4 * ***** BEGIN GPL LICENSE BLOCK *****
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
21 * All rights reserved.
23 * Contributors: 2004/2005/2006 Blender Foundation, full recode
25 * ***** END GPL LICENSE BLOCK *****
35 #include "MTC_matrixops.h"
37 #include "MEM_guardedalloc.h"
39 #include "BLI_arithb.h"
40 #include "BLI_blenlib.h"
42 #include "BLI_memarena.h"
43 #include "BLI_ghash.h"
44 #include "BLI_kdtree.h"
46 #include "DNA_armature_types.h"
47 #include "DNA_camera_types.h"
48 #include "DNA_material_types.h"
49 #include "DNA_curve_types.h"
50 #include "DNA_effect_types.h"
51 #include "DNA_group_types.h"
52 #include "DNA_lamp_types.h"
53 #include "DNA_image_types.h"
54 #include "DNA_lattice_types.h"
55 #include "DNA_mesh_types.h"
56 #include "DNA_meshdata_types.h"
57 #include "DNA_meta_types.h"
58 #include "DNA_modifier_types.h"
59 #include "DNA_node_types.h"
60 #include "DNA_object_types.h"
61 #include "DNA_object_force.h"
62 #include "DNA_object_fluidsim.h"
63 #include "DNA_particle_types.h"
64 #include "DNA_scene_types.h"
65 #include "DNA_texture_types.h"
66 #include "DNA_view3d_types.h"
69 #include "BKE_armature.h"
70 #include "BKE_action.h"
71 #include "BKE_curve.h"
72 #include "BKE_customdata.h"
73 #include "BKE_colortools.h"
74 #include "BKE_constraint.h"
75 #include "BKE_displist.h"
76 #include "BKE_deform.h"
77 #include "BKE_DerivedMesh.h"
78 #include "BKE_effect.h"
79 #include "BKE_global.h"
80 #include "BKE_group.h"
83 #include "BKE_image.h"
84 #include "BKE_lattice.h"
85 #include "BKE_library.h"
86 #include "BKE_material.h"
88 #include "BKE_mball.h"
90 #include "BKE_modifier.h"
92 #include "BKE_object.h"
93 #include "BKE_particle.h"
94 #include "BKE_scene.h"
95 #include "BKE_subsurf.h"
96 #include "BKE_texture.h"
97 #include "BKE_utildefines.h"
98 #include "BKE_world.h"
100 #include "PIL_time.h"
101 #include "IMB_imbuf_types.h"
104 #include "multires.h"
105 #include "occlusion.h"
106 #include "pointdensity.h"
107 #include "render_types.h"
108 #include "rendercore.h"
109 #include "renderdatabase.h"
110 #include "renderpipeline.h"
121 #ifndef DISABLE_YAFRAY /* disable yafray */
123 #include "YafRay_Api.h"
125 /* yafray: Identity transform 'hack' removed, exporter now transforms vertices back to world.
126 * Same is true for lamp coords & vec.
127 * Duplicated data objects & dupliframe/duplivert objects are only stored once,
128 * only the matrix is stored for all others, in yafray these objects are instances of the original.
129 * The main changes are in RE_Database_FromScene().
132 #endif /* disable yafray */
134 /* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
135 /* or for checking vertex normal flips */
136 #define FLT_EPSILON10 1.19209290e-06F
138 /* ------------------------------------------------------------------------- */
140 /* Stuff for stars. This sits here because it uses gl-things. Part of
141 this code may move down to the converter. */
142 /* ------------------------------------------------------------------------- */
143 /* this is a bad beast, since it is misused by the 3d view drawing as well. */
145 static HaloRen *initstar(Render *re, ObjectRen *obr, float *vec, float hasize)
150 projectverto(vec, re->winmat, hoco);
152 har= RE_findOrAddHalo(obr, obr->tothalo++);
154 /* projectvert is done in function zbufvlaggen again, because of parts */
155 VECCOPY(har->co, vec);
163 /* there must be a 'fixed' amount of stars generated between
165 * all stars must by preference lie on the far and solely
166 * differ in clarity/color
169 void RE_make_stars(Render *re, void (*initfunc)(void),
170 void (*vertexfunc)(float*), void (*termfunc)(void))
172 extern unsigned char hash[512];
173 ObjectRen *obr= NULL;
178 double dblrand, hlfrand;
179 float vec[4], fx, fy, fz;
180 float fac, starmindist, clipend;
181 float mat[4][4], stargrid, maxrand, maxjit, force, alpha;
182 int x, y, z, sx, sy, sz, ex, ey, ez, done = 0;
186 wrld= G.scene->world;
193 stargrid = wrld->stardist; /* distance between stars */
194 maxrand = 2.0; /* amount a star can be shifted (in grid units) */
195 maxjit = (wrld->starcolnoise); /* amount a color is being shifted */
198 force = ( wrld->starsize );
200 /* minimal free space (starting at camera) */
201 starmindist= wrld->starmindist;
203 if (stargrid <= 0.10) return;
205 if (re) re->flag |= R_HALO;
206 else stargrid *= 1.0; /* then it draws fewer */
208 if(re) MTC_Mat4Invert(mat, re->viewmat);
209 else MTC_Mat4One(mat);
211 /* BOUNDING BOX CALCULATION
212 * bbox goes from z = loc_near_var | loc_far_var,
217 if(scene->camera==NULL)
219 camera = scene->camera->data;
220 clipend = camera->clipend;
222 /* convert to grid coordinates */
224 sx = ((mat[3][0] - clipend) / stargrid) - maxrand;
225 sy = ((mat[3][1] - clipend) / stargrid) - maxrand;
226 sz = ((mat[3][2] - clipend) / stargrid) - maxrand;
228 ex = ((mat[3][0] + clipend) / stargrid) + maxrand;
229 ey = ((mat[3][1] + clipend) / stargrid) + maxrand;
230 ez = ((mat[3][2] + clipend) / stargrid) + maxrand;
232 dblrand = maxrand * stargrid;
233 hlfrand = 2.0 * dblrand;
239 if(re) /* add render object for stars */
240 obr= RE_addRenderObject(re, NULL, NULL, 0, 0, 0);
242 for (x = sx, fx = sx * stargrid; x <= ex; x++, fx += stargrid) {
243 for (y = sy, fy = sy * stargrid; y <= ey ; y++, fy += stargrid) {
244 for (z = sz, fz = sz * stargrid; z <= ez; z++, fz += stargrid) {
246 BLI_srand((hash[z & 0xff] << 24) + (hash[y & 0xff] << 16) + (hash[x & 0xff] << 8));
247 vec[0] = fx + (hlfrand * BLI_drand()) - dblrand;
248 vec[1] = fy + (hlfrand * BLI_drand()) - dblrand;
249 vec[2] = fz + (hlfrand * BLI_drand()) - dblrand;
253 if(done & 1) vertexfunc(vec);
257 MTC_Mat4MulVecfl(re->viewmat, vec);
259 /* in vec are global coordinates
260 * calculate distance to camera
261 * and using that, define the alpha
271 alpha = sqrt(tx * tx + ty * ty + tz * tz);
273 if (alpha >= clipend) alpha = 0.0;
274 else if (alpha <= starmindist) alpha = 0.0;
275 else if (alpha <= 2.0 * starmindist) {
276 alpha = (alpha - starmindist) / starmindist;
278 alpha -= 2.0 * starmindist;
279 alpha /= (clipend - 2.0 * starmindist);
286 fac = force * BLI_drand();
288 har = initstar(re, obr, vec, fac);
291 har->alfa = sqrt(sqrt(alpha));
293 har->r = har->g = har->b = 1.0;
295 har->r += ((maxjit * BLI_drand()) ) - maxjit;
296 har->g += ((maxjit * BLI_drand()) ) - maxjit;
297 har->b += ((maxjit * BLI_drand()) ) - maxjit;
301 har->type |= HA_ONLYSKY;
307 /* do not call blender_test_break() here, since it is used in UI as well, confusing the callback system */
308 /* main cause is G.afbreek of course, a global again... (ton) */
311 if (termfunc) termfunc();
314 re->tothalo += obr->tothalo;
318 /* ------------------------------------------------------------------------- */
319 /* tool functions/defines for ad hoc simplification and possible future
321 /* ------------------------------------------------------------------------- */
323 #define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
326 NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
328 ^ ()----p4----p3----()
336 /* ------------------------------------------------------------------------- */
338 static void split_v_renderfaces(ObjectRen *obr, int startvlak, int startvert, int usize, int vsize, int uIndex, int cyclu, int cyclv)
340 int vLen = vsize-1+(!!cyclv);
343 for (v=0; v<vLen; v++) {
344 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v);
345 VertRen *vert = RE_vertren_copy(obr, vlr->v2);
351 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + 0);
354 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
361 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
366 vlr->v1 = RE_vertren_copy(obr, vlr->v1);
372 /* ------------------------------------------------------------------------- */
374 static int check_vnormal(float *n, float *veno)
378 inp=n[0]*veno[0]+n[1]*veno[1]+n[2]*veno[2];
379 if(inp < -FLT_EPSILON10) return 1;
383 /* ------------------------------------------------------------------------- */
384 /* Stress, tangents and normals */
385 /* ------------------------------------------------------------------------- */
387 static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
389 float len= VecLenf(v1->co, v2->co)/VecLenf(v1->orco, v2->orco);
392 acc= accum + 2*v1->index;
396 acc= accum + 2*v2->index;
401 static void calc_edge_stress(Render *re, ObjectRen *obr, Mesh *me)
403 float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
406 if(obr->totvert==0) return;
408 mesh_get_texspace(me, loc, NULL, size);
410 accum= MEM_callocN(2*sizeof(float)*obr->totvert, "temp accum for stress");
412 /* de-normalize orco */
413 for(a=0; a<obr->totvert; a++) {
414 VertRen *ver= RE_findOrAddVert(obr, a);
416 ver->orco[0]= ver->orco[0]*size[0] +loc[0];
417 ver->orco[1]= ver->orco[1]*size[1] +loc[1];
418 ver->orco[2]= ver->orco[2]*size[2] +loc[2];
422 /* add stress values */
423 accumoffs= accum; /* so we can use vertex index */
424 for(a=0; a<obr->totvlak; a++) {
425 VlakRen *vlr= RE_findOrAddVlak(obr, a);
427 if(vlr->v1->orco && vlr->v4) {
428 calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
429 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
430 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
432 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
433 calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
434 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
439 for(a=0; a<obr->totvert; a++) {
440 VertRen *ver= RE_findOrAddVert(obr, a);
442 /* find stress value */
443 acc= accumoffs + 2*ver->index;
446 stress= RE_vertren_get_stress(obr, ver, 1);
450 ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
451 ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
452 ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
459 /* gets tangent from tface or orco */
460 static void calc_tangent_vector(ObjectRen *obr, VertexTangent **vtangents, MemArena *arena, VlakRen *vlr, int do_nmap_tangent, int do_tangent)
462 MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
463 VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
465 float *uv1, *uv2, *uv3, *uv4;
475 uv1= uv[0]; uv2= uv[1]; uv3= uv[2]; uv4= uv[3];
476 spheremap(v1->orco[0], v1->orco[1], v1->orco[2], &uv[0][0], &uv[0][1]);
477 spheremap(v2->orco[0], v2->orco[1], v2->orco[2], &uv[1][0], &uv[1][1]);
478 spheremap(v3->orco[0], v3->orco[1], v3->orco[2], &uv[2][0], &uv[2][1]);
480 spheremap(v4->orco[0], v4->orco[1], v4->orco[2], &uv[3][0], &uv[3][1]);
484 tangent_from_uv(uv1, uv2, uv3, v1->co, v2->co, v3->co, vlr->n, tang);
487 tav= RE_vertren_get_tangent(obr, v1, 1);
488 VECADD(tav, tav, tang);
489 tav= RE_vertren_get_tangent(obr, v2, 1);
490 VECADD(tav, tav, tang);
491 tav= RE_vertren_get_tangent(obr, v3, 1);
492 VECADD(tav, tav, tang);
495 if(do_nmap_tangent) {
496 sum_or_add_vertex_tangent(arena, &vtangents[v1->index], tang, uv1);
497 sum_or_add_vertex_tangent(arena, &vtangents[v2->index], tang, uv2);
498 sum_or_add_vertex_tangent(arena, &vtangents[v3->index], tang, uv3);
502 tangent_from_uv(uv1, uv3, uv4, v1->co, v3->co, v4->co, vlr->n, tang);
505 tav= RE_vertren_get_tangent(obr, v1, 1);
506 VECADD(tav, tav, tang);
507 tav= RE_vertren_get_tangent(obr, v3, 1);
508 VECADD(tav, tav, tang);
509 tav= RE_vertren_get_tangent(obr, v4, 1);
510 VECADD(tav, tav, tang);
513 if(do_nmap_tangent) {
514 sum_or_add_vertex_tangent(arena, &vtangents[v1->index], tang, uv1);
515 sum_or_add_vertex_tangent(arena, &vtangents[v3->index], tang, uv3);
516 sum_or_add_vertex_tangent(arena, &vtangents[v4->index], tang, uv4);
522 static void calc_vertexnormals(Render *re, ObjectRen *obr, int do_tangent, int do_nmap_tangent)
524 MemArena *arena= NULL;
525 VertexTangent **vtangents= NULL;
528 if(do_nmap_tangent) {
529 arena= BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE);
530 BLI_memarena_use_calloc(arena);
532 vtangents= MEM_callocN(sizeof(VertexTangent*)*obr->totvert, "VertexTangent");
535 /* clear all vertex normals */
536 for(a=0; a<obr->totvert; a++) {
537 VertRen *ver= RE_findOrAddVert(obr, a);
538 ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
541 /* calculate cos of angles and point-masses, use as weight factor to
542 add face normal to vertex */
543 for(a=0; a<obr->totvlak; a++) {
544 VlakRen *vlr= RE_findOrAddVlak(obr, a);
545 if(vlr->flag & ME_SMOOTH) {
546 VertRen *v1= vlr->v1;
547 VertRen *v2= vlr->v2;
548 VertRen *v3= vlr->v3;
549 VertRen *v4= vlr->v4;
550 float n1[3], n2[3], n3[3], n4[3];
551 float fac1, fac2, fac3, fac4=0.0f;
553 if(re->flag & R_GLOB_NOPUNOFLIP)
554 vlr->flag |= R_NOPUNOFLIP;
556 VecSubf(n1, v2->co, v1->co);
558 VecSubf(n2, v3->co, v2->co);
561 VecSubf(n3, v1->co, v3->co);
564 fac1= saacos(-n1[0]*n3[0]-n1[1]*n3[1]-n1[2]*n3[2]);
565 fac2= saacos(-n1[0]*n2[0]-n1[1]*n2[1]-n1[2]*n2[2]);
566 fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]);
569 VecSubf(n3, v4->co, v3->co);
571 VecSubf(n4, v1->co, v4->co);
574 fac1= saacos(-n4[0]*n1[0]-n4[1]*n1[1]-n4[2]*n1[2]);
575 fac2= saacos(-n1[0]*n2[0]-n1[1]*n2[1]-n1[2]*n2[2]);
576 fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]);
577 fac4= saacos(-n3[0]*n4[0]-n3[1]*n4[1]-n3[2]*n4[2]);
579 if(!(vlr->flag & R_NOPUNOFLIP)) {
580 if( check_vnormal(vlr->n, v4->n) ) fac4= -fac4;
583 v4->n[0] +=fac4*vlr->n[0];
584 v4->n[1] +=fac4*vlr->n[1];
585 v4->n[2] +=fac4*vlr->n[2];
588 if(!(vlr->flag & R_NOPUNOFLIP)) {
589 if( check_vnormal(vlr->n, v1->n) ) fac1= -fac1;
590 if( check_vnormal(vlr->n, v2->n) ) fac2= -fac2;
591 if( check_vnormal(vlr->n, v3->n) ) fac3= -fac3;
594 v1->n[0] +=fac1*vlr->n[0];
595 v1->n[1] +=fac1*vlr->n[1];
596 v1->n[2] +=fac1*vlr->n[2];
598 v2->n[0] +=fac2*vlr->n[0];
599 v2->n[1] +=fac2*vlr->n[1];
600 v2->n[2] +=fac2*vlr->n[2];
602 v3->n[0] +=fac3*vlr->n[0];
603 v3->n[1] +=fac3*vlr->n[1];
604 v3->n[2] +=fac3*vlr->n[2];
607 if(do_nmap_tangent || do_tangent) {
608 /* tangents still need to be calculated for flat faces too */
609 /* weighting removed, they are not vertexnormals */
610 calc_tangent_vector(obr, vtangents, arena, vlr, do_nmap_tangent, do_tangent);
615 for(a=0; a<obr->totvlak; a++) {
616 VlakRen *vlr= RE_findOrAddVlak(obr, a);
617 if((vlr->flag & ME_SMOOTH)==0) {
618 float *f1= vlr->v1->n;
619 if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
621 if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
623 if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
626 if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
630 if(do_nmap_tangent) {
631 VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
632 MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
635 float *vtang, *ftang= RE_vlakren_get_nmap_tangent(obr, vlr, 1);
637 vtang= find_vertex_tangent(vtangents[v1->index], tface->uv[0]);
638 VECCOPY(ftang, vtang);
640 vtang= find_vertex_tangent(vtangents[v2->index], tface->uv[1]);
641 VECCOPY(ftang+3, vtang);
643 vtang= find_vertex_tangent(vtangents[v3->index], tface->uv[2]);
644 VECCOPY(ftang+6, vtang);
647 vtang= find_vertex_tangent(vtangents[v4->index], tface->uv[3]);
648 VECCOPY(ftang+9, vtang);
655 /* normalize vertex normals */
656 for(a=0; a<obr->totvert; a++) {
657 VertRen *ver= RE_findOrAddVert(obr, a);
660 float *tav= RE_vertren_get_tangent(obr, ver, 0);
663 float tdn = tav[0]*ver->n[0] + tav[1]*ver->n[1] + tav[2]*ver->n[2];
664 tav[0] -= ver->n[0]*tdn;
665 tav[1] -= ver->n[1]*tdn;
666 tav[2] -= ver->n[2]*tdn;
674 BLI_memarena_free(arena);
676 MEM_freeN(vtangents);
679 /* ------------------------------------------------------------------------- */
681 /* ------------------------------------------------------------------------- */
683 typedef struct ASvert {
688 typedef struct ASface {
689 struct ASface *next, *prev;
694 static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
699 if(v1 == NULL) return;
701 if(asv->faces.first==NULL) {
702 asf= MEM_callocN(sizeof(ASface), "asface");
703 BLI_addtail(&asv->faces, asf);
706 asf= asv->faces.last;
708 if(asf->vlr[a]==NULL) {
715 /* new face struct */
717 asf= MEM_callocN(sizeof(ASface), "asface");
718 BLI_addtail(&asv->faces, asf);
724 static int as_testvertex(VlakRen *vlr, VertRen *ver, ASvert *asv, float thresh)
726 /* return 1: vertex needs a copy */
733 asf= asv->faces.first;
736 if(asf->vlr[a] && asf->vlr[a]!=vlr) {
737 inp= fabs( vlr->n[0]*asf->vlr[a]->n[0] + vlr->n[1]*asf->vlr[a]->n[1] + vlr->n[2]*asf->vlr[a]->n[2] );
738 if(inp < thresh) return 1;
747 static VertRen *as_findvertex(VlakRen *vlr, VertRen *ver, ASvert *asv, float thresh)
749 /* return when new vertex already was made */
754 asf= asv->faces.first;
757 if(asf->vlr[a] && asf->vlr[a]!=vlr) {
758 /* this face already made a copy for this vertex! */
760 inp= fabs( vlr->n[0]*asf->vlr[a]->n[0] + vlr->n[1]*asf->vlr[a]->n[1] + vlr->n[2]*asf->vlr[a]->n[2] );
773 /* note; autosmooth happens in object space still, after applying autosmooth we rotate */
774 /* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
775 static void autosmooth(Render *re, ObjectRen *obr, float mat[][4], int degr)
777 ASvert *asv, *asverts;
784 if(obr->totvert==0) return;
785 asverts= MEM_callocN(sizeof(ASvert)*obr->totvert, "all smooth verts");
787 thresh= cos( M_PI*(0.5f+(float)degr)/180.0 );
789 /* step zero: give faces normals of original mesh, if this is provided */
792 /* step one: construct listbase of all vertices and pointers to faces */
793 for(a=0; a<obr->totvlak; a++) {
794 vlr= RE_findOrAddVlak(obr, a);
795 /* skip wire faces */
796 if(vlr->v2 != vlr->v3) {
797 as_addvert(asverts+vlr->v1->index, vlr->v1, vlr);
798 as_addvert(asverts+vlr->v2->index, vlr->v2, vlr);
799 as_addvert(asverts+vlr->v3->index, vlr->v3, vlr);
801 as_addvert(asverts+vlr->v4->index, vlr->v4, vlr);
805 totvert= obr->totvert;
806 /* we now test all vertices, when faces have a normal too much different: they get a new vertex */
807 for(a=0, asv=asverts; a<totvert; a++, asv++) {
808 if(asv && asv->totface>1) {
809 ver= RE_findOrAddVert(obr, a);
811 asf= asv->faces.first;
815 /* is there a reason to make a new vertex? */
817 if( as_testvertex(vlr, ver, asv, thresh) ) {
819 /* already made a new vertex within threshold? */
820 v1= as_findvertex(vlr, ver, asv, thresh);
822 /* make a new vertex */
823 v1= RE_vertren_copy(obr, ver);
826 if(vlr->v1==ver) vlr->v1= v1;
827 if(vlr->v2==ver) vlr->v2= v1;
828 if(vlr->v3==ver) vlr->v3= v1;
829 if(vlr->v4==ver) vlr->v4= v1;
838 for(a=0; a<totvert; a++) {
839 BLI_freelistN(&asverts[a].faces);
843 /* rotate vertices and calculate normal of faces */
844 for(a=0; a<obr->totvert; a++) {
845 ver= RE_findOrAddVert(obr, a);
846 MTC_Mat4MulVecfl(mat, ver->co);
848 for(a=0; a<obr->totvlak; a++) {
849 vlr= RE_findOrAddVlak(obr, a);
851 /* skip wire faces */
852 if(vlr->v2 != vlr->v3) {
854 CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
856 CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
861 /* ------------------------------------------------------------------------- */
862 /* Orco hash and Materials */
863 /* ------------------------------------------------------------------------- */
865 static float *get_object_orco(Render *re, Object *ob)
870 re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp);
872 orco = BLI_ghash_lookup(re->orco_hash, ob);
875 if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
876 orco = make_orco_curve(ob);
877 } else if (ob->type==OB_SURF) {
878 orco = make_orco_surf(ob);
879 } else if (ob->type==OB_MBALL) {
880 orco = make_orco_mball(ob);
884 BLI_ghash_insert(re->orco_hash, ob, orco);
890 static void set_object_orco(Render *re, void *ob, float *orco)
893 re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp);
895 BLI_ghash_insert(re->orco_hash, ob, orco);
898 static void free_mesh_orco_hash(Render *re)
901 BLI_ghash_free(re->orco_hash, NULL, (GHashValFreeFP)MEM_freeN);
902 re->orco_hash = NULL;
906 static void flag_render_node_material(Render *re, bNodeTree *ntree)
910 for(node=ntree->nodes.first; node; node= node->next) {
912 if(GS(node->id->name)==ID_MA) {
913 Material *ma= (Material *)node->id;
915 if(ma->mode & MA_ZTRA)
918 ma->flag |= MA_IS_USED;
920 else if(node->type==NODE_GROUP)
921 flag_render_node_material(re, (bNodeTree *)node->id);
926 static void check_material_is_textured(Material *ma)
932 for(tex_nr=0; tex_nr<MAX_MTEX; tex_nr++) {
933 if(ma->septex & (1<<tex_nr))
936 if(ma->mtex[tex_nr]) {
937 mtex= ma->mtex[tex_nr];
942 ma->flag |= MA_IS_TEXTURED;
948 static Material *give_render_material(Render *re, Object *ob, int nr)
950 extern Material defmaterial; /* material.c */
953 ma= give_current_material(ob, nr);
957 if(re->r.mode & R_SPEED) ma->texco |= NEED_UV;
959 if(ma->mode & MA_ZTRA)
962 /* for light groups */
963 ma->flag |= MA_IS_USED;
965 if(ma->nodetree && ma->use_nodes)
966 flag_render_node_material(re, ma->nodetree);
968 if (ma->material_type == MA_VOLUME) re->r.mode |= R_RAYTRACE;
970 check_material_is_textured(ma);
975 /* ------------------------------------------------------------------------- */
977 /* ------------------------------------------------------------------------- */
979 /* future thread problem... */
980 static void static_particle_strand(Render *re, ObjectRen *obr, Material *ma, float *orco, float *surfnor,
981 float *uvco, int totuv, MCol *mcol, int totcol, float *vec, float *vec1, float ctime,
982 int first, int line, int adapt, float adapt_angle, float adapt_pix, int override_uv)
984 static VertRen *v1= NULL, *v2= NULL;
986 float nor[3], cross[3], crosslen, w, dx, dy, width;
987 static float anor[3], avec[3];
991 VecSubf(nor, vec, vec1);
992 Normalize(nor); // nor needed as tangent
993 Crossf(cross, vec, nor);
995 /* turn cross in pixelsize */
996 w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
997 dx= re->winx*cross[0]*re->winmat[0][0];
998 dy= re->winy*cross[1]*re->winmat[1][1];
999 w= sqrt(dx*dx + dy*dy)/w;
1003 if(ma->strand_ease!=0.0f) {
1004 if(ma->strand_ease<0.0f)
1005 fac= pow(ctime, 1.0+ma->strand_ease);
1007 fac= pow(ctime, 1.0/(1.0f-ma->strand_ease));
1011 width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
1013 /* use actual Blender units for strand width and fall back to minimum width */
1014 if(ma->mode & MA_STR_B_UNITS){
1015 crosslen= VecLength(cross);
1016 w= 2.0f*crosslen*ma->strand_min/w;
1021 /*cross is the radius of the strand so we want it to be half of full width */
1022 VecMulf(cross,0.5/crosslen);
1027 VecMulf(cross, width);
1031 if(ma->mode & MA_TANGENT_STR)
1032 flag= R_SMOOTH|R_NOPUNOFLIP|R_TANGENT;
1036 /* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
1037 if(ma->strand_sta==1.0f)
1040 /* single face line */
1042 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1044 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1045 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1046 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1047 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1049 VECCOPY(vlr->v1->co, vec);
1050 VecAddf(vlr->v1->co, vlr->v1->co, cross);
1051 VECCOPY(vlr->v1->n, nor);
1052 vlr->v1->orco= orco;
1053 vlr->v1->accum= -1.0f; // accum abuse for strand texco
1055 VECCOPY(vlr->v2->co, vec);
1056 VecSubf(vlr->v2->co, vlr->v2->co, cross);
1057 VECCOPY(vlr->v2->n, nor);
1058 vlr->v2->orco= orco;
1059 vlr->v2->accum= vlr->v1->accum;
1061 VECCOPY(vlr->v4->co, vec1);
1062 VecAddf(vlr->v4->co, vlr->v4->co, cross);
1063 VECCOPY(vlr->v4->n, nor);
1064 vlr->v4->orco= orco;
1065 vlr->v4->accum= 1.0f; // accum abuse for strand texco
1067 VECCOPY(vlr->v3->co, vec1);
1068 VecSubf(vlr->v3->co, vlr->v3->co, cross);
1069 VECCOPY(vlr->v3->n, nor);
1070 vlr->v3->orco= orco;
1071 vlr->v3->accum= vlr->v4->accum;
1073 CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
1079 float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1080 VECCOPY(snor, surfnor);
1084 for(i=0; i<totuv; i++){
1086 mtf=RE_vlakren_get_tface(obr,vlr,i,NULL,1);
1087 mtf->uv[0][0]=mtf->uv[1][0]=
1088 mtf->uv[2][0]=mtf->uv[3][0]=(uvco+2*i)[0];
1089 mtf->uv[0][1]=mtf->uv[1][1]=
1090 mtf->uv[2][1]=mtf->uv[3][1]=(uvco+2*i)[1];
1094 mtf=RE_vlakren_get_tface(obr,vlr,override_uv,NULL,0);
1096 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1097 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1099 mtf->uv[0][1]=mtf->uv[1][1]=0.0f;
1100 mtf->uv[2][1]=mtf->uv[3][1]=1.0f;
1104 for(i=0; i<totcol; i++){
1106 mc=RE_vlakren_get_mcol(obr,vlr,i,NULL,1);
1107 mc[0]=mc[1]=mc[2]=mc[3]=mcol[i];
1108 mc[0]=mc[1]=mc[2]=mc[3]=mcol[i];
1112 /* first two vertices of a strand */
1120 v1= RE_findOrAddVert(obr, obr->totvert++);
1121 v2= RE_findOrAddVert(obr, obr->totvert++);
1123 VECCOPY(v1->co, vec);
1124 VecAddf(v1->co, v1->co, cross);
1125 VECCOPY(v1->n, nor);
1127 v1->accum= -1.0f; // accum abuse for strand texco
1129 VECCOPY(v2->co, vec);
1130 VecSubf(v2->co, v2->co, cross);
1131 VECCOPY(v2->n, nor);
1133 v2->accum= v1->accum;
1135 /* more vertices & faces to strand */
1137 if(adapt==0 || second){
1138 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1142 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1143 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1145 v1= vlr->v4; // cycle
1146 v2= vlr->v3; // cycle
1157 float dvec[3],pvec[3];
1158 VecSubf(dvec,avec,vec);
1159 Projf(pvec,dvec,vec);
1160 VecSubf(dvec,dvec,pvec);
1162 w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1163 dx= re->winx*dvec[0]*re->winmat[0][0]/w;
1164 dy= re->winy*dvec[1]*re->winmat[1][1]/w;
1165 w= sqrt(dx*dx + dy*dy);
1166 if(Inpf(anor,nor)<adapt_angle && w>adapt_pix){
1167 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1171 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1172 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1174 v1= vlr->v4; // cycle
1175 v2= vlr->v3; // cycle
1181 vlr= RE_findOrAddVlak(obr, obr->totvlak-1);
1185 VECCOPY(vlr->v4->co, vec);
1186 VecAddf(vlr->v4->co, vlr->v4->co, cross);
1187 VECCOPY(vlr->v4->n, nor);
1188 vlr->v4->orco= orco;
1189 vlr->v4->accum= -1.0f + 2.0f*ctime; // accum abuse for strand texco
1191 VECCOPY(vlr->v3->co, vec);
1192 VecSubf(vlr->v3->co, vlr->v3->co, cross);
1193 VECCOPY(vlr->v3->n, nor);
1194 vlr->v3->orco= orco;
1195 vlr->v3->accum= vlr->v4->accum;
1197 CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
1203 float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1204 VECCOPY(snor, surfnor);
1208 for(i=0; i<totuv; i++){
1210 mtf=RE_vlakren_get_tface(obr,vlr,i,NULL,1);
1211 mtf->uv[0][0]=mtf->uv[1][0]=
1212 mtf->uv[2][0]=mtf->uv[3][0]=(uvco+2*i)[0];
1213 mtf->uv[0][1]=mtf->uv[1][1]=
1214 mtf->uv[2][1]=mtf->uv[3][1]=(uvco+2*i)[1];
1218 mtf=RE_vlakren_get_tface(obr,vlr,override_uv,NULL,0);
1220 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1221 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1223 mtf->uv[0][1]=mtf->uv[1][1]=(vlr->v1->accum+1.0f)/2.0f;
1224 mtf->uv[2][1]=mtf->uv[3][1]=(vlr->v3->accum+1.0f)/2.0f;
1228 for(i=0; i<totcol; i++){
1230 mc=RE_vlakren_get_mcol(obr,vlr,i,NULL,1);
1231 mc[0]=mc[1]=mc[2]=mc[3]=mcol[i];
1232 mc[0]=mc[1]=mc[2]=mc[3]=mcol[i];
1238 static void static_particle_wire(ObjectRen *obr, Material *ma, float *vec, float *vec1, int first, int line)
1244 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1245 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1246 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1250 VECCOPY(vlr->v1->co, vec);
1251 VECCOPY(vlr->v2->co, vec1);
1253 VecSubf(vlr->n, vec, vec1);
1255 VECCOPY(vlr->v1->n, vlr->n);
1256 VECCOPY(vlr->v2->n, vlr->n);
1263 v1= RE_findOrAddVert(obr, obr->totvert++);
1264 VECCOPY(v1->co, vec);
1267 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1269 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1273 v1= vlr->v2; // cycle
1274 VECCOPY(v1->co, vec);
1276 VecSubf(vlr->n, vec, vec1);
1278 VECCOPY(v1->n, vlr->n);
1285 static void particle_billboard(Render *re, ObjectRen *obr, Material *ma, Object *bb_ob, float *vec, float *vel, float size, float tilt, short align,
1286 int lock, int p, int totpart, short uv_split, short anim, short split_offset, float random, float pa_time, float offset[2], int uv[3])
1290 float xvec[3]={1.0f,0.0f,0.0f}, yvec[3]={0.0f,1.0f,0.0f}, zvec[3];
1291 float onevec[3]={0.0f,0.0f,0.0f}, tvec[3],tvec2[3], bb_center[3];
1292 float uvx=0.0f, uvy=0.0f, uvdx=1.0f, uvdy=1.0f, time=0.0f;
1294 if(align<PART_BB_VIEW)
1297 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1298 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1299 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1300 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1301 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1303 if(lock && align==PART_BB_VIEW){
1304 VECCOPY(xvec,bb_ob->obmat[0]);
1306 VECCOPY(yvec,bb_ob->obmat[1]);
1308 VECCOPY(zvec,bb_ob->obmat[2]);
1311 else if(align==PART_BB_VEL){
1315 VECSUB(zvec,bb_ob->obmat[3],vec);
1317 float fac=-Inpf(zvec,temp);
1318 VECADDFAC(zvec,zvec,temp,fac);
1321 Crossf(xvec,temp,zvec);
1323 Crossf(yvec,zvec,xvec);
1326 VECSUB(zvec,bb_ob->obmat[3],vec);
1331 if(align<PART_BB_VIEW)
1332 Crossf(xvec,onevec,zvec);
1334 Crossf(xvec,bb_ob->obmat[1],zvec);
1336 Crossf(yvec,zvec,xvec);
1340 VECCOPY(tvec2,yvec);
1342 VecMulf(xvec,cos(tilt*(float)M_PI));
1343 VecMulf(tvec2,sin(tilt*(float)M_PI));
1344 VECADD(xvec,xvec,tvec2);
1346 VecMulf(yvec,cos(tilt*(float)M_PI));
1347 VecMulf(tvec,-sin(tilt*(float)M_PI));
1348 VECADD(yvec,yvec,tvec);
1353 VECADDFAC(bb_center,vec,xvec,offset[0]);
1354 VECADDFAC(bb_center,bb_center,yvec,offset[1]);
1356 VECADD(vlr->v1->co,bb_center,xvec);
1357 VECADD(vlr->v1->co,vlr->v1->co,yvec);
1358 MTC_Mat4MulVecfl(re->viewmat,vlr->v1->co);
1360 VECSUB(vlr->v2->co,bb_center,xvec);
1361 VECADD(vlr->v2->co,vlr->v2->co,yvec);
1362 MTC_Mat4MulVecfl(re->viewmat,vlr->v2->co);
1364 VECSUB(vlr->v3->co,bb_center,xvec);
1365 VECSUB(vlr->v3->co,vlr->v3->co,yvec);
1366 MTC_Mat4MulVecfl(re->viewmat,vlr->v3->co);
1368 VECADD(vlr->v4->co,bb_center,xvec);
1369 VECSUB(vlr->v4->co,vlr->v4->co,yvec);
1370 MTC_Mat4MulVecfl(re->viewmat,vlr->v4->co);
1372 CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
1373 VECCOPY(vlr->v1->n,vlr->n);
1374 VECCOPY(vlr->v2->n,vlr->n);
1375 VECCOPY(vlr->v3->n,vlr->n);
1376 VECCOPY(vlr->v4->n,vlr->n);
1382 uvdx=uvdy=1.0f/(float)uv_split;
1383 if(anim==PART_BB_ANIM_TIME){
1384 if(split_offset==PART_BB_OFF_NONE)
1386 else if(split_offset==PART_BB_OFF_LINEAR)
1387 time=(float)fmod(pa_time+(float)p/(float)(uv_split*uv_split),1.0f);
1388 else /* split_offset==PART_BB_OFF_RANDOM */
1389 time=(float)fmod(pa_time+random,1.0f);
1392 else if(anim==PART_BB_ANIM_ANGLE){
1393 if(align==PART_BB_VIEW){
1394 time=(float)fmod((tilt+1.0f)/2.0f,1.0);
1397 float axis1[3]={0.0f,0.0f,0.0f};
1398 float axis2[3]={0.0f,0.0f,0.0f};
1399 axis1[(align+1)%3]=1.0f;
1400 axis2[(align+2)%3]=1.0f;
1405 time=saacos(Inpf(zvec,axis1))/(float)M_PI;
1406 if(Inpf(zvec,axis2)<0.0f)
1407 time=1.0f-time/2.0f;
1411 if(split_offset==PART_BB_OFF_LINEAR)
1412 time=(float)fmod(pa_time+(float)p/(float)(uv_split*uv_split),1.0f);
1413 else if(split_offset==PART_BB_OFF_RANDOM)
1414 time=(float)fmod(pa_time+random,1.0f);
1417 if(split_offset==PART_BB_OFF_NONE)
1419 else if(split_offset==PART_BB_OFF_LINEAR)
1420 time=(float)fmod((float)p/(float)(uv_split*uv_split),1.0f);
1421 else /* split_offset==PART_BB_OFF_RANDOM */
1424 uvx=uvdx*floor((float)(uv_split*uv_split)*(float)fmod((double)time,(double)uvdx));
1425 uvy=uvdy*floor((1.0f-time)*(float)uv_split);
1426 if(fmod(time,1.0f/uv_split)==0.0f)
1432 mtf=RE_vlakren_get_tface(obr,vlr,uv[0],NULL,1);
1443 /* time-index UVs */
1445 mtf=RE_vlakren_get_tface(obr,vlr,uv[1],NULL,1);
1446 mtf->uv[0][0]=mtf->uv[1][0]=mtf->uv[2][0]=mtf->uv[3][0]=pa_time;
1447 mtf->uv[0][1]=mtf->uv[1][1]=mtf->uv[2][1]=mtf->uv[3][1]=(float)p/(float)totpart;
1451 if(uv_split>1 && uv[2]>=0){
1452 mtf=RE_vlakren_get_tface(obr,vlr,uv[2],NULL,1);
1453 mtf->uv[0][0]=uvx+uvdx;
1454 mtf->uv[0][1]=uvy+uvdy;
1456 mtf->uv[1][1]=uvy+uvdy;
1459 mtf->uv[3][0]=uvx+uvdx;
1463 static void render_new_particle(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, int path, int first, int line,
1464 float time, float *loc, float *loc1, float *orco, float *surfnor, int totuv, float *uvco,
1465 int totcol, MCol *mcol, float size, int seed, int override_uv,
1466 int adapt, float adapt_angle, float adapt_pix)
1470 if(ma->mode&MA_WIRE)
1471 static_particle_wire(obr, ma, loc, loc1, first, line);
1472 else if(ma->mode & MA_HALO){
1473 har= RE_inithalo_particle(re, obr, dm, ma, loc, loc1, orco, uvco, size, 1.0, seed);
1474 if(har) har->lay= obr->ob->lay;
1477 static_particle_strand(re, obr, ma, orco, surfnor, uvco, totuv, mcol, totcol, loc, loc1, time, first, line, adapt, adapt_angle, adapt_pix, override_uv);
1480 har= RE_inithalo_particle(re, obr, dm, ma, loc, NULL, orco, uvco, size, 0.0, seed);
1481 if(har) har->lay= obr->ob->lay;
1484 static int render_new_particle_system(Render *re, ObjectRen *obr, ParticleSystem *psys, int timeoffset)
1486 Object *ob= obr->ob;
1487 Object *tob=0, *bb_ob=re->scene->camera;
1490 ParticleSystemModifierData *psmd;
1491 ParticleSystem *tpsys=0;
1492 ParticleSettings *part, *tpart=0;
1493 ParticleData *pars, *pa=0,*tpa=0;
1494 ParticleKey *states=0;
1496 ParticleCacheKey *cache=0;
1497 StrandBuffer *strandbuf=0;
1498 StrandVert *svert=0;
1499 StrandBound *sbound= 0;
1500 StrandRen *strand=0;
1503 float loc[3],loc1[3],loc0[3],vel[3],mat[4][4],nmat[3][3],co[3],nor[3],time;
1504 float *orco=0,*surfnor=0,*uvco=0, strandlen=0.0f, curlen=0.0f;
1505 float hasize, pa_size, pa_time, r_tilt, cfra=bsystem_time(ob,(float)CFRA,0.0);
1506 float adapt_angle=0.0, adapt_pix=0.0, random, simplify[2];
1507 int i, a, k, max_k=0, totpart, totuv=0, totcol=0, override_uv=-1, dosimplify = 0, dosurfacecache = 0;
1508 int path_possible=0, keys_possible=0, baked_keys=0, totchild=0;
1509 int seed, path_nbr=0, path=0, orco1=0, adapt=0, uv[3]={0,0,0}, num;
1510 int totface, *origindex = 0;
1513 /* 1. check that everything is ok & updated */
1517 totchild=psys->totchild;
1520 pars=psys->particles;
1522 if(part==NULL || pars==NULL || !psys_check_enabled(ob, psys))
1525 if(part->draw_as==PART_DRAW_OB || part->draw_as==PART_DRAW_GR || part->draw_as==PART_DRAW_NOT)
1528 /* 2. start initialising things */
1529 if(part->phystype==PART_PHYS_KEYED){
1530 if(psys->flag & PSYS_FIRST_KEYED)
1531 psys_count_keyed_targets(ob,psys);
1536 psmd= psys_get_modifier(ob,psys);
1537 if(!(psmd->modifier.mode & eModifierMode_Render))
1540 if(G.rendering == 0) { /* preview render */
1541 totchild = (int)((float)totchild * (float)part->disp / 100.0f);
1544 psys->flag|=PSYS_DRAWING;
1546 rng= rng_new(psys->seed);
1548 ma= give_render_material(re, ob, part->omat);
1554 calc_ipo(ma->ipo, cfra);
1555 execute_ipo((ID *)ma, ma->ipo);
1558 RE_set_customdata_names(obr, &psmd->dm->faceData);
1559 totuv=CustomData_number_of_layers(&psmd->dm->faceData,CD_MTFACE);
1560 totcol=CustomData_number_of_layers(&psmd->dm->faceData,CD_MCOL);
1562 if(ma->texco & TEXCO_UV && totuv) {
1563 uvco = MEM_callocN(totuv*2*sizeof(float),"particle_uvs");
1565 if(ma->strand_uvname[0]) {
1566 override_uv= CustomData_get_named_layer_index(&psmd->dm->faceData,CD_MTFACE,ma->strand_uvname);
1567 override_uv-= CustomData_get_layer_index(&psmd->dm->faceData,CD_MTFACE);
1572 mcol = MEM_callocN(totcol*sizeof(MCol),"particle_mcols");
1574 if(part->draw_as==PART_DRAW_BB){
1575 int first_uv=CustomData_get_layer_index(&psmd->dm->faceData,CD_MTFACE);
1577 uv[0]=CustomData_get_named_layer_index(&psmd->dm->faceData,CD_MTFACE,psys->bb_uvname[0]);
1579 uv[0]=CustomData_get_active_layer_index(&psmd->dm->faceData,CD_MTFACE);
1581 uv[1]=CustomData_get_named_layer_index(&psmd->dm->faceData,CD_MTFACE,psys->bb_uvname[1]);
1583 // uv[1]=CustomData_get_active_layer_index(&psmd->dm->faceData,CD_MTFACE);
1585 uv[2]=CustomData_get_named_layer_index(&psmd->dm->faceData,CD_MTFACE,psys->bb_uvname[2]);
1587 // uv[2]=CustomData_get_active_layer_index(&psmd->dm->faceData,CD_MTFACE);
1596 if(part->flag&PART_ABS_TIME && part->ipo){
1597 calc_ipo(part->ipo, cfra);
1598 execute_ipo((ID *)part, part->ipo);
1601 if(part->flag&PART_GLOB_TIME)
1602 cfra=bsystem_time(0,(float)CFRA,0.0);
1604 if(part->type==PART_REACTOR){
1605 psys_get_reactor_target(ob, psys, &tob, &tpsys);
1606 if(tpsys && (part->from==PART_FROM_PARTICLE || part->phystype==PART_PHYS_NO)){
1607 psmd=psys_get_modifier(tob,tpsys);
1612 hasize = ma->hasize;
1617 MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
1618 MTC_Mat4Invert(ob->imat, mat); /* need to be that way, for imat texture */
1619 Mat3CpyMat4(nmat, ob->imat);
1622 totpart=psys->totpart;
1624 if(psys->pathcache){
1628 if(part->draw_as==PART_DRAW_PATH){
1630 path_nbr=(int)pow(2.0,(double) part->ren_step);
1631 //if(part->phystype==PART_PHYS_KEYED && (psys->flag&PSYS_BAKED)==0)
1632 // path_nbr*=psys->totkeyed;
1635 if((ma->mode & (MA_HALO|MA_WIRE))==0) {
1636 orco= MEM_mallocN(3*sizeof(float)*(totpart+totchild), "particle orcos");
1637 set_object_orco(re, psys, orco);
1642 if(part->draw&PART_DRAW_REN_ADAPT) {
1644 adapt_pix=(float)part->adapt_pix;
1645 adapt_angle=cos((float)part->adapt_angle*(float)(M_PI/180.0));
1648 if(re->r.renderer==R_INTERN && part->draw&PART_DRAW_REN_STRAND) {
1649 strandbuf= RE_addStrandBuffer(obr, (totpart+totchild)*(path_nbr+1));
1651 strandbuf->lay= ob->lay;
1652 Mat4CpyMat4(strandbuf->winmat, re->winmat);
1653 strandbuf->winx= re->winx;
1654 strandbuf->winy= re->winy;
1655 strandbuf->maxdepth= 2;
1656 strandbuf->adaptcos= cos((float)part->adapt_angle*(float)(M_PI/180.0));
1657 strandbuf->overrideuv= override_uv;
1658 strandbuf->minwidth= ma->strand_min;
1660 if(ma->strand_widthfade == 0.0f)
1661 strandbuf->widthfade= 0.0f;
1662 else if(ma->strand_widthfade >= 1.0f)
1663 strandbuf->widthfade= 2.0f - ma->strand_widthfade;
1665 strandbuf->widthfade= 1.0f/MAX2(ma->strand_widthfade, 1e-5f);
1667 if(part->flag & PART_HAIR_BSPLINE)
1668 strandbuf->flag |= R_STRAND_BSPLINE;
1669 if(ma->mode & MA_STR_B_UNITS)
1670 strandbuf->flag |= R_STRAND_B_UNITS;
1672 svert= strandbuf->vert;
1674 if(re->r.mode & R_SPEED)
1676 else if((re->wrld.mode & WO_AMB_OCC) && (re->wrld.ao_gather_method == WO_AOGATHER_APPROX))
1680 totface= psmd->dm->getNumFaces(psmd->dm);
1681 origindex= psmd->dm->getFaceDataArray(psmd->dm, CD_ORIGINDEX);
1683 for(a=0; a<totface; a++)
1684 strandbuf->totbound= MAX2(strandbuf->totbound, origindex[a]);
1685 strandbuf->totbound++;
1687 strandbuf->totbound++;
1688 strandbuf->bound= MEM_callocN(sizeof(StrandBound)*strandbuf->totbound, "StrandBound");
1689 sbound= strandbuf->bound;
1690 sbound->start= sbound->end= 0;
1694 else if(keys_possible && part->draw&PART_DRAW_KEYS){
1695 path_nbr=part->keys_step;
1701 orco=MEM_mallocN(3*sizeof(float),"particle orco");
1706 psys->lattice=psys_get_lattice(ob,psys);
1708 /* 3. start creating renderable things */
1709 for(a=0,pa=pars; a<totpart+totchild; a++, pa++, seed++) {
1710 random = rng_getFloat(rng);
1713 if(pa->flag & PARS_UNEXIST) continue;
1715 pa_time=(cfra-pa->time)/pa->lifetime;
1716 if((part->flag&PART_ABS_TIME)==0){
1718 /* correction for lifetime */
1719 calc_ipo(ma->ipo, 100.0f*pa_time);
1720 execute_ipo((ID *)ma, ma->ipo);
1723 /* correction for lifetime */
1724 calc_ipo(part->ipo, 100.0f*pa_time);
1725 execute_ipo((ID *)part, part->ipo);
1729 hasize = ma->hasize;
1732 if(tpsys && (part->from==PART_FROM_PARTICLE || part->phystype==PART_PHYS_NO)){
1733 tpa=tpsys->particles+pa->num;
1734 psys_particle_on_emitter(psmd,tpart->from,tpa->num,pa->num_dmcache,tpa->fuv,tpa->foffset,co,nor,0,0,orco,0);
1737 psys_particle_on_emitter(psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,0);
1739 num= pa->num_dmcache;
1741 if(num == DMCACHE_NOTFOUND)
1742 if(pa->num < psmd->dm->getNumFaces(psmd->dm))
1745 if(uvco && ELEM(part->from,PART_FROM_FACE,PART_FROM_VOLUME)){
1746 for(i=0; i<totuv; i++){
1747 if(num != DMCACHE_NOTFOUND) {
1748 MFace *mface=psmd->dm->getFaceData(psmd->dm,num,CD_MFACE);
1749 mtface=(MTFace*)CustomData_get_layer_n(&psmd->dm->faceData,CD_MTFACE,i);
1752 psys_interpolate_uvs(mtface,mface->v4,pa->fuv,uvco+2*i);
1756 uvco[2*i + 1]= 0.0f;
1760 if(mcol && ELEM(part->from,PART_FROM_FACE,PART_FROM_VOLUME)){
1761 for(i=0; i<totcol; i++){
1762 if(num != DMCACHE_NOTFOUND) {
1763 MFace *mface=psmd->dm->getFaceData(psmd->dm,num,CD_MFACE);
1764 MCol *mc=(MCol*)CustomData_get_layer_n(&psmd->dm->faceData,CD_MCOL,i);
1767 psys_interpolate_mcol(mc,mface->v4,pa->fuv,mcol+i);
1770 memset(&mcol[i], 0, sizeof(MCol));
1776 r_tilt=1.0f+pa->r_ave[0];
1779 cache = psys->pathcache[a];
1780 max_k = (int)cache->steps;
1783 if(totchild && (part->draw&PART_DRAW_PARENT)==0) continue;
1786 ChildParticle *cpa= psys->child+a-totpart;
1788 pa_time=psys_get_child_time(psys, cpa, cfra);
1790 if((part->flag&PART_ABS_TIME)==0){
1792 /* correction for lifetime */
1793 calc_ipo(ma->ipo, 100.0f*pa_time);
1794 execute_ipo((ID *)ma, ma->ipo);
1797 /* correction for lifetime */
1798 calc_ipo(part->ipo, 100.0f*pa_time);
1799 execute_ipo((ID *)part, part->ipo);
1803 pa_size=psys_get_child_size(psys, cpa, cfra, &pa_time);
1805 r_tilt=2.0f*cpa->rand[2];
1810 if(part->childtype == PART_CHILD_FACES) {
1811 psys_particle_on_emitter(psmd,
1812 PART_FROM_FACE, cpa->num,DMCACHE_ISCHILD,
1813 cpa->fuv,cpa->foffset,co,nor,0,0,orco,0);
1816 ParticleData *par = psys->particles + cpa->parent;
1817 psys_particle_on_emitter(psmd, part->from,
1818 par->num,DMCACHE_ISCHILD,par->fuv,
1819 par->foffset,co,nor,0,0,orco,0);
1823 if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){
1824 for(i=0; i<totuv; i++){
1825 if(part->childtype==PART_CHILD_FACES){
1826 MFace *mface=psmd->dm->getFaceData(psmd->dm,cpa->num,CD_MFACE);
1828 mtface=(MTFace*)CustomData_get_layer_n(&psmd->dm->faceData,CD_MTFACE,i);
1831 psys_interpolate_uvs(mtface,mface->v4,cpa->fuv,uvco+2*i);
1834 uvco[2*i]=uvco[2*i+1]=0.0f;
1838 else if(ELEM(part->from,PART_FROM_FACE,PART_FROM_VOLUME)){
1839 ParticleData *parent = psys->particles + cpa->parent;
1840 num= parent->num_dmcache;
1842 if(num == DMCACHE_NOTFOUND)
1843 if(parent->num < psmd->dm->getNumFaces(psmd->dm))
1846 for(i=0; i<totuv; i++) {
1847 if(num != DMCACHE_NOTFOUND) {
1848 MFace *mface=psmd->dm->getFaceData(psmd->dm,num,CD_MFACE);
1849 mtface=(MTFace*)CustomData_get_layer_n(&psmd->dm->faceData,CD_MTFACE,i);
1851 psys_interpolate_uvs(mtface,mface->v4,parent->fuv,uvco+2*i);
1855 uvco[2*i + 1]= 0.0f;
1862 if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){
1863 for(i=0; i<totcol; i++){
1864 if(part->childtype==PART_CHILD_FACES){
1865 MFace *mface=psmd->dm->getFaceData(psmd->dm,cpa->num,CD_MFACE);
1866 MCol *mc=(MCol*)CustomData_get_layer_n(&psmd->dm->faceData,CD_MCOL,i);
1869 psys_interpolate_mcol(mc,mface->v4,cpa->fuv,mcol+i);
1872 memset(&mcol[i], 0, sizeof(MCol));
1875 else if(ELEM(part->from,PART_FROM_FACE,PART_FROM_VOLUME)){
1876 ParticleData *parent = psys->particles + cpa->parent;
1877 num= parent->num_dmcache;
1879 if(num == DMCACHE_NOTFOUND)
1880 if(parent->num < psmd->dm->getNumFaces(psmd->dm))
1883 for(i=0; i<totcol; i++){
1884 if(num != DMCACHE_NOTFOUND) {
1885 MFace *mface=psmd->dm->getFaceData(psmd->dm,num,CD_MFACE);
1886 MCol *mc=(MCol*)CustomData_get_layer_n(&psmd->dm->faceData,CD_MCOL,i);
1889 psys_interpolate_mcol(mc,mface->v4,parent->fuv,mcol+i);
1892 memset(&mcol[i], 0, sizeof(MCol));
1897 dosimplify= psys_render_simplify_params(psys, cpa, simplify);
1900 cache = psys->childcache[a-totpart];
1901 max_k = (int)cache->steps;
1905 if(origindex[cpa->num]+1 > sbound - strandbuf->bound) {
1906 sbound= strandbuf->bound + origindex[cpa->num]+1;
1907 sbound->start= sbound->end= obr->totstrand;
1912 /* surface normal shading setup */
1913 if(ma->mode_l & MA_STR_SURFDIFF) {
1914 Mat3MulVecfl(nmat, nor);
1920 /* strand render setup */
1922 strand= RE_findOrAddStrand(obr, obr->totstrand++);
1923 strand->buffer= strandbuf;
1924 strand->vert= svert;
1925 VECCOPY(strand->orco, orco);
1928 float *ssimplify= RE_strandren_get_simplify(obr, strand, 1);
1929 ssimplify[0]= simplify[0];
1930 ssimplify[1]= simplify[1];
1934 float *snor= RE_strandren_get_surfnor(obr, strand, 1);
1935 VECCOPY(snor, surfnor);
1938 if(dosurfacecache && num >= 0) {
1939 int *facenum= RE_strandren_get_face(obr, strand, 1);
1944 for(i=0; i<totuv; i++) {
1945 if(i != override_uv) {
1946 float *uv= RE_strandren_get_uv(obr, strand, i, NULL, 1);
1954 for(i=0; i<totcol; i++) {
1955 MCol *mc= RE_strandren_get_mcol(obr, strand, i, NULL, 1);
1963 /* strandco computation setup */
1967 for(k=1; k<=path_nbr; k++)
1969 strandlen += VecLenf((cache+k-1)->co, (cache+k)->co);
1972 for(k=0; k<=path_nbr; k++){
1975 //bti->convert_bake_key(bsys,cache+k,0,(void*)&state);
1976 //copy_particle_key(&state,cache+k,0);
1977 VECCOPY(state.co,(cache+k)->co);
1978 VECCOPY(state.vel,(cache+k)->vel);
1984 curlen += VecLenf((cache+k-1)->co, (cache+k)->co);
1985 time= curlen/strandlen;
1990 if(psys_get_particle_state(ob,psys,a,&state,0)==0)
1994 VECCOPY(loc,state.co);
1995 if(part->draw_as!=PART_DRAW_BB)
1996 MTC_Mat4MulVecfl(re->viewmat,loc);
1998 if(part->draw_as==PART_DRAW_LINE) {
1999 VECCOPY(vel,state.vel);
2000 //VECADD(vel,vel,state.co);
2001 MTC_Mat4Mul3Vecfl(re->viewmat,vel);
2002 //VECSUB(vel,vel,loc);
2004 if(part->draw & PART_DRAW_VEL_LENGTH)
2005 VecMulf(vel,VecLength(state.vel));
2006 VECADDFAC(loc0,loc,vel,-part->draw_line[0]);
2007 VECADDFAC(loc1,loc,vel,part->draw_line[1]);
2009 render_new_particle(re,obr,psmd->dm,ma,1,0,1,0.0f,loc0,loc1,
2010 orco,surfnor,totuv,uvco,totcol,mcol,hasize,seed,override_uv,0,0,0);
2012 else if(part->draw_as==PART_DRAW_BB) {
2013 VECCOPY(vel,state.vel);
2014 //MTC_Mat4Mul3Vecfl(re->viewmat,vel);
2015 particle_billboard(re,obr,ma,bb_ob,loc,vel,pa_size,part->bb_tilt*(1.0f-part->bb_rand_tilt*r_tilt),
2016 part->bb_align,part->draw&PART_DRAW_BB_LOCK,
2017 a,totpart+totchild,part->bb_uv_split,part->bb_anim,part->bb_split_offset,random,pa_time,part->bb_offset,uv);
2019 else if(strandbuf) {
2020 VECCOPY(svert->co, loc);
2021 svert->strandco= -1.0f + 2.0f*time;
2027 VECSUB(loc0,loc1,loc);
2028 VECADD(loc0,loc1,loc0);
2029 render_new_particle(re,obr,psmd->dm,ma,path,1,0,0.0f,loc1,loc0,
2030 orco,surfnor,totuv,uvco,totcol,mcol,hasize,seed,override_uv,
2031 adapt,adapt_angle,adapt_pix);
2034 if(path_nbr==0 || k)
2035 render_new_particle(re,obr,psmd->dm,ma,path,0,0,time,loc,loc1,
2036 orco,surfnor,totuv,uvco,totcol,mcol,hasize,seed,override_uv,
2037 adapt,adapt_angle,adapt_pix);
2046 if(re->test_break())
2051 strandbuf->surface= cache_strand_surface(re, obr, psmd->dm, mat, timeoffset);
2055 if(ma) do_mat_ipo(ma);
2074 psys->flag &= ~PSYS_DRAWING;
2081 if(path && (ma->mode_l & MA_TANGENT_STR)==0)
2082 calc_vertexnormals(re, obr, 0, 0);
2087 /* ------------------------------------------------------------------------- */
2089 /* ------------------------------------------------------------------------- */
2091 static void make_render_halos(Render *re, ObjectRen *obr, Mesh *me, int totvert, MVert *mvert, Material *ma, float *orco)
2093 Object *ob= obr->ob;
2095 float xn, yn, zn, nor[3], view[3];
2096 float vec[3], hasize, mat[4][4], imat[3][3];
2097 int a, ok, seed= ma->seed1;
2099 MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
2100 MTC_Mat3CpyMat4(imat, ob->imat);
2104 for(a=0; a<totvert; a++, mvert++) {
2110 VECCOPY(vec, mvert->co);
2111 MTC_Mat4MulVecfl(mat, vec);
2113 if(ma->mode & MA_HALOPUNO) {
2119 nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2120 nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2121 nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2127 zn= nor[0]*view[0]+nor[1]*view[1]+nor[2]*view[2];
2128 if(zn>=0.0) hasize= 0.0;
2129 else hasize*= zn*zn*zn*zn;
2132 if(orco) har= RE_inithalo(re, obr, ma, vec, NULL, orco, hasize, 0.0, seed);
2133 else har= RE_inithalo(re, obr, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
2134 if(har) har->lay= ob->lay;
2141 static int verghalo(const void *a1, const void *a2)
2143 const HaloRen *har1= *(const HaloRen**)a1;
2144 const HaloRen *har2= *(const HaloRen**)a2;
2146 if(har1->zs < har2->zs) return 1;
2147 else if(har1->zs > har2->zs) return -1;
2151 static void sort_halos(Render *re, int totsort)
2154 HaloRen *har= NULL, **haso;
2157 if(re->tothalo==0) return;
2159 re->sortedhalos= MEM_callocN(sizeof(HaloRen*)*re->tothalo, "sorthalos");
2160 haso= re->sortedhalos;
2162 for(obr=re->objecttable.first; obr; obr=obr->next) {
2163 for(a=0; a<obr->tothalo; a++) {
2164 if((a & 255)==0) har= obr->bloha[a>>8];
2171 qsort(re->sortedhalos, totsort, sizeof(HaloRen*), verghalo);
2174 /* ------------------------------------------------------------------------- */
2175 /* Displacement Mapping */
2176 /* ------------------------------------------------------------------------- */
2178 static short test_for_displace(Render *re, Object *ob)
2180 /* return 1 when this object uses displacement textures. */
2184 for (i=1; i<=ob->totcol; i++) {
2185 ma=give_render_material(re, ob, i);
2186 /* ma->mapto is ORed total of all mapto channels */
2187 if(ma && (ma->mapto & MAP_DISPLACE)) return 1;
2192 static void displace_render_vert(Render *re, ObjectRen *obr, ShadeInput *shi, VertRen *vr, int vindex, float *scale, float mat[][4], float imat[][3])
2195 short texco= shi->mat->texco;
2196 float sample=0, displace[3];
2200 /* shi->co is current render coord, just make sure at least some vector is here */
2201 VECCOPY(shi->co, vr->co);
2202 /* vertex normal is used for textures type 'col' and 'var' */
2203 VECCOPY(shi->vn, vr->n);
2206 Mat4MulVecfl(mat, shi->co);
2209 shi->vn[0]= imat[0][0]*vr->n[0]+imat[0][1]*vr->n[1]+imat[0][2]*vr->n[2];
2210 shi->vn[1]= imat[1][0]*vr->n[0]+imat[1][1]*vr->n[1]+imat[1][2]*vr->n[2];
2211 shi->vn[2]= imat[2][0]*vr->n[0]+imat[2][1]*vr->n[1]+imat[2][2]*vr->n[2];
2214 if (texco & TEXCO_UV) {
2216 shi->actuv= obr->actmtface;
2218 for (i=0; (tface=RE_vlakren_get_tface(obr, shi->vlr, i, &name, 0)); i++) {
2219 ShadeInputUV *suv= &shi->uv[i];
2221 /* shi.uv needs scale correction from tface uv */
2222 suv->uv[0]= 2*tface->uv[vindex][0]-1.0f;
2223 suv->uv[1]= 2*tface->uv[vindex][1]-1.0f;
2230 /* set all rendercoords, 'texco' is an ORed value for all textures needed */
2231 if ((texco & TEXCO_ORCO) && (vr->orco)) {
2232 VECCOPY(shi->lo, vr->orco);
2234 if (texco & TEXCO_STICKY) {
2235 float *sticky= RE_vertren_get_sticky(obr, vr, 0);
2237 shi->sticky[0]= sticky[0];
2238 shi->sticky[1]= sticky[1];
2239 shi->sticky[2]= 0.0f;
2242 if (texco & TEXCO_GLOB) {
2243 VECCOPY(shi->gl, shi->co);
2244 MTC_Mat4MulVecfl(re->viewinv, shi->gl);
2246 if (texco & TEXCO_NORM) {
2247 VECCOPY(shi->orn, shi->vn);
2249 if(texco & TEXCO_REFL) {
2253 shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
2255 do_material_tex(shi);
2257 //printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2],
2258 //vr->co[0], vr->co[1], vr->co[2]);
2260 displace[0]= shi->displace[0] * scale[0];
2261 displace[1]= shi->displace[1] * scale[1];
2262 displace[2]= shi->displace[2] * scale[2];
2265 Mat3MulVecfl(imat, displace);
2267 /* 0.5 could become button once? */
2268 vr->co[0] += displace[0];
2269 vr->co[1] += displace[1];
2270 vr->co[2] += displace[2];
2272 //printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]);
2274 /* we just don't do this vertex again, bad luck for other face using same vertex with
2275 different material... */
2278 /* Pass sample back so displace_face can decide which way to split the quad */
2279 sample = shi->displace[0]*shi->displace[0];
2280 sample += shi->displace[1]*shi->displace[1];
2281 sample += shi->displace[2]*shi->displace[2];
2284 /* Should be sqrt(sample), but I'm only looking for "bigger". Save the cycles. */
2288 static void displace_render_face(Render *re, ObjectRen *obr, VlakRen *vlr, float *scale, float mat[][4], float imat[][3])
2292 /* Warning, This is not that nice, and possibly a bit slow,
2293 however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
2294 memset(&shi, 0, sizeof(ShadeInput));
2295 /* end warning! - Campbell */
2297 /* set up shadeinput struct for multitex() */
2299 /* memset above means we dont need this */
2300 /*shi.osatex= 0;*/ /* signal not to use dx[] and dy[] texture AA vectors */
2302 shi.vlr= vlr; /* current render face */
2303 shi.mat= vlr->mat; /* current input material */
2305 /* Displace the verts, flag is set when done */
2307 displace_render_vert(re, obr, &shi, vlr->v1,0, scale, mat, imat);
2310 displace_render_vert(re, obr, &shi, vlr->v2, 1, scale, mat, imat);
2313 displace_render_vert(re, obr, &shi, vlr->v3, 2, scale, mat, imat);
2317 displace_render_vert(re, obr, &shi, vlr->v4, 3, scale, mat, imat);
2319 /* closest in displace value. This will help smooth edges. */
2320 if ( fabs(vlr->v1->accum - vlr->v3->accum) > fabs(vlr->v2->accum - vlr->v4->accum))
2321 vlr->flag |= R_DIVIDE_24;
2322 else vlr->flag &= ~R_DIVIDE_24;
2325 /* Recalculate the face normal - if flipped before, flip now */
2327 CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
2330 CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
2334 static void do_displacement(Render *re, ObjectRen *obr, float mat[][4], float imat[][3])
2338 // float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
2339 float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
2340 int i; //, texflag=0;
2343 /* Object Size with parenting */
2346 VecAddf(temp, obt->size, obt->dsize);
2347 scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
2351 /* Clear all flags */
2352 for(i=0; i<obr->totvert; i++){
2353 vr= RE_findOrAddVert(obr, i);
2357 for(i=0; i<obr->totvlak; i++){
2358 vlr=RE_findOrAddVlak(obr, i);
2359 displace_render_face(re, obr, vlr, scale, mat, imat);
2362 /* Recalc vertex normals */
2363 calc_vertexnormals(re, obr, 0, 0);
2366 /* ------------------------------------------------------------------------- */
2368 /* ------------------------------------------------------------------------- */
2370 static void init_render_mball(Render *re, ObjectRen *obr)
2372 Object *ob= obr->ob;
2375 VlakRen *vlr, *vlr1;
2377 float *data, *nors, *orco, mat[4][4], imat[3][3], xn, yn, zn;
2378 int a, need_orco, vlakindex, *index;
2380 if (ob!=find_basis_mball(ob))
2383 MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
2384 MTC_Mat4Invert(ob->imat, mat);
2385 MTC_Mat3CpyMat4(imat, ob->imat);
2387 ma= give_render_material(re, ob, 1);
2390 if(ma->texco & TEXCO_ORCO) {
2394 makeDispListMBall(ob);
2400 orco= get_object_orco(re, ob);
2402 for(a=0; a<dl->nr; a++, data+=3, nors+=3, orco+=3) {
2404 ver= RE_findOrAddVert(obr, obr->totvert++);
2405 VECCOPY(ver->co, data);
2406 MTC_Mat4MulVecfl(mat, ver->co);
2408 /* render normals are inverted */
2414 ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2415 ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2416 ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2418 //if(ob->transflag & OB_NEG_SCALE) VecMulf(ver->n. -1.0);
2420 if(need_orco) ver->orco= orco;
2424 for(a=0; a<dl->parts; a++, index+=4) {
2426 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2427 vlr->v1= RE_findOrAddVert(obr, index[0]);
2428 vlr->v2= RE_findOrAddVert(obr, index[1]);
2429 vlr->v3= RE_findOrAddVert(obr, index[2]);
2432 if(ob->transflag & OB_NEG_SCALE)
2433 CalcNormFloat(vlr->v1->co, vlr->v2->co, vlr->v3->co, vlr->n);
2435 CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
2438 vlr->flag= ME_SMOOTH+R_NOPUNOFLIP;
2441 /* mball -too bad- always has triangles, because quads can be non-planar */
2442 if(index[3] && index[3]!=index[2]) {
2443 vlr1= RE_findOrAddVlak(obr, obr->totvlak++);
2444 vlakindex= vlr1->index;
2446 vlr1->index= vlakindex;
2448 vlr1->v3= RE_findOrAddVert(obr, index[3]);
2449 if(ob->transflag & OB_NEG_SCALE)
2450 CalcNormFloat(vlr1->v1->co, vlr1->v2->co, vlr1->v3->co, vlr1->n);
2452 CalcNormFloat(vlr1->v3->co, vlr1->v2->co, vlr1->v1->co, vlr1->n);
2456 /* enforce display lists remade */
2457 freedisplist(&ob->disp);
2459 /* this enforces remake for real, orco displist is small (in scale) */
2460 ob->recalc |= OB_RECALC_DATA;
2463 /* ------------------------------------------------------------------------- */
2464 /* Surfaces and Curves */
2465 /* ------------------------------------------------------------------------- */
2467 /* returns amount of vertices added for orco */
2468 static int dl_surf_to_renderdata(ObjectRen *obr, DispList *dl, Material **matar, float *orco, float mat[4][4])
2470 Object *ob= obr->ob;
2471 VertRen *v1, *v2, *v3, *v4, *ver;
2472 VlakRen *vlr, *vlr1, *vlr2, *vlr3;
2473 Curve *cu= ob->data;
2475 int u, v, orcoret= 0;
2476 int p1, p2, p3, p4, a;
2477 int sizeu, nsizeu, sizev, nsizev;
2478 int startvert, startvlak;
2480 startvert= obr->totvert;
2481 nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr;
2484 for (u = 0; u < sizeu; u++) {
2485 v1 = RE_findOrAddVert(obr, obr->totvert++); /* save this for possible V wrapping */
2486 VECCOPY(v1->co, data); data += 3;
2488 v1->orco= orco; orco+= 3; orcoret++;
2490 MTC_Mat4MulVecfl(mat, v1->co);
2492 for (v = 1; v < sizev; v++) {
2493 ver= RE_findOrAddVert(obr, obr->totvert++);
2494 VECCOPY(ver->co, data); data += 3;
2496 ver->orco= orco; orco+= 3; orcoret++;
2498 MTC_Mat4MulVecfl(mat, ver->co);
2500 /* if V-cyclic, add extra vertices at end of the row */
2501 if (dl->flag & DL_CYCL_U) {
2502 ver= RE_findOrAddVert(obr, obr->totvert++);
2503 VECCOPY(ver->co, v1->co);
2505 ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
2510 /* Done before next loop to get corner vert */
2511 if (dl->flag & DL_CYCL_U) nsizev++;
2512 if (dl->flag & DL_CYCL_V) nsizeu++;
2514 /* if U cyclic, add extra row at end of column */
2515 if (dl->flag & DL_CYCL_V) {
2516 for (v = 0; v < nsizev; v++) {
2517 v1= RE_findOrAddVert(obr, startvert + v);
2518 ver= RE_findOrAddVert(obr, obr->totvert++);
2519 VECCOPY(ver->co, v1->co);
2521 ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
2529 startvlak= obr->totvlak;
2531 for(u = 0; u < sizeu - 1; u++) {
2532 p1 = startvert + u * sizev; /* walk through face list */
2537 for(v = 0; v < sizev - 1; v++) {
2538 v1= RE_findOrAddVert(obr, p1);
2539 v2= RE_findOrAddVert(obr, p2);
2540 v3= RE_findOrAddVert(obr, p3);
2541 v4= RE_findOrAddVert(obr, p4);
2543 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2544 vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
2546 CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, n1);
2548 VECCOPY(vlr->n, n1);
2550 vlr->mat= matar[ dl->col];
2551 vlr->ec= ME_V1V2+ME_V2V3;
2553 if( (cu->flag & CU_NOPUNOFLIP) ) {
2554 vlr->flag |= R_NOPUNOFLIP;
2557 VecAddf(v1->n, v1->n, n1);
2558 VecAddf(v2->n, v2->n, n1);
2559 VecAddf(v3->n, v3->n, n1);
2560 VecAddf(v4->n, v4->n, n1);
2562 p1++; p2++; p3++; p4++;
2565 /* fix normals for U resp. V cyclic faces */
2566 sizeu--; sizev--; /* dec size for face array */
2567 if (dl->flag & DL_CYCL_V) {
2569 for (v = 0; v < sizev; v++)
2572 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, v));
2573 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, v));
2574 VecAddf(vlr1->v1->n, vlr1->v1->n, vlr->n);
2575 VecAddf(vlr1->v2->n, vlr1->v2->n, vlr->n);
2576 VecAddf(vlr->v3->n, vlr->v3->n, vlr1->n);
2577 VecAddf(vlr->v4->n, vlr->v4->n, vlr1->n);
2580 if (dl->flag & DL_CYCL_U) {
2582 for (u = 0; u < sizeu; u++)
2585 vlr= RE_findOrAddVlak(obr, UVTOINDEX(u, 0));
2586 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(u, sizev-1));
2587 VecAddf(vlr1->v2->n, vlr1->v2->n, vlr->n);
2588 VecAddf(vlr1->v3->n, vlr1->v3->n, vlr->n);
2589 VecAddf(vlr->v1->n, vlr->v1->n, vlr1->n);
2590 VecAddf(vlr->v4->n, vlr->v4->n, vlr1->n);
2593 /* last vertex is an extra case:
2595 ^ ()----()----()----()
2599 ()====()====[]====()
2603 ()----()----()----()
2606 vertex [] is no longer shared, therefore distribute
2607 normals of the surrounding faces to all of the duplicates of []
2610 if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U))
2612 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m,n) */
2613 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0,0)); /* (0,0) */
2614 VecAddf(n1, vlr->n, vlr1->n);
2615 vlr2= RE_findOrAddVlak(obr, UVTOINDEX(0, sizev-1)); /* (0,n) */
2616 VecAddf(n1, n1, vlr2->n);
2617 vlr3= RE_findOrAddVlak(obr, UVTOINDEX(sizeu-1, 0)); /* (m,0) */
2618 VecAddf(n1, n1, vlr3->n);
2619 VECCOPY(vlr->v3->n, n1);
2620 VECCOPY(vlr1->v1->n, n1);
2621 VECCOPY(vlr2->v2->n, n1);
2622 VECCOPY(vlr3->v4->n, n1);
2624 for(a = startvert; a < obr->totvert; a++) {
2625 ver= RE_findOrAddVert(obr, a);
2633 static void init_render_surf(Render *re, ObjectRen *obr)
2635 Object *ob= obr->ob;
2640 Material *matar[32];
2641 float *orco=NULL, *orcobase=NULL, mat[4][4];
2648 MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
2649 MTC_Mat4Invert(ob->imat, mat);
2651 /* material array */
2652 memset(matar, 0, 4*32);
2653 matar[0]= give_render_material(re, ob, 0);
2654 for(a=0; a<ob->totcol; a++) {
2655 matar[a]= give_render_material(re, ob, a+1);
2656 if(matar[a] && matar[a]->texco & TEXCO_ORCO) {
2661 if(ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
2663 if(need_orco) orcobase= orco= get_object_orco(re, ob);
2665 displist.first= displist.last= 0;
2666 makeDispListSurf(ob, &displist, 1);
2669 /* walk along displaylist and create rendervertices/-faces */
2671 /* watch out: u ^= y, v ^= x !! */
2672 if(dl->type==DL_SURF) {
2673 orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
2678 freedisplist(&displist);
2681 static void init_render_curve(Render *re, ObjectRen *obr, int timeoffset)
2683 Object *ob= obr->ob;
2688 ListBase olddl={NULL, NULL};
2689 Material *matar[32];
2690 float len, *data, *fp, *orco=NULL, *orcobase= NULL;
2691 float n[3], mat[4][4];
2692 int nr, startvert, startvlak, a, b;
2693 int frontside, need_orco=0;
2696 if(ob->type==OB_FONT && cu->str==NULL) return;
2697 else if(ob->type==OB_CURVE && cu->nurb.first==NULL) return;
2699 /* no modifier call here, is in makedisp */
2702 SWAP(ListBase, olddl, cu->disp);
2705 if(cu->disp.first==NULL)
2706 makeDispListCurveTypes(ob, 0);
2708 if(cu->disp.first==NULL) return;
2710 MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
2711 MTC_Mat4Invert(ob->imat, mat);
2713 /* material array */
2714 memset(matar, 0, 4*32);
2715 matar[0]= give_render_material(re, ob, 0);
2716 for(a=0; a<ob->totcol; a++) {
2717 matar[a]= give_render_material(re, ob, a+1);
2718 if(matar[a]->texco & TEXCO_ORCO) {
2723 if(need_orco) orcobase=orco= get_object_orco(re, ob);
2727 if(dl->type==DL_INDEX3) {
2730 startvert= obr->totvert;
2733 n[0]= ob->imat[0][2];
2734 n[1]= ob->imat[1][2];
2735 n[2]= ob->imat[2][2];
2738 for(a=0; a<dl->nr; a++, data+=3) {
2739 ver= RE_findOrAddVert(obr, obr->totvert++);
2740 VECCOPY(ver->co, data);
2742 /* flip normal if face is backfacing, also used in face loop below */
2743 if(ver->co[2] < 0.0) {
2748 ver->n[0]= -n[0]; ver->n[1]= -n[1]; ver->n[2]= -n[2];
2752 MTC_Mat4MulVecfl(mat, ver->co);
2761 startvlak= obr->totvlak;
2763 for(a=0; a<dl->parts; a++, index+=3) {
2765 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2766 vlr->v1= RE_findOrAddVert(obr, startvert+index[0]);
2767 vlr->v2= RE_findOrAddVert(obr, startvert+index[1]);
2768 vlr->v3= RE_findOrAddVert(obr, startvert+index[2]);
2775 vlr->n[0]= -n[0]; vlr->n[1]= -n[1]; vlr->n[2]= -n[2];
2778 vlr->mat= matar[ dl->col ];
2780 if( (cu->flag & CU_NOPUNOFLIP) ) {
2781 vlr->flag |= R_NOPUNOFLIP;
2787 else if (dl->type==DL_SURF) {
2789 /* cyclic U means an extruded full circular curve, we skip bevel splitting then */
2790 if (dl->flag & DL_CYCL_U) {
2791 orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
2797 startvert= obr->totvert;
2798 nr= dl->nr*dl->parts;
2801 ver= RE_findOrAddVert(obr, obr->totvert++);
2803 VECCOPY(ver->co, fp);
2804 MTC_Mat4MulVecfl(mat, ver->co);
2813 if(dl->bevelSplitFlag || timeoffset==0) {
2814 startvlak= obr->totvlak;
2816 for(a=0; a<dl->parts; a++) {
2818 frontside= (a >= dl->nr/2);
2820 if (surfindex_displist(dl, a, &b, &p1, &p2, &p3, &p4)==0)