5 * Functions to paint images in 2D and 3D.
7 * ***** BEGIN GPL LICENSE BLOCK *****
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
23 * All rights reserved.
25 * The Original Code is: some of this file.
27 * Contributor(s): Jens Ole Wund (bjornmose), Campbell Barton (ideasman42)
29 * ***** END GPL LICENSE BLOCK *****
32 /** \file blender/editors/sculpt_paint/paint_image.c
42 #include "MEM_guardedalloc.h"
45 #include "BLI_winstuff.h"
48 #include "BLI_blenlib.h"
49 #include "BLI_dynstr.h"
50 #include "BLI_linklist.h"
51 #include "BLI_memarena.h"
52 #include "BLI_threads.h"
53 #include "BLI_utildefines.h"
57 #include "IMB_imbuf.h"
58 #include "IMB_imbuf_types.h"
60 #include "DNA_brush_types.h"
61 #include "DNA_mesh_types.h"
62 #include "DNA_meshdata_types.h"
63 #include "DNA_node_types.h"
64 #include "DNA_object_types.h"
65 #include "DNA_scene_types.h"
66 #include "DNA_texture_types.h"
68 #include "BKE_context.h"
69 #include "BKE_depsgraph.h"
70 #include "BKE_DerivedMesh.h"
71 #include "BKE_idprop.h"
72 #include "BKE_brush.h"
73 #include "BKE_image.h"
74 #include "BKE_library.h"
78 #include "BKE_object.h"
79 #include "BKE_paint.h"
80 #include "BKE_report.h"
83 #include "BIF_glutil.h"
85 #include "UI_view2d.h"
88 #include "ED_screen.h"
89 #include "ED_sculpt.h"
90 #include "ED_view3d.h"
95 #include "RNA_access.h"
96 #include "RNA_define.h"
97 #include "RNA_enum_types.h"
101 #include "paint_intern.h"
103 /* Defines and Structs */
105 #define IMAPAINT_CHAR_TO_FLOAT(c) ((c)/255.0f)
107 #define IMAPAINT_FLOAT_RGB_TO_CHAR(c, f) { (c)[0]=FTOCHAR((f)[0]); (c)[1]=FTOCHAR((f)[1]); (c)[2]=FTOCHAR((f)[2]); }
108 #define IMAPAINT_FLOAT_RGBA_TO_CHAR(c, f) { (c)[0]=FTOCHAR((f)[0]); (c)[1]=FTOCHAR((f)[1]); (c)[2]=FTOCHAR((f)[2]); (c)[3]=FTOCHAR((f)[3]); }
110 #define IMAPAINT_CHAR_RGB_TO_FLOAT(f, c) { (f)[0]=IMAPAINT_CHAR_TO_FLOAT((c)[0]); (f)[1]=IMAPAINT_CHAR_TO_FLOAT((c)[1]); (f)[2]=IMAPAINT_CHAR_TO_FLOAT((c)[2]); }
111 #define IMAPAINT_CHAR_RGBA_TO_FLOAT(f, c) { (f)[0]=IMAPAINT_CHAR_TO_FLOAT((c)[0]); (f)[1]=IMAPAINT_CHAR_TO_FLOAT((c)[1]); (f)[2]=IMAPAINT_CHAR_TO_FLOAT((c)[2]); (f)[3]=IMAPAINT_CHAR_TO_FLOAT((c)[3]); }
112 #define IMAPAINT_FLOAT_RGB_COPY(a, b) VECCOPY(a, b)
114 #define IMAPAINT_TILE_BITS 6
115 #define IMAPAINT_TILE_SIZE (1 << IMAPAINT_TILE_BITS)
116 #define IMAPAINT_TILE_NUMBER(size) (((size)+IMAPAINT_TILE_SIZE-1) >> IMAPAINT_TILE_BITS)
118 static void imapaint_image_update(SpaceImage *sima, Image *image, ImBuf *ibuf, short texpaint);
121 typedef struct ImagePaintState {
132 short clonefreefloat;
133 char *warnpackedfile;
136 /* texture paint only */
143 typedef struct ImagePaintPartialRedraw {
146 } ImagePaintPartialRedraw;
148 typedef struct ImagePaintRegion {
154 /* ProjectionPaint defines */
156 /* approx the number of buckets to have under the brush,
157 * used with the brush size to set the ps->buckets_x and ps->buckets_y value.
159 * When 3 - a brush should have ~9 buckets under it at once
160 * ...this helps for threading while painting as well as
161 * avoiding initializing pixels that wont touch the brush */
162 #define PROJ_BUCKET_BRUSH_DIV 4
164 #define PROJ_BUCKET_RECT_MIN 4
165 #define PROJ_BUCKET_RECT_MAX 256
167 #define PROJ_BOUNDBOX_DIV 8
168 #define PROJ_BOUNDBOX_SQUARED (PROJ_BOUNDBOX_DIV * PROJ_BOUNDBOX_DIV)
170 //#define PROJ_DEBUG_PAINT 1
171 //#define PROJ_DEBUG_NOSEAMBLEED 1
172 //#define PROJ_DEBUG_PRINT_CLIP 1
173 #define PROJ_DEBUG_WINCLIP 1
175 /* projectFaceSeamFlags options */
176 //#define PROJ_FACE_IGNORE (1<<0) /* When the face is hidden, backfacing or occluded */
177 //#define PROJ_FACE_INIT (1<<1) /* When we have initialized the faces data */
178 #define PROJ_FACE_SEAM1 (1<<0) /* If this face has a seam on any of its edges */
179 #define PROJ_FACE_SEAM2 (1<<1)
180 #define PROJ_FACE_SEAM3 (1<<2)
181 #define PROJ_FACE_SEAM4 (1<<3)
183 #define PROJ_FACE_NOSEAM1 (1<<4)
184 #define PROJ_FACE_NOSEAM2 (1<<5)
185 #define PROJ_FACE_NOSEAM3 (1<<6)
186 #define PROJ_FACE_NOSEAM4 (1<<7)
188 #define PROJ_SRC_VIEW 1
189 #define PROJ_SRC_IMAGE_CAM 2
190 #define PROJ_SRC_IMAGE_VIEW 3
192 #define PROJ_VIEW_DATA_ID "view_data"
193 #define PROJ_VIEW_DATA_SIZE (4*4 + 4*4 + 3) /* viewmat + winmat + clipsta + clipend + is_ortho */
196 /* a slightly scaled down face is used to get fake 3D location for edge pixels in the seams
197 * as this number approaches 1.0f the likelihood increases of float precision errors where
198 * it is occluded by an adjacent face */
199 #define PROJ_FACE_SCALE_SEAM 0.99f
201 #define PROJ_BUCKET_NULL 0
202 #define PROJ_BUCKET_INIT (1<<0)
203 // #define PROJ_BUCKET_CLONE_INIT (1<<1)
205 /* used for testing doubles, if a point is on a line etc */
206 #define PROJ_GEOM_TOLERANCE 0.00075f
209 #define PROJ_VERT_CULL 1
211 #define PI_80_DEG ((M_PI_2 / 9) * 8)
213 /* This is mainly a convenience struct used so we can keep an array of images we use
214 * Thir imbufs, etc, in 1 array, When using threads this array is copied for each thread
215 * because 'partRedrawRect' and 'touch' values would not be thread safe */
216 typedef struct ProjPaintImage {
219 ImagePaintPartialRedraw *partRedrawRect;
220 void **undoRect; /* only used to build undo tiles after painting */
224 /* Main projection painting struct passed to all projection painting functions */
225 typedef struct ProjPaintState {
230 int source; /* PROJ_SRC_**** */
235 /* end similarities with ImagePaintState */
245 MTFace *dm_mtface_clone; /* other UV layer, use for cloning between layers */
246 MTFace *dm_mtface_stencil;
248 /* projection painting only */
249 MemArena *arena_mt[BLENDER_MAX_THREADS];/* for multithreading, the first item is sometimes used for non threaded cases too */
250 LinkNode **bucketRect; /* screen sized 2D array, each pixel has a linked list of ProjPixel's */
251 LinkNode **bucketFaces; /* bucketRect aligned array linkList of faces overlapping each bucket */
252 unsigned char *bucketFlags; /* store if the bucks have been initialized */
253 #ifndef PROJ_DEBUG_NOSEAMBLEED
254 char *faceSeamFlags; /* store info about faces, if they are initialized etc*/
255 float (*faceSeamUVs)[4][2]; /* expanded UVs for faces to use as seams */
256 LinkNode **vertFaces; /* Only needed for when seam_bleed_px is enabled, use to find UV seams */
258 char *vertFlags; /* store options per vert, now only store if the vert is pointing away from the view */
259 int buckets_x; /* The size of the bucket grid, the grid span's screenMin/screenMax so you can paint outsize the screen or with 2 brushes at once */
262 ProjPaintImage *projImages;
264 int image_tot; /* size of projectImages array */
266 float (*screenCoords)[4]; /* verts projected into floating point screen space */
268 float screenMin[2]; /* 2D bounds for mesh verts on the screen's plane (screenspace) */
270 float screen_width; /* Calculated from screenMin & screenMax */
272 int winx, winy; /* from the carea or from the projection render */
274 /* options for projection painting */
276 int do_layer_stencil;
277 int do_layer_stencil_inv;
279 short do_occlude; /* Use raytraced occlusion? - ortherwise will paint right through to the back*/
280 short do_backfacecull; /* ignore faces with normals pointing away, skips a lot of raycasts if your normals are correctly flipped */
281 short do_mask_normal; /* mask out pixels based on their normals */
282 float normal_angle; /* what angle to mask at*/
283 float normal_angle_inner;
284 float normal_angle_range; /* difference between normal_angle and normal_angle_inner, for easy access */
287 short is_airbrush; /* only to avoid using (ps.brush->flag & BRUSH_AIRBRUSH) */
288 short is_texbrush; /* only to avoid running */
289 #ifndef PROJ_DEBUG_NOSEAMBLEED
293 float cloneOffset[2];
295 float projectMat[4][4]; /* Projection matrix, use for getting screen coords */
296 float viewDir[3]; /* View vector, use for do_backfacecull and for ray casting with an ortho viewport */
297 float viewPos[3]; /* View location in object relative 3D space, so can compare to verts */
298 float clipsta, clipend;
301 Image *reproject_image;
302 ImBuf *reproject_ibuf;
309 int context_bucket_x, context_bucket_y; /* must lock threads while accessing these */
312 typedef union pixelPointer
314 float *f_pt; /* float buffer */
315 unsigned int *uint_pt; /* 2 ways to access a char buffer */
316 unsigned char *ch_pt;
319 typedef union pixelStore
326 typedef struct ProjPixel {
327 float projCoSS[2]; /* the floating point screen projection of this pixel */
329 /* Only used when the airbrush is disabled.
330 * Store the max mask value to avoid painting over an area with a lower opacity
331 * with an advantage that we can avoid touching the pixel at all, if the
332 * new mask value is lower then mask_max */
333 unsigned short mask_max;
335 /* for various reasons we may want to mask out painting onto this pixel */
340 PixelStore origColor;
344 short image_index; /* if anyone wants to paint onto more then 32768 images they can bite me */
345 unsigned char bb_cell_index;
348 typedef struct ProjPixelClone {
349 struct ProjPixel __pp;
353 /* Finish projection painting structs */
355 typedef struct UndoImageTile {
356 struct UndoImageTile *next, *prev;
358 char idname[MAX_ID_NAME]; /* name instead of pointer*/
364 static ImagePaintPartialRedraw imapaintpartial = {0, 0, 0, 0, 0};
368 static void undo_copy_tile(UndoImageTile *tile, ImBuf *tmpibuf, ImBuf *ibuf, int restore)
370 /* copy or swap contents of tile->rect and region in ibuf->rect */
371 IMB_rectcpy(tmpibuf, ibuf, 0, 0, tile->x*IMAPAINT_TILE_SIZE,
372 tile->y*IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE);
374 if(ibuf->rect_float) {
375 SWAP(void*, tmpibuf->rect_float, tile->rect);
377 SWAP(void*, tmpibuf->rect, tile->rect);
381 IMB_rectcpy(ibuf, tmpibuf, tile->x*IMAPAINT_TILE_SIZE,
382 tile->y*IMAPAINT_TILE_SIZE, 0, 0, IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE);
385 static void *image_undo_push_tile(Image *ima, ImBuf *ibuf, ImBuf **tmpibuf, int x_tile, int y_tile)
387 ListBase *lb= undo_paint_push_get_list(UNDO_PAINT_IMAGE);
391 for(tile=lb->first; tile; tile=tile->next)
392 if(tile->x == x_tile && tile->y == y_tile && strcmp(tile->idname, ima->id.name)==0)
396 *tmpibuf = IMB_allocImBuf(IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE, 32, IB_rectfloat|IB_rect);
398 tile= MEM_callocN(sizeof(UndoImageTile), "UndoImageTile");
399 strcpy(tile->idname, ima->id.name);
403 allocsize= IMAPAINT_TILE_SIZE*IMAPAINT_TILE_SIZE*4;
404 allocsize *= (ibuf->rect_float)? sizeof(float): sizeof(char);
405 tile->rect= MEM_mapallocN(allocsize, "UndeImageTile.rect");
407 undo_copy_tile(tile, *tmpibuf, ibuf, 0);
408 undo_paint_push_count_alloc(UNDO_PAINT_IMAGE, allocsize);
410 BLI_addtail(lb, tile);
415 static void image_undo_restore(bContext *C, ListBase *lb)
417 Main *bmain= CTX_data_main(C);
419 ImBuf *ibuf, *tmpibuf;
422 tmpibuf= IMB_allocImBuf(IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE, 32,
423 IB_rectfloat|IB_rect);
425 for(tile=lb->first; tile; tile=tile->next) {
426 /* find image based on name, pointer becomes invalid with global undo */
427 if(ima && strcmp(tile->idname, ima->id.name)==0);
429 for(ima=bmain->image.first; ima; ima=ima->id.next)
430 if(strcmp(tile->idname, ima->id.name)==0)
434 ibuf= BKE_image_get_ibuf(ima, NULL);
436 if (!ima || !ibuf || !(ibuf->rect || ibuf->rect_float))
439 undo_copy_tile(tile, tmpibuf, ibuf, 1);
441 GPU_free_image(ima); /* force OpenGL reload */
443 ibuf->userflags |= IB_RECT_INVALID; /* force recreate of char rect */
445 ibuf->userflags |= IB_MIPMAP_INVALID; /* force mipmap recreatiom */
449 IMB_freeImBuf(tmpibuf);
452 static void image_undo_free(ListBase *lb)
456 for(tile=lb->first; tile; tile=tile->next)
457 MEM_freeN(tile->rect);
460 /* fast projection bucket array lookup, use the safe version for bound checking */
461 static int project_bucket_offset(const ProjPaintState *ps, const float projCoSS[2])
463 /* If we were not dealing with screenspace 2D coords we could simple do...
464 * ps->bucketRect[x + (y*ps->buckets_y)] */
467 * projCoSS[0] - ps->screenMin[0] : zero origin
468 * ... / ps->screen_width : range from 0.0 to 1.0
469 * ... * ps->buckets_x : use as a bucket index
471 * Second multiplication does similar but for vertical offset
473 return ( (int)(((projCoSS[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x)) +
474 ( ( (int)(((projCoSS[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y)) * ps->buckets_x);
477 static int project_bucket_offset_safe(const ProjPaintState *ps, const float projCoSS[2])
479 int bucket_index = project_bucket_offset(ps, projCoSS);
481 if (bucket_index < 0 || bucket_index >= ps->buckets_x*ps->buckets_y) {
489 /* still use 2D X,Y space but this works for verts transformed by a perspective matrix, using their 4th component as a weight */
490 static void barycentric_weights_v2_persp(float v1[4], float v2[4], float v3[4], float co[2], float w[3])
492 float wtot_inv, wtot;
494 w[0] = area_tri_signed_v2(v2, v3, co) / v1[3];
495 w[1] = area_tri_signed_v2(v3, v1, co) / v2[3];
496 w[2] = area_tri_signed_v2(v1, v2, co) / v3[3];
497 wtot = w[0]+w[1]+w[2];
500 wtot_inv = 1.0f/wtot;
502 w[0] = w[0]*wtot_inv;
503 w[1] = w[1]*wtot_inv;
504 w[2] = w[2]*wtot_inv;
506 else /* dummy values for zero area face */
507 w[0] = w[1] = w[2] = 1.0f/3.0f;
510 static float VecZDepthOrtho(float pt[2], float v1[3], float v2[3], float v3[3], float w[3])
512 barycentric_weights_v2(v1, v2, v3, pt, w);
513 return (v1[2]*w[0]) + (v2[2]*w[1]) + (v3[2]*w[2]);
516 static float VecZDepthPersp(float pt[2], float v1[4], float v2[4], float v3[4], float w[3])
518 float wtot_inv, wtot;
521 barycentric_weights_v2_persp(v1, v2, v3, pt, w);
522 /* for the depth we need the weights to match what
523 * barycentric_weights_v2 would return, in this case its easiest just to
524 * undo the 4th axis division and make it unit-sum
526 * don't call barycentric_weights_v2() becaue our callers expect 'w'
527 * to be weighted from the perspective */
528 w_tmp[0]= w[0] * v1[3];
529 w_tmp[1]= w[1] * v2[3];
530 w_tmp[2]= w[2] * v3[3];
532 wtot = w_tmp[0]+w_tmp[1]+w_tmp[2];
535 wtot_inv = 1.0f/wtot;
537 w_tmp[0] = w_tmp[0]*wtot_inv;
538 w_tmp[1] = w_tmp[1]*wtot_inv;
539 w_tmp[2] = w_tmp[2]*wtot_inv;
541 else /* dummy values for zero area face */
542 w_tmp[0] = w_tmp[1] = w_tmp[2] = 1.0f/3.0f;
543 /* done mimicing barycentric_weights_v2() */
545 return (v1[2]*w_tmp[0]) + (v2[2]*w_tmp[1]) + (v3[2]*w_tmp[2]);
549 /* Return the top-most face index that the screen space coord 'pt' touches (or -1) */
550 static int project_paint_PickFace(const ProjPaintState *ps, float pt[2], float w[3], int *side)
554 float *v1, *v2, *v3, *v4;
558 int best_face_index = -1;
559 float z_depth_best = FLT_MAX, z_depth;
562 bucket_index = project_bucket_offset_safe(ps, pt);
563 if (bucket_index==-1)
568 /* we could return 0 for 1 face buckets, as long as this function assumes
569 * that the point its testing is only every originated from an existing face */
571 for (node= ps->bucketFaces[bucket_index]; node; node= node->next) {
572 face_index = GET_INT_FROM_POINTER(node->link);
573 mf= ps->dm_mface + face_index;
575 v1= ps->screenCoords[mf->v1];
576 v2= ps->screenCoords[mf->v2];
577 v3= ps->screenCoords[mf->v3];
579 if (isect_point_tri_v2(pt, v1, v2, v3)) {
580 if (ps->is_ortho) z_depth= VecZDepthOrtho(pt, v1, v2, v3, w_tmp);
581 else z_depth= VecZDepthPersp(pt, v1, v2, v3, w_tmp);
583 if (z_depth < z_depth_best) {
584 best_face_index = face_index;
586 z_depth_best = z_depth;
591 v4= ps->screenCoords[mf->v4];
593 if (isect_point_tri_v2(pt, v1, v3, v4)) {
594 if (ps->is_ortho) z_depth= VecZDepthOrtho(pt, v1, v3, v4, w_tmp);
595 else z_depth= VecZDepthPersp(pt, v1, v3, v4, w_tmp);
597 if (z_depth < z_depth_best) {
598 best_face_index = face_index;
600 z_depth_best = z_depth;
608 return best_face_index; /* will be -1 or a valid face */
611 /* Converts a uv coord into a pixel location wrapping if the uv is outside 0-1 range */
612 static void uvco_to_wrapped_pxco(float uv[2], int ibuf_x, int ibuf_y, float *x, float *y)
615 *x = (float)fmodf(uv[0], 1.0f);
616 *y = (float)fmodf(uv[1], 1.0f);
618 if (*x < 0.0f) *x += 1.0f;
619 if (*y < 0.0f) *y += 1.0f;
621 *x = *x * ibuf_x - 0.5f;
622 *y = *y * ibuf_y - 0.5f;
625 /* Set the top-most face color that the screen space coord 'pt' touches (or return 0 if none touch) */
626 static int project_paint_PickColor(const ProjPaintState *ps, float pt[2], float *rgba_fp, unsigned char *rgba, const int interp)
636 face_index = project_paint_PickFace(ps, pt, w, &side);
638 if (face_index == -1)
641 tf = ps->dm_mtface + face_index;
644 interp_v2_v2v2v2(uv, tf->uv[0], tf->uv[1], tf->uv[2], w);
647 interp_v2_v2v2v2(uv, tf->uv[0], tf->uv[2], tf->uv[3], w);
650 ibuf = tf->tpage->ibufs.first; /* we must have got the imbuf before getting here */
655 uvco_to_wrapped_pxco(uv, ibuf->x, ibuf->y, &x, &y);
657 if (ibuf->rect_float) {
659 bilinear_interpolation_color_wrap(ibuf, NULL, rgba_fp, x, y);
663 bilinear_interpolation_color_wrap(ibuf, NULL, rgba_tmp_f, x, y);
664 IMAPAINT_FLOAT_RGBA_TO_CHAR(rgba, rgba_tmp_f);
669 bilinear_interpolation_color_wrap(ibuf, rgba, NULL, x, y);
672 unsigned char rgba_tmp[4];
673 bilinear_interpolation_color_wrap(ibuf, rgba_tmp, NULL, x, y);
674 IMAPAINT_CHAR_RGBA_TO_FLOAT(rgba_fp, rgba_tmp);
679 //xi = (int)((uv[0]*ibuf->x) + 0.5f);
680 //yi = (int)((uv[1]*ibuf->y) + 0.5f);
681 //if (xi<0 || xi>=ibuf->x || yi<0 || yi>=ibuf->y) return 0;
684 xi = ((int)(uv[0]*ibuf->x)) % ibuf->x;
685 if (xi<0) xi += ibuf->x;
686 yi = ((int)(uv[1]*ibuf->y)) % ibuf->y;
687 if (yi<0) yi += ibuf->y;
691 if (ibuf->rect_float) {
692 float *rgba_tmp_fp = ibuf->rect_float + (xi + yi * ibuf->x * 4);
693 IMAPAINT_FLOAT_RGBA_TO_CHAR(rgba, rgba_tmp_fp);
696 *((unsigned int *)rgba) = *(unsigned int *)(((char *)ibuf->rect) + ((xi + yi * ibuf->x) * 4));
701 if (ibuf->rect_float) {
702 QUATCOPY(rgba_fp, ((float *)ibuf->rect_float + ((xi + yi * ibuf->x) * 4)));
705 char *tmp_ch= ((char *)ibuf->rect) + ((xi + yi * ibuf->x) * 4);
706 IMAPAINT_CHAR_RGBA_TO_FLOAT(rgba_fp, tmp_ch);
713 /* Check if 'pt' is infront of the 3 verts on the Z axis (used for screenspace occlusuion test)
716 * -1 : no occlusion but 2D intersection is true (avoid testing the other half of a quad)
718 2 : occluded with w[3] weights set (need to know in some cases) */
720 static int project_paint_occlude_ptv(float pt[3], float v1[4], float v2[4], float v3[4], float w[3], int is_ortho)
722 /* if all are behind us, return false */
723 if(v1[2] > pt[2] && v2[2] > pt[2] && v3[2] > pt[2])
726 /* do a 2D point in try intersection */
727 if (!isect_point_tri_v2(pt, v1, v2, v3))
728 return 0; /* we know there is */
731 /* From here on we know there IS an intersection */
732 /* if ALL of the verts are infront of us then we know it intersects ? */
733 if(v1[2] < pt[2] && v2[2] < pt[2] && v3[2] < pt[2]) {
737 /* we intersect? - find the exact depth at the point of intersection */
738 /* Is this point is occluded by another face? */
740 if (VecZDepthOrtho(pt, v1, v2, v3, w) < pt[2]) return 2;
743 if (VecZDepthPersp(pt, v1, v2, v3, w) < pt[2]) return 2;
750 static int project_paint_occlude_ptv_clip(
751 const ProjPaintState *ps, const MFace *mf,
752 float pt[3], float v1[4], float v2[4], float v3[4],
756 int ret = project_paint_occlude_ptv(pt, v1, v2, v3, w, ps->is_ortho);
761 if (ret==1) { /* weights not calculated */
762 if (ps->is_ortho) barycentric_weights_v2(v1, v2, v3, pt, w);
763 else barycentric_weights_v2_persp(v1, v2, v3, pt, w);
766 /* Test if we're in the clipped area, */
767 if (side) interp_v3_v3v3v3(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v3].co, ps->dm_mvert[mf->v4].co, w);
768 else interp_v3_v3v3v3(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v2].co, ps->dm_mvert[mf->v3].co, w);
770 if(!ED_view3d_test_clipping(ps->rv3d, wco, 1)) {
778 /* Check if a screenspace location is occluded by any other faces
779 * check, pixelScreenCo must be in screenspace, its Z-Depth only needs to be used for comparison
780 * and dosn't need to be correct in relation to X and Y coords (this is the case in perspective view) */
781 static int project_bucket_point_occluded(const ProjPaintState *ps, LinkNode *bucketFace, const int orig_face, float pixelScreenCo[4])
786 float w[3]; /* not needed when clipping */
787 const short do_clip= ps->rv3d ? ps->rv3d->rflag & RV3D_CLIPPING : 0;
789 /* we could return 0 for 1 face buckets, as long as this function assumes
790 * that the point its testing is only every originated from an existing face */
792 for (; bucketFace; bucketFace = bucketFace->next) {
793 face_index = GET_INT_FROM_POINTER(bucketFace->link);
795 if (orig_face != face_index) {
796 mf = ps->dm_mface + face_index;
798 isect_ret = project_paint_occlude_ptv_clip(ps, mf, pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v2], ps->screenCoords[mf->v3], 0);
800 isect_ret = project_paint_occlude_ptv(pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v2], ps->screenCoords[mf->v3], w, ps->is_ortho);
802 /* Note, if isect_ret==-1 then we dont want to test the other side of the quad */
803 if (isect_ret==0 && mf->v4) {
805 isect_ret = project_paint_occlude_ptv_clip(ps, mf, pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v3], ps->screenCoords[mf->v4], 1);
807 isect_ret = project_paint_occlude_ptv(pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v3], ps->screenCoords[mf->v4], w, ps->is_ortho);
810 /* TODO - we may want to cache the first hit,
811 * it is not possible to swap the face order in the list anymore */
819 /* basic line intersection, could move to math_geom.c, 2 points with a horiz line
820 * 1 for an intersection, 2 if the first point is aligned, 3 if the second point is aligned */
822 #define ISECT_TRUE_P1 2
823 #define ISECT_TRUE_P2 3
824 static int line_isect_y(const float p1[2], const float p2[2], const float y_level, float *x_isect)
828 if (y_level==p1[1]) { /* are we touching the first point? - no interpolation needed */
830 return ISECT_TRUE_P1;
832 if (y_level==p2[1]) { /* are we touching the second point? - no interpolation needed */
834 return ISECT_TRUE_P2;
837 y_diff= fabsf(p1[1]-p2[1]); /* yuck, horizontal line, we cant do much here */
839 if (y_diff < 0.000001f) {
840 *x_isect = (p1[0]+p2[0]) * 0.5f;
844 if (p1[1] > y_level && p2[1] < y_level) {
845 *x_isect = (p2[0]*(p1[1]-y_level) + p1[0]*(y_level-p2[1])) / y_diff; /*(p1[1]-p2[1]);*/
848 else if (p1[1] < y_level && p2[1] > y_level) {
849 *x_isect = (p2[0]*(y_level-p1[1]) + p1[0]*(p2[1]-y_level)) / y_diff; /*(p2[1]-p1[1]);*/
857 static int line_isect_x(const float p1[2], const float p2[2], const float x_level, float *y_isect)
861 if (x_level==p1[0]) { /* are we touching the first point? - no interpolation needed */
863 return ISECT_TRUE_P1;
865 if (x_level==p2[0]) { /* are we touching the second point? - no interpolation needed */
867 return ISECT_TRUE_P2;
870 x_diff= fabsf(p1[0]-p2[0]); /* yuck, horizontal line, we cant do much here */
872 if (x_diff < 0.000001f) { /* yuck, vertical line, we cant do much here */
873 *y_isect = (p1[0]+p2[0]) * 0.5f;
877 if (p1[0] > x_level && p2[0] < x_level) {
878 *y_isect = (p2[1]*(p1[0]-x_level) + p1[1]*(x_level-p2[0])) / x_diff; /*(p1[0]-p2[0]);*/
881 else if (p1[0] < x_level && p2[0] > x_level) {
882 *y_isect = (p2[1]*(x_level-p1[0]) + p1[1]*(p2[0]-x_level)) / x_diff; /*(p2[0]-p1[0]);*/
890 /* simple func use for comparing UV locations to check if there are seams.
891 * Its possible this gives incorrect results, when the UVs for 1 face go into the next
892 * tile, but do not do this for the adjacent face, it could return a false positive.
893 * This is so unlikely that Id not worry about it. */
894 #ifndef PROJ_DEBUG_NOSEAMBLEED
895 static int cmp_uv(const float vec2a[2], const float vec2b[2])
897 /* if the UV's are not between 0.0 and 1.0 */
898 float xa = (float)fmodf(vec2a[0], 1.0f);
899 float ya = (float)fmodf(vec2a[1], 1.0f);
901 float xb = (float)fmodf(vec2b[0], 1.0f);
902 float yb = (float)fmodf(vec2b[1], 1.0f);
904 if (xa < 0.0f) xa += 1.0f;
905 if (ya < 0.0f) ya += 1.0f;
907 if (xb < 0.0f) xb += 1.0f;
908 if (yb < 0.0f) yb += 1.0f;
910 return ((fabsf(xa-xb) < PROJ_GEOM_TOLERANCE) && (fabsf(ya-yb) < PROJ_GEOM_TOLERANCE)) ? 1:0;
914 /* set min_px and max_px to the image space bounds of the UV coords
915 * return zero if there is no area in the returned rectangle */
916 #ifndef PROJ_DEBUG_NOSEAMBLEED
917 static int pixel_bounds_uv(
918 const float uv1[2], const float uv2[2], const float uv3[2], const float uv4[2],
920 const int ibuf_x, const int ibuf_y,
923 float min_uv[2], max_uv[2]; /* UV bounds */
925 INIT_MINMAX2(min_uv, max_uv);
927 DO_MINMAX2(uv1, min_uv, max_uv);
928 DO_MINMAX2(uv2, min_uv, max_uv);
929 DO_MINMAX2(uv3, min_uv, max_uv);
931 DO_MINMAX2(uv4, min_uv, max_uv);
933 bounds_px->xmin = (int)(ibuf_x * min_uv[0]);
934 bounds_px->ymin = (int)(ibuf_y * min_uv[1]);
936 bounds_px->xmax = (int)(ibuf_x * max_uv[0]) +1;
937 bounds_px->ymax = (int)(ibuf_y * max_uv[1]) +1;
939 /*printf("%d %d %d %d \n", min_px[0], min_px[1], max_px[0], max_px[1]);*/
941 /* face uses no UV area when quantized to pixels? */
942 return (bounds_px->xmin == bounds_px->xmax || bounds_px->ymin == bounds_px->ymax) ? 0 : 1;
946 static int pixel_bounds_array(float (* uv)[2], rcti *bounds_px, const int ibuf_x, const int ibuf_y, int tot)
948 float min_uv[2], max_uv[2]; /* UV bounds */
954 INIT_MINMAX2(min_uv, max_uv);
957 DO_MINMAX2((*uv), min_uv, max_uv);
961 bounds_px->xmin = (int)(ibuf_x * min_uv[0]);
962 bounds_px->ymin = (int)(ibuf_y * min_uv[1]);
964 bounds_px->xmax = (int)(ibuf_x * max_uv[0]) +1;
965 bounds_px->ymax = (int)(ibuf_y * max_uv[1]) +1;
967 /*printf("%d %d %d %d \n", min_px[0], min_px[1], max_px[0], max_px[1]);*/
969 /* face uses no UV area when quantized to pixels? */
970 return (bounds_px->xmin == bounds_px->xmax || bounds_px->ymin == bounds_px->ymax) ? 0 : 1;
973 #ifndef PROJ_DEBUG_NOSEAMBLEED
975 /* This function returns 1 if this face has a seam along the 2 face-vert indices
976 * 'orig_i1_fidx' and 'orig_i2_fidx' */
977 static int check_seam(const ProjPaintState *ps, const int orig_face, const int orig_i1_fidx, const int orig_i2_fidx, int *other_face, int *orig_fidx)
982 int i1_fidx = -1, i2_fidx = -1; /* index in face */
985 const MFace *orig_mf = ps->dm_mface + orig_face;
986 const MTFace *orig_tf = ps->dm_mtface + orig_face;
988 /* vert indices from face vert order indices */
989 i1 = (*(&orig_mf->v1 + orig_i1_fidx));
990 i2 = (*(&orig_mf->v1 + orig_i2_fidx));
992 for (node = ps->vertFaces[i1]; node; node = node->next) {
993 face_index = GET_INT_FROM_POINTER(node->link);
995 if (face_index != orig_face) {
996 mf = ps->dm_mface + face_index;
997 /* could check if the 2 faces images match here,
998 * but then there wouldn't be a way to return the opposite face's info */
1001 /* We need to know the order of the verts in the adjacent face
1002 * set the i1_fidx and i2_fidx to (0,1,2,3) */
1003 if (mf->v1==i1) i1_fidx = 0;
1004 else if (mf->v2==i1) i1_fidx = 1;
1005 else if (mf->v3==i1) i1_fidx = 2;
1006 else if (mf->v4 && mf->v4==i1) i1_fidx = 3;
1008 if (mf->v1==i2) i2_fidx = 0;
1009 else if (mf->v2==i2) i2_fidx = 1;
1010 else if (mf->v3==i2) i2_fidx = 2;
1011 else if (mf->v4 && mf->v4==i2) i2_fidx = 3;
1013 /* Only need to check if 'i2_fidx' is valid because we know i1_fidx is the same vert on both faces */
1014 if (i2_fidx != -1) {
1015 /* This IS an adjacent face!, now lets check if the UVs are ok */
1016 tf = ps->dm_mtface + face_index;
1018 /* set up the other face */
1019 *other_face = face_index;
1020 *orig_fidx = (i1_fidx < i2_fidx) ? i1_fidx : i2_fidx;
1022 /* first test if they have the same image */
1023 if ( (orig_tf->tpage == tf->tpage) &&
1024 cmp_uv(orig_tf->uv[orig_i1_fidx], tf->uv[i1_fidx]) &&
1025 cmp_uv(orig_tf->uv[orig_i2_fidx], tf->uv[i2_fidx]) )
1027 // printf("SEAM (NONE)\n");
1032 // printf("SEAM (UV GAP)\n");
1038 // printf("SEAM (NO FACE)\n");
1043 /* Calculate outset UV's, this is not the same as simply scaling the UVs,
1044 * since the outset coords are a margin that keep an even distance from the original UV's,
1045 * note that the image aspect is taken into account */
1046 static void uv_image_outset(float (*orig_uv)[2], float (*outset_uv)[2], const float scaler, const int ibuf_x, const int ibuf_y, const int is_quad)
1048 float a1, a2, a3, a4=0.0f;
1049 float puv[4][2]; /* pixelspace uv's */
1050 float no1[2], no2[2], no3[2], no4[2]; /* normals */
1051 float dir1[2], dir2[2], dir3[2], dir4[2];
1054 ibuf_inv[0]= 1.0f / (float)ibuf_x;
1055 ibuf_inv[1]= 1.0f / (float)ibuf_y;
1057 /* make UV's in pixel space so we can */
1058 puv[0][0] = orig_uv[0][0] * ibuf_x;
1059 puv[0][1] = orig_uv[0][1] * ibuf_y;
1061 puv[1][0] = orig_uv[1][0] * ibuf_x;
1062 puv[1][1] = orig_uv[1][1] * ibuf_y;
1064 puv[2][0] = orig_uv[2][0] * ibuf_x;
1065 puv[2][1] = orig_uv[2][1] * ibuf_y;
1068 puv[3][0] = orig_uv[3][0] * ibuf_x;
1069 puv[3][1] = orig_uv[3][1] * ibuf_y;
1072 /* face edge directions */
1073 sub_v2_v2v2(dir1, puv[1], puv[0]);
1074 sub_v2_v2v2(dir2, puv[2], puv[1]);
1079 sub_v2_v2v2(dir3, puv[3], puv[2]);
1080 sub_v2_v2v2(dir4, puv[0], puv[3]);
1085 sub_v2_v2v2(dir3, puv[0], puv[2]);
1089 /* TODO - angle_normalized_v2v2(...) * (M_PI/180.0f)
1090 * This is incorrect. Its already given radians but without it wont work.
1091 * need to look into a fix - campbell */
1093 a1 = shell_angle_to_dist(angle_normalized_v2v2(dir4, dir1) * ((float)M_PI/180.0f));
1094 a2 = shell_angle_to_dist(angle_normalized_v2v2(dir1, dir2) * ((float)M_PI/180.0f));
1095 a3 = shell_angle_to_dist(angle_normalized_v2v2(dir2, dir3) * ((float)M_PI/180.0f));
1096 a4 = shell_angle_to_dist(angle_normalized_v2v2(dir3, dir4) * ((float)M_PI/180.0f));
1099 a1 = shell_angle_to_dist(angle_normalized_v2v2(dir3, dir1) * ((float)M_PI/180.0f));
1100 a2 = shell_angle_to_dist(angle_normalized_v2v2(dir1, dir2) * ((float)M_PI/180.0f));
1101 a3 = shell_angle_to_dist(angle_normalized_v2v2(dir2, dir3) * ((float)M_PI/180.0f));
1105 sub_v2_v2v2(no1, dir4, dir1);
1106 sub_v2_v2v2(no2, dir1, dir2);
1107 sub_v2_v2v2(no3, dir2, dir3);
1108 sub_v2_v2v2(no4, dir3, dir4);
1113 mul_v2_fl(no1, a1*scaler);
1114 mul_v2_fl(no2, a2*scaler);
1115 mul_v2_fl(no3, a3*scaler);
1116 mul_v2_fl(no4, a4*scaler);
1117 add_v2_v2v2(outset_uv[0], puv[0], no1);
1118 add_v2_v2v2(outset_uv[1], puv[1], no2);
1119 add_v2_v2v2(outset_uv[2], puv[2], no3);
1120 add_v2_v2v2(outset_uv[3], puv[3], no4);
1121 mul_v2_v2(outset_uv[0], ibuf_inv);
1122 mul_v2_v2(outset_uv[1], ibuf_inv);
1123 mul_v2_v2(outset_uv[2], ibuf_inv);
1124 mul_v2_v2(outset_uv[3], ibuf_inv);
1127 sub_v2_v2v2(no1, dir3, dir1);
1128 sub_v2_v2v2(no2, dir1, dir2);
1129 sub_v2_v2v2(no3, dir2, dir3);
1133 mul_v2_fl(no1, a1*scaler);
1134 mul_v2_fl(no2, a2*scaler);
1135 mul_v2_fl(no3, a3*scaler);
1136 add_v2_v2v2(outset_uv[0], puv[0], no1);
1137 add_v2_v2v2(outset_uv[1], puv[1], no2);
1138 add_v2_v2v2(outset_uv[2], puv[2], no3);
1140 mul_v2_v2(outset_uv[0], ibuf_inv);
1141 mul_v2_v2(outset_uv[1], ibuf_inv);
1142 mul_v2_v2(outset_uv[2], ibuf_inv);
1147 * Be tricky with flags, first 4 bits are PROJ_FACE_SEAM1 to 4, last 4 bits are PROJ_FACE_NOSEAM1 to 4
1148 * 1<<i - where i is (0-3)
1150 * If we're multithreadng, make sure threads are locked when this is called
1152 static void project_face_seams_init(const ProjPaintState *ps, const int face_index, const int is_quad)
1154 int other_face, other_fidx; /* vars for the other face, we also set its flag */
1155 int fidx1 = is_quad ? 3 : 2;
1156 int fidx2 = 0; /* next fidx in the face (0,1,2,3) -> (1,2,3,0) or (0,1,2) -> (1,2,0) for a tri */
1159 if ((ps->faceSeamFlags[face_index] & (1<<fidx1|16<<fidx1)) == 0) {
1160 if (check_seam(ps, face_index, fidx1, fidx2, &other_face, &other_fidx)) {
1161 ps->faceSeamFlags[face_index] |= 1<<fidx1;
1162 if (other_face != -1)
1163 ps->faceSeamFlags[other_face] |= 1<<other_fidx;
1166 ps->faceSeamFlags[face_index] |= 16<<fidx1;
1167 if (other_face != -1)
1168 ps->faceSeamFlags[other_face] |= 16<<other_fidx; /* second 4 bits for disabled */
1175 #endif // PROJ_DEBUG_NOSEAMBLEED
1178 /* Converts a UV location to a 3D screenspace location
1179 * Takes a 'uv' and 3 UV coords, and sets the values of pixelScreenCo
1181 * This is used for finding a pixels location in screenspace for painting */
1182 static void screen_px_from_ortho(
1184 float v1co[3], float v2co[3], float v3co[3], /* Screenspace coords */
1185 float uv1co[2], float uv2co[2], float uv3co[2],
1186 float pixelScreenCo[4],
1189 barycentric_weights_v2(uv1co, uv2co, uv3co, uv, w);
1190 interp_v3_v3v3v3(pixelScreenCo, v1co, v2co, v3co, w);
1193 /* same as screen_px_from_ortho except we need to take into account
1194 * the perspective W coord for each vert */
1195 static void screen_px_from_persp(
1197 float v1co[4], float v2co[4], float v3co[4], /* screenspace coords */
1198 float uv1co[2], float uv2co[2], float uv3co[2],
1199 float pixelScreenCo[4],
1203 float wtot_inv, wtot;
1204 barycentric_weights_v2(uv1co, uv2co, uv3co, uv, w);
1206 /* re-weight from the 4th coord of each screen vert */
1211 wtot = w[0]+w[1]+w[2];
1214 wtot_inv = 1.0f / wtot;
1220 w[0] = w[1] = w[2] = 1.0f/3.0f; /* dummy values for zero area face */
1222 /* done re-weighting */
1224 interp_v3_v3v3v3(pixelScreenCo, v1co, v2co, v3co, w);
1227 static void project_face_pixel(const MTFace *tf_other, ImBuf *ibuf_other, const float w[3], int side, unsigned char rgba_ub[4], float rgba_f[4])
1229 float *uvCo1, *uvCo2, *uvCo3;
1230 float uv_other[2], x, y;
1232 uvCo1 = (float *)tf_other->uv[0];
1234 uvCo2 = (float *)tf_other->uv[2];
1235 uvCo3 = (float *)tf_other->uv[3];
1238 uvCo2 = (float *)tf_other->uv[1];
1239 uvCo3 = (float *)tf_other->uv[2];
1242 interp_v2_v2v2v2(uv_other, uvCo1, uvCo2, uvCo3, (float*)w);
1245 uvco_to_wrapped_pxco(uv_other, ibuf_other->x, ibuf_other->y, &x, &y);
1248 if (ibuf_other->rect_float) { /* from float to float */
1249 bilinear_interpolation_color_wrap(ibuf_other, NULL, rgba_f, x, y);
1251 else { /* from char to float */
1252 bilinear_interpolation_color_wrap(ibuf_other, rgba_ub, NULL, x, y);
1257 /* run this outside project_paint_uvpixel_init since pixels with mask 0 dont need init */
1258 static float project_paint_uvpixel_mask(
1259 const ProjPaintState *ps,
1260 const int face_index,
1267 if (ps->do_layer_stencil) {
1268 /* another UV layers image is masking this one's */
1270 const MTFace *tf_other = ps->dm_mtface_stencil + face_index;
1272 if (tf_other->tpage && (ibuf_other = BKE_image_get_ibuf(tf_other->tpage, NULL))) {
1273 /* BKE_image_get_ibuf - TODO - this may be slow */
1274 unsigned char rgba_ub[4];
1277 project_face_pixel(tf_other, ibuf_other, w, side, rgba_ub, rgba_f);
1279 if (ibuf_other->rect_float) { /* from float to float */
1280 mask = ((rgba_f[0]+rgba_f[1]+rgba_f[2])/3.0f) * rgba_f[3];
1282 else { /* from char to float */
1283 mask = ((rgba_ub[0]+rgba_ub[1]+rgba_ub[2])/(256*3.0f)) * (rgba_ub[3]/256.0f);
1286 if (!ps->do_layer_stencil_inv) /* matching the gimps layer mask black/white rules, white==full opacity */
1287 mask = (1.0f - mask);
1300 /* calculate mask */
1301 if (ps->do_mask_normal) {
1302 MFace *mf = ps->dm_mface + face_index;
1303 short *no1, *no2, *no3;
1305 no1 = ps->dm_mvert[mf->v1].no;
1307 no2 = ps->dm_mvert[mf->v3].no;
1308 no3 = ps->dm_mvert[mf->v4].no;
1311 no2 = ps->dm_mvert[mf->v2].no;
1312 no3 = ps->dm_mvert[mf->v3].no;
1315 no[0] = w[0]*no1[0] + w[1]*no2[0] + w[2]*no3[0];
1316 no[1] = w[0]*no1[1] + w[1]*no2[1] + w[2]*no3[1];
1317 no[2] = w[0]*no1[2] + w[1]*no2[2] + w[2]*no3[2];
1320 /* now we can use the normal as a mask */
1322 angle = angle_normalized_v3v3((float *)ps->viewDir, no);
1325 /* Annoying but for the perspective view we need to get the pixels location in 3D space :/ */
1326 float viewDirPersp[3];
1327 float *co1, *co2, *co3;
1328 co1 = ps->dm_mvert[mf->v1].co;
1330 co2 = ps->dm_mvert[mf->v3].co;
1331 co3 = ps->dm_mvert[mf->v4].co;
1334 co2 = ps->dm_mvert[mf->v2].co;
1335 co3 = ps->dm_mvert[mf->v3].co;
1338 /* Get the direction from the viewPoint to the pixel and normalize */
1339 viewDirPersp[0] = (ps->viewPos[0] - (w[0]*co1[0] + w[1]*co2[0] + w[2]*co3[0]));
1340 viewDirPersp[1] = (ps->viewPos[1] - (w[0]*co1[1] + w[1]*co2[1] + w[2]*co3[1]));
1341 viewDirPersp[2] = (ps->viewPos[2] - (w[0]*co1[2] + w[1]*co2[2] + w[2]*co3[2]));
1342 normalize_v3(viewDirPersp);
1344 angle = angle_normalized_v3v3(viewDirPersp, no);
1347 if (angle >= ps->normal_angle) {
1348 return 0.0f; /* outsize the normal limit*/
1350 else if (angle > ps->normal_angle_inner) {
1351 mask *= (ps->normal_angle - angle) / ps->normal_angle_range;
1352 } /* otherwise no mask normal is needed, were within the limit */
1355 // This only works when the opacity dosnt change while painting, stylus pressure messes with this
1357 // if (ps->is_airbrush==0) mask *= brush_alpha(ps->brush);
1362 /* run this function when we know a bucket's, face's pixel can be initialized,
1363 * return the ProjPixel which is added to 'ps->bucketRect[bucket_index]' */
1364 static ProjPixel *project_paint_uvpixel_init(
1365 const ProjPaintState *ps,
1368 short x_px, short y_px,
1370 const int face_index,
1371 const int image_index,
1372 const float pixelScreenCo[4],
1376 ProjPixel *projPixel;
1379 /* wrap pixel location */
1380 x_px = x_px % ibuf->x;
1381 if (x_px<0) x_px += ibuf->x;
1382 y_px = y_px % ibuf->y;
1383 if (y_px<0) y_px += ibuf->y;
1385 if (ps->tool==PAINT_TOOL_CLONE) {
1386 size = sizeof(ProjPixelClone);
1388 else if (ps->tool==PAINT_TOOL_SMEAR) {
1389 size = sizeof(ProjPixelClone);
1392 size = sizeof(ProjPixel);
1395 projPixel = (ProjPixel *)BLI_memarena_alloc(arena, size);
1396 //memset(projPixel, 0, size);
1398 if (ibuf->rect_float) {
1399 projPixel->pixel.f_pt = (float *)ibuf->rect_float + ((x_px + y_px * ibuf->x) * 4);
1400 projPixel->origColor.f[0] = projPixel->newColor.f[0] = projPixel->pixel.f_pt[0];
1401 projPixel->origColor.f[1] = projPixel->newColor.f[1] = projPixel->pixel.f_pt[1];
1402 projPixel->origColor.f[2] = projPixel->newColor.f[2] = projPixel->pixel.f_pt[2];
1403 projPixel->origColor.f[3] = projPixel->newColor.f[3] = projPixel->pixel.f_pt[3];
1406 projPixel->pixel.ch_pt = ((unsigned char *)ibuf->rect + ((x_px + y_px * ibuf->x) * 4));
1407 projPixel->origColor.uint = projPixel->newColor.uint = *projPixel->pixel.uint_pt;
1410 /* screenspace unclamped, we could keep its z and w values but dont need them at the moment */
1411 VECCOPY2D(projPixel->projCoSS, pixelScreenCo);
1413 projPixel->x_px = x_px;
1414 projPixel->y_px = y_px;
1416 projPixel->mask = (unsigned short)(mask * 65535);
1417 projPixel->mask_max = 0;
1419 /* which bounding box cell are we in?, needed for undo */
1420 projPixel->bb_cell_index = ((int)(((float)x_px/(float)ibuf->x) * PROJ_BOUNDBOX_DIV)) + ((int)(((float)y_px/(float)ibuf->y) * PROJ_BOUNDBOX_DIV)) * PROJ_BOUNDBOX_DIV ;
1422 /* done with view3d_project_float inline */
1423 if (ps->tool==PAINT_TOOL_CLONE) {
1424 if (ps->dm_mtface_clone) {
1426 const MTFace *tf_other = ps->dm_mtface_clone + face_index;
1428 if (tf_other->tpage && (ibuf_other = BKE_image_get_ibuf(tf_other->tpage, NULL))) {
1429 /* BKE_image_get_ibuf - TODO - this may be slow */
1431 if (ibuf->rect_float) {
1432 if (ibuf_other->rect_float) { /* from float to float */
1433 project_face_pixel(tf_other, ibuf_other, w, side, NULL, ((ProjPixelClone *)projPixel)->clonepx.f);
1435 else { /* from char to float */
1436 unsigned char rgba_ub[4];
1437 project_face_pixel(tf_other, ibuf_other, w, side, rgba_ub, NULL);
1438 IMAPAINT_CHAR_RGBA_TO_FLOAT(((ProjPixelClone *)projPixel)->clonepx.f, rgba_ub);
1442 if (ibuf_other->rect_float) { /* float to char */
1444 project_face_pixel(tf_other, ibuf_other, w, side, NULL, rgba);
1445 IMAPAINT_FLOAT_RGBA_TO_CHAR(((ProjPixelClone *)projPixel)->clonepx.ch, rgba)
1447 else { /* char to char */
1448 project_face_pixel(tf_other, ibuf_other, w, side, ((ProjPixelClone *)projPixel)->clonepx.ch, NULL);
1453 if (ibuf->rect_float) {
1454 ((ProjPixelClone *)projPixel)->clonepx.f[3] = 0;
1457 ((ProjPixelClone *)projPixel)->clonepx.ch[3] = 0;
1464 sub_v2_v2v2(co, projPixel->projCoSS, (float *)ps->cloneOffset);
1466 /* no need to initialize the bucket, we're only checking buckets faces and for this
1467 * the faces are already initialized in project_paint_delayed_face_init(...) */
1468 if (ibuf->rect_float) {
1469 if (!project_paint_PickColor(ps, co, ((ProjPixelClone *)projPixel)->clonepx.f, NULL, 1)) {
1470 ((ProjPixelClone *)projPixel)->clonepx.f[3] = 0; /* zero alpha - ignore */
1474 if (!project_paint_PickColor(ps, co, NULL, ((ProjPixelClone *)projPixel)->clonepx.ch, 1)) {
1475 ((ProjPixelClone *)projPixel)->clonepx.ch[3] = 0; /* zero alpha - ignore */
1481 #ifdef PROJ_DEBUG_PAINT
1482 if (ibuf->rect_float) projPixel->pixel.f_pt[0] = 0;
1483 else projPixel->pixel.ch_pt[0] = 0;
1485 projPixel->image_index = image_index;
1490 static int line_clip_rect2f(
1492 const float l1[2], const float l2[2],
1493 float l1_clip[2], float l2_clip[2])
1495 /* first account for horizontal, then vertical lines */
1497 if (fabsf(l1[1]-l2[1]) < PROJ_GEOM_TOLERANCE) {
1498 /* is the line out of range on its Y axis? */
1499 if (l1[1] < rect->ymin || l1[1] > rect->ymax) {
1502 /* line is out of range on its X axis */
1503 if ((l1[0] < rect->xmin && l2[0] < rect->xmin) || (l1[0] > rect->xmax && l2[0] > rect->xmax)) {
1508 if (fabsf(l1[0]-l2[0]) < PROJ_GEOM_TOLERANCE) { /* this is a single point (or close to)*/
1509 if (BLI_in_rctf(rect, l1[0], l1[1])) {
1510 VECCOPY2D(l1_clip, l1);
1511 VECCOPY2D(l2_clip, l2);
1519 VECCOPY2D(l1_clip, l1);
1520 VECCOPY2D(l2_clip, l2);
1521 CLAMP(l1_clip[0], rect->xmin, rect->xmax);
1522 CLAMP(l2_clip[0], rect->xmin, rect->xmax);
1525 else if (fabsf(l1[0]-l2[0]) < PROJ_GEOM_TOLERANCE) {
1526 /* is the line out of range on its X axis? */
1527 if (l1[0] < rect->xmin || l1[0] > rect->xmax) {
1531 /* line is out of range on its Y axis */
1532 if ((l1[1] < rect->ymin && l2[1] < rect->ymin) || (l1[1] > rect->ymax && l2[1] > rect->ymax)) {
1536 if (fabsf(l1[1]-l2[1]) < PROJ_GEOM_TOLERANCE) { /* this is a single point (or close to)*/
1537 if (BLI_in_rctf(rect, l1[0], l1[1])) {
1538 VECCOPY2D(l1_clip, l1);
1539 VECCOPY2D(l2_clip, l2);
1547 VECCOPY2D(l1_clip, l1);
1548 VECCOPY2D(l2_clip, l2);
1549 CLAMP(l1_clip[1], rect->ymin, rect->ymax);
1550 CLAMP(l2_clip[1], rect->ymin, rect->ymax);
1558 /* Done with vertical lines */
1560 /* are either of the points inside the rectangle ? */
1561 if (BLI_in_rctf(rect, l1[0], l1[1])) {
1562 VECCOPY2D(l1_clip, l1);
1566 if (BLI_in_rctf(rect, l2[0], l2[1])) {
1567 VECCOPY2D(l2_clip, l2);
1571 /* line inside rect */
1572 if (ok1 && ok2) return 1;
1575 if (line_isect_y(l1, l2, rect->ymin, &isect) && (isect >= rect->xmin) && (isect <= rect->xmax)) {
1576 if (l1[1] < l2[1]) { /* line 1 is outside */
1578 l1_clip[1] = rect->ymin;
1583 l2_clip[1] = rect->ymin;
1588 if (ok1 && ok2) return 1;
1590 if (line_isect_y(l1, l2, rect->ymax, &isect) && (isect >= rect->xmin) && (isect <= rect->xmax)) {
1591 if (l1[1] > l2[1]) { /* line 1 is outside */
1593 l1_clip[1] = rect->ymax;
1598 l2_clip[1] = rect->ymax;
1603 if (ok1 && ok2) return 1;
1606 if (line_isect_x(l1, l2, rect->xmin, &isect) && (isect >= rect->ymin) && (isect <= rect->ymax)) {
1607 if (l1[0] < l2[0]) { /* line 1 is outside */
1608 l1_clip[0] = rect->xmin;
1613 l2_clip[0] = rect->xmin;
1619 if (ok1 && ok2) return 1;
1621 if (line_isect_x(l1, l2, rect->xmax, &isect) && (isect >= rect->ymin) && (isect <= rect->ymax)) {
1622 if (l1[0] > l2[0]) { /* line 1 is outside */
1623 l1_clip[0] = rect->xmax;
1628 l2_clip[0] = rect->xmax;
1645 /* scale the quad & tri about its center
1646 * scaling by PROJ_FACE_SCALE_SEAM (0.99x) is used for getting fake UV pixel coords that are on the
1647 * edge of the face but slightly inside it occlusion tests dont return hits on adjacent faces */
1648 #ifndef PROJ_DEBUG_NOSEAMBLEED
1649 static void scale_quad(float insetCos[4][3], float *origCos[4], const float inset)
1652 cent[0] = (origCos[0][0] + origCos[1][0] + origCos[2][0] + origCos[3][0]) / 4.0f;
1653 cent[1] = (origCos[0][1] + origCos[1][1] + origCos[2][1] + origCos[3][1]) / 4.0f;
1654 cent[2] = (origCos[0][2] + origCos[1][2] + origCos[2][2] + origCos[3][2]) / 4.0f;
1656 sub_v3_v3v3(insetCos[0], origCos[0], cent);
1657 sub_v3_v3v3(insetCos[1], origCos[1], cent);
1658 sub_v3_v3v3(insetCos[2], origCos[2], cent);
1659 sub_v3_v3v3(insetCos[3], origCos[3], cent);
1661 mul_v3_fl(insetCos[0], inset);
1662 mul_v3_fl(insetCos[1], inset);
1663 mul_v3_fl(insetCos[2], inset);
1664 mul_v3_fl(insetCos[3], inset);
1666 add_v3_v3(insetCos[0], cent);
1667 add_v3_v3(insetCos[1], cent);
1668 add_v3_v3(insetCos[2], cent);
1669 add_v3_v3(insetCos[3], cent);
1673 static void scale_tri(float insetCos[4][3], float *origCos[4], const float inset)
1676 cent[0] = (origCos[0][0] + origCos[1][0] + origCos[2][0]) / 3.0f;
1677 cent[1] = (origCos[0][1] + origCos[1][1] + origCos[2][1]) / 3.0f;
1678 cent[2] = (origCos[0][2] + origCos[1][2] + origCos[2][2]) / 3.0f;
1680 sub_v3_v3v3(insetCos[0], origCos[0], cent);
1681 sub_v3_v3v3(insetCos[1], origCos[1], cent);
1682 sub_v3_v3v3(insetCos[2], origCos[2], cent);
1684 mul_v3_fl(insetCos[0], inset);
1685 mul_v3_fl(insetCos[1], inset);
1686 mul_v3_fl(insetCos[2], inset);
1688 add_v3_v3(insetCos[0], cent);
1689 add_v3_v3(insetCos[1], cent);
1690 add_v3_v3(insetCos[2], cent);
1692 #endif //PROJ_DEBUG_NOSEAMBLEED
1694 static float Vec2Lenf_nosqrt(const float *v1, const float *v2)
1703 static float Vec2Lenf_nosqrt_other(const float *v1, const float v2_1, const float v2_2)
1712 /* note, use a squared value so we can use Vec2Lenf_nosqrt
1713 * be sure that you have done a bounds check first or this may fail */
1714 /* only give bucket_bounds as an arg because we need it elsewhere */
1715 static int project_bucket_isect_circle(const float cent[2], const float radius_squared, rctf *bucket_bounds)
1718 /* Would normally to a simple intersection test, however we know the bounds of these 2 already intersect
1719 * so we only need to test if the center is inside the vertical or horizontal bounds on either axis,
1720 * this is even less work then an intersection test
1722 if (BLI_in_rctf(bucket_bounds, cent[0], cent[1]))
1726 if((bucket_bounds->xmin <= cent[0] && bucket_bounds->xmax >= cent[0]) || (bucket_bounds->ymin <= cent[1] && bucket_bounds->ymax >= cent[1]) ) {
1730 /* out of bounds left */
1731 if (cent[0] < bucket_bounds->xmin) {
1732 /* lower left out of radius test */
1733 if (cent[1] < bucket_bounds->ymin) {
1734 return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmin, bucket_bounds->ymin) < radius_squared) ? 1 : 0;
1737 else if (cent[1] > bucket_bounds->ymax) {
1738 return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmin, bucket_bounds->ymax) < radius_squared) ? 1 : 0;
1741 else if (cent[0] > bucket_bounds->xmax) {
1742 /* lower right out of radius test */
1743 if (cent[1] < bucket_bounds->ymin) {
1744 return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmax, bucket_bounds->ymin) < radius_squared) ? 1 : 0;
1746 /* top right test */
1747 else if (cent[1] > bucket_bounds->ymax) {
1748 return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmax, bucket_bounds->ymax) < radius_squared) ? 1 : 0;
1757 /* Note for rect_to_uvspace_ortho() and rect_to_uvspace_persp()
1758 * in ortho view this function gives good results when bucket_bounds are outside the triangle
1759 * however in some cases, perspective view will mess up with faces that have minimal screenspace area (viewed from the side)
1761 * for this reason its not relyable in this case so we'll use the Simple Barycentric' funcs that only account for points inside the triangle.
1762 * however switching back to this for ortho is always an option */
1764 static void rect_to_uvspace_ortho(
1765 rctf *bucket_bounds,
1766 float *v1coSS, float *v2coSS, float *v3coSS,
1767 float *uv1co, float *uv2co, float *uv3co,
1768 float bucket_bounds_uv[4][2],
1774 /* get the UV space bounding box */
1775 uv[0] = bucket_bounds->xmax;
1776 uv[1] = bucket_bounds->ymin;
1777 barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1778 interp_v2_v2v2v2(bucket_bounds_uv[flip?3:0], uv1co, uv2co, uv3co, w);
1780 //uv[0] = bucket_bounds->xmax; // set above
1781 uv[1] = bucket_bounds->ymax;
1782 barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1783 interp_v2_v2v2v2(bucket_bounds_uv[flip?2:1], uv1co, uv2co, uv3co, w);
1785 uv[0] = bucket_bounds->xmin;
1786 //uv[1] = bucket_bounds->ymax; // set above
1787 barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1788 interp_v2_v2v2v2(bucket_bounds_uv[flip?1:2], uv1co, uv2co, uv3co, w);
1790 //uv[0] = bucket_bounds->xmin; // set above
1791 uv[1] = bucket_bounds->ymin;
1792 barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1793 interp_v2_v2v2v2(bucket_bounds_uv[flip?0:3], uv1co, uv2co, uv3co, w);
1796 /* same as above but use barycentric_weights_v2_persp */
1797 static void rect_to_uvspace_persp(
1798 rctf *bucket_bounds,
1799 float *v1coSS, float *v2coSS, float *v3coSS,
1800 float *uv1co, float *uv2co, float *uv3co,
1801 float bucket_bounds_uv[4][2],
1808 /* get the UV space bounding box */
1809 uv[0] = bucket_bounds->xmax;
1810 uv[1] = bucket_bounds->ymin;
1811 barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1812 interp_v2_v2v2v2(bucket_bounds_uv[flip?3:0], uv1co, uv2co, uv3co, w);
1814 //uv[0] = bucket_bounds->xmax; // set above
1815 uv[1] = bucket_bounds->ymax;
1816 barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1817 interp_v2_v2v2v2(bucket_bounds_uv[flip?2:1], uv1co, uv2co, uv3co, w);
1819 uv[0] = bucket_bounds->xmin;
1820 //uv[1] = bucket_bounds->ymax; // set above
1821 barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1822 interp_v2_v2v2v2(bucket_bounds_uv[flip?1:2], uv1co, uv2co, uv3co, w);
1824 //uv[0] = bucket_bounds->xmin; // set above
1825 uv[1] = bucket_bounds->ymin;
1826 barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1827 interp_v2_v2v2v2(bucket_bounds_uv[flip?0:3], uv1co, uv2co, uv3co, w);
1830 /* This works as we need it to but we can save a few steps and not use it */
1833 static float angle_2d_clockwise(const float p1[2], const float p2[2], const float p3[2])
1837 v1[0] = p1[0]-p2[0]; v1[1] = p1[1]-p2[1];
1838 v2[0] = p3[0]-p2[0]; v2[1] = p3[1]-p2[1];
1840 return -atan2(v1[0]*v2[1] - v1[1]*v2[0], v1[0]*v2[0]+v1[1]*v2[1]);
1845 #define ISECT_2 (1<<1)
1846 #define ISECT_3 (1<<2)
1847 #define ISECT_4 (1<<3)
1848 #define ISECT_ALL3 ((1<<3)-1)
1849 #define ISECT_ALL4 ((1<<4)-1)
1851 /* limit must be a fraction over 1.0f */
1852 static int IsectPT2Df_limit(float pt[2], float v1[2], float v2[2], float v3[2], float limit)
1854 return ((area_tri_v2(pt,v1,v2) + area_tri_v2(pt,v2,v3) + area_tri_v2(pt,v3,v1)) / (area_tri_v2(v1,v2,v3))) < limit;
1857 /* Clip the face by a bucket and set the uv-space bucket_bounds_uv
1858 * so we have the clipped UV's to do pixel intersection tests with
1860 static int float_z_sort_flip(const void *p1, const void *p2) {
1861 return (((float *)p1)[2] < ((float *)p2)[2] ? 1:-1);
1864 static int float_z_sort(const void *p1, const void *p2) {
1865 return (((float *)p1)[2] < ((float *)p2)[2] ?-1:1);
1868 static void project_bucket_clip_face(
1870 rctf *bucket_bounds,
1871 float *v1coSS, float *v2coSS, float *v3coSS,
1872 float *uv1co, float *uv2co, float *uv3co,
1873 float bucket_bounds_uv[8][2],
1876 int inside_bucket_flag = 0;
1877 int inside_face_flag = 0;
1878 const int flip = ((line_point_side_v2(v1coSS, v2coSS, v3coSS) > 0.0f) != (line_point_side_v2(uv1co, uv2co, uv3co) > 0.0f));
1880 float bucket_bounds_ss[4][2];
1882 /* get the UV space bounding box */
1883 inside_bucket_flag |= BLI_in_rctf(bucket_bounds, v1coSS[0], v1coSS[1]);
1884 inside_bucket_flag |= BLI_in_rctf(bucket_bounds, v2coSS[0], v2coSS[1]) << 1;
1885 inside_bucket_flag |= BLI_in_rctf(bucket_bounds, v3coSS[0], v3coSS[1]) << 2;
1887 if (inside_bucket_flag == ISECT_ALL3) {
1888 /* all screenspace points are inside the bucket bounding box, this means we dont need to clip and can simply return the UVs */
1889 if (flip) { /* facing the back? */
1890 VECCOPY2D(bucket_bounds_uv[0], uv3co);
1891 VECCOPY2D(bucket_bounds_uv[1], uv2co);
1892 VECCOPY2D(bucket_bounds_uv[2], uv1co);
1895 VECCOPY2D(bucket_bounds_uv[0], uv1co);
1896 VECCOPY2D(bucket_bounds_uv[1], uv2co);
1897 VECCOPY2D(bucket_bounds_uv[2], uv3co);
1904 /* get the UV space bounding box */
1905 /* use IsectPT2Df_limit here so we catch points are are touching the tri edge (or a small fraction over) */
1906 bucket_bounds_ss[0][0] = bucket_bounds->xmax;
1907 bucket_bounds_ss[0][1] = bucket_bounds->ymin;
1908 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[0], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_1 : 0);
1910 bucket_bounds_ss[1][0] = bucket_bounds->xmax;
1911 bucket_bounds_ss[1][1] = bucket_bounds->ymax;
1912 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[1], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_2 : 0);
1914 bucket_bounds_ss[2][0] = bucket_bounds->xmin;
1915 bucket_bounds_ss[2][1] = bucket_bounds->ymax;
1916 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[2], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_3 : 0);
1918 bucket_bounds_ss[3][0] = bucket_bounds->xmin;
1919 bucket_bounds_ss[3][1] = bucket_bounds->ymin;
1920 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[3], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_4 : 0);
1922 if (inside_face_flag == ISECT_ALL4) {
1923 /* bucket is totally inside the screenspace face, we can safely use weights */
1925 if (is_ortho) rect_to_uvspace_ortho(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, bucket_bounds_uv, flip);
1926 else rect_to_uvspace_persp(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, bucket_bounds_uv, flip);
1932 /* The Complicated Case!
1934 * The 2 cases above are where the face is inside the bucket or the bucket is inside the face.
1936 * we need to make a convex polyline from the intersection between the screenspace face
1937 * and the bucket bounds.
1939 * There are a number of ways this could be done, currently it just collects all intersecting verts,
1940 * and line intersections, then sorts them clockwise, this is a lot easier then evaluating the geometry to
1941 * do a correct clipping on both shapes. */
1944 /* add a bunch of points, we know must make up the convex hull which is the clipped rect and triangle */
1948 /* Maximum possible 6 intersections when using a rectangle and triangle */
1949 float isectVCosSS[8][3]; /* The 3rd float is used to store angle for qsort(), NOT as a Z location */
1950 float v1_clipSS[2], v2_clipSS[2];
1954 float cent[2] = {0.0f, 0.0f};
1955 /*float up[2] = {0.0f, 1.0f};*/
1961 if (inside_face_flag & ISECT_1) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[0]); (*tot)++; }
1962 if (inside_face_flag & ISECT_2) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[1]); (*tot)++; }
1963 if (inside_face_flag & ISECT_3) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[2]); (*tot)++; }
1964 if (inside_face_flag & ISECT_4) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[3]); (*tot)++; }
1966 if (inside_bucket_flag & ISECT_1) { VECCOPY2D(isectVCosSS[*tot], v1coSS); (*tot)++; }
1967 if (inside_bucket_flag & ISECT_2) { VECCOPY2D(isectVCosSS[*tot], v2coSS); (*tot)++; }
1968 if (inside_bucket_flag & ISECT_3) { VECCOPY2D(isectVCosSS[*tot], v3coSS); (*tot)++; }
1970 if ((inside_bucket_flag & (ISECT_1|ISECT_2)) != (ISECT_1|ISECT_2)) {
1971 if (line_clip_rect2f(bucket_bounds, v1coSS, v2coSS, v1_clipSS, v2_clipSS)) {
1972 if ((inside_bucket_flag & ISECT_1)==0) { VECCOPY2D(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
1973 if ((inside_bucket_flag & ISECT_2)==0) { VECCOPY2D(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
1977 if ((inside_bucket_flag & (ISECT_2|ISECT_3)) != (ISECT_2|ISECT_3)) {
1978 if (line_clip_rect2f(bucket_bounds, v2coSS, v3coSS, v1_clipSS, v2_clipSS)) {
1979 if ((inside_bucket_flag & ISECT_2)==0) { VECCOPY2D(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
1980 if ((inside_bucket_flag & ISECT_3)==0) { VECCOPY2D(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
1984 if ((inside_bucket_flag & (ISECT_3|ISECT_1)) != (ISECT_3|ISECT_1)) {
1985 if (line_clip_rect2f(bucket_bounds, v3coSS, v1coSS, v1_clipSS, v2_clipSS)) {
1986 if ((inside_bucket_flag & ISECT_3)==0) { VECCOPY2D(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
1987 if ((inside_bucket_flag & ISECT_1)==0) { VECCOPY2D(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
1992 if ((*tot) < 3) { /* no intersections to speak of */
1997 /* now we have all points we need, collect their angles and sort them clockwise */
1999 for(i=0; i<(*tot); i++) {
2000 cent[0] += isectVCosSS[i][0];
2001 cent[1] += isectVCosSS[i][1];
2003 cent[0] = cent[0] / (float)(*tot);
2004 cent[1] = cent[1] / (float)(*tot);
2008 /* Collect angles for every point around the center point */
2011 #if 0 /* uses a few more cycles then the above loop */
2012 for(i=0; i<(*tot); i++) {
2013 isectVCosSS[i][2] = angle_2d_clockwise(up, cent, isectVCosSS[i]);
2017 v1_clipSS[0] = cent[0]; /* Abuse this var for the loop below */
2018 v1_clipSS[1] = cent[1] + 1.0f;
2020 for(i=0; i<(*tot); i++) {
2021 v2_clipSS[0] = isectVCosSS[i][0] - cent[0];
2022 v2_clipSS[1] = isectVCosSS[i][1] - cent[1];
2023 isectVCosSS[i][2] = atan2f(v1_clipSS[0]*v2_clipSS[1] - v1_clipSS[1]*v2_clipSS[0], v1_clipSS[0]*v2_clipSS[0]+v1_clipSS[1]*v2_clipSS[1]);
2026 if (flip) qsort(isectVCosSS, *tot, sizeof(float)*3, float_z_sort_flip);
2027 else qsort(isectVCosSS, *tot, sizeof(float)*3, float_z_sort);
2029 /* remove doubles */
2030 /* first/last check */
2031 if (fabsf(isectVCosSS[0][0]-isectVCosSS[(*tot)-1][0]) < PROJ_GEOM_TOLERANCE && fabsf(isectVCosSS[0][1]-isectVCosSS[(*tot)-1][1]) < PROJ_GEOM_TOLERANCE) {
2035 /* its possible there is only a few left after remove doubles */
2037 // printf("removed too many doubles A\n");
2043 while (doubles==TRUE) {
2045 for(i=1; i<(*tot); i++) {
2046 if (fabsf(isectVCosSS[i-1][0]-isectVCosSS[i][0]) < PROJ_GEOM_TOLERANCE &&
2047 fabsf(isectVCosSS[i-1][1]-isectVCosSS[i][1]) < PROJ_GEOM_TOLERANCE)
2050 for(j=i+1; j<(*tot); j++) {
2051 isectVCosSS[j-1][0] = isectVCosSS[j][0];
2052 isectVCosSS[j-1][1] = isectVCosSS[j][1];
2054 doubles = TRUE; /* keep looking for more doubles */
2060 /* its possible there is only a few left after remove doubles */
2062 // printf("removed too many doubles B\n");
2069 for(i=0; i<(*tot); i++) {
2070 barycentric_weights_v2(v1coSS, v2coSS, v3coSS, isectVCosSS[i], w);
2071 interp_v2_v2v2v2(bucket_bounds_uv[i], uv1co, uv2co, uv3co, w);
2075 for(i=0; i<(*tot); i++) {
2076 barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, isectVCosSS[i], w);
2077 interp_v2_v2v2v2(bucket_bounds_uv[i], uv1co, uv2co, uv3co, w);
2082 #ifdef PROJ_DEBUG_PRINT_CLIP
2083 /* include this at the bottom of the above function to debug the output */
2086 /* If there are ever any problems, */
2087 float test_uv[4][2];
2089 if (is_ortho) rect_to_uvspace_ortho(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, test_uv, flip);
2090 else rect_to_uvspace_persp(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, test_uv, flip);
2091 printf("( [(%f,%f), (%f,%f), (%f,%f), (%f,%f)], ", test_uv[0][0], test_uv[0][1], test_uv[1][0], test_uv[1][1], test_uv[2][0], test_uv[2][1], test_uv[3][0], test_uv[3][1]);
2093 printf(" [(%f,%f), (%f,%f), (%f,%f)], ", uv1co[0], uv1co[1], uv2co[0], uv2co[1], uv3co[0], uv3co[1]);
2096 for (i=0; i < (*tot); i++) {
2097 printf("(%f, %f),", bucket_bounds_uv[i][0], bucket_bounds_uv[i][1]);
2105 # This script creates faces in a blender scene from printed data above.
2108 ...(output from above block)...
2111 from Blender import Scene, Mesh, Window, sys, Mathutils
2115 V = Mathutils.Vector
2118 sce = bpy.data.scenes.active
2120 for item in project_ls:
2125 me = bpy.data.meshes.new()
2126 ob = sce.objects.new(me)
2128 me.verts.extend([V(bb[0]).resize3D(), V(bb[1]).resize3D(), V(bb[2]).resize3D(), V(bb[3]).resize3D()])
2129 me.faces.extend([(0,1,2,3),])
2130 me.verts.extend([V(uv[0]).resize3D(), V(uv[1]).resize3D(), V(uv[2]).resize3D()])
2131 me.faces.extend([(4,5,6),])
2133 vs = [V(p).resize3D() for p in poly]
2139 while i < len(me.verts):
2141 if ii==len(me.verts):
2143 me.edges.extend([i, ii])
2146 if __name__ == '__main__':
2159 /* checks if pt is inside a convex 2D polyline, the polyline must be ordered rotating clockwise
2160 * otherwise it would have to test for mixed (line_point_side_v2 > 0.0f) cases */
2161 static int IsectPoly2Df(const float pt[2], float uv[][2], const int tot)
2164 if (line_point_side_v2(uv[tot-1], uv[0], pt) < 0.0f)
2167 for (i=1; i<tot; i++) {
2168 if (line_point_side_v2(uv[i-1], uv[i], pt) < 0.0f)
2175 static int IsectPoly2Df_twoside(const float pt[2], float uv[][2], const int tot)
2178 int side = (line_point_side_v2(uv[tot-1], uv[0], pt) > 0.0f);
2180 for (i=1; i<tot; i++) {
2181 if ((line_point_side_v2(uv[i-1], uv[i], pt) > 0.0f) != side)
2189 /* One of the most important function for projectiopn painting, since it selects the pixels to be added into each bucket.
2190 * initialize pixels from this face where it intersects with the bucket_index, optionally initialize pixels for removing seams */
2191 static void project_paint_face_init(const ProjPaintState *ps, const int thread_index, const int bucket_index, const int face_index, const int image_index, rctf *bucket_bounds, const ImBuf *ibuf, const short clamp_u, const short clamp_v)
2193 /* Projection vars, to get the 3D locations into screen space */
2194 MemArena *arena = ps->arena_mt[thread_index];
2195 LinkNode **bucketPixelNodes = ps->bucketRect + bucket_index;
2196 LinkNode *bucketFaceNodes = ps->bucketFaces[bucket_index];
2198 const MFace *mf = ps->dm_mface + face_index;
2199 const MTFace *tf = ps->dm_mtface + face_index;
2201 /* UV/pixel seeking data */
2202 int x; /* Image X-Pixel */
2203 int y;/* Image Y-Pixel */
2205 float uv[2]; /* Image floating point UV - same as x, y but from 0.0-1.0 */
2208 float *v1coSS, *v2coSS, *v3coSS; /* vert co screen-space, these will be assigned to mf->v1,2,3 or mf->v1,3,4 */
2210 float *vCo[4]; /* vertex screenspace coords */
2214 float *uv1co, *uv2co, *uv3co; /* for convenience only, these will be assigned to tf->uv[0],1,2 or tf->uv[0],2,3 */
2215 float pixelScreenCo[4];
2217 rcti bounds_px; /* ispace bounds */
2218 /* vars for getting uvspace bounds */
2220 float tf_uv_pxoffset[4][2]; /* bucket bounds in UV space so we can init pixels only for this face, */
2221 float xhalfpx, yhalfpx;
2222 const float ibuf_xf = (float)ibuf->x, ibuf_yf = (float)ibuf->y;
2224 int has_x_isect = 0, has_isect = 0; /* for early loop exit */
2228 float uv_clip[8][2];
2230 const short is_ortho = ps->is_ortho;
2231 const short do_backfacecull = ps->do_backfacecull;
2232 const short do_clip= ps->rv3d ? ps->rv3d->rflag & RV3D_CLIPPING : 0;
2234 vCo[0] = ps->dm_mvert[mf->v1].co;
2235 vCo[1] = ps->dm_mvert[mf->v2].co;
2236 vCo[2] = ps->dm_mvert[mf->v3].co;
2239 /* Use tf_uv_pxoffset instead of tf->uv so we can offset the UV half a pixel
2240 * this is done so we can avoid offseting all the pixels by 0.5 which causes
2241 * problems when wrapping negative coords */
2242 xhalfpx = (0.5f+ (PROJ_GEOM_TOLERANCE/3.0f) ) / ibuf_xf;
2243 yhalfpx = (0.5f+ (PROJ_GEOM_TOLERANCE/4.0f) ) / ibuf_yf;
2245 /* Note about (PROJ_GEOM_TOLERANCE/x) above...
2246 Needed to add this offset since UV coords are often quads aligned to pixels.
2247 In this case pixels can be exactly between 2 triangles causing nasty
2250 This workaround can be removed and painting will still work on most cases
2251 but since the first thing most people try is painting onto a quad- better make it work.
2256 tf_uv_pxoffset[0][0] = tf->uv[0][0] - xhalfpx;
2257 tf_uv_pxoffset[0][1] = tf->uv[0][1] - yhalfpx;
2259 tf_uv_pxoffset[1][0] = tf->uv[1][0] - xhalfpx;
2260 tf_uv_pxoffset[1][1] = tf->uv[1][1] - yhalfpx;
2262 tf_uv_pxoffset[2][0] = tf->uv[2][0] - xhalfpx;
2263 tf_uv_pxoffset[2][1] = tf->uv[2][1] - yhalfpx;
2266 vCo[3] = ps->dm_mvert[ mf->v4 ].co;
2268 tf_uv_pxoffset[3][0] = tf->uv[3][0] - xhalfpx;
2269 tf_uv_pxoffset[3][1] = tf->uv[3][1] - yhalfpx;
2284 uv1co = tf_uv_pxoffset[i1]; // was tf->uv[i1];
2285 uv2co = tf_uv_pxoffset[i2]; // was tf->uv[i2];
2286 uv3co = tf_uv_pxoffset[i3]; // was tf->uv[i3];
2288 v1coSS = ps->screenCoords[ (*(&mf->v1 + i1)) ];
2289 v2coSS = ps->screenCoords[ (*(&mf->v1 + i2)) ];
2290 v3coSS = ps->screenCoords[ (*(&mf->v1 + i3)) ];
2292 /* This funtion gives is a concave polyline in UV space from the clipped quad and tri*/
2293 project_bucket_clip_face(
2294 is_ortho, bucket_bounds,
2295 v1coSS, v2coSS, v3coSS,
2296 uv1co, uv2co, uv3co,
2297 uv_clip, &uv_clip_tot
2300 /* sometimes this happens, better just allow for 8 intersectiosn even though there should be max 6 */
2302 if (uv_clip_tot>6) {
2303 printf("this should never happen! %d\n", uv_clip_tot);
2307 if (pixel_bounds_array(uv_clip, &bounds_px, ibuf->x, ibuf->y, uv_clip_tot)) {
2310 CLAMP(bounds_px.xmin, 0, ibuf->x);
2311 CLAMP(bounds_px.xmax, 0, ibuf->x);
2315 CLAMP(bounds_px.ymin, 0, ibuf->y);
2316 CLAMP(bounds_px.ymax, 0, ibuf->y);
2322 for (y = bounds_px.ymin; y < bounds_px.ymax; y++) {
2323 //uv[1] = (((float)y) + 0.5f) / (float)ibuf->y;
2324 uv[1] = (float)y / ibuf_yf; /* use pixel offset UV coords instead */
2327 for (x = bounds_px.xmin; x < bounds_px.xmax; x++) {
2328 //uv[0] = (((float)x) + 0.5f) / ibuf->x;
2329 uv[0] = (float)x / ibuf_xf; /* use pixel offset UV coords instead */
2331 /* Note about IsectPoly2Df_twoside, checking the face or uv flipping doesnt work,
2332 * could check the poly direction but better to do this */
2333 if( (do_backfacecull && IsectPoly2Df(uv, uv_clip, uv_clip_tot)) ||
2334 (do_backfacecull==0 && IsectPoly2Df_twoside(uv, uv_clip, uv_clip_tot))) {
2336 has_x_isect = has_isect = 1;
2338 if (is_ortho) screen_px_from_ortho(uv, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, pixelScreenCo, w);
2339 else screen_px_from_persp(uv, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, pixelScreenCo, w);
2341 /* a pitty we need to get the worldspace pixel location here */
2343 interp_v3_v3v3v3(wco, ps->dm_mvert[ (*(&mf->v1 + i1)) ].co, ps->dm_mvert[ (*(&mf->v1 + i2)) ].co, ps->dm_mvert[ (*(&mf->v1 + i3)) ].co, w);
2344 if(ED_view3d_test_clipping(ps->rv3d, wco, 1)) {
2345 continue; /* Watch out that no code below this needs to run */
2349 /* Is this UV visible from the view? - raytrace */
2350 /* project_paint_PickFace is less complex, use for testing */
2351 //if (project_paint_PickFace(ps, pixelScreenCo, w, &side) == face_index) {
2352 if (ps->do_occlude==0 || !project_bucket_point_occluded(ps, bucketFaceNodes, face_index, pixelScreenCo)) {
2354 mask = project_paint_uvpixel_mask(ps, face_index, side, w);
2357 BLI_linklist_prepend_arena(
2359 project_paint_uvpixel_init(ps, arena, ibuf, x, y, mask, face_index, image_index, pixelScreenCo, side, w),
2367 else if (has_x_isect) {
2368 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2375 #if 0 /* TODO - investigate why this dosnt work sometimes! it should! */
2376 /* no intersection for this entire row, after some intersection above means we can quit now */
2377 if (has_x_isect==0 && has_isect) {
2387 #ifndef PROJ_DEBUG_NOSEAMBLEED
2388 if (ps->seam_bleed_px > 0.0f) {
2391 if (ps->thread_tot > 1)
2392 BLI_lock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2394 face_seam_flag = ps->faceSeamFlags[face_index];
2396 /* are any of our edges un-initialized? */
2397 if ((face_seam_flag & (PROJ_FACE_SEAM1|PROJ_FACE_NOSEAM1))==0 ||
2398 (face_seam_flag & (PROJ_FACE_SEAM2|PROJ_FACE_NOSEAM2))==0 ||
2399 (face_seam_flag & (PROJ_FACE_SEAM3|PROJ_FACE_NOSEAM3))==0 ||
2400 (face_seam_flag & (PROJ_FACE_SEAM4|PROJ_FACE_NOSEAM4))==0
2402 project_face_seams_init(ps, face_index, mf->v4);
2403 face_seam_flag = ps->faceSeamFlags[face_index];
2404 //printf("seams - %d %d %d %d\n", flag&PROJ_FACE_SEAM1, flag&PROJ_FACE_SEAM2, flag&PROJ_FACE_SEAM3, flag&PROJ_FACE_SEAM4);
2407 if ((face_seam_flag & (PROJ_FACE_SEAM1|PROJ_FACE_SEAM2|PROJ_FACE_SEAM3|PROJ_FACE_SEAM4))==0) {
2409 if (ps->thread_tot > 1)
2410 BLI_unlock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2414 /* we have a seam - deal with it! */
2416 /* Now create new UV's for the seam face */
2417 float (*outset_uv)[2] = ps->faceSeamUVs[face_index];
2418 float insetCos[4][3]; /* inset face coords. NOTE!!! ScreenSace for ortho, Worldspace in prespective view */
2421 float *vCoSS[4]; /* vertex screenspace coords */
2423 float bucket_clip_edges[2][2]; /* store the screenspace coords of the face, clipped by the bucket's screen aligned rectangle */
2424 float edge_verts_inset_clip[2][3];
2425 int fidx1, fidx2; /* face edge pairs - loop throuh these ((0,1), (1,2), (2,3), (3,0)) or ((0,1), (1,2), (2,0)) for a tri */
2427 float seam_subsection[4][2];
2428 float fac1, fac2, ftot;
2431 if (outset_uv[0][0]==FLT_MAX) /* first time initialize */
2432 uv_image_outset(tf_uv_pxoffset, outset_uv, ps->seam_bleed_px, ibuf->x, ibuf->y, mf->v4);
2434 /* ps->faceSeamUVs cant be modified when threading, now this is done we can unlock */
2435 if (ps->thread_tot > 1)
2436 BLI_unlock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2438 vCoSS[0] = ps->screenCoords[mf->v1];
2439 vCoSS[1] = ps->screenCoords[mf->v2];
2440 vCoSS[2] = ps->screenCoords[mf->v3];
2442 vCoSS[3] = ps->screenCoords[ mf->v4 ];
2444 /* PROJ_FACE_SCALE_SEAM must be slightly less then 1.0f */
2446 if (mf->v4) scale_quad(insetCos, vCoSS, PROJ_FACE_SCALE_SEAM);
2447 else scale_tri(insetCos, vCoSS, PROJ_FACE_SCALE_SEAM);
2450 if (mf->v4) scale_quad(insetCos, vCo, PROJ_FACE_SCALE_SEAM);
2451 else scale_tri(insetCos, vCo, PROJ_FACE_SCALE_SEAM);
2454 side = 0; /* for triangles this wont need to change */
2456 for (fidx1 = 0; fidx1 < (mf->v4 ? 4 : 3); fidx1++) {
2457 if (mf->v4) fidx2 = (fidx1==3) ? 0 : fidx1+1; /* next fidx in the face (0,1,2,3) -> (1,2,3,0) */
2458 else fidx2 = (fidx1==2) ? 0 : fidx1+1; /* next fidx in the face (0,1,2) -> (1,2,0) */
2460 if ( (face_seam_flag & (1<<fidx1)) && /* 1<<fidx1 -> PROJ_FACE_SEAM# */
2461 line_clip_rect2f(bucket_bounds, vCoSS[fidx1], vCoSS[fidx2], bucket_clip_edges[0], bucket_clip_edges[1])
2464 ftot = len_v2v2(vCoSS[fidx1], vCoSS[fidx2]); /* screenspace edge length */
2466 if (ftot > 0.0f) { /* avoid div by zero */
2468 if (fidx1==2 || fidx2==2) side= 1;
2472 fac1 = len_v2v2(vCoSS[fidx1], bucket_clip_edges[0]) / ftot;
2473 fac2 = len_v2v2(vCoSS[fidx1], bucket_clip_edges[1]) / ftot;
2475 interp_v2_v2v2(seam_subsection[0], tf_uv_pxoffset[fidx1], tf_uv_pxoffset[fidx2], fac1);
2476 interp_v2_v2v2(seam_subsection[1], tf_uv_pxoffset[fidx1], tf_uv_pxoffset[fidx2], fac2);
2478 interp_v2_v2v2(seam_subsection[2], outset_uv[fidx1], outset_uv[fidx2], fac2);
2479 interp_v2_v2v2(seam_subsection[3], outset_uv[fidx1], outset_uv[fidx2], fac1);
2481 /* if the bucket_clip_edges values Z values was kept we could avoid this
2482 * Inset needs to be added so occlusion tests wont hit adjacent faces */
2483 interp_v3_v3v3(edge_verts_inset_clip[0], insetCos[fidx1], insetCos[fidx2], fac1);
2484 interp_v3_v3v3(edge_verts_inset_clip[1], insetCos[fidx1], insetCos[fidx2], fac2);
2487 if (pixel_bounds_uv(seam_subsection[0], seam_subsection[1], seam_subsection[2], seam_subsection[3], &bounds_px, ibuf->x, ibuf->y, 1)) {
2488 /* bounds between the seam rect and the uvspace bucket pixels */
2491 for (y = bounds_px.ymin; y < bounds_px.ymax; y++) {
2492 // uv[1] = (((float)y) + 0.5f) / (float)ibuf->y;
2493 uv[1] = (float)y / ibuf_yf; /* use offset uvs instead */
2496 for (x = bounds_px.xmin; x < bounds_px.xmax; x++) {
2497 //uv[0] = (((float)x) + 0.5f) / (float)ibuf->x;
2498 uv[0] = (float)x / ibuf_xf; /* use offset uvs instead */
2500 /* test we're inside uvspace bucket and triangle bounds */
2501 if (isect_point_quad_v2(uv, seam_subsection[0], seam_subsection[1], seam_subsection[2], seam_subsection[3])) {
2503 /* We need to find the closest point along the face edge,
2504 * getting the screen_px_from_*** wont work because our actual location
2505 * is not relevent, since we are outside the face, Use VecLerpf to find
2506 * our location on the side of the face's UV */
2508 if (is_ortho) screen_px_from_ortho(ps, uv, v1co, v2co, v3co, uv1co, uv2co, uv3co, pixelScreenCo);
2509 else screen_px_from_persp(ps, uv, v1co, v2co, v3co, uv1co, uv2co, uv3co, pixelScreenCo);
2512 /* Since this is a seam we need to work out where on the line this pixel is */
2513 //fac = line_point_factor_v2(uv, uv_seam_quad[0], uv_seam_quad[1]);
2515 fac = line_point_factor_v2(uv, seam_subsection[0], seam_subsection[1]);
2516 if (fac < 0.0f) { VECCOPY(pixelScreenCo, edge_verts_inset_clip[0]); }
2517 else if (fac > 1.0f) { VECCOPY(pixelScreenCo, edge_verts_inset_clip[1]); }
2518 else { interp_v3_v3v3(pixelScreenCo, edge_verts_inset_clip[0], edge_verts_inset_clip[1], fac); }
2521 pixelScreenCo[3] = 1.0f;
2522 mul_m4_v4((float(*)[4])ps->projectMat, pixelScreenCo); /* cast because of const */
2523 pixelScreenCo[0] = (float)(ps->winx/2.0f)+(ps->winx/2.0f)*pixelScreenCo[0]/pixelScreenCo[3];
2524 pixelScreenCo[1] = (float)(ps->winy/2.0f)+(ps->winy/2.0f)*pixelScreenCo[1]/pixelScreenCo[3];
2525 pixelScreenCo[2] = pixelScreenCo[2]/pixelScreenCo[3]; /* Use the depth for bucket point occlusion */
2528 if (ps->do_occlude==0 || !project_bucket_point_occluded(ps, bucketFaceNodes, face_index, pixelScreenCo)) {
2530 /* Only bother calculating the weights if we intersect */
2531 if (ps->do_mask_normal || ps->dm_mtface_clone) {
2533 /* get the UV on the line since we want to copy the pixels from there for bleeding */
2535 float fac= closest_to_line_v2(uv_close, uv, tf_uv_pxoffset[fidx1], tf_uv_pxoffset[fidx2]);
2536 if (fac < 0.0f) copy_v2_v2(uv_close, tf_uv_pxoffset[fidx1]);
2537 else if (fac > 1.0f) copy_v2_v2(uv_close, tf_uv_pxoffset[fidx2]);
2540 barycentric_weights_v2(tf_uv_pxoffset[0], tf_uv_pxoffset[2], tf_uv_pxoffset[3], uv_close, w);
2543 barycentric_weights_v2(tf_uv_pxoffset[0], tf_uv_pxoffset[1], tf_uv_pxoffset[2], uv_close, w);
2545 #else /* this is buggy with quads, dont use for now */
2547 /* Cheat, we know where we are along the edge so work out the weights from that */
2548 fac = fac1 + (fac * (fac2-fac1));
2550 w[0]=w[1]=w[2]= 0.0;
2552 w[fidx1?fidx1-1:0] = 1.0f-fac;
2553 w[fidx2?fidx2-1:0] = fac;
2556 w[fidx1] = 1.0f-fac;
2562 /* a pitty we need to get the worldspace pixel location here */
2564 if (side) interp_v3_v3v3v3(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v3].co, ps->dm_mvert[mf->v4].co, w);
2565 else interp_v3_v3v3v3(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v2].co, ps->dm_mvert[mf->v3].co, w);
2567 if(ED_view3d_test_clipping(ps->rv3d, wco, 1)) {
2568 continue; /* Watch out that no code below this needs to run */
2572 mask = project_paint_uvpixel_mask(ps, face_index, side, w);
2575 BLI_linklist_prepend_arena(
2577 project_paint_uvpixel_init(ps, arena, ibuf, x, y, mask, face_index, image_index, pixelScreenCo, side, w),
2584 else if (has_x_isect) {
2585 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2590 #if 0 /* TODO - investigate why this dosnt work sometimes! it should! */
2591 /* no intersection for this entire row, after some intersection above means we can quit now */
2592 if (has_x_isect==0 && has_isect) {
2603 #endif // PROJ_DEBUG_NOSEAMBLEED
2607 /* takes floating point screenspace min/max and returns int min/max to be used as indices for ps->bucketRect, ps->bucketFlags */
2608 static void project_paint_bucket_bounds(const ProjPaintState *ps, const float min[2], const float max[2], int bucketMin[2], int bucketMax[2])
2610 /* divide by bucketWidth & bucketHeight so the bounds are offset in bucket grid units */
2611 /* XXX: the offset of 0.5 is always truncated to zero and the offset of 1.5f is always truncated to 1, is this really correct?? - jwilkins */
2612 bucketMin[0] = (int)((int)(((float)(min[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x) + 0.5f); /* these offsets of 0.5 and 1.5 seem odd but they are correct */
2613 bucketMin[1] = (int)((int)(((float)(min[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y) + 0.5f);
2615 bucketMax[0] = (int)((int)(((float)(max[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x) + 1.5f);
2616 bucketMax[1] = (int)((int)(((float)(max[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y) + 1.5f);
2618 /* incase the rect is outside the mesh 2d bounds */
2619 CLAMP(bucketMin[0], 0, ps->buckets_x);
2620 CLAMP(bucketMin[1], 0, ps->buckets_y);
2622 CLAMP(bucketMax[0], 0, ps->buckets_x);
2623 CLAMP(bucketMax[1], 0, ps->buckets_y);
2626 /* set bucket_bounds to a screen space-aligned floating point bound-box */
2627 static void project_bucket_bounds(const ProjPaintState *ps, const int bucket_x, const int bucket_y, rctf *bucket_bounds)
2629 bucket_bounds->xmin = ps->screenMin[0]+((bucket_x)*(ps->screen_width / ps->buckets_x)); /* left */
2630 bucket_bounds->xmax = ps->screenMin[0]+((bucket_x+1)*(ps->screen_width / ps->buckets_x)); /* right */
2632 bucket_bounds->ymin = ps->screenMin[1]+((bucket_y)*(ps->screen_height / ps->buckets_y)); /* bottom */
2633 bucket_bounds->ymax = ps->screenMin[1]+((bucket_y+1)*(ps->screen_height / ps->buckets_y)); /* top */
2636 /* Fill this bucket with pixels from the faces that intersect it.
2638 * have bucket_bounds as an argument so we don;t need to give bucket_x/y the rect function needs */
2639 static void project_bucket_init(const ProjPaintState *ps, const int thread_index, const int bucket_index, rctf *bucket_bounds)
2642 int face_index, image_index=0;
2647 Image *tpage_last = NULL;
2650 if (ps->image_tot==1) {
2651 /* Simple loop, no context switching */
2652 ibuf = ps->projImages[0].ibuf;
2653 ima = ps->projImages[0].ima;
2655 for (node = ps->bucketFaces[bucket_index]; node; node= node->next) {
2656 project_paint_face_init(ps, thread_index, bucket_index, GET_INT_FROM_POINTER(node->link), 0, bucket_bounds, ibuf, ima->tpageflag & IMA_CLAMP_U, ima->tpageflag & IMA_CLAMP_V);
2661 /* More complicated loop, switch between images */
2662 for (node = ps->bucketFaces[bucket_index]; node; node= node->next) {
2663 face_index = GET_INT_FROM_POINTER(node->link);
2665 /* Image context switching */
2666 tf = ps->dm_mtface+face_index;
2667 if (tpage_last != tf->tpage) {
2668 tpage_last = tf->tpage;
2670 image_index = -1; /* sanity check */
2672 for (image_index=0; image_index < ps->image_tot; image_index++) {
2673 if (ps->projImages[image_index].ima == tpage_last) {
2674 ibuf = ps->projImages[image_index].ibuf;
2675 ima = ps->projImages[image_index].ima;
2680 /* context switching done */
2682 project_paint_face_init(ps, thread_index, bucket_index, face_index, image_index, bucket_bounds, ibuf, ima->tpageflag & IMA_CLAMP_U, ima->tpageflag & IMA_CLAMP_V);
2686 ps->bucketFlags[bucket_index] |= PROJ_BUCKET_INIT;
2690 /* We want to know if a bucket and a face overlap in screen-space
2692 * Note, if this ever returns false positives its not that bad, since a face in the bounding area will have its pixels
2693 * calculated when it might not be needed later, (at the moment at least)
2694 * obviously it shouldn't have bugs though */
2696 static int project_bucket_face_isect(ProjPaintState *ps, int bucket_x, int bucket_y, const MFace *mf)
2698 /* TODO - replace this with a tricker method that uses sideofline for all screenCoords's edges against the closest bucket corner */
2700 float p1[2], p2[2], p3[2], p4[2];
2701 float *v, *v1,*v2,*v3,*v4=NULL;
2704 project_bucket_bounds(ps, bucket_x, bucket_y, &bucket_bounds);
2706 /* Is one of the faces verts in the bucket bounds? */
2708 fidx = mf->v4 ? 3:2;
2710 v = ps->screenCoords[ (*(&mf->v1 + fidx)) ];
2711 if (BLI_in_rctf(&bucket_bounds, v[0], v[1])) {
2716 v1 = ps->screenCoords[mf->v1];
2717 v2 = ps->screenCoords[mf->v2];
2718 v3 = ps->screenCoords[mf->v3];
2720 v4 = ps->screenCoords[mf->v4];
2723 p1[0] = bucket_bounds.xmin; p1[1] = bucket_bounds.ymin;
2724 p2[0] = bucket_bounds.xmin; p2[1] = bucket_bounds.ymax;
2725 p3[0] = bucket_bounds.xmax; p3[1] = bucket_bounds.ymax;
2726 p4[0] = bucket_bounds.xmax; p4[1] = bucket_bounds.ymin;
2729 if( isect_point_quad_v2(p1, v1, v2, v3, v4) || isect_point_quad_v2(p2, v1, v2, v3, v4) || isect_point_quad_v2(p3, v1, v2, v3, v4) || isect_point_quad_v2(p4, v1, v2, v3, v4) ||
2730 /* we can avoid testing v3,v1 because another intersection MUST exist if this intersects */
2731 (isect_line_line_v2(p1, p2, v1, v2) || isect_line_line_v2(p1, p2, v2, v3) || isect_line_line_v2(p1, p2, v3, v4)) ||
2732 (isect_line_line_v2(p2, p3, v1, v2) || isect_line_line_v2(p2, p3, v2, v3) || isect_line_line_v2(p2, p3, v3, v4)) ||
2733 (isect_line_line_v2(p3, p4, v1, v2) || isect_line_line_v2(p3, p4, v2, v3) || isect_line_line_v2(p3, p4, v3, v4)) ||
2734 (isect_line_line_v2(p4, p1, v1, v2) || isect_line_line_v2(p4, p1, v2, v3) || isect_line_line_v2(p4, p1, v3, v4))
2740 if( isect_point_tri_v2(p1, v1, v2, v3) || isect_point_tri_v2(p2, v1, v2, v3) || isect_point_tri_v2(p3, v1, v2, v3) || isect_point_tri_v2(p4, v1, v2, v3) ||
2741 /* we can avoid testing v3,v1 because another intersection MUST exist if this intersects */
2742 (isect_line_line_v2(p1, p2, v1, v2) || isect_line_line_v2(p1, p2, v2, v3)) ||
2743 (isect_line_line_v2(p2, p3, v1, v2) || isect_line_line_v2(p2, p3, v2, v3)) ||
2744 (isect_line_line_v2(p3, p4, v1, v2) || isect_line_line_v2(p3, p4, v2, v3)) ||
2745 (isect_line_line_v2(p4, p1, v1, v2) || isect_line_line_v2(p4, p1, v2, v3))
2754 /* Add faces to the bucket but dont initialize its pixels
2755 * TODO - when painting occluded, sort the faces on their min-Z and only add faces that faces that are not occluded */
2756 static void project_paint_delayed_face_init(ProjPaintState *ps, const MFace *mf, const int face_index)
2758 float min[2], max[2], *vCoSS;
2759 int bucketMin[2], bucketMax[2]; /* for ps->bucketRect indexing */
2760 int fidx, bucket_x, bucket_y;
2761 int has_x_isect = -1, has_isect = 0; /* for early loop exit */
2762 MemArena *arena = ps->arena_mt[0]; /* just use the first thread arena since threading has not started yet */
2764 INIT_MINMAX2(min, max);
2766 fidx = mf->v4 ? 3:2;
2768 vCoSS = ps->screenCoords[ *(&mf->v1 + fidx) ];
2769 DO_MINMAX2(vCoSS, min, max);
2772 project_paint_bucket_bounds(ps, min, max, bucketMin, bucketMax);
2774 for (bucket_y = bucketMin[1]; bucket_y < bucketMax[1]; bucket_y++) {
2776 for (bucket_x = bucketMin[0]; bucket_x < bucketMax[0]; bucket_x++) {