = projPixel->newColor.uint = *projPixel->pixel.uint_pt;
1546         }
1547         
1548         /* screenspace unclamped, we could keep its z and w values but dont need them at the moment */
1549         VECCOPY2D(projPixel->projCoSS, pixelScreenCo);
1550         
1551         projPixel->x_px = x_px;
1552         projPixel->y_px = y_px;
1553         
1554         projPixel->mask = (unsigned short)(mask * 65535);
1555         projPixel->mask_max = 0;
1556         
1557         /* which bounding box cell are we in?, needed for undo */
1558         projPixel->bb_cell_index = ((int)(((float)x_px/(float)ibuf->x) * PROJ_BOUNDBOX_DIV)) + ((int)(((float)y_px/(float)ibuf->y) * PROJ_BOUNDBOX_DIV)) * PROJ_BOUNDBOX_DIV ;
1559         
1560         /* done with view3d_project_float inline */
1561         if (ps->tool==PAINT_TOOL_CLONE) {
1562                 if (ps->dm_mtface_clone) {
1563                         ImBuf *ibuf_other;
1564                         const MTFace *tf_other = ps->dm_mtface_clone + face_index;
1565                         
1566                         if (tf_other->tpage && (ibuf_other = BKE_image_get_ibuf((Image *)tf_other->tpage, NULL))) {
1567                                 /* BKE_image_get_ibuf - TODO - this may be slow */
1568                                 
1569                                 if (ibuf->rect_float) {
1570                                         if (ibuf_other->rect_float) { /* from float to float */
1571                                                 project_face_pixel(tf_other, ibuf_other, w, side, NULL, ((ProjPixelClone *)projPixel)->clonepx.f);
1572                                         }
1573                                         else { /* from char to float */
1574                                                 unsigned char rgba_ub[4];
1575                                                 project_face_pixel(tf_other, ibuf_other, w, side, rgba_ub, NULL);
1576                                                 IMAPAINT_CHAR_RGBA_TO_FLOAT(((ProjPixelClone *)projPixel)->clonepx.f, rgba_ub);
1577                                         }
1578                                 }
1579                                 else {
1580                                         if (ibuf_other->rect_float) { /* float to char */
1581                                                 float rgba[4];
1582                                                 project_face_pixel(tf_other, ibuf_other, w, side, NULL, rgba);
1583                                                 IMAPAINT_FLOAT_RGBA_TO_CHAR(((ProjPixelClone *)projPixel)->clonepx.ch, rgba)
1584                                         }
1585                                         else { /* char to char */
1586                                                 project_face_pixel(tf_other, ibuf_other, w, side, ((ProjPixelClone *)projPixel)->clonepx.ch, NULL);
1587                                         }
1588                                 }
1589                         }
1590                         else {
1591                                 if (ibuf->rect_float) {
1592                                         ((ProjPixelClone *)projPixel)->clonepx.f[3] = 0;
1593                                 }
1594                                 else {
1595                                         ((ProjPixelClone *)projPixel)->clonepx.ch[3] = 0;
1596                                 }
1597                         }
1598                         
1599                 }
1600                 else {
1601                         float co[2];
1602                         Vec2Subf(co, projPixel->projCoSS, (float *)ps->cloneOffset);
1603                         
1604                         /* no need to initialize the bucket, we're only checking buckets faces and for this
1605                          * the faces are alredy initialized in project_paint_delayed_face_init(...) */
1606                         if (ibuf->rect_float) {
1607                                 if (!project_paint_PickColor(ps, co, ((ProjPixelClone *)projPixel)->clonepx.f, NULL, 1)) {
1608                                         ((ProjPixelClone *)projPixel)->clonepx.f[3] = 0; /* zero alpha - ignore */
1609                                 }
1610                         }
1611                         else {
1612                                 if (!project_paint_PickColor(ps, co, NULL, ((ProjPixelClone *)projPixel)->clonepx.ch, 1)) {
1613                                         ((ProjPixelClone *)projPixel)->clonepx.ch[3] = 0; /* zero alpha - ignore */
1614                                 }
1615                         }
1616                 }
1617         }
1618         
1619 #ifdef PROJ_DEBUG_PAINT
1620         if (ibuf->rect_float)   projPixel->pixel.f_pt[0] = 0;
1621         else                                    projPixel->pixel.ch_pt[0] = 0;
1622 #endif
1623         projPixel->image_index = image_index;
1624         
1625         return projPixel;
1626 }
1627
1628 static int line_clip_rect2f(
1629                 rctf *rect,
1630                 const float l1[2], const float l2[2],
1631                 float l1_clip[2], float l2_clip[2])
1632 {
1633         /* first account for horizontal, then vertical lines */
1634         /* horiz */
1635         if (fabs(l1[1]-l2[1]) < PROJ_GEOM_TOLERANCE) {
1636                 /* is the line out of range on its Y axis? */
1637                 if (l1[1] < rect->ymin || l1[1] > rect->ymax) {
1638                         return 0;
1639                 }
1640                 /* line is out of range on its X axis */
1641                 if ((l1[0] < rect->xmin && l2[0] < rect->xmin) || (l1[0] > rect->xmax && l2[0] > rect->xmax)) {
1642                         return 0;
1643                 }
1644                 
1645                 
1646                 if (fabs(l1[0]-l2[0]) < PROJ_GEOM_TOLERANCE) { /* this is a single point  (or close to)*/
1647                         if (BLI_in_rctf(rect, l1[0], l1[1])) {
1648                                 VECCOPY2D(l1_clip, l1);
1649                                 VECCOPY2D(l2_clip, l2);
1650                                 return 1;
1651                         }
1652                         else {
1653                                 return 0;
1654                         }
1655                 }
1656                 
1657                 VECCOPY2D(l1_clip, l1);
1658                 VECCOPY2D(l2_clip, l2);
1659                 CLAMP(l1_clip[0], rect->xmin, rect->xmax);
1660                 CLAMP(l2_clip[0], rect->xmin, rect->xmax);
1661                 return 1;
1662         }
1663         else if (fabs(l1[0]-l2[0]) < PROJ_GEOM_TOLERANCE) {
1664                 /* is the line out of range on its X axis? */
1665                 if (l1[0] < rect->xmin || l1[0] > rect->xmax) {
1666                         return 0;
1667                 }
1668                 
1669                 /* line is out of range on its Y axis */
1670                 if ((l1[1] < rect->ymin && l2[1] < rect->ymin) || (l1[1] > rect->ymax && l2[1] > rect->ymax)) {
1671                         return 0;
1672                 }
1673                 
1674                 if (fabs(l1[1]-l2[1]) < PROJ_GEOM_TOLERANCE) { /* this is a single point  (or close to)*/
1675                         if (BLI_in_rctf(rect, l1[0], l1[1])) {
1676                                 VECCOPY2D(l1_clip, l1);
1677                                 VECCOPY2D(l2_clip, l2);
1678                                 return 1;
1679                         }
1680                         else {
1681                                 return 0;
1682                         }
1683                 }
1684                 
1685                 VECCOPY2D(l1_clip, l1);
1686                 VECCOPY2D(l2_clip, l2);
1687                 CLAMP(l1_clip[1], rect->ymin, rect->ymax);
1688                 CLAMP(l2_clip[1], rect->ymin, rect->ymax);
1689                 return 1;
1690         }
1691         else {
1692                 float isect;
1693                 short ok1 = 0;
1694                 short ok2 = 0;
1695                 
1696                 /* Done with vertical lines */
1697                 
1698                 /* are either of the points inside the rectangle ? */
1699                 if (BLI_in_rctf(rect, l1[0], l1[1])) {
1700                         VECCOPY2D(l1_clip, l1);
1701                         ok1 = 1;
1702                 }
1703                 
1704                 if (BLI_in_rctf(rect, l2[0], l2[1])) {
1705                         VECCOPY2D(l2_clip, l2);
1706                         ok2 = 1;
1707                 }
1708                 
1709                 /* line inside rect */
1710                 if (ok1 && ok2) return 1;
1711                 
1712                 /* top/bottom */
1713                 if (line_isect_y(l1, l2, rect->ymin, &isect) && (isect >= rect->xmin) && (isect <= rect->xmax)) {
1714                         if (l1[1] < l2[1]) { /* line 1 is outside */
1715                                 l1_clip[0] = isect;
1716                                 l1_clip[1] = rect->ymin;
1717                                 ok1 = 1;
1718                         }
1719                         else {
1720                                 l2_clip[0] = isect;
1721                                 l2_clip[1] = rect->ymin;
1722                                 ok2 = 2;
1723                         }
1724                 }
1725                 
1726                 if (ok1 && ok2) return 1;
1727                 
1728                 if (line_isect_y(l1, l2, rect->ymax, &isect) && (isect >= rect->xmin) && (isect <= rect->xmax)) {
1729                         if (l1[1] > l2[1]) { /* line 1 is outside */
1730                                 l1_clip[0] = isect;
1731                                 l1_clip[1] = rect->ymax;
1732                                 ok1 = 1;
1733                         }
1734                         else {
1735                                 l2_clip[0] = isect;
1736                                 l2_clip[1] = rect->ymax;
1737                                 ok2 = 2;
1738                         }
1739                 }
1740                 
1741                 if (ok1 && ok2) return 1;
1742                 
1743                 /* left/right */
1744                 if (line_isect_x(l1, l2, rect->xmin, &isect) && (isect >= rect->ymin) && (isect <= rect->ymax)) {
1745                         if (l1[0] < l2[0]) { /* line 1 is outside */
1746                                 l1_clip[0] = rect->xmin;
1747                                 l1_clip[1] = isect;
1748                                 ok1 = 1;
1749                         }
1750                         else {
1751                                 l2_clip[0] = rect->xmin;
1752                                 l2_clip[1] = isect;
1753                                 ok2 = 2;
1754                         }
1755                 }
1756         
1757                 if (ok1 && ok2) return 1;
1758                 
1759                 if (line_isect_x(l1, l2, rect->xmax, &isect) && (isect >= rect->ymin) && (isect <= rect->ymax)) {
1760                         if (l1[0] > l2[0]) { /* line 1 is outside */
1761                                 l1_clip[0] = rect->xmax;
1762                                 l1_clip[1] = isect;
1763                                 ok1 = 1;
1764                         }
1765                         else {
1766                                 l2_clip[0] = rect->xmax;
1767                                 l2_clip[1] = isect;
1768                                 ok2 = 2;
1769                         }
1770                 }
1771                 
1772                 if (ok1 && ok2) {
1773                         return 1;
1774                 }
1775                 else {
1776                         return 0;
1777                 }
1778         }
1779 }
1780
1781
1782
1783 /* scale the quad & tri about its center
1784  * scaling by PROJ_FACE_SCALE_SEAM (0.99x) is used for getting fake UV pixel coords that are on the
1785  * edge of the face but slightly inside it occlusion tests dont return hits on adjacent faces */
1786 static void scale_quad(float insetCos[4][3], float *origCos[4], const float inset)
1787 {
1788         float cent[3];
1789         cent[0] = (origCos[0][0] + origCos[1][0] + origCos[2][0] + origCos[3][0]) / 4.0f;
1790         cent[1] = (origCos[0][1] + origCos[1][1] + origCos[2][1] + origCos[3][1]) / 4.0f;
1791         cent[2] = (origCos[0][2] + origCos[1][2] + origCos[2][2] + origCos[3][2]) / 4.0f;
1792         
1793         VecSubf(insetCos[0], origCos[0], cent);
1794         VecSubf(insetCos[1], origCos[1], cent);
1795         VecSubf(insetCos[2], origCos[2], cent);
1796         VecSubf(insetCos[3], origCos[3], cent);
1797         
1798         VecMulf(insetCos[0], inset);
1799         VecMulf(insetCos[1], inset);
1800         VecMulf(insetCos[2], inset);
1801         VecMulf(insetCos[3], inset);
1802         
1803         VecAddf(insetCos[0], insetCos[0], cent);
1804         VecAddf(insetCos[1], insetCos[1], cent);
1805         VecAddf(insetCos[2], insetCos[2], cent);
1806         VecAddf(insetCos[3], insetCos[3], cent);
1807 }
1808
1809
1810 static void scale_tri(float insetCos[4][3], float *origCos[4], const float inset)
1811 {
1812         float cent[3];
1813         cent[0] = (origCos[0][0] + origCos[1][0] + origCos[2][0]) / 3.0f;
1814         cent[1] = (origCos[0][1] + origCos[1][1] + origCos[2][1]) / 3.0f;
1815         cent[2] = (origCos[0][2] + origCos[1][2] + origCos[2][2]) / 3.0f;
1816         
1817         VecSubf(insetCos[0], origCos[0], cent);
1818         VecSubf(insetCos[1], origCos[1], cent);
1819         VecSubf(insetCos[2], origCos[2], cent);
1820         
1821         VecMulf(insetCos[0], inset);
1822         VecMulf(insetCos[1], inset);
1823         VecMulf(insetCos[2], inset);
1824         
1825         VecAddf(insetCos[0], insetCos[0], cent);
1826         VecAddf(insetCos[1], insetCos[1], cent);
1827         VecAddf(insetCos[2], insetCos[2], cent);
1828 }
1829
1830
1831 static float Vec2Lenf_nosqrt(const float *v1, const float *v2)
1832 {
1833         float x, y;
1834
1835         x = v1[0]-v2[0];
1836         y = v1[1]-v2[1];
1837         return x*x+y*y;
1838 }
1839
1840 static float Vec2Lenf_nosqrt_other(const float *v1, const float v2_1, const float v2_2)
1841 {
1842         float x, y;
1843
1844         x = v1[0]-v2_1;
1845         y = v1[1]-v2_2;
1846         return x*x+y*y;
1847 }
1848
1849 /* note, use a squared value so we can use Vec2Lenf_nosqrt
1850  * be sure that you have done a bounds check first or this may fail */
1851 /* only give bucket_bounds as an arg because we need it elsewhere */
1852 static int project_bucket_isect_circle(const int bucket_x, const int bucket_y, const float cent[2], const float radius_squared, rctf *bucket_bounds)
1853 {
1854          
1855         /* Would normally to a simple intersection test, however we know the bounds of these 2 alredy intersect 
1856          * so we only need to test if the center is inside the vertical or horizontal bounds on either axis,
1857          * this is even less work then an intersection test
1858          * 
1859         if (BLI_in_rctf(bucket_bounds, cent[0], cent[1]))
1860                 return 1;
1861          */
1862         
1863         if((bucket_bounds->xmin <= cent[0] && bucket_bounds->xmax >= cent[0]) || (bucket_bounds->ymin <= cent[1] && bucket_bounds->ymax >= cent[1]) ) {
1864            return 1;
1865         }
1866         
1867         /* out of bounds left */
1868         if (cent[0] < bucket_bounds->xmin) {
1869                 /* lower left out of radius test */
1870                 if (cent[1] < bucket_bounds->ymin) {
1871                         return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmin, bucket_bounds->ymin) < radius_squared) ? 1 : 0;
1872                 } 
1873                 /* top left test */
1874                 else if (cent[1] > bucket_bounds->ymax) {
1875                         return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmin, bucket_bounds->ymax) < radius_squared) ? 1 : 0;
1876                 }
1877         }
1878         else if (cent[0] > bucket_bounds->xmax) {
1879                 /* lower right out of radius test */
1880                 if (cent[1] < bucket_bounds->ymin) {
1881                         return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmax, bucket_bounds->ymin) < radius_squared) ? 1 : 0;
1882                 } 
1883                 /* top right test */
1884                 else if (cent[1] > bucket_bounds->ymax) {
1885                         return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmax, bucket_bounds->ymax) < radius_squared) ? 1 : 0;
1886                 }
1887         }
1888         
1889         return 0;
1890 }
1891
1892
1893
1894 /* Note for rect_to_uvspace_ortho() and rect_to_uvspace_persp()
1895  * in ortho view this function gives good results when bucket_bounds are outside the triangle
1896  * however in some cases, perspective view will mess up with faces that have minimal screenspace area (viewed from the side)
1897  * 
1898  * for this reason its not relyable in this case so we'll use the Simple Barycentric' funcs that only account for points inside the triangle.
1899  * however switching back to this for ortho is always an option */
1900
1901 static void rect_to_uvspace_ortho(
1902                 rctf *bucket_bounds,
1903                 float *v1coSS, float *v2coSS, float *v3coSS,
1904                 float *uv1co, float *uv2co, float *uv3co,
1905                 float bucket_bounds_uv[4][2],
1906                 const int flip)
1907 {
1908         float uv[2];
1909         float w[3];
1910         
1911         /* get the UV space bounding box */
1912         uv[0] = bucket_bounds->xmax;
1913         uv[1] = bucket_bounds->ymin;
1914         BarycentricWeights2f(uv, v1coSS, v2coSS, v3coSS, w);
1915         Vec2Weightf(bucket_bounds_uv[flip?3:0], uv1co, uv2co, uv3co, w);
1916
1917         //uv[0] = bucket_bounds->xmax; // set above
1918         uv[1] = bucket_bounds->ymax;
1919         BarycentricWeights2f(uv, v1coSS, v2coSS, v3coSS, w);
1920         Vec2Weightf(bucket_bounds_uv[flip?2:1], uv1co, uv2co, uv3co, w);
1921
1922         uv[0] = bucket_bounds->xmin;
1923         //uv[1] = bucket_bounds->ymax; // set above
1924         BarycentricWeights2f(uv, v1coSS, v2coSS, v3coSS, w);
1925         Vec2Weightf(bucket_bounds_uv[flip?1:2], uv1co, uv2co, uv3co, w);
1926
1927         //uv[0] = bucket_bounds->xmin; // set above
1928         uv[1] = bucket_bounds->ymin;
1929         BarycentricWeights2f(uv, v1coSS, v2coSS, v3coSS, w);
1930         Vec2Weightf(bucket_bounds_uv[flip?0:3], uv1co, uv2co, uv3co, w);
1931 }
1932
1933 /* same as above but use BarycentricWeightsPersp2f */
1934 static void rect_to_uvspace_persp(
1935                 rctf *bucket_bounds,
1936                 float *v1coSS, float *v2coSS, float *v3coSS,
1937                 float *uv1co, float *uv2co, float *uv3co,
1938                 float bucket_bounds_uv[4][2],
1939                 const int flip
1940         )
1941 {
1942         float uv[2];
1943         float w[3];
1944         
1945         /* get the UV space bounding box */
1946         uv[0] = bucket_bounds->xmax;
1947         uv[1] = bucket_bounds->ymin;
1948         BarycentricWeightsPersp2f(uv, v1coSS, v2coSS, v3coSS, w);
1949         Vec2Weightf(bucket_bounds_uv[flip?3:0], uv1co, uv2co, uv3co, w);
1950
1951         //uv[0] = bucket_bounds->xmax; // set above
1952         uv[1] = bucket_bounds->ymax;
1953         BarycentricWeightsPersp2f(uv, v1coSS, v2coSS, v3coSS, w);
1954         Vec2Weightf(bucket_bounds_uv[flip?2:1], uv1co, uv2co, uv3co, w);
1955
1956         uv[0] = bucket_bounds->xmin;
1957         //uv[1] = bucket_bounds->ymax; // set above
1958         BarycentricWeightsPersp2f(uv, v1coSS, v2coSS, v3coSS, w);
1959         Vec2Weightf(bucket_bounds_uv[flip?1:2], uv1co, uv2co, uv3co, w);
1960
1961         //uv[0] = bucket_bounds->xmin; // set above
1962         uv[1] = bucket_bounds->ymin;
1963         BarycentricWeightsPersp2f(uv, v1coSS, v2coSS, v3coSS, w);
1964         Vec2Weightf(bucket_bounds_uv[flip?0:3], uv1co, uv2co, uv3co, w);
1965 }
1966
1967 /* This works as we need it to but we can save a few steps and not use it */
1968
1969 #if 0
1970 static float angle_2d_clockwise(const float p1[2], const float p2[2], const float p3[2])
1971 {
1972         float v1[2], v2[2];
1973         
1974         v1[0] = p1[0]-p2[0];    v1[1] = p1[1]-p2[1];
1975         v2[0] = p3[0]-p2[0];    v2[1] = p3[1]-p2[1];
1976         
1977         return -atan2(v1[0]*v2[1] - v1[1]*v2[0], v1[0]*v2[0]+v1[1]*v2[1]);
1978 }
1979 #endif
1980
1981 #define ISECT_1 (1)
1982 #define ISECT_2 (1<<1)
1983 #define ISECT_3 (1<<2)
1984 #define ISECT_4 (1<<3)
1985 #define ISECT_ALL3 ((1<<3)-1)
1986 #define ISECT_ALL4 ((1<<4)-1)
1987
1988 /* limit must be a fraction over 1.0f */
1989 static int IsectPT2Df_limit(float pt[2], float v1[2], float v2[2], float v3[2], float limit)
1990 {
1991         return ((AreaF2Dfl(pt,v1,v2) + AreaF2Dfl(pt,v2,v3) + AreaF2Dfl(pt,v3,v1)) / (AreaF2Dfl(v1,v2,v3))) < limit;
1992 }
1993
1994 /* Clip the face by a bucket and set the uv-space bucket_bounds_uv
1995  * so we have the clipped UV's to do pixel intersection tests with 
1996  * */
1997 static int float_z_sort_flip(const void *p1, const void *p2) {
1998         return (((float *)p1)[2] < ((float *)p2)[2] ? 1:-1);
1999 }
2000
2001 static int float_z_sort(const void *p1, const void *p2) {
2002         return (((float *)p1)[2] < ((float *)p2)[2] ?-1:1);
2003 }
2004
2005 static void project_bucket_clip_face(
2006                 const int is_ortho,
2007                 rctf *bucket_bounds,
2008                 float *v1coSS, float *v2coSS, float *v3coSS,
2009                 float *uv1co, float *uv2co, float *uv3co,
2010                 float bucket_bounds_uv[8][2],
2011                 int *tot)
2012 {
2013         int inside_bucket_flag = 0;
2014         int inside_face_flag = 0;
2015         const int flip = ((SIDE_OF_LINE(v1coSS, v2coSS, v3coSS) > 0.0f) != (SIDE_OF_LINE(uv1co, uv2co, uv3co) > 0.0f));
2016         
2017         float bucket_bounds_ss[4][2];
2018         float w[3];
2019
2020         /* get the UV space bounding box */
2021         inside_bucket_flag |= BLI_in_rctf(bucket_bounds, v1coSS[0], v1coSS[1]);
2022         inside_bucket_flag |= BLI_in_rctf(bucket_bounds, v2coSS[0], v2coSS[1])          << 1;
2023         inside_bucket_flag |= BLI_in_rctf(bucket_bounds, v3coSS[0], v3coSS[1])          << 2;
2024         
2025         if (inside_bucket_flag == ISECT_ALL3) {
2026                 /* all screenspace points are inside the bucket bounding box, this means we dont need to clip and can simply return the UVs */
2027                 if (flip) { /* facing the back? */
2028                         VECCOPY2D(bucket_bounds_uv[0], uv3co);
2029                         VECCOPY2D(bucket_bounds_uv[1], uv2co);
2030                         VECCOPY2D(bucket_bounds_uv[2], uv1co);
2031                 }
2032                 else {
2033                         VECCOPY2D(bucket_bounds_uv[0], uv1co);
2034                         VECCOPY2D(bucket_bounds_uv[1], uv2co);
2035                         VECCOPY2D(bucket_bounds_uv[2], uv3co);
2036                 }
2037                 
2038                 *tot = 3; 
2039                 return;
2040         }
2041         
2042         /* get the UV space bounding box */
2043         /* use IsectPT2Df_limit here so we catch points are are touching the tri edge (or a small fraction over) */
2044         bucket_bounds_ss[0][0] = bucket_bounds->xmax;
2045         bucket_bounds_ss[0][1] = bucket_bounds->ymin;
2046         inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[0], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_1 : 0);
2047         
2048         bucket_bounds_ss[1][0] = bucket_bounds->xmax;
2049         bucket_bounds_ss[1][1] = bucket_bounds->ymax;
2050         inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[1], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_2 : 0);
2051
2052         bucket_bounds_ss[2][0] = bucket_bounds->xmin;
2053         bucket_bounds_ss[2][1] = bucket_bounds->ymax;
2054         inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[2], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_3 : 0);
2055
2056         bucket_bounds_ss[3][0] = bucket_bounds->xmin;
2057         bucket_bounds_ss[3][1] = bucket_bounds->ymin;
2058         inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[3], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_4 : 0);
2059         
2060         if (inside_face_flag == ISECT_ALL4) {
2061                 /* bucket is totally inside the screenspace face, we can safely use weights */
2062                 
2063                 if (is_ortho)   rect_to_uvspace_ortho(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, bucket_bounds_uv, flip);
2064                 else                    rect_to_uvspace_persp(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, bucket_bounds_uv, flip);
2065                 
2066                 *tot = 4;
2067                 return;
2068         }
2069         else {
2070                 /* The Complicated Case! 
2071                  * 
2072                  * The 2 cases above are where the face is inside the bucket or the bucket is inside the face.
2073                  * 
2074                  * we need to make a convex polyline from the intersection between the screenspace face
2075                  * and the bucket bounds.
2076                  * 
2077                  * There are a number of ways this could be done, currently it just collects all intersecting verts,
2078                  * and line intersections,  then sorts them clockwise, this is a lot easier then evaluating the geometry to
2079                  * do a correct clipping on both shapes. */
2080                 
2081                 
2082                 /* add a bunch of points, we know must make up the convex hull which is the clipped rect and triangle */
2083                 
2084                 
2085                 
2086                 /* Maximum possible 6 intersections when using a rectangle and triangle */
2087                 float isectVCosSS[8][3]; /* The 3rd float is used to store angle for qsort(), NOT as a Z location */
2088                 float v1_clipSS[2], v2_clipSS[2];
2089                 
2090                 /* calc center*/
2091                 float cent[2] = {0.0f, 0.0f};
2092                 /*float up[2] = {0.0f, 1.0f};*/
2093                 int i;
2094                 short doubles;
2095                 
2096                 (*tot) = 0;
2097                 
2098                 if (inside_face_flag & ISECT_1) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[0]); (*tot)++; }
2099                 if (inside_face_flag & ISECT_2) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[1]); (*tot)++; }
2100                 if (inside_face_flag & ISECT_3) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[2]); (*tot)++; }
2101                 if (inside_face_flag & ISECT_4) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[3]); (*tot)++; }
2102                 
2103                 if (inside_bucket_flag & ISECT_1) {     VECCOPY2D(isectVCosSS[*tot], v1coSS); (*tot)++; }
2104                 if (inside_bucket_flag & ISECT_2) {     VECCOPY2D(isectVCosSS[*tot], v2coSS); (*tot)++; }
2105                 if (inside_bucket_flag & ISECT_3) {     VECCOPY2D(isectVCosSS[*tot], v3coSS); (*tot)++; }
2106                 
2107                 if ((inside_bucket_flag & (ISECT_1|ISECT_2)) != (ISECT_1|ISECT_2)) {
2108                         if (line_clip_rect2f(bucket_bounds, v1coSS, v2coSS, v1_clipSS, v2_clipSS)) {
2109                                 if ((inside_bucket_flag & ISECT_1)==0) { VECCOPY2D(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2110                                 if ((inside_bucket_flag & ISECT_2)==0) { VECCOPY2D(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2111                         }
2112                 }
2113                 
2114                 if ((inside_bucket_flag & (ISECT_2|ISECT_3)) != (ISECT_2|ISECT_3)) {
2115                         if (line_clip_rect2f(bucket_bounds, v2coSS, v3coSS, v1_clipSS, v2_clipSS)) {
2116                                 if ((inside_bucket_flag & ISECT_2)==0) { VECCOPY2D(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2117                                 if ((inside_bucket_flag & ISECT_3)==0) { VECCOPY2D(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2118                         }
2119                 }       
2120                 
2121                 if ((inside_bucket_flag & (ISECT_3|ISECT_1)) != (ISECT_3|ISECT_1)) {
2122                         if (line_clip_rect2f(bucket_bounds, v3coSS, v1coSS, v1_clipSS, v2_clipSS)) {
2123                                 if ((inside_bucket_flag & ISECT_3)==0) { VECCOPY2D(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2124                                 if ((inside_bucket_flag & ISECT_1)==0) { VECCOPY2D(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2125                         }
2126                 }
2127                 
2128                 
2129                 if ((*tot) < 3) { /* no intersections to speak of */
2130                         *tot = 0;
2131                 }
2132         
2133                 /* now we have all points we need, collect their angles and sort them clockwise */
2134                 
2135                 for(i=0; i<(*tot); i++) {
2136                         cent[0] += isectVCosSS[i][0];
2137                         cent[1] += isectVCosSS[i][1];
2138                 }
2139                 cent[0] = cent[0] / (float)(*tot);
2140                 cent[1] = cent[1] / (float)(*tot);
2141                 
2142                 
2143                 
2144                 /* Collect angles for every point around the center point */
2145
2146                 
2147 #if 0   /* uses a few more cycles then the above loop */
2148                 for(i=0; i<(*tot); i++) {
2149                         isectVCosSS[i][2] = angle_2d_clockwise(up, cent, isectVCosSS[i]);
2150                 }
2151 #endif
2152
2153                 v1_clipSS[0] = cent[0]; /* Abuse this var for the loop below */
2154                 v1_clipSS[1] = cent[1] + 1.0f;
2155                 
2156                 for(i=0; i<(*tot); i++) {
2157                         v2_clipSS[0] = isectVCosSS[i][0] - cent[0];
2158                         v2_clipSS[1] = isectVCosSS[i][1] - cent[1];
2159                         isectVCosSS[i][2] = atan2(v1_clipSS[0]*v2_clipSS[1] - v1_clipSS[1]*v2_clipSS[0], v1_clipSS[0]*v2_clipSS[0]+v1_clipSS[1]*v2_clipSS[1]); 
2160                 }
2161                 
2162                 if (flip)       qsort(isectVCosSS, *tot, sizeof(float)*3, float_z_sort_flip);
2163                 else            qsort(isectVCosSS, *tot, sizeof(float)*3, float_z_sort);
2164                 
2165                 
2166                 /* remove doubles */
2167                 /* first/last check */
2168                 if (fabs(isectVCosSS[0][0]-isectVCosSS[(*tot)-1][0]) < PROJ_GEOM_TOLERANCE &&  fabs(isectVCosSS[0][1]-isectVCosSS[(*tot)-1][1]) < PROJ_GEOM_TOLERANCE) {
2169                         (*tot)--;
2170                 }
2171                 
2172                 /* its possible there is only a few left after remove doubles */
2173                 if ((*tot) < 3) {
2174                         // printf("removed too many doubles A\n");
2175                         *tot = 0;
2176                         return;
2177                 }
2178                 
2179                 doubles = TRUE;
2180                 while (doubles==TRUE) {
2181                         doubles = FALSE;
2182                         for(i=1; i<(*tot); i++) {
2183                                 if (fabs(isectVCosSS[i-1][0]-isectVCosSS[i][0]) < PROJ_GEOM_TOLERANCE &&
2184                                         fabs(isectVCosSS[i-1][1]-isectVCosSS[i][1]) < PROJ_GEOM_TOLERANCE)
2185                                 {
2186                                         int j;
2187                                         for(j=i+1; j<(*tot); j++) {
2188                                                 isectVCosSS[j-1][0] = isectVCosSS[j][0]; 
2189                                                 isectVCosSS[j-1][1] = isectVCosSS[j][1]; 
2190                                         }
2191                                         doubles = TRUE; /* keep looking for more doubles */
2192                                         (*tot)--;
2193                                 }
2194                         }
2195                 }
2196                 
2197                 /* its possible there is only a few left after remove doubles */
2198                 if ((*tot) < 3) {
2199                         // printf("removed too many doubles B\n");
2200                         *tot = 0;
2201                         return;
2202                 }
2203                 
2204                 
2205                 if (is_ortho) {
2206                         for(i=0; i<(*tot); i++) {
2207                                 BarycentricWeights2f(isectVCosSS[i], v1coSS, v2coSS, v3coSS, w);
2208                                 Vec2Weightf(bucket_bounds_uv[i], uv1co, uv2co, uv3co, w);
2209                         }
2210                 }
2211                 else {
2212                         for(i=0; i<(*tot); i++) {
2213                                 BarycentricWeightsPersp2f(isectVCosSS[i], v1coSS, v2coSS, v3coSS, w);
2214                                 Vec2Weightf(bucket_bounds_uv[i], uv1co, uv2co, uv3co, w);
2215                         }
2216                 }
2217         }
2218
2219 #ifdef PROJ_DEBUG_PRINT_CLIP
2220         /* include this at the bottom of the above function to debug the output */
2221
2222         {
2223                 /* If there are ever any problems, */
2224                 float test_uv[4][2];
2225                 int i;
2226                 if (is_ortho)   rect_to_uvspace_ortho(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, test_uv, flip);
2227                 else                            rect_to_uvspace_persp(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, test_uv, flip);
2228                 printf("(  [(%f,%f), (%f,%f), (%f,%f), (%f,%f)], ", test_uv[0][0], test_uv[0][1],   test_uv[1][0], test_uv[1][1],    test_uv[2][0], test_uv[2][1],    test_uv[3][0], test_uv[3][1]);
2229                 
2230                 printf("  [(%f,%f), (%f,%f), (%f,%f)], ", uv1co[0], uv1co[1],   uv2co[0], uv2co[1],    uv3co[0], uv3co[1]);
2231                 
2232                 printf("[");
2233                 for (i=0; i < (*tot); i++) {
2234                         printf("(%f, %f),", bucket_bounds_uv[i][0], bucket_bounds_uv[i][1]);
2235                 }
2236                 printf("]),\\\n");
2237         }
2238 #endif
2239 }
2240
2241         /*
2242 # This script creates faces in a blender scene from printed data above.
2243
2244 project_ls = [
2245 ...(output from above block)...
2246 ]
2247  
2248 from Blender import Scene, Mesh, Window, sys, Mathutils
2249
2250 import bpy
2251
2252 V = Mathutils.Vector
2253
2254 def main():
2255         sce = bpy.data.scenes.active
2256         
2257         for item in project_ls:
2258                 bb = item[0]
2259                 uv = item[1]
2260                 poly = item[2]
2261                 
2262                 me = bpy.data.meshes.new()
2263                 ob = sce.objects.new(me)
2264                 
2265                 me.verts.extend([V(bb[0]).resize3D(), V(bb[1]).resize3D(), V(bb[2]).resize3D(), V(bb[3]).resize3D()])
2266                 me.faces.extend([(0,1,2,3),])
2267                 me.verts.extend([V(uv[0]).resize3D(), V(uv[1]).resize3D(), V(uv[2]).resize3D()])
2268                 me.faces.extend([(4,5,6),])
2269                 
2270                 vs = [V(p).resize3D() for p in poly]
2271                 print len(vs)
2272                 l = len(me.verts)
2273                 me.verts.extend(vs)
2274                 
2275                 i = l
2276                 while i < len(me.verts):
2277                         ii = i+1
2278                         if ii==len(me.verts):
2279                                 ii = l
2280                         me.edges.extend([i, ii])
2281                         i+=1
2282
2283 if __name__ == '__main__':
2284         main()
2285  */     
2286
2287
2288 #undef ISECT_1
2289 #undef ISECT_2
2290 #undef ISECT_3
2291 #undef ISECT_4
2292 #undef ISECT_ALL3
2293 #undef ISECT_ALL4
2294
2295         
2296 /* checks if pt is inside a convex 2D polyline, the polyline must be ordered rotating clockwise
2297  * otherwise it would have to test for mixed (SIDE_OF_LINE > 0.0f) cases */
2298 int IsectPoly2Df(const float pt[2], float uv[][2], const int tot)
2299 {
2300         int i;
2301         if (SIDE_OF_LINE(uv[tot-1], uv[0], pt) < 0.0f)
2302                 return 0;
2303         
2304         for (i=1; i<tot; i++) {
2305                 if (SIDE_OF_LINE(uv[i-1], uv[i], pt) < 0.0f)
2306                         return 0;
2307                 
2308         }
2309         
2310         return 1;
2311 }
2312
2313 /* One of the most important function for projectiopn painting, since it selects the pixels to be added into each bucket.
2314  * initialize pixels from this face where it intersects with the bucket_index, optionally initialize pixels for removing seams */
2315 static void project_paint_face_init(const ProjPaintState *ps, const int thread_index, const int bucket_index, const int face_index, const int image_index, rctf *bucket_bounds, const ImBuf *ibuf)
2316 {
2317         /* Projection vars, to get the 3D locations into screen space  */
2318         MemArena *arena = ps->arena_mt[thread_index];
2319         LinkNode **bucketPixelNodes = ps->bucketRect + bucket_index;
2320         LinkNode *bucketFaceNodes = ps->bucketFaces[bucket_index];
2321         
2322         const MFace *mf = ps->dm_mface + face_index;
2323         const MTFace *tf = ps->dm_mtface + face_index;
2324         
2325         /* UV/pixel seeking data */
2326         int x; /* Image X-Pixel */
2327         int y;/* Image Y-Pixel */
2328         float mask;
2329         float uv[2]; /* Image floating point UV - same as x, y but from 0.0-1.0 */
2330         
2331         int side;
2332         float *v1coSS, *v2coSS, *v3coSS; /* vert co screen-space, these will be assigned to mf->v1,2,3 or mf->v1,3,4 */
2333         
2334         float *vCo[4]; /* vertex screenspace coords */
2335         
2336         float w[3], wco[3];
2337         
2338         float *uv1co, *uv2co, *uv3co; /* for convenience only, these will be assigned to tf->uv[0],1,2 or tf->uv[0],2,3 */
2339         float pixelScreenCo[4];
2340         
2341         rcti bounds_px; /* ispace bounds */
2342         /* vars for getting uvspace bounds */
2343         
2344         float tf_uv_pxoffset[4][2]; /* bucket bounds in UV space so we can init pixels only for this face,  */
2345         float xhalfpx, yhalfpx;
2346         const float ibuf_xf = ibuf->x, ibuf_yf = ibuf->y;
2347         
2348         int has_x_isect = 0, has_isect = 0; /* for early loop exit */
2349         
2350         int i1, i2, i3;
2351         
2352         float uv_clip[8][2];
2353         int uv_clip_tot;
2354         const short is_ortho = ps->is_ortho;
2355         
2356         vCo[0] = ps->dm_mvert[mf->v1].co;
2357         vCo[1] = ps->dm_mvert[mf->v2].co;
2358         vCo[2] = ps->dm_mvert[mf->v3].co;
2359         
2360         
2361         /* Use tf_uv_pxoffset instead of tf->uv so we can offset the UV half a pixel
2362          * this is done so we can avoid offseting all the pixels by 0.5 which causes
2363          * problems when wrapping negative coords */
2364         xhalfpx = 0.5f / ibuf_xf;
2365         yhalfpx = 0.5f / ibuf_yf;
2366         
2367         tf_uv_pxoffset[0][0] = tf->uv[0][0] - xhalfpx;
2368         tf_uv_pxoffset[0][1] = tf->uv[0][1] - yhalfpx;
2369
2370         tf_uv_pxoffset[1][0] = tf->uv[1][0] - xhalfpx;
2371         tf_uv_pxoffset[1][1] = tf->uv[1][1] - yhalfpx;
2372         
2373         tf_uv_pxoffset[2][0] = tf->uv[2][0] - xhalfpx;
2374         tf_uv_pxoffset[2][1] = tf->uv[2][1] - yhalfpx;  
2375         
2376         if (mf->v4) {
2377                 vCo[3] = ps->dm_mvert[ mf->v4 ].co;
2378                 
2379                 tf_uv_pxoffset[3][0] = tf->uv[3][0] - xhalfpx;
2380                 tf_uv_pxoffset[3][1] = tf->uv[3][1] - yhalfpx;
2381                 side = 1;
2382         }
2383         else {
2384                 side = 0;
2385         }
2386         
2387         do {
2388                 if (side==1) {
2389                         i1=0; i2=2; i3=3;
2390                 }
2391                 else {
2392                         i1=0; i2=1; i3=2;
2393                 }
2394                 
2395                 uv1co = tf_uv_pxoffset[i1]; // was tf->uv[i1];
2396                 uv2co = tf_uv_pxoffset[i2]; // was tf->uv[i2];
2397                 uv3co = tf_uv_pxoffset[i3]; // was tf->uv[i3];
2398
2399                 v1coSS = ps->screenCoords[ (*(&mf->v1 + i1)) ];
2400                 v2coSS = ps->screenCoords[ (*(&mf->v1 + i2)) ];
2401                 v3coSS = ps->screenCoords[ (*(&mf->v1 + i3)) ];
2402
2403
2404                 /* This funtion gives is a concave polyline in UV space from the clipped quad and tri*/
2405                 project_bucket_clip_face(
2406                                 is_ortho, bucket_bounds,
2407                                 v1coSS, v2coSS, v3coSS,
2408                                 uv1co, uv2co, uv3co,
2409                                 uv_clip, &uv_clip_tot
2410                 );
2411                 
2412                 
2413                 /* sometimes this happens, better just allow for 8 intersectiosn even though there should be max 6 */
2414                 /*
2415                 if (uv_clip_tot>6) {
2416                         printf("this should never happen! %d\n", uv_clip_tot);
2417                 }*/
2418                 
2419
2420                 if (pixel_bounds_array(uv_clip, &bounds_px, ibuf->x, ibuf->y, uv_clip_tot)) {
2421                         
2422                         /* clip face and */
2423                         
2424                         has_isect = 0;
2425                         for (y = bounds_px.ymin; y < bounds_px.ymax; y++) {
2426                                 //uv[1] = (((float)y) + 0.5f) / (float)ibuf->y;
2427                                 uv[1] = (float)y / ibuf_yf; /* use pixel offset UV coords instead */
2428                                 
2429                                 has_x_isect = 0;
2430                                 for (x = bounds_px.xmin; x < bounds_px.xmax; x++) {
2431                                         //uv[0] = (((float)x) + 0.5f) / ibuf->x;
2432                                         uv[0] = (float)x / ibuf_xf; /* use pixel offset UV coords instead */
2433                                         
2434                                         if (IsectPoly2Df(uv, uv_clip, uv_clip_tot)) {
2435                                                 
2436                                                 has_x_isect = has_isect = 1;
2437                                                 
2438                                                 if (is_ortho)   screen_px_from_ortho(uv, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, pixelScreenCo, w);
2439                                                 else                    screen_px_from_persp(uv, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, pixelScreenCo, w);
2440                                                 
2441                                                 /* a pitty we need to get the worldspace pixel location here */
2442                                                 if(ps->rv3d->rflag & RV3D_CLIPPING) {
2443                                                         VecWeightf(wco, ps->dm_mvert[ (*(&mf->v1 + i1)) ].co, ps->dm_mvert[ (*(&mf->v1 + i2)) ].co, ps->dm_mvert[ (*(&mf->v1 + i3)) ].co, w);
2444                                                         Mat4MulVecfl(ps->ob->obmat, wco);
2445                                                         if(view3d_test_clipping(ps->rv3d, wco)) {
2446                                                                 continue; /* Watch out that no code below this needs to run */
2447                                                         }
2448                                                 }
2449                                                 
2450                                                 /* Is this UV visible from the view? - raytrace */
2451                                                 /* project_paint_PickFace is less complex, use for testing */
2452                                                 //if (project_paint_PickFace(ps, pixelScreenCo, w, &side) == face_index) {
2453                                                 if (ps->do_occlude==0 || !project_bucket_point_occluded(ps, bucketFaceNodes, face_index, pixelScreenCo)) {
2454                                                         
2455                                                         mask = project_paint_uvpixel_mask(ps, face_index, side, w);
2456                                                         
2457                                                         if (mask > 0.0f) {
2458                                                                 BLI_linklist_prepend_arena(
2459                                                                         bucketPixelNodes,
2460                                                                         project_paint_uvpixel_init(ps, arena, ibuf, x, y, mask, face_index, image_index, pixelScreenCo, side, w),
2461                                                                         arena
2462                                                                 );
2463                                                         }
2464                                                 }
2465                                                 
2466                                         }
2467 //#if 0
2468                                         else if (has_x_isect) {
2469                                                 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2470                                                 break;
2471                                         }
2472 //#endif
2473                                 }
2474                                 
2475                                 
2476 #if 0                   /* TODO - investigate why this dosnt work sometimes! it should! */
2477                                 /* no intersection for this entire row, after some intersection above means we can quit now */
2478                                 if (has_x_isect==0 && has_isect) { 
2479                                         break;
2480                                 }
2481 #endif
2482                         }
2483                 }
2484         } while(side--);
2485
2486         
2487         
2488 #ifndef PROJ_DEBUG_NOSEAMBLEED
2489         if (ps->seam_bleed_px > 0.0f) {
2490                 int face_seam_flag;
2491                 
2492                 if (ps->thread_tot > 1)
2493                         BLI_lock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2494                 
2495                 face_seam_flag = ps->faceSeamFlags[face_index];
2496                 
2497                 /* are any of our edges un-initialized? */
2498                 if ((face_seam_flag & (PROJ_FACE_SEAM1|PROJ_FACE_NOSEAM1))==0 || 
2499                         (face_seam_flag & (PROJ_FACE_SEAM2|PROJ_FACE_NOSEAM2))==0 || 
2500                         (face_seam_flag & (PROJ_FACE_SEAM3|PROJ_FACE_NOSEAM3))==0 || 
2501                         (face_seam_flag & (PROJ_FACE_SEAM4|PROJ_FACE_NOSEAM4))==0
2502                 ) {
2503                         project_face_seams_init(ps, face_index, mf->v4);
2504                         face_seam_flag = ps->faceSeamFlags[face_index];
2505                         //printf("seams - %d %d %d %d\n", flag&PROJ_FACE_SEAM1, flag&PROJ_FACE_SEAM2, flag&PROJ_FACE_SEAM3, flag&PROJ_FACE_SEAM4);
2506                 }
2507                 
2508                 if ((face_seam_flag & (PROJ_FACE_SEAM1|PROJ_FACE_SEAM2|PROJ_FACE_SEAM3|PROJ_FACE_SEAM4))==0) {
2509                         
2510                         if (ps->thread_tot > 1)
2511                                 BLI_unlock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2512                         
2513                 }
2514                 else {
2515                         /* we have a seam - deal with it! */
2516                         
2517                         /* Now create new UV's for the seam face */
2518                         float (*outset_uv)[2] = ps->faceSeamUVs[face_index];
2519                         float insetCos[4][3]; /* inset face coords.  NOTE!!! ScreenSace for ortho, Worldspace in prespective view */
2520
2521                         float *uv_seam_quad[4];
2522                         float fac;
2523                         float *vCoSS[4]; /* vertex screenspace coords */
2524                         
2525                         float bucket_clip_edges[2][2]; /* store the screenspace coords of the face, clipped by the bucket's screen aligned rectangle */
2526                         float edge_verts_inset_clip[2][3];
2527                         int fidx1, fidx2; /* face edge pairs - loop throuh these ((0,1), (1,2), (2,3), (3,0)) or ((0,1), (1,2), (2,0)) for a tri */
2528                         
2529                         float seam_subsection[4][2];
2530                         float fac1, fac2, ftot;
2531                         
2532                         
2533                         if (outset_uv[0][0]==FLT_MAX) /* first time initialize */
2534                                 uv_image_outset(tf_uv_pxoffset, outset_uv, ps->seam_bleed_px, ibuf->x, ibuf->y, mf->v4);
2535                         
2536                         /* ps->faceSeamUVs cant be modified when threading, now this is done we can unlock */
2537                         if (ps->thread_tot > 1)
2538                                 BLI_unlock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2539                         
2540                         vCoSS[0] = ps->screenCoords[mf->v1];
2541                         vCoSS[1] = ps->screenCoords[mf->v2];
2542                         vCoSS[2] = ps->screenCoords[mf->v3];
2543                         if (mf->v4)
2544                                 vCoSS[3] = ps->screenCoords[ mf->v4 ];
2545                         
2546                         /* PROJ_FACE_SCALE_SEAM must be slightly less then 1.0f */
2547                         if (is_ortho) {
2548                                 if (mf->v4)     scale_quad(insetCos, vCoSS, PROJ_FACE_SCALE_SEAM);
2549                                 else            scale_tri(insetCos, vCoSS, PROJ_FACE_SCALE_SEAM);
2550                         }
2551                         else {
2552                                 if (mf->v4)     scale_quad(insetCos, vCo, PROJ_FACE_SCALE_SEAM);
2553                                 else            scale_tri(insetCos, vCo, PROJ_FACE_SCALE_SEAM);
2554                         }
2555                         
2556                         side = 0; /* for triangles this wont need to change */
2557                         
2558                         for (fidx1 = 0; fidx1 < (mf->v4 ? 4 : 3); fidx1++) {
2559                                 if (mf->v4)             fidx2 = (fidx1==3) ? 0 : fidx1+1; /* next fidx in the face (0,1,2,3) -> (1,2,3,0) */
2560                                 else                    fidx2 = (fidx1==2) ? 0 : fidx1+1; /* next fidx in the face (0,1,2) -> (1,2,0) */
2561                                 
2562                                 if (    (face_seam_flag & (1<<fidx1)) && /* 1<<fidx1 -> PROJ_FACE_SEAM# */
2563                                                 line_clip_rect2f(bucket_bounds, vCoSS[fidx1], vCoSS[fidx2], bucket_clip_edges[0], bucket_clip_edges[1])
2564                                 ) {
2565
2566                                         ftot = Vec2Lenf(vCoSS[fidx1], vCoSS[fidx2]); /* screenspace edge length */
2567                                         
2568                                         if (ftot > 0.0f) { /* avoid div by zero */
2569                                                 if (mf->v4) {
2570                                                         if (fidx1==2 || fidx2==2)       side= 1;
2571                                                         else                                            side= 0;
2572                                                 }
2573                                                 
2574                                                 fac1 = Vec2Lenf(vCoSS[fidx1], bucket_clip_edges[0]) / ftot;
2575                                                 fac2 = Vec2Lenf(vCoSS[fidx1], bucket_clip_edges[1]) / ftot;
2576                                                 
2577                                                 uv_seam_quad[0] = tf_uv_pxoffset[fidx1];
2578                                                 uv_seam_quad[1] = tf_uv_pxoffset[fidx2];
2579                                                 uv_seam_quad[2] = outset_uv[fidx2];
2580                                                 uv_seam_quad[3] = outset_uv[fidx1];
2581                                                 
2582                                                 Vec2Lerpf(seam_subsection[0], uv_seam_quad[0], uv_seam_quad[1], fac1);
2583                                                 Vec2Lerpf(seam_subsection[1], uv_seam_quad[0], uv_seam_quad[1], fac2);
2584                                                 
2585                                                 Vec2Lerpf(seam_subsection[2], uv_seam_quad[3], uv_seam_quad[2], fac2);
2586                                                 Vec2Lerpf(seam_subsection[3], uv_seam_quad[3], uv_seam_quad[2], fac1);
2587                                                 
2588                                                 /* if the bucket_clip_edges values Z values was kept we could avoid this
2589                                                  * Inset needs to be added so occlusion tests wont hit adjacent faces */
2590                                                 VecLerpf(edge_verts_inset_clip[0], insetCos[fidx1], insetCos[fidx2], fac1);
2591                                                 VecLerpf(edge_verts_inset_clip[1], insetCos[fidx1], insetCos[fidx2], fac2);
2592                                                 
2593
2594                                                 if (pixel_bounds_uv(seam_subsection[0], seam_subsection[1], seam_subsection[2], seam_subsection[3], &bounds_px, ibuf->x, ibuf->y, 1)) {
2595                                                         /* bounds between the seam rect and the uvspace bucket pixels */
2596                                                         
2597                                                         has_isect = 0;
2598                                                         for (y = bounds_px.ymin; y < bounds_px.ymax; y++) {
2599                                                                 // uv[1] = (((float)y) + 0.5f) / (float)ibuf->y;
2600                                                                 uv[1] = (float)y / ibuf_yf; /* use offset uvs instead */
2601                                                                 
2602                                                                 has_x_isect = 0;
2603                                                                 for (x = bounds_px.xmin; x < bounds_px.xmax; x++) {
2604                                                                         //uv[0] = (((float)x) + 0.5f) / (float)ibuf->x;
2605                                                                         uv[0] = (float)x / ibuf_xf; /* use offset uvs instead */
2606                                                                         
2607                                                                         /* test we're inside uvspace bucket and triangle bounds */
2608                                                                         if (IsectPQ2Df(uv, seam_subsection[0], seam_subsection[1], seam_subsection[2], seam_subsection[3])) {
2609                                                                                 
2610                                                                                 /* We need to find the closest point along the face edge,
2611                                                                                  * getting the screen_px_from_*** wont work because our actual location
2612                                                                                  * is not relevent, since we are outside the face, Use VecLerpf to find
2613                                                                                  * our location on the side of the face's UV */
2614                                                                                 /*
2615                                                                                 if (is_ortho)   screen_px_from_ortho(ps, uv, v1co, v2co, v3co, uv1co, uv2co, uv3co, pixelScreenCo);
2616                                                                                 else                                    screen_px_from_persp(ps, uv, v1co, v2co, v3co, uv1co, uv2co, uv3co, pixelScreenCo);
2617                                                                                 */
2618                                                                                 
2619                                                                                 /* Since this is a seam we need to work out where on the line this pixel is */
2620                                                                                 //fac = lambda_cp_line2(uv, uv_seam_quad[0], uv_seam_quad[1]);
2621                                                                                 
2622                                                                                 fac = lambda_cp_line2(uv, seam_subsection[0], seam_subsection[1]);
2623                                                                                 if (fac < 0.0f)         { VECCOPY(pixelScreenCo, edge_verts_inset_clip[0]); }
2624                                                                                 else if (fac > 1.0f)    { VECCOPY(pixelScreenCo, edge_verts_inset_clip[1]); }
2625                                                                                 else                            { VecLerpf(pixelScreenCo, edge_verts_inset_clip[0], edge_verts_inset_clip[1], fac); }
2626                                                                                 
2627                                                                                 if (!is_ortho) {
2628                                                                                         pixelScreenCo[3] = 1.0f;
2629                                                                                         Mat4MulVec4fl((float(*)[4])ps->projectMat, pixelScreenCo); /* cast because of const */
2630                                                                                         pixelScreenCo[0] = (float)(ps->ar->winx/2.0f)+(ps->ar->winx/2.0f)*pixelScreenCo[0]/pixelScreenCo[3];    
2631                                                                                         pixelScreenCo[1] = (float)(ps->ar->winy/2.0f)+(ps->ar->winy/2.0f)*pixelScreenCo[1]/pixelScreenCo[3];
2632                                                                                         pixelScreenCo[2] = pixelScreenCo[2]/pixelScreenCo[3]; /* Use the depth for bucket point occlusion */
2633                                                                                 }
2634                                                                                 
2635                                                                                 if (ps->do_occlude==0 || !project_bucket_point_occluded(ps, bucketFaceNodes, face_index, pixelScreenCo)) {
2636                                                                                         
2637                                                                                         /* Only bother calculating the weights if we intersect */
2638                                                                                         if (ps->do_mask_normal || ps->dm_mtface_clone) {
2639                                                                                                 /* TODO, this is not QUITE correct since UV is not inside the UV's but good enough for seams */
2640                                                                                                 if (side) {
2641                                                                                                         BarycentricWeights2f(uv, tf_uv_pxoffset[0], tf_uv_pxoffset[2], tf_uv_pxoffset[3], w);
2642                                                                                                 }
2643                                                                                                 else {
2644                                                                                                         BarycentricWeights2f(uv, tf_uv_pxoffset[0], tf_uv_pxoffset[1], tf_uv_pxoffset[2], w);
2645                                                                                                 }
2646                                                                                                 
2647                                                                                         }
2648                                                                                         
2649                                                                                         /* a pitty we need to get the worldspace pixel location here */
2650                                                                                         if(ps->rv3d->rflag & RV3D_CLIPPING) {
2651                                                                                                 if (side)       VecWeightf(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v3].co, ps->dm_mvert[mf->v4].co, w);
2652                                                                                                 else            VecWeightf(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v2].co, ps->dm_mvert[mf->v3].co, w);
2653                                                                                                 
2654                                                                                                 Mat4MulVecfl(ps->ob->obmat, wco);
2655                                                                                                 if(view3d_test_clipping(ps->rv3d, wco)) {
2656                                                                                                         continue; /* Watch out that no code below this needs to run */
2657                                                                                                 }
2658                                                                                         }
2659                                                                                         
2660                                                                                         mask = project_paint_uvpixel_mask(ps, face_index, side, w);
2661                                                                                         
2662                                                                                         if (mask > 0.0f) {
2663                                                                                                 BLI_linklist_prepend_arena(
2664                                                                                                         bucketPixelNodes,
2665                                                                                                         project_paint_uvpixel_init(ps, arena, ibuf, x, y, mask, face_index, image_index, pixelScreenCo, side, w),
2666                                                                                                         arena
2667                                                                                                 );
2668                                                                                         }
2669                                                                                         
2670                                                                                 }
2671                                                                         }
2672                                                                         else if (has_x_isect) {
2673                                                                                 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2674                                                                                 break;
2675                                                                         }
2676                                                                 }
2677                                                                 
2678 #if 0                                                   /* TODO - investigate why this dosnt work sometimes! it should! */
2679                                                                 /* no intersection for this entire row, after some intersection above means we can quit now */
2680                                                                 if (has_x_isect==0 && has_isect) { 
2681                                                                         break;
2682                                                                 }
2683 #endif
2684                                                         }
2685                                                 }
2686                                         }
2687                                 }
2688                         }
2689                 }
2690         }
2691 #endif // PROJ_DEBUG_NOSEAMBLEED
2692 }
2693
2694
2695 /* takes floating point screenspace min/max and returns int min/max to be used as indicies for ps->bucketRect, ps->bucketFlags */
2696 static void project_paint_bucket_bounds(const ProjPaintState *ps, const float min[2], const float max[2], int bucketMin[2], int bucketMax[2])
2697 {
2698         /* divide by bucketWidth & bucketHeight so the bounds are offset in bucket grid units */
2699         bucketMin[0] = (int)(((float)(min[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x) + 0.5f; /* these offsets of 0.5 and 1.5 seem odd but they are correct */
2700         bucketMin[1] = (int)(((float)(min[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y) + 0.5f;
2701         
2702         bucketMax[0] = (int)(((float)(max[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x) + 1.5f;
2703         bucketMax[1] = (int)(((float)(max[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y) + 1.5f;  
2704         
2705         /* incase the rect is outside the mesh 2d bounds */
2706         CLAMP(bucketMin[0], 0, ps->buckets_x);
2707         CLAMP(bucketMin[1], 0, ps->buckets_y);
2708         
2709         CLAMP(bucketMax[0], 0, ps->buckets_x);
2710         CLAMP(bucketMax[1], 0, ps->buckets_y);
2711 }
2712
2713 /* set bucket_bounds to a screen space-aligned floating point bound-box */
2714 static void project_bucket_bounds(const ProjPaintState *ps, const int bucket_x, const int bucket_y, rctf *bucket_bounds)
2715 {
2716         bucket_bounds->xmin =   ps->screenMin[0]+((bucket_x)*(ps->screen_width / ps->buckets_x));               /* left */
2717         bucket_bounds->xmax =   ps->screenMin[0]+((bucket_x+1)*(ps->screen_width / ps->buckets_x));     /* right */
2718         
2719         bucket_bounds->ymin =   ps->screenMin[1]+((bucket_y)*(ps->screen_height / ps->buckets_y));              /* bottom */
2720         bucket_bounds->ymax =   ps->screenMin[1]+((bucket_y+1)*(ps->screen_height  / ps->buckets_y));   /* top */
2721 }
2722
2723 /* Fill this bucket with pixels from the faces that intersect it.
2724  * 
2725  * have bucket_bounds as an argument so we don;t need to give bucket_x/y the rect function needs */
2726 static void project_bucket_init(const ProjPaintState *ps, const int thread_index, const int bucket_index, rctf *bucket_bounds)
2727 {
2728         LinkNode *node;
2729         int face_index, image_index;
2730         ImBuf *ibuf = NULL;
2731         MTFace *tf;
2732         
2733         Image *tpage_last = NULL;
2734         
2735
2736         if (ps->image_tot==1) {
2737                 /* Simple loop, no context switching */
2738                 ibuf = ps->projImages[0].ibuf;
2739                 
2740                 for (node = ps->bucketFaces[bucket_index]; node; node= node->next) { 
2741                         project_paint_face_init(ps, thread_index, bucket_index, GET_INT_FROM_POINTER(node->link), 0, bucket_bounds, ibuf);
2742                 }
2743         }
2744         else {
2745                 
2746                 /* More complicated loop, switch between images */
2747                 for (node = ps->bucketFaces[bucket_index]; node; node= node->next) {
2748                         face_index = GET_INT_FROM_POINTER(node->link);
2749                                 
2750                         /* Image context switching */
2751                         tf = ps->dm_mtface+face_index;
2752                         if (tpage_last != tf->tpage) {
2753                                 tpage_last = tf->tpage;
2754                                 
2755                                 image_index = -1; /* sanity check */
2756                                 
2757                                 for (image_index=0; image_index < ps->image_tot; image_index++) {
2758                                         if (ps->projImages[image_index].ima == tpage_last) {
2759                                                 ibuf = ps->projImages[image_index].ibuf;
2760                                                 break;
2761                                         }
2762                                 }
2763                         }
2764                         /* context switching done */
2765                         
2766                         project_paint_face_init(ps, thread_index, bucket_index, face_index, image_index, bucket_bounds, ibuf);
2767                         
2768                 }
2769         }
2770         
2771         ps->bucketFlags[bucket_index] |= PROJ_BUCKET_INIT;
2772 }
2773
2774
2775 /* We want to know if a bucket and a face overlap in screen-space
2776  * 
2777  * Note, if this ever returns false positives its not that bad, since a face in the bounding area will have its pixels
2778  * calculated when it might not be needed later, (at the moment at least)
2779  * obviously it shouldn't have bugs though */
2780
2781 static int project_bucket_face_isect(ProjPaintState *ps, float min[2], float max[2], int bucket_x, int bucket_y, int bucket_index, const MFace *mf)
2782 {
2783         /* TODO - replace this with a tricker method that uses sideofline for all screenCoords's edges against the closest bucket corner */
2784         rctf bucket_bounds;
2785         float p1[2], p2[2], p3[2], p4[2];
2786         float *v, *v1,*v2,*v3,*v4;
2787         int fidx;
2788         
2789         project_bucket_bounds(ps, bucket_x, bucket_y, &bucket_bounds);
2790         
2791         /* Is one of the faces verts in the bucket bounds? */
2792         
2793         fidx = mf->v4 ? 3:2;
2794         do {
2795                 v = ps->screenCoords[ (*(&mf->v1 + fidx)) ];
2796                 if (BLI_in_rctf(&bucket_bounds, v[0], v[1])) {
2797                         return 1;
2798                 }
2799         } while (fidx--);
2800         
2801         v1 = ps->screenCoords[mf->v1];
2802         v2 = ps->screenCoords[mf->v2];
2803         v3 = ps->screenCoords[mf->v3];
2804         if (mf->v4) {
2805                 v4 = ps->screenCoords[mf->v4];
2806         }
2807         
2808         p1[0] = bucket_bounds.xmin; p1[1] = bucket_bounds.ymin;
2809         p2[0] = bucket_bounds.xmin;     p2[1] = bucket_bounds.ymax;
2810         p3[0] = bucket_bounds.xmax;     p3[1] = bucket_bounds.ymax;
2811         p4[0] = bucket_bounds.xmax;     p4[1] = bucket_bounds.ymin;
2812                 
2813         if (mf->v4) {
2814                 if(     IsectPQ2Df(p1, v1, v2, v3, v4) || IsectPQ2Df(p2, v1, v2, v3, v4) || IsectPQ2Df(p3, v1, v2, v3, v4) || IsectPQ2Df(p4, v1, v2, v3, v4) ||
2815                         /* we can avoid testing v3,v1 because another intersection MUST exist if this intersects */
2816                         (IsectLL2Df(p1, p2, v1, v2) || IsectLL2Df(p1,