23b855acdc951bac76bcf3714e1150e1e0900071
[blender-staging.git] / intern / cycles / render / mesh.cpp
1 /*
2  * Copyright 2011-2013 Blender Foundation
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 #include "bvh/bvh.h"
18 #include "bvh/bvh_build.h"
19
20 #include "render/camera.h"
21 #include "render/curves.h"
22 #include "device/device.h"
23 #include "render/graph.h"
24 #include "render/shader.h"
25 #include "render/light.h"
26 #include "render/mesh.h"
27 #include "render/nodes.h"
28 #include "render/object.h"
29 #include "render/scene.h"
30
31 #include "kernel/osl/osl_globals.h"
32
33 #include "subd/subd_split.h"
34 #include "subd/subd_patch_table.h"
35
36 #include "util/util_foreach.h"
37 #include "util/util_logging.h"
38 #include "util/util_progress.h"
39 #include "util/util_set.h"
40
41 CCL_NAMESPACE_BEGIN
42
43 /* Triangle */
44
45 void Mesh::Triangle::bounds_grow(const float3 *verts, BoundBox& bounds) const
46 {
47         bounds.grow(verts[v[0]]);
48         bounds.grow(verts[v[1]]);
49         bounds.grow(verts[v[2]]);
50 }
51
52 void Mesh::Triangle::motion_verts(const float3 *verts,
53                                   const float3 *vert_steps,
54                                   size_t num_verts,
55                                   size_t num_steps,
56                                   float time,
57                                   float3 r_verts[3]) const
58 {
59         /* Figure out which steps we need to fetch and their interpolation factor. */
60         const size_t max_step = num_steps - 1;
61         const size_t step = min((int)(time * max_step), max_step - 1);
62         const float t = time*max_step - step;
63         /* Fetch vertex coordinates. */
64         float3 curr_verts[3];
65         float3 next_verts[3];
66         verts_for_step(verts,
67                        vert_steps,
68                        num_verts,
69                        num_steps,
70                        step,
71                        curr_verts);
72         verts_for_step(verts,
73                        vert_steps,
74                        num_verts,
75                        num_steps,
76                        step + 1,
77                        next_verts);
78         /* Interpolate between steps. */
79         r_verts[0] = (1.0f - t)*curr_verts[0] + t*next_verts[0];
80         r_verts[1] = (1.0f - t)*curr_verts[1] + t*next_verts[1];
81         r_verts[2] = (1.0f - t)*curr_verts[2] + t*next_verts[2];
82 }
83
84 void Mesh::Triangle::verts_for_step(const float3 *verts,
85                                     const float3 *vert_steps,
86                                     size_t num_verts,
87                                     size_t num_steps,
88                                     size_t step,
89                                     float3 r_verts[3]) const
90 {
91         const size_t center_step = ((num_steps - 1) / 2);
92         if(step == center_step) {
93                 /* Center step: regular vertex location. */
94                 r_verts[0] = verts[v[0]];
95                 r_verts[1] = verts[v[1]];
96                 r_verts[2] = verts[v[2]];
97         }
98         else {
99                 /* Center step not stored in the attribute array array. */
100                 if(step > center_step) {
101                         step--;
102                 }
103                 size_t offset = step * num_verts;
104                 r_verts[0] = vert_steps[offset + v[0]];
105                 r_verts[1] = vert_steps[offset + v[1]];
106                 r_verts[2] = vert_steps[offset + v[2]];
107         }
108 }
109
110 float3 Mesh::Triangle::compute_normal(const float3 *verts) const
111 {
112         const float3& v0 = verts[v[0]];
113         const float3& v1 = verts[v[1]];
114         const float3& v2 = verts[v[2]];
115         const float3 norm = cross(v1 - v0, v2 - v0);
116         const float normlen = len(norm);
117         if(normlen == 0.0f) {
118                 return make_float3(1.0f, 0.0f, 0.0f);
119         }
120         return norm / normlen;
121 }
122
123 bool Mesh::Triangle::valid(const float3 *verts) const
124 {
125         return isfinite3_safe(verts[v[0]]) &&
126                isfinite3_safe(verts[v[1]]) &&
127                isfinite3_safe(verts[v[2]]);
128 }
129
130 /* Curve */
131
132 void Mesh::Curve::bounds_grow(const int k, const float3 *curve_keys, const float *curve_radius, BoundBox& bounds) const
133 {
134         float3 P[4];
135
136         P[0] = curve_keys[max(first_key + k - 1,first_key)];
137         P[1] = curve_keys[first_key + k];
138         P[2] = curve_keys[first_key + k + 1];
139         P[3] = curve_keys[min(first_key + k + 2, first_key + num_keys - 1)];
140
141         float3 lower;
142         float3 upper;
143
144         curvebounds(&lower.x, &upper.x, P, 0);
145         curvebounds(&lower.y, &upper.y, P, 1);
146         curvebounds(&lower.z, &upper.z, P, 2);
147
148         float mr = max(curve_radius[first_key + k], curve_radius[first_key + k + 1]);
149
150         bounds.grow(lower, mr);
151         bounds.grow(upper, mr);
152 }
153
154 void Mesh::Curve::bounds_grow(const int k,
155                               const float3 *curve_keys,
156                               const float *curve_radius,
157                               const Transform& aligned_space,
158                               BoundBox& bounds) const
159 {
160         float3 P[4];
161
162         P[0] = curve_keys[max(first_key + k - 1,first_key)];
163         P[1] = curve_keys[first_key + k];
164         P[2] = curve_keys[first_key + k + 1];
165         P[3] = curve_keys[min(first_key + k + 2, first_key + num_keys - 1)];
166
167         P[0] = transform_point(&aligned_space, P[0]);
168         P[1] = transform_point(&aligned_space, P[1]);
169         P[2] = transform_point(&aligned_space, P[2]);
170         P[3] = transform_point(&aligned_space, P[3]);
171
172         float3 lower;
173         float3 upper;
174
175         curvebounds(&lower.x, &upper.x, P, 0);
176         curvebounds(&lower.y, &upper.y, P, 1);
177         curvebounds(&lower.z, &upper.z, P, 2);
178
179         float mr = max(curve_radius[first_key + k], curve_radius[first_key + k + 1]);
180
181         bounds.grow(lower, mr);
182         bounds.grow(upper, mr);
183 }
184
185 void Mesh::Curve::bounds_grow(float4 keys[4], BoundBox& bounds) const
186 {
187         float3 P[4] = {
188                 float4_to_float3(keys[0]),
189                 float4_to_float3(keys[1]),
190                 float4_to_float3(keys[2]),
191                 float4_to_float3(keys[3]),
192         };
193
194         float3 lower;
195         float3 upper;
196
197         curvebounds(&lower.x, &upper.x, P, 0);
198         curvebounds(&lower.y, &upper.y, P, 1);
199         curvebounds(&lower.z, &upper.z, P, 2);
200
201         float mr = max(keys[1].w, keys[2].w);
202
203         bounds.grow(lower, mr);
204         bounds.grow(upper, mr);
205 }
206
207 void Mesh::Curve::motion_keys(const float3 *curve_keys,
208                               const float *curve_radius,
209                               const float3 *key_steps,
210                               size_t num_curve_keys,
211                               size_t num_steps,
212                               float time,
213                               size_t k0, size_t k1,
214                               float4 r_keys[2]) const
215 {
216         /* Figure out which steps we need to fetch and their interpolation factor. */
217         const size_t max_step = num_steps - 1;
218         const size_t step = min((int)(time * max_step), max_step - 1);
219         const float t = time*max_step - step;
220         /* Fetch vertex coordinates. */
221         float4 curr_keys[2];
222         float4 next_keys[2];
223         keys_for_step(curve_keys,
224                       curve_radius,
225                       key_steps,
226                       num_curve_keys,
227                       num_steps,
228                       step,
229                       k0, k1,
230                       curr_keys);
231         keys_for_step(curve_keys,
232                       curve_radius,
233                       key_steps,
234                       num_curve_keys,
235                       num_steps,
236                       step + 1,
237                       k0, k1,
238                       next_keys);
239         /* Interpolate between steps. */
240         r_keys[0] = (1.0f - t)*curr_keys[0] + t*next_keys[0];
241         r_keys[1] = (1.0f - t)*curr_keys[1] + t*next_keys[1];
242 }
243
244 void Mesh::Curve::cardinal_motion_keys(const float3 *curve_keys,
245                                        const float *curve_radius,
246                                        const float3 *key_steps,
247                                        size_t num_curve_keys,
248                                        size_t num_steps,
249                                        float time,
250                                        size_t k0, size_t k1,
251                                        size_t k2, size_t k3,
252                                        float4 r_keys[4]) const
253 {
254         /* Figure out which steps we need to fetch and their interpolation factor. */
255         const size_t max_step = num_steps - 1;
256         const size_t step = min((int)(time * max_step), max_step - 1);
257         const float t = time*max_step - step;
258         /* Fetch vertex coordinates. */
259         float4 curr_keys[4];
260         float4 next_keys[4];
261         cardinal_keys_for_step(curve_keys,
262                                curve_radius,
263                                key_steps,
264                                num_curve_keys,
265                                num_steps,
266                                step,
267                                k0, k1, k2, k3,
268                                curr_keys);
269         cardinal_keys_for_step(curve_keys,
270                                curve_radius,
271                                key_steps,
272                                num_curve_keys,
273                                num_steps,
274                                step + 1,
275                                k0, k1, k2, k3,
276                                next_keys);
277         /* Interpolate between steps. */
278         r_keys[0] = (1.0f - t)*curr_keys[0] + t*next_keys[0];
279         r_keys[1] = (1.0f - t)*curr_keys[1] + t*next_keys[1];
280         r_keys[2] = (1.0f - t)*curr_keys[2] + t*next_keys[2];
281         r_keys[3] = (1.0f - t)*curr_keys[3] + t*next_keys[3];
282 }
283
284 void Mesh::Curve::keys_for_step(const float3 *curve_keys,
285                                 const float *curve_radius,
286                                 const float3 *key_steps,
287                                 size_t num_curve_keys,
288                                 size_t num_steps,
289                                 size_t step,
290                                 size_t k0, size_t k1,
291                                 float4 r_keys[2]) const
292 {
293         k0 = max(k0, 0);
294         k1 = min(k1, num_keys - 1);
295         const size_t center_step = ((num_steps - 1) / 2);
296         if(step == center_step) {
297                 /* Center step: regular key location. */
298                 /* TODO(sergey): Consider adding make_float4(float3, float)
299                  * function.
300                  */
301                 r_keys[0] = make_float4(curve_keys[first_key + k0].x,
302                                         curve_keys[first_key + k0].y,
303                                         curve_keys[first_key + k0].z,
304                                         curve_radius[first_key + k0]);
305                 r_keys[1] = make_float4(curve_keys[first_key + k1].x,
306                                         curve_keys[first_key + k1].y,
307                                         curve_keys[first_key + k1].z,
308                                         curve_radius[first_key + k1]);
309         }
310         else {
311                 /* Center step is not stored in this array. */
312                 if(step > center_step) {
313                         step--;
314                 }
315                 const size_t offset = first_key + step * num_curve_keys;
316                 r_keys[0] = make_float4(key_steps[offset + k0].x,
317                                         key_steps[offset + k0].y,
318                                         key_steps[offset + k0].z,
319                                         curve_radius[first_key + k0]);
320                 r_keys[1] = make_float4(key_steps[offset + k1].x,
321                                         key_steps[offset + k1].y,
322                                         key_steps[offset + k1].z,
323                                         curve_radius[first_key + k1]);
324         }
325 }
326
327 void Mesh::Curve::cardinal_keys_for_step(const float3 *curve_keys,
328                                          const float *curve_radius,
329                                          const float3 *key_steps,
330                                          size_t num_curve_keys,
331                                          size_t num_steps,
332                                          size_t step,
333                                          size_t k0, size_t k1,
334                                          size_t k2, size_t k3,
335                                          float4 r_keys[4]) const
336 {
337         k0 = max(k0, 0);
338         k3 = min(k3, num_keys - 1);
339         const size_t center_step = ((num_steps - 1) / 2);
340         if(step == center_step) {
341                 /* Center step: regular key location. */
342                 r_keys[0] = make_float4(curve_keys[first_key + k0].x,
343                                         curve_keys[first_key + k0].y,
344                                         curve_keys[first_key + k0].z,
345                                         curve_radius[first_key + k0]);
346                 r_keys[1] = make_float4(curve_keys[first_key + k1].x,
347                                         curve_keys[first_key + k1].y,
348                                         curve_keys[first_key + k1].z,
349                                         curve_radius[first_key + k1]);
350                 r_keys[2] = make_float4(curve_keys[first_key + k2].x,
351                                         curve_keys[first_key + k2].y,
352                                         curve_keys[first_key + k2].z,
353                                         curve_radius[first_key + k2]);
354                 r_keys[3] = make_float4(curve_keys[first_key + k3].x,
355                                         curve_keys[first_key + k3].y,
356                                         curve_keys[first_key + k3].z,
357                                         curve_radius[first_key + k3]);
358         }
359         else {
360                 /* Center step is not stored in this array. */
361                 if(step > center_step) {
362                         step--;
363                 }
364                 const size_t offset = first_key + step * num_curve_keys;
365                 r_keys[0] = make_float4(key_steps[offset + k0].x,
366                                         key_steps[offset + k0].y,
367                                         key_steps[offset + k0].z,
368                                         curve_radius[first_key + k0]);
369                 r_keys[1] = make_float4(key_steps[offset + k1].x,
370                                         key_steps[offset + k1].y,
371                                         key_steps[offset + k1].z,
372                                         curve_radius[first_key + k1]);
373                 r_keys[2] = make_float4(key_steps[offset + k2].x,
374                                         key_steps[offset + k2].y,
375                                         key_steps[offset + k2].z,
376                                         curve_radius[first_key + k2]);
377                 r_keys[3] = make_float4(key_steps[offset + k3].x,
378                                         key_steps[offset + k3].y,
379                                         key_steps[offset + k3].z,
380                                         curve_radius[first_key + k3]);
381         }
382 }
383
384 /* SubdFace */
385
386 float3 Mesh::SubdFace::normal(const Mesh *mesh) const
387 {
388         float3 v0 = mesh->verts[mesh->subd_face_corners[start_corner+0]];
389         float3 v1 = mesh->verts[mesh->subd_face_corners[start_corner+1]];
390         float3 v2 = mesh->verts[mesh->subd_face_corners[start_corner+2]];
391
392         return safe_normalize(cross(v1 - v0, v2 - v0));
393 }
394
395 /* Mesh */
396
397 NODE_DEFINE(Mesh)
398 {
399         NodeType* type = NodeType::add("mesh", create);
400
401         SOCKET_UINT(motion_steps, "Motion Steps", 3);
402         SOCKET_BOOLEAN(use_motion_blur, "Use Motion Blur", false);
403
404         SOCKET_INT_ARRAY(triangles, "Triangles", array<int>());
405         SOCKET_POINT_ARRAY(verts, "Vertices", array<float3>());
406         SOCKET_INT_ARRAY(shader, "Shader", array<int>());
407         SOCKET_BOOLEAN_ARRAY(smooth, "Smooth", array<bool>());
408
409         SOCKET_POINT_ARRAY(curve_keys, "Curve Keys", array<float3>());
410         SOCKET_FLOAT_ARRAY(curve_radius, "Curve Radius", array<float>());
411         SOCKET_INT_ARRAY(curve_first_key, "Curve First Key", array<int>());
412         SOCKET_INT_ARRAY(curve_shader, "Curve Shader", array<int>());
413
414         return type;
415 }
416
417 Mesh::Mesh()
418 : Node(node_type)
419 {
420         need_update = true;
421         need_update_rebuild = false;
422         transform_applied = false;
423         transform_negative_scaled = false;
424         transform_normal = transform_identity();
425         bounds = BoundBox::empty;
426
427         bvh = NULL;
428
429         tri_offset = 0;
430         vert_offset = 0;
431
432         curve_offset = 0;
433         curvekey_offset = 0;
434
435         patch_offset = 0;
436         face_offset = 0;
437         corner_offset = 0;
438
439         attr_map_offset = 0;
440
441         num_subd_verts = 0;
442
443         attributes.triangle_mesh = this;
444         curve_attributes.curve_mesh = this;
445         subd_attributes.subd_mesh = this;
446
447         geometry_flags = GEOMETRY_NONE;
448
449         volume_isovalue = 0.001f;
450         has_volume = false;
451         has_surface_bssrdf = false;
452
453         num_ngons = 0;
454
455         subdivision_type = SUBDIVISION_NONE;
456         subd_params = NULL;
457
458         patch_table = NULL;
459 }
460
461 Mesh::~Mesh()
462 {
463         delete bvh;
464         delete patch_table;
465         delete subd_params;
466 }
467
468 void Mesh::resize_mesh(int numverts, int numtris)
469 {
470         verts.resize(numverts);
471         triangles.resize(numtris * 3);
472         shader.resize(numtris);
473         smooth.resize(numtris);
474
475         if(subd_faces.size()) {
476                 triangle_patch.resize(numtris);
477                 vert_patch_uv.resize(numverts);
478         }
479
480         attributes.resize();
481 }
482
483 void Mesh::reserve_mesh(int numverts, int numtris)
484 {
485         /* reserve space to add verts and triangles later */
486         verts.reserve(numverts);
487         triangles.reserve(numtris * 3);
488         shader.reserve(numtris);
489         smooth.reserve(numtris);
490
491         if(subd_faces.size()) {
492                 triangle_patch.reserve(numtris);
493                 vert_patch_uv.reserve(numverts);
494         }
495
496         attributes.resize(true);
497 }
498
499 void Mesh::resize_curves(int numcurves, int numkeys)
500 {
501         curve_keys.resize(numkeys);
502         curve_radius.resize(numkeys);
503         curve_first_key.resize(numcurves);
504         curve_shader.resize(numcurves);
505
506         curve_attributes.resize();
507 }
508
509 void Mesh::reserve_curves(int numcurves, int numkeys)
510 {
511         curve_keys.reserve(numkeys);
512         curve_radius.reserve(numkeys);
513         curve_first_key.reserve(numcurves);
514         curve_shader.reserve(numcurves);
515
516         curve_attributes.resize(true);
517 }
518
519 void Mesh::resize_subd_faces(int numfaces, int num_ngons_, int numcorners)
520 {
521         subd_faces.resize(numfaces);
522         subd_face_corners.resize(numcorners);
523         num_ngons = num_ngons_;
524
525         subd_attributes.resize();
526 }
527
528 void Mesh::reserve_subd_faces(int numfaces, int num_ngons_, int numcorners)
529 {
530         subd_faces.reserve(numfaces);
531         subd_face_corners.reserve(numcorners);
532         num_ngons = num_ngons_;
533
534         subd_attributes.resize(true);
535 }
536
537 void Mesh::clear(bool preserve_voxel_data)
538 {
539         /* clear all verts and triangles */
540         verts.clear();
541         triangles.clear();
542         shader.clear();
543         smooth.clear();
544
545         triangle_patch.clear();
546         vert_patch_uv.clear();
547
548         curve_keys.clear();
549         curve_radius.clear();
550         curve_first_key.clear();
551         curve_shader.clear();
552
553         subd_faces.clear();
554         subd_face_corners.clear();
555
556         num_subd_verts = 0;
557
558         subd_creases.clear();
559
560         curve_attributes.clear();
561         subd_attributes.clear();
562         attributes.clear(preserve_voxel_data);
563
564         if(!preserve_voxel_data) {
565                 used_shaders.clear();
566                 geometry_flags = GEOMETRY_NONE;
567         }
568
569         transform_applied = false;
570         transform_negative_scaled = false;
571         transform_normal = transform_identity();
572
573         delete patch_table;
574         patch_table = NULL;
575 }
576
577 int Mesh::split_vertex(int vertex)
578 {
579         /* copy vertex location and vertex attributes */
580         add_vertex_slow(verts[vertex]);
581
582         foreach(Attribute& attr, attributes.attributes) {
583                 if(attr.element == ATTR_ELEMENT_VERTEX) {
584                         array<char> tmp(attr.data_sizeof());
585                         memcpy(tmp.data(), attr.data() + tmp.size()*vertex, tmp.size());
586                         attr.add(tmp.data());
587                 }
588         }
589
590         foreach(Attribute& attr, subd_attributes.attributes) {
591                 if(attr.element == ATTR_ELEMENT_VERTEX) {
592                         array<char> tmp(attr.data_sizeof());
593                         memcpy(tmp.data(), attr.data() + tmp.size()*vertex, tmp.size());
594                         attr.add(tmp.data());
595                 }
596         }
597
598         return verts.size() - 1;
599 }
600
601 void Mesh::add_vertex(float3 P)
602 {
603         verts.push_back_reserved(P);
604
605         if(subd_faces.size()) {
606                 vert_patch_uv.push_back_reserved(make_float2(0.0f, 0.0f));
607         }
608 }
609
610 void Mesh::add_vertex_slow(float3 P)
611 {
612         verts.push_back_slow(P);
613
614         if(subd_faces.size()) {
615                 vert_patch_uv.push_back_slow(make_float2(0.0f, 0.0f));
616         }
617 }
618
619 void Mesh::add_triangle(int v0, int v1, int v2, int shader_, bool smooth_)
620 {
621         triangles.push_back_reserved(v0);
622         triangles.push_back_reserved(v1);
623         triangles.push_back_reserved(v2);
624         shader.push_back_reserved(shader_);
625         smooth.push_back_reserved(smooth_);
626
627         if(subd_faces.size()) {
628                 triangle_patch.push_back_reserved(-1);
629         }
630 }
631
632 void Mesh::add_curve_key(float3 co, float radius)
633 {
634         curve_keys.push_back_reserved(co);
635         curve_radius.push_back_reserved(radius);
636 }
637
638 void Mesh::add_curve(int first_key, int shader)
639 {
640         curve_first_key.push_back_reserved(first_key);
641         curve_shader.push_back_reserved(shader);
642 }
643
644 void Mesh::add_subd_face(int* corners, int num_corners, int shader_, bool smooth_)
645 {
646         int start_corner = subd_face_corners.size();
647
648         for(int i = 0; i < num_corners; i++) {
649                 subd_face_corners.push_back_reserved(corners[i]);
650         }
651
652         int ptex_offset = 0;
653
654         if(subd_faces.size()) {
655                 SubdFace& s = subd_faces[subd_faces.size()-1];
656                 ptex_offset = s.ptex_offset + s.num_ptex_faces();
657         }
658
659         SubdFace face = {start_corner, num_corners, shader_, smooth_, ptex_offset};
660         subd_faces.push_back_reserved(face);
661 }
662
663 void Mesh::compute_bounds()
664 {
665         BoundBox bnds = BoundBox::empty;
666         size_t verts_size = verts.size();
667         size_t curve_keys_size = curve_keys.size();
668
669         if(verts_size + curve_keys_size > 0) {
670                 for(size_t i = 0; i < verts_size; i++)
671                         bnds.grow(verts[i]);
672
673                 for(size_t i = 0; i < curve_keys_size; i++)
674                         bnds.grow(curve_keys[i], curve_radius[i]);
675
676                 Attribute *attr = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
677                 if(use_motion_blur && attr) {
678                         size_t steps_size = verts.size() * (motion_steps - 1);
679                         float3 *vert_steps = attr->data_float3();
680
681                         for(size_t i = 0; i < steps_size; i++)
682                                 bnds.grow(vert_steps[i]);
683                 }
684
685                 Attribute *curve_attr = curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
686                 if(use_motion_blur && curve_attr) {
687                         size_t steps_size = curve_keys.size() * (motion_steps - 1);
688                         float3 *key_steps = curve_attr->data_float3();
689
690                         for(size_t i = 0; i < steps_size; i++)
691                                 bnds.grow(key_steps[i]);
692                 }
693
694                 if(!bnds.valid()) {
695                         bnds = BoundBox::empty;
696
697                         /* skip nan or inf coordinates */
698                         for(size_t i = 0; i < verts_size; i++)
699                                 bnds.grow_safe(verts[i]);
700
701                         for(size_t i = 0; i < curve_keys_size; i++)
702                                 bnds.grow_safe(curve_keys[i], curve_radius[i]);
703
704                         if(use_motion_blur && attr) {
705                                 size_t steps_size = verts.size() * (motion_steps - 1);
706                                 float3 *vert_steps = attr->data_float3();
707
708                                 for(size_t i = 0; i < steps_size; i++)
709                                         bnds.grow_safe(vert_steps[i]);
710                         }
711
712                         if(use_motion_blur && curve_attr) {
713                                 size_t steps_size = curve_keys.size() * (motion_steps - 1);
714                                 float3 *key_steps = curve_attr->data_float3();
715
716                                 for(size_t i = 0; i < steps_size; i++)
717                                         bnds.grow_safe(key_steps[i]);
718                         }
719                 }
720         }
721
722         if(!bnds.valid()) {
723                 /* empty mesh */
724                 bnds.grow(make_float3(0.0f, 0.0f, 0.0f));
725         }
726
727         bounds = bnds;
728 }
729
730 void Mesh::add_face_normals()
731 {
732         /* don't compute if already there */
733         if(attributes.find(ATTR_STD_FACE_NORMAL))
734                 return;
735
736         /* get attributes */
737         Attribute *attr_fN = attributes.add(ATTR_STD_FACE_NORMAL);
738         float3 *fN = attr_fN->data_float3();
739
740         /* compute face normals */
741         size_t triangles_size = num_triangles();
742
743         if(triangles_size) {
744                 float3 *verts_ptr = verts.data();
745
746                 for(size_t i = 0; i < triangles_size; i++) {
747                         fN[i] = get_triangle(i).compute_normal(verts_ptr);
748                 }
749         }
750
751         /* expected to be in local space */
752         if(transform_applied) {
753                 Transform ntfm = transform_inverse(transform_normal);
754
755                 for(size_t i = 0; i < triangles_size; i++)
756                         fN[i] = normalize(transform_direction(&ntfm, fN[i]));
757         }
758 }
759
760 void Mesh::add_vertex_normals()
761 {
762         bool flip = transform_negative_scaled;
763         size_t verts_size = verts.size();
764         size_t triangles_size = num_triangles();
765
766         /* static vertex normals */
767         if(!attributes.find(ATTR_STD_VERTEX_NORMAL) && triangles_size) {
768                 /* get attributes */
769                 Attribute *attr_fN = attributes.find(ATTR_STD_FACE_NORMAL);
770                 Attribute *attr_vN = attributes.add(ATTR_STD_VERTEX_NORMAL);
771
772                 float3 *fN = attr_fN->data_float3();
773                 float3 *vN = attr_vN->data_float3();
774
775                 /* compute vertex normals */
776                 memset(vN, 0, verts.size()*sizeof(float3));
777
778                 for(size_t i = 0; i < triangles_size; i++) {
779                         for(size_t j = 0; j < 3; j++) {
780                                 vN[get_triangle(i).v[j]] += fN[i];
781                         }
782                 }
783
784                 for(size_t i = 0; i < verts_size; i++) {
785                         vN[i] = normalize(vN[i]);
786                         if(flip) {
787                                 vN[i] = -vN[i];
788                         }
789                 }
790         }
791
792         /* motion vertex normals */
793         Attribute *attr_mP = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
794         Attribute *attr_mN = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
795
796         if(has_motion_blur() && attr_mP && !attr_mN && triangles_size) {
797                 /* create attribute */
798                 attr_mN = attributes.add(ATTR_STD_MOTION_VERTEX_NORMAL);
799
800                 for(int step = 0; step < motion_steps - 1; step++) {
801                         float3 *mP = attr_mP->data_float3() + step*verts.size();
802                         float3 *mN = attr_mN->data_float3() + step*verts.size();
803
804                         /* compute */
805                         memset(mN, 0, verts.size()*sizeof(float3));
806
807                         for(size_t i = 0; i < triangles_size; i++) {
808                                 for(size_t j = 0; j < 3; j++) {
809                                         float3 fN = get_triangle(i).compute_normal(mP);
810                                         mN[get_triangle(i).v[j]] += fN;
811                                 }
812                         }
813
814                         for(size_t i = 0; i < verts_size; i++) {
815                                 mN[i] = normalize(mN[i]);
816                                 if(flip) {
817                                         mN[i] = -mN[i];
818                                 }
819                         }
820                 }
821         }
822
823         /* subd vertex normals */
824         if(!subd_attributes.find(ATTR_STD_VERTEX_NORMAL) && subd_faces.size()) {
825                 /* get attributes */
826                 Attribute *attr_vN = subd_attributes.add(ATTR_STD_VERTEX_NORMAL);
827                 float3 *vN = attr_vN->data_float3();
828
829                 /* compute vertex normals */
830                 memset(vN, 0, verts.size()*sizeof(float3));
831
832                 for(size_t i = 0; i < subd_faces.size(); i++) {
833                         SubdFace& face = subd_faces[i];
834                         float3 fN = face.normal(this);
835
836                         for(size_t j = 0; j < face.num_corners; j++) {
837                                 size_t corner = subd_face_corners[face.start_corner+j];
838                                 vN[corner] += fN;
839                         }
840                 }
841
842                 for(size_t i = 0; i < verts_size; i++) {
843                         vN[i] = normalize(vN[i]);
844                         if(flip) {
845                                 vN[i] = -vN[i];
846                         }
847                 }
848         }
849 }
850
851 void Mesh::add_undisplaced()
852 {
853         AttributeSet& attrs = (subdivision_type == SUBDIVISION_NONE) ? attributes : subd_attributes;
854
855         /* don't compute if already there */
856         if(attrs.find(ATTR_STD_POSITION_UNDISPLACED)) {
857                 return;
858         }
859
860         /* get attribute */
861         Attribute *attr = attrs.add(ATTR_STD_POSITION_UNDISPLACED);
862         attr->flags |= ATTR_SUBDIVIDED;
863
864         float3 *data = attr->data_float3();
865
866         /* copy verts */
867         size_t size = attr->buffer_size(this, (subdivision_type == SUBDIVISION_NONE) ? ATTR_PRIM_TRIANGLE : ATTR_PRIM_SUBD);
868
869         /* Center points for ngons aren't stored in Mesh::verts but are included in size since they will be
870          * calculated later, we subtract them from size here so we don't have an overflow while copying.
871          */
872         size -= num_ngons * attr->data_sizeof();
873
874         if(size) {
875                 memcpy(data, verts.data(), size);
876         }
877 }
878
879 void Mesh::pack_normals(Scene *scene, uint *tri_shader, float4 *vnormal)
880 {
881         Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL);
882         if(attr_vN == NULL) {
883                 /* Happens on objects with just hair. */
884                 return;
885         }
886
887         float3 *vN = attr_vN->data_float3();
888         uint shader_id = 0;
889         uint last_shader = -1;
890         bool last_smooth = false;
891
892         size_t triangles_size = num_triangles();
893         int *shader_ptr = shader.data();
894
895         bool do_transform = transform_applied;
896         Transform ntfm = transform_normal;
897
898         /* save shader */
899         for(size_t i = 0; i < triangles_size; i++) {
900                 if(shader_ptr[i] != last_shader || last_smooth != smooth[i]) {
901                         last_shader = shader_ptr[i];
902                         last_smooth = smooth[i];
903                         Shader *shader = (last_shader < used_shaders.size()) ?
904                                 used_shaders[last_shader] : scene->default_surface;
905                         shader_id = scene->shader_manager->get_shader_id(shader, last_smooth);
906                 }
907
908                 tri_shader[i] = shader_id;
909         }
910
911         size_t verts_size = verts.size();
912
913         for(size_t i = 0; i < verts_size; i++) {
914                 float3 vNi = vN[i];
915
916                 if(do_transform)
917                         vNi = safe_normalize(transform_direction(&ntfm, vNi));
918
919                 vnormal[i] = make_float4(vNi.x, vNi.y, vNi.z, 0.0f);
920         }
921 }
922
923 void Mesh::pack_verts(const vector<uint>& tri_prim_index,
924                       uint4 *tri_vindex,
925                       uint *tri_patch,
926                       float2 *tri_patch_uv,
927                       size_t vert_offset,
928                       size_t tri_offset)
929 {
930         size_t verts_size = verts.size();
931
932         if(verts_size && subd_faces.size()) {
933                 float2 *vert_patch_uv_ptr = vert_patch_uv.data();
934
935                 for(size_t i = 0; i < verts_size; i++) {
936                         tri_patch_uv[i] = vert_patch_uv_ptr[i];
937                 }
938         }
939
940         size_t triangles_size = num_triangles();
941
942         for(size_t i = 0; i < triangles_size; i++) {
943                 Triangle t = get_triangle(i);
944                 tri_vindex[i] = make_uint4(t.v[0] + vert_offset,
945                                            t.v[1] + vert_offset,
946                                            t.v[2] + vert_offset,
947                                            tri_prim_index[i + tri_offset]);
948
949                 tri_patch[i] = (!subd_faces.size()) ? -1 : (triangle_patch[i]*8 + patch_offset);
950         }
951 }
952
953 void Mesh::pack_curves(Scene *scene, float4 *curve_key_co, float4 *curve_data, size_t curvekey_offset)
954 {
955         size_t curve_keys_size = curve_keys.size();
956
957         /* pack curve keys */
958         if(curve_keys_size) {
959                 float3 *keys_ptr = curve_keys.data();
960                 float *radius_ptr = curve_radius.data();
961
962                 for(size_t i = 0; i < curve_keys_size; i++)
963                         curve_key_co[i] = make_float4(keys_ptr[i].x, keys_ptr[i].y, keys_ptr[i].z, radius_ptr[i]);
964         }
965
966         /* pack curve segments */
967         size_t curve_num = num_curves();
968
969         for(size_t i = 0; i < curve_num; i++) {
970                 Curve curve = get_curve(i);
971                 int shader_id = curve_shader[i];
972                 Shader *shader = (shader_id < used_shaders.size()) ?
973                         used_shaders[shader_id] : scene->default_surface;
974                 shader_id = scene->shader_manager->get_shader_id(shader, false);
975
976                 curve_data[i] = make_float4(
977                         __int_as_float(curve.first_key + curvekey_offset),
978                         __int_as_float(curve.num_keys),
979                         __int_as_float(shader_id),
980                         0.0f);
981         }
982 }
983
984 void Mesh::pack_patches(uint *patch_data, uint vert_offset, uint face_offset, uint corner_offset)
985 {
986         size_t num_faces = subd_faces.size();
987         int ngons = 0;
988
989         for(size_t f = 0; f < num_faces; f++) {
990                 SubdFace face = subd_faces[f];
991
992                 if(face.is_quad()) {
993                         int c[4];
994                         memcpy(c, &subd_face_corners[face.start_corner], sizeof(int)*4);
995
996                         *(patch_data++) = c[0] + vert_offset;
997                         *(patch_data++) = c[1] + vert_offset;
998                         *(patch_data++) = c[2] + vert_offset;
999                         *(patch_data++) = c[3] + vert_offset;
1000
1001                         *(patch_data++) = f+face_offset;
1002                         *(patch_data++) = face.num_corners;
1003                         *(patch_data++) = face.start_corner + corner_offset;
1004                         *(patch_data++) = 0;
1005                 }
1006                 else {
1007                         for(int i = 0; i < face.num_corners; i++) {
1008                                 int c[4];
1009                                 c[0] = subd_face_corners[face.start_corner + mod(i + 0, face.num_corners)];
1010                                 c[1] = subd_face_corners[face.start_corner + mod(i + 1, face.num_corners)];
1011                                 c[2] = verts.size() - num_subd_verts + ngons;
1012                                 c[3] = subd_face_corners[face.start_corner + mod(i - 1, face.num_corners)];
1013
1014                                 *(patch_data++) = c[0] + vert_offset;
1015                                 *(patch_data++) = c[1] + vert_offset;
1016                                 *(patch_data++) = c[2] + vert_offset;
1017                                 *(patch_data++) = c[3] + vert_offset;
1018
1019                                 *(patch_data++) = f+face_offset;
1020                                 *(patch_data++) = face.num_corners | (i << 16);
1021                                 *(patch_data++) = face.start_corner + corner_offset;
1022                                 *(patch_data++) = subd_face_corners.size() + ngons + corner_offset;
1023                         }
1024
1025                         ngons++;
1026                 }
1027         }
1028 }
1029
1030 void Mesh::compute_bvh(Device *device,
1031                        DeviceScene *dscene,
1032                        SceneParams *params,
1033                        Progress *progress,
1034                        int n,
1035                        int total)
1036 {
1037         if(progress->get_cancel())
1038                 return;
1039
1040         compute_bounds();
1041
1042         if(need_build_bvh()) {
1043                 string msg = "Updating Mesh BVH ";
1044                 if(name == "")
1045                         msg += string_printf("%u/%u", (uint)(n+1), (uint)total);
1046                 else
1047                         msg += string_printf("%s %u/%u", name.c_str(), (uint)(n+1), (uint)total);
1048
1049                 Object object;
1050                 object.mesh = this;
1051
1052                 vector<Object*> objects;
1053                 objects.push_back(&object);
1054
1055                 if(bvh && !need_update_rebuild) {
1056                         progress->set_status(msg, "Refitting BVH");
1057                         bvh->objects = objects;
1058                         bvh->refit(*progress);
1059                 }
1060                 else {
1061                         progress->set_status(msg, "Building BVH");
1062
1063                         BVHParams bparams;
1064                         bparams.use_spatial_split = params->use_bvh_spatial_split;
1065                         bparams.bvh_layout = BVHParams::best_bvh_layout(
1066                                 params->bvh_layout,
1067                                 device->info.bvh_layout_mask);
1068                         bparams.use_unaligned_nodes = dscene->data.bvh.have_curves &&
1069                                                       params->use_bvh_unaligned_nodes;
1070                         bparams.num_motion_triangle_steps = params->num_bvh_time_steps;
1071                         bparams.num_motion_curve_steps = params->num_bvh_time_steps;
1072
1073                         delete bvh;
1074                         bvh = BVH::create(bparams, objects);
1075                         MEM_GUARDED_CALL(progress, bvh->build, *progress);
1076                 }
1077         }
1078
1079         need_update = false;
1080         need_update_rebuild = false;
1081 }
1082
1083 void Mesh::tag_update(Scene *scene, bool rebuild)
1084 {
1085         need_update = true;
1086
1087         if(rebuild) {
1088                 need_update_rebuild = true;
1089                 scene->light_manager->need_update = true;
1090         }
1091         else {
1092                 foreach(Shader *shader, used_shaders)
1093                         if(shader->has_surface_emission)
1094                                 scene->light_manager->need_update = true;
1095         }
1096
1097         scene->mesh_manager->need_update = true;
1098         scene->object_manager->need_update = true;
1099 }
1100
1101 bool Mesh::has_motion_blur() const
1102 {
1103         return (use_motion_blur &&
1104                 (attributes.find(ATTR_STD_MOTION_VERTEX_POSITION) ||
1105                  curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION)));
1106 }
1107
1108 bool Mesh::has_true_displacement() const
1109 {
1110         foreach(Shader *shader, used_shaders) {
1111                 if(shader->has_displacement && shader->displacement_method != DISPLACE_BUMP) {
1112                         return true;
1113                 }
1114         }
1115
1116         return false;
1117 }
1118
1119 bool Mesh::need_build_bvh() const
1120 {
1121         return !transform_applied || has_surface_bssrdf;
1122 }
1123
1124 bool Mesh::is_instanced() const
1125 {
1126         /* Currently we treat subsurface objects as instanced.
1127          *
1128          * While it might be not very optimal for ray traversal, it avoids having
1129          * duplicated BVH in the memory, saving quite some space.
1130          */
1131         return !transform_applied || has_surface_bssrdf;
1132 }
1133
1134 /* Mesh Manager */
1135
1136 MeshManager::MeshManager()
1137 {
1138         need_update = true;
1139         need_flags_update = true;
1140 }
1141
1142 MeshManager::~MeshManager()
1143 {
1144 }
1145
1146 void MeshManager::update_osl_attributes(Device *device, Scene *scene, vector<AttributeRequestSet>& mesh_attributes)
1147 {
1148 #ifdef WITH_OSL
1149         /* for OSL, a hash map is used to lookup the attribute by name. */
1150         OSLGlobals *og = (OSLGlobals*)device->osl_memory();
1151
1152         og->object_name_map.clear();
1153         og->attribute_map.clear();
1154         og->object_names.clear();
1155
1156         og->attribute_map.resize(scene->objects.size()*ATTR_PRIM_TYPES);
1157
1158         for(size_t i = 0; i < scene->objects.size(); i++) {
1159                 /* set object name to object index map */
1160                 Object *object = scene->objects[i];
1161                 og->object_name_map[object->name] = i;
1162                 og->object_names.push_back(object->name);
1163
1164                 /* set object attributes */
1165                 foreach(ParamValue& attr, object->attributes) {
1166                         OSLGlobals::Attribute osl_attr;
1167
1168                         osl_attr.type = attr.type();
1169                         osl_attr.desc.element = ATTR_ELEMENT_OBJECT;
1170                         osl_attr.value = attr;
1171                         osl_attr.desc.offset = 0;
1172                         osl_attr.desc.flags = 0;
1173
1174                         og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][attr.name()] = osl_attr;
1175                         og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][attr.name()] = osl_attr;
1176                         og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][attr.name()] = osl_attr;
1177                 }
1178
1179                 /* find mesh attributes */
1180                 size_t j;
1181
1182                 for(j = 0; j < scene->meshes.size(); j++)
1183                         if(scene->meshes[j] == object->mesh)
1184                                 break;
1185
1186                 AttributeRequestSet& attributes = mesh_attributes[j];
1187
1188                 /* set object attributes */
1189                 foreach(AttributeRequest& req, attributes.requests) {
1190                         OSLGlobals::Attribute osl_attr;
1191
1192                         if(req.triangle_desc.element != ATTR_ELEMENT_NONE) {
1193                                 osl_attr.desc = req.triangle_desc;
1194
1195                                 if(req.triangle_type == TypeDesc::TypeFloat)
1196                                         osl_attr.type = TypeDesc::TypeFloat;
1197                                 else if(req.triangle_type == TypeDesc::TypeMatrix)
1198                                         osl_attr.type = TypeDesc::TypeMatrix;
1199                                 else
1200                                         osl_attr.type = TypeDesc::TypeColor;
1201
1202                                 if(req.std != ATTR_STD_NONE) {
1203                                         /* if standard attribute, add lookup by geom: name convention */
1204                                         ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
1205                                         og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][stdname] = osl_attr;
1206                                 }
1207                                 else if(req.name != ustring()) {
1208                                         /* add lookup by mesh attribute name */
1209                                         og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][req.name] = osl_attr;
1210                                 }
1211                         }
1212
1213                         if(req.curve_desc.element != ATTR_ELEMENT_NONE) {
1214                                 osl_attr.desc = req.curve_desc;
1215
1216                                 if(req.curve_type == TypeDesc::TypeFloat)
1217                                         osl_attr.type = TypeDesc::TypeFloat;
1218                                 else if(req.curve_type == TypeDesc::TypeMatrix)
1219                                         osl_attr.type = TypeDesc::TypeMatrix;
1220                                 else
1221                                         osl_attr.type = TypeDesc::TypeColor;
1222
1223                                 if(req.std != ATTR_STD_NONE) {
1224                                         /* if standard attribute, add lookup by geom: name convention */
1225                                         ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
1226                                         og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][stdname] = osl_attr;
1227                                 }
1228                                 else if(req.name != ustring()) {
1229                                         /* add lookup by mesh attribute name */
1230                                         og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][req.name] = osl_attr;
1231                                 }
1232                         }
1233
1234                         if(req.subd_desc.element != ATTR_ELEMENT_NONE) {
1235                                 osl_attr.desc = req.subd_desc;
1236
1237                                 if(req.subd_type == TypeDesc::TypeFloat)
1238                                         osl_attr.type = TypeDesc::TypeFloat;
1239                                 else if(req.subd_type == TypeDesc::TypeMatrix)
1240                                         osl_attr.type = TypeDesc::TypeMatrix;
1241                                 else
1242                                         osl_attr.type = TypeDesc::TypeColor;
1243
1244                                 if(req.std != ATTR_STD_NONE) {
1245                                         /* if standard attribute, add lookup by geom: name convention */
1246                                         ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
1247                                         og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][stdname] = osl_attr;
1248                                 }
1249                                 else if(req.name != ustring()) {
1250                                         /* add lookup by mesh attribute name */
1251                                         og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][req.name] = osl_attr;
1252                                 }
1253                         }
1254                 }
1255         }
1256 #else
1257         (void)device;
1258         (void)scene;
1259         (void)mesh_attributes;
1260 #endif
1261 }
1262
1263 void MeshManager::update_svm_attributes(Device *, DeviceScene *dscene, Scene *scene, vector<AttributeRequestSet>& mesh_attributes)
1264 {
1265         /* for SVM, the attributes_map table is used to lookup the offset of an
1266          * attribute, based on a unique shader attribute id. */
1267
1268         /* compute array stride */
1269         int attr_map_size = 0;
1270
1271         for(size_t i = 0; i < scene->meshes.size(); i++) {
1272                 Mesh *mesh = scene->meshes[i];
1273                 mesh->attr_map_offset = attr_map_size;
1274                 attr_map_size += (mesh_attributes[i].size() + 1)*ATTR_PRIM_TYPES;
1275         }
1276
1277         if(attr_map_size == 0)
1278                 return;
1279
1280         /* create attribute map */
1281         uint4 *attr_map = dscene->attributes_map.alloc(attr_map_size*scene->meshes.size());
1282         memset(attr_map, 0, dscene->attributes_map.size()*sizeof(uint));
1283
1284         for(size_t i = 0; i < scene->meshes.size(); i++) {
1285                 Mesh *mesh = scene->meshes[i];
1286                 AttributeRequestSet& attributes = mesh_attributes[i];
1287
1288                 /* set object attributes */
1289                 int index = mesh->attr_map_offset;
1290
1291                 foreach(AttributeRequest& req, attributes.requests) {
1292                         uint id;
1293
1294                         if(req.std == ATTR_STD_NONE)
1295                                 id = scene->shader_manager->get_attribute_id(req.name);
1296                         else
1297                                 id = scene->shader_manager->get_attribute_id(req.std);
1298
1299                         if(mesh->num_triangles()) {
1300                                 attr_map[index].x = id;
1301                                 attr_map[index].y = req.triangle_desc.element;
1302                                 attr_map[index].z = as_uint(req.triangle_desc.offset);
1303
1304                                 if(req.triangle_type == TypeDesc::TypeFloat)
1305                                         attr_map[index].w = NODE_ATTR_FLOAT;
1306                                 else if(req.triangle_type == TypeDesc::TypeMatrix)
1307                                         attr_map[index].w = NODE_ATTR_MATRIX;
1308                                 else
1309                                         attr_map[index].w = NODE_ATTR_FLOAT3;
1310
1311                                 attr_map[index].w |= req.triangle_desc.flags << 8;
1312                         }
1313
1314                         index++;
1315
1316                         if(mesh->num_curves()) {
1317                                 attr_map[index].x = id;
1318                                 attr_map[index].y = req.curve_desc.element;
1319                                 attr_map[index].z = as_uint(req.curve_desc.offset);
1320
1321                                 if(req.curve_type == TypeDesc::TypeFloat)
1322                                         attr_map[index].w = NODE_ATTR_FLOAT;
1323                                 else if(req.curve_type == TypeDesc::TypeMatrix)
1324                                         attr_map[index].w = NODE_ATTR_MATRIX;
1325                                 else
1326                                         attr_map[index].w = NODE_ATTR_FLOAT3;
1327
1328                                 attr_map[index].w |= req.curve_desc.flags << 8;
1329                         }
1330
1331                         index++;
1332
1333                         if(mesh->subd_faces.size()) {
1334                                 attr_map[index].x = id;
1335                                 attr_map[index].y = req.subd_desc.element;
1336                                 attr_map[index].z = as_uint(req.subd_desc.offset);
1337
1338                                 if(req.subd_type == TypeDesc::TypeFloat)
1339                                         attr_map[index].w = NODE_ATTR_FLOAT;
1340                                 else if(req.subd_type == TypeDesc::TypeMatrix)
1341                                         attr_map[index].w = NODE_ATTR_MATRIX;
1342                                 else
1343                                         attr_map[index].w = NODE_ATTR_FLOAT3;
1344
1345                                 attr_map[index].w |= req.subd_desc.flags << 8;
1346                         }
1347
1348                         index++;
1349                 }
1350
1351                 /* terminator */
1352                 for(int j = 0; j < ATTR_PRIM_TYPES; j++) {
1353                         attr_map[index].x = ATTR_STD_NONE;
1354                         attr_map[index].y = 0;
1355                         attr_map[index].z = 0;
1356                         attr_map[index].w = 0;
1357
1358                         index++;
1359                 }
1360         }
1361
1362         /* copy to device */
1363         dscene->attributes_map.copy_to_device();
1364 }
1365
1366 static void update_attribute_element_size(Mesh *mesh,
1367                                           Attribute *mattr,
1368                                           AttributePrimitive prim,
1369                                           size_t *attr_float_size,
1370                                           size_t *attr_float3_size,
1371                                           size_t *attr_uchar4_size)
1372 {
1373         if(mattr) {
1374                 size_t size = mattr->element_size(mesh, prim);
1375
1376                 if(mattr->element == ATTR_ELEMENT_VOXEL) {
1377                         /* pass */
1378                 }
1379                 else if(mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
1380                         *attr_uchar4_size += size;
1381                 }
1382                 else if(mattr->type == TypeDesc::TypeFloat) {
1383                         *attr_float_size += size;
1384                 }
1385                 else if(mattr->type == TypeDesc::TypeMatrix) {
1386                         *attr_float3_size += size * 4;
1387                 }
1388                 else {
1389                         *attr_float3_size += size;
1390                 }
1391         }
1392 }
1393
1394 static void update_attribute_element_offset(Mesh *mesh,
1395                                             device_vector<float>& attr_float,
1396                                             size_t& attr_float_offset,
1397                                             device_vector<float4>& attr_float3,
1398                                             size_t& attr_float3_offset,
1399                                             device_vector<uchar4>& attr_uchar4,
1400                                             size_t& attr_uchar4_offset,
1401                                             Attribute *mattr,
1402                                             AttributePrimitive prim,
1403                                             TypeDesc& type,
1404                                             AttributeDescriptor& desc)
1405 {
1406         if(mattr) {
1407                 /* store element and type */
1408                 desc.element = mattr->element;
1409                 desc.flags = mattr->flags;
1410                 type = mattr->type;
1411
1412                 /* store attribute data in arrays */
1413                 size_t size = mattr->element_size(mesh, prim);
1414
1415                 AttributeElement& element = desc.element;
1416                 int& offset = desc.offset;
1417
1418                 if(mattr->element == ATTR_ELEMENT_VOXEL) {
1419                         /* store slot in offset value */
1420                         VoxelAttribute *voxel_data = mattr->data_voxel();
1421                         offset = voxel_data->slot;
1422                 }
1423                 else if(mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
1424                         uchar4 *data = mattr->data_uchar4();
1425                         offset = attr_uchar4_offset;
1426
1427                         assert(attr_uchar4.size() >= offset + size);
1428                         for(size_t k = 0; k < size; k++) {
1429                                 attr_uchar4[offset+k] = data[k];
1430                         }
1431                         attr_uchar4_offset += size;
1432                 }
1433                 else if(mattr->type == TypeDesc::TypeFloat) {
1434                         float *data = mattr->data_float();
1435                         offset = attr_float_offset;
1436
1437                         assert(attr_float.size() >= offset + size);
1438                         for(size_t k = 0; k < size; k++) {
1439                                 attr_float[offset+k] = data[k];
1440                         }
1441                         attr_float_offset += size;
1442                 }
1443                 else if(mattr->type == TypeDesc::TypeMatrix) {
1444                         Transform *tfm = mattr->data_transform();
1445                         offset = attr_float3_offset;
1446
1447                         assert(attr_float3.size() >= offset + size * 4);
1448                         for(size_t k = 0; k < size*4; k++) {
1449                                 attr_float3[offset+k] = (&tfm->x)[k];
1450                         }
1451                         attr_float3_offset += size * 4;
1452                 }
1453                 else {
1454                         float4 *data = mattr->data_float4();
1455                         offset = attr_float3_offset;
1456
1457                         assert(attr_float3.size() >= offset + size);
1458                         for(size_t k = 0; k < size; k++) {
1459                                 attr_float3[offset+k] = data[k];
1460                         }
1461                         attr_float3_offset += size;
1462                 }
1463
1464                 /* mesh vertex/curve index is global, not per object, so we sneak
1465                  * a correction for that in here */
1466                 if(mesh->subdivision_type == Mesh::SUBDIVISION_CATMULL_CLARK && desc.flags & ATTR_SUBDIVIDED) {
1467                         /* indices for subdivided attributes are retrieved
1468                          * from patch table so no need for correction here*/
1469                 }
1470                 else if(element == ATTR_ELEMENT_VERTEX)
1471                         offset -= mesh->vert_offset;
1472                 else if(element == ATTR_ELEMENT_VERTEX_MOTION)
1473                         offset -= mesh->vert_offset;
1474                 else if(element == ATTR_ELEMENT_FACE) {
1475                         if(prim == ATTR_PRIM_TRIANGLE)
1476                                 offset -= mesh->tri_offset;
1477                         else
1478                                 offset -= mesh->face_offset;
1479                 }
1480                 else if(element == ATTR_ELEMENT_CORNER || element == ATTR_ELEMENT_CORNER_BYTE) {
1481                         if(prim == ATTR_PRIM_TRIANGLE)
1482                                 offset -= 3*mesh->tri_offset;
1483                         else
1484                                 offset -= mesh->corner_offset;
1485                 }
1486                 else if(element == ATTR_ELEMENT_CURVE)
1487                         offset -= mesh->curve_offset;
1488                 else if(element == ATTR_ELEMENT_CURVE_KEY)
1489                         offset -= mesh->curvekey_offset;
1490                 else if(element == ATTR_ELEMENT_CURVE_KEY_MOTION)
1491                         offset -= mesh->curvekey_offset;
1492         }
1493         else {
1494                 /* attribute not found */
1495                 desc.element = ATTR_ELEMENT_NONE;
1496                 desc.offset = 0;
1497         }
1498 }
1499
1500 void MeshManager::device_update_attributes(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
1501 {
1502         progress.set_status("Updating Mesh", "Computing attributes");
1503
1504         /* gather per mesh requested attributes. as meshes may have multiple
1505          * shaders assigned, this merges the requested attributes that have
1506          * been set per shader by the shader manager */
1507         vector<AttributeRequestSet> mesh_attributes(scene->meshes.size());
1508
1509         for(size_t i = 0; i < scene->meshes.size(); i++) {
1510                 Mesh *mesh = scene->meshes[i];
1511
1512                 scene->need_global_attributes(mesh_attributes[i]);
1513
1514                 foreach(Shader *shader, mesh->used_shaders) {
1515                         mesh_attributes[i].add(shader->attributes);
1516                 }
1517         }
1518
1519         /* mesh attribute are stored in a single array per data type. here we fill
1520          * those arrays, and set the offset and element type to create attribute
1521          * maps next */
1522
1523         /* Pre-allocate attributes to avoid arrays re-allocation which would
1524          * take 2x of overall attribute memory usage.
1525          */
1526         size_t attr_float_size = 0;
1527         size_t attr_float3_size = 0;
1528         size_t attr_uchar4_size = 0;
1529         for(size_t i = 0; i < scene->meshes.size(); i++) {
1530                 Mesh *mesh = scene->meshes[i];
1531                 AttributeRequestSet& attributes = mesh_attributes[i];
1532                 foreach(AttributeRequest& req, attributes.requests) {
1533                         Attribute *triangle_mattr = mesh->attributes.find(req);
1534                         Attribute *curve_mattr = mesh->curve_attributes.find(req);
1535                         Attribute *subd_mattr = mesh->subd_attributes.find(req);
1536
1537                         update_attribute_element_size(mesh,
1538                                                       triangle_mattr,
1539                                                       ATTR_PRIM_TRIANGLE,
1540                                                       &attr_float_size,
1541                                                       &attr_float3_size,
1542                                                       &attr_uchar4_size);
1543                         update_attribute_element_size(mesh,
1544                                                       curve_mattr,
1545                                                       ATTR_PRIM_CURVE,
1546                                                       &attr_float_size,
1547                                                       &attr_float3_size,
1548                                                       &attr_uchar4_size);
1549                         update_attribute_element_size(mesh,
1550                                                       subd_mattr,
1551                                                       ATTR_PRIM_SUBD,
1552                                                       &attr_float_size,
1553                                                       &attr_float3_size,
1554                                                       &attr_uchar4_size);
1555                 }
1556         }
1557
1558         dscene->attributes_float.alloc(attr_float_size);
1559         dscene->attributes_float3.alloc(attr_float3_size);
1560         dscene->attributes_uchar4.alloc(attr_uchar4_size);
1561
1562         size_t attr_float_offset = 0;
1563         size_t attr_float3_offset = 0;
1564         size_t attr_uchar4_offset = 0;
1565
1566         /* Fill in attributes. */
1567         for(size_t i = 0; i < scene->meshes.size(); i++) {
1568                 Mesh *mesh = scene->meshes[i];
1569                 AttributeRequestSet& attributes = mesh_attributes[i];
1570
1571                 /* todo: we now store std and name attributes from requests even if
1572                  * they actually refer to the same mesh attributes, optimize */
1573                 foreach(AttributeRequest& req, attributes.requests) {
1574                         Attribute *triangle_mattr = mesh->attributes.find(req);
1575                         Attribute *curve_mattr = mesh->curve_attributes.find(req);
1576                         Attribute *subd_mattr = mesh->subd_attributes.find(req);
1577
1578                         update_attribute_element_offset(mesh,
1579                                                         dscene->attributes_float, attr_float_offset,
1580                                                         dscene->attributes_float3, attr_float3_offset,
1581                                                         dscene->attributes_uchar4, attr_uchar4_offset,
1582                                                         triangle_mattr,
1583                                                         ATTR_PRIM_TRIANGLE,
1584                                                         req.triangle_type,
1585                                                         req.triangle_desc);
1586
1587                         update_attribute_element_offset(mesh,
1588                                                         dscene->attributes_float, attr_float_offset,
1589                                                         dscene->attributes_float3, attr_float3_offset,
1590                                                         dscene->attributes_uchar4, attr_uchar4_offset,
1591                                                         curve_mattr,
1592                                                         ATTR_PRIM_CURVE,
1593                                                         req.curve_type,
1594                                                         req.curve_desc);
1595
1596                         update_attribute_element_offset(mesh,
1597                                                         dscene->attributes_float, attr_float_offset,
1598                                                         dscene->attributes_float3, attr_float3_offset,
1599                                                         dscene->attributes_uchar4, attr_uchar4_offset,
1600                                                         subd_mattr,
1601                                                         ATTR_PRIM_SUBD,
1602                                                         req.subd_type,
1603                                                         req.subd_desc);
1604
1605                         if(progress.get_cancel()) return;
1606                 }
1607         }
1608
1609         /* create attribute lookup maps */
1610         if(scene->shader_manager->use_osl())
1611                 update_osl_attributes(device, scene, mesh_attributes);
1612
1613         update_svm_attributes(device, dscene, scene, mesh_attributes);
1614
1615         if(progress.get_cancel()) return;
1616
1617         /* copy to device */
1618         progress.set_status("Updating Mesh", "Copying Attributes to device");
1619
1620         if(dscene->attributes_float.size()) {
1621                 dscene->attributes_float.copy_to_device();
1622         }
1623         if(dscene->attributes_float3.size()) {
1624                 dscene->attributes_float3.copy_to_device();
1625         }
1626         if(dscene->attributes_uchar4.size()) {
1627                 dscene->attributes_uchar4.copy_to_device();
1628         }
1629
1630         if(progress.get_cancel()) return;
1631
1632         /* After mesh attributes and patch tables have been copied to device memory,
1633          * we need to update offsets in the objects. */
1634         scene->object_manager->device_update_mesh_offsets(device, dscene, scene);
1635 }
1636
1637 void MeshManager::mesh_calc_offset(Scene *scene)
1638 {
1639         size_t vert_size = 0;
1640         size_t tri_size = 0;
1641
1642         size_t curve_key_size = 0;
1643         size_t curve_size = 0;
1644
1645         size_t patch_size = 0;
1646         size_t face_size = 0;
1647         size_t corner_size = 0;
1648
1649         foreach(Mesh *mesh, scene->meshes) {
1650                 mesh->vert_offset = vert_size;
1651                 mesh->tri_offset = tri_size;
1652
1653                 mesh->curvekey_offset = curve_key_size;
1654                 mesh->curve_offset = curve_size;
1655
1656                 mesh->patch_offset = patch_size;
1657                 mesh->face_offset = face_size;
1658                 mesh->corner_offset = corner_size;
1659
1660                 vert_size += mesh->verts.size();
1661                 tri_size += mesh->num_triangles();
1662
1663                 curve_key_size += mesh->curve_keys.size();
1664                 curve_size += mesh->num_curves();
1665
1666                 if(mesh->subd_faces.size()) {
1667                         Mesh::SubdFace& last = mesh->subd_faces[mesh->subd_faces.size()-1];
1668                         patch_size += (last.ptex_offset + last.num_ptex_faces()) * 8;
1669
1670                         /* patch tables are stored in same array so include them in patch_size */
1671                         if(mesh->patch_table) {
1672                                 mesh->patch_table_offset = patch_size;
1673                                 patch_size += mesh->patch_table->total_size();
1674                         }
1675                 }
1676                 face_size += mesh->subd_faces.size();
1677                 corner_size += mesh->subd_face_corners.size();
1678         }
1679 }
1680
1681 void MeshManager::device_update_mesh(Device *,
1682                                      DeviceScene *dscene,
1683                                      Scene *scene,
1684                                      bool for_displacement,
1685                                      Progress& progress)
1686 {
1687         /* Count. */
1688         size_t vert_size = 0;
1689         size_t tri_size = 0;
1690
1691         size_t curve_key_size = 0;
1692         size_t curve_size = 0;
1693
1694         size_t patch_size = 0;
1695
1696         foreach(Mesh *mesh, scene->meshes) {
1697                 vert_size += mesh->verts.size();
1698                 tri_size += mesh->num_triangles();
1699
1700                 curve_key_size += mesh->curve_keys.size();
1701                 curve_size += mesh->num_curves();
1702
1703                 if(mesh->subd_faces.size()) {
1704                         Mesh::SubdFace& last = mesh->subd_faces[mesh->subd_faces.size()-1];
1705                         patch_size += (last.ptex_offset + last.num_ptex_faces()) * 8;
1706
1707                         /* patch tables are stored in same array so include them in patch_size */
1708                         if(mesh->patch_table) {
1709                                 mesh->patch_table_offset = patch_size;
1710                                 patch_size += mesh->patch_table->total_size();
1711                         }
1712                 }
1713         }
1714
1715         /* Create mapping from triangle to primitive triangle array. */
1716         vector<uint> tri_prim_index(tri_size);
1717         if(for_displacement) {
1718                 /* For displacement kernels we do some trickery to make them believe
1719                  * we've got all required data ready. However, that data is different
1720                  * from final render kernels since we don't have BVH yet, so can't
1721                  * really use same semantic of arrays.
1722                  */
1723                 foreach(Mesh *mesh, scene->meshes) {
1724                         for(size_t i = 0; i < mesh->num_triangles(); ++i) {
1725                                 tri_prim_index[i + mesh->tri_offset] = 3 * (i + mesh->tri_offset);
1726                         }
1727                 }
1728         }
1729         else {
1730                 for(size_t i = 0; i < dscene->prim_index.size(); ++i) {
1731                         if((dscene->prim_type[i] & PRIMITIVE_ALL_TRIANGLE) != 0) {
1732                                 tri_prim_index[dscene->prim_index[i]] = dscene->prim_tri_index[i];
1733                         }
1734                 }
1735         }
1736
1737         /* Fill in all the arrays. */
1738         if(tri_size != 0) {
1739                 /* normals */
1740                 progress.set_status("Updating Mesh", "Computing normals");
1741
1742                 uint *tri_shader = dscene->tri_shader.alloc(tri_size);
1743                 float4 *vnormal = dscene->tri_vnormal.alloc(vert_size);
1744                 uint4 *tri_vindex = dscene->tri_vindex.alloc(tri_size);
1745                 uint *tri_patch = dscene->tri_patch.alloc(tri_size);
1746                 float2 *tri_patch_uv = dscene->tri_patch_uv.alloc(vert_size);
1747
1748                 foreach(Mesh *mesh, scene->meshes) {
1749                         mesh->pack_normals(scene,
1750                                            &tri_shader[mesh->tri_offset],
1751                                            &vnormal[mesh->vert_offset]);
1752                         mesh->pack_verts(tri_prim_index,
1753                                          &tri_vindex[mesh->tri_offset],
1754                                          &tri_patch[mesh->tri_offset],
1755                                          &tri_patch_uv[mesh->vert_offset],
1756                                          mesh->vert_offset,
1757                                          mesh->tri_offset);
1758                         if(progress.get_cancel()) return;
1759                 }
1760
1761                 /* vertex coordinates */
1762                 progress.set_status("Updating Mesh", "Copying Mesh to device");
1763
1764                 dscene->tri_shader.copy_to_device();
1765                 dscene->tri_vnormal.copy_to_device();
1766                 dscene->tri_vindex.copy_to_device();
1767                 dscene->tri_patch.copy_to_device();
1768                 dscene->tri_patch_uv.copy_to_device();
1769         }
1770
1771         if(curve_size != 0) {
1772                 progress.set_status("Updating Mesh", "Copying Strands to device");
1773
1774                 float4 *curve_keys = dscene->curve_keys.alloc(curve_key_size);
1775                 float4 *curves = dscene->curves.alloc(curve_size);
1776
1777                 foreach(Mesh *mesh, scene->meshes) {
1778                         mesh->pack_curves(scene, &curve_keys[mesh->curvekey_offset], &curves[mesh->curve_offset], mesh->curvekey_offset);
1779                         if(progress.get_cancel()) return;
1780                 }
1781
1782                 dscene->curve_keys.copy_to_device();
1783                 dscene->curves.copy_to_device();
1784         }
1785
1786         if(patch_size != 0) {
1787                 progress.set_status("Updating Mesh", "Copying Patches to device");
1788
1789                 uint *patch_data = dscene->patches.alloc(patch_size);
1790
1791                 foreach(Mesh *mesh, scene->meshes) {
1792                         mesh->pack_patches(&patch_data[mesh->patch_offset], mesh->vert_offset, mesh->face_offset, mesh->corner_offset);
1793
1794                         if(mesh->patch_table) {
1795                                 mesh->patch_table->copy_adjusting_offsets(&patch_data[mesh->patch_table_offset], mesh->patch_table_offset);
1796                         }
1797
1798                         if(progress.get_cancel()) return;
1799                 }
1800
1801                 dscene->patches.copy_to_device();
1802         }
1803
1804         if(for_displacement) {
1805                 float4 *prim_tri_verts = dscene->prim_tri_verts.alloc(tri_size * 3);
1806                 foreach(Mesh *mesh, scene->meshes) {
1807                         for(size_t i = 0; i < mesh->num_triangles(); ++i) {
1808                                 Mesh::Triangle t = mesh->get_triangle(i);
1809                                 size_t offset = 3 * (i + mesh->tri_offset);
1810                                 prim_tri_verts[offset + 0] = float3_to_float4(mesh->verts[t.v[0]]);
1811                                 prim_tri_verts[offset + 1] = float3_to_float4(mesh->verts[t.v[1]]);
1812                                 prim_tri_verts[offset + 2] = float3_to_float4(mesh->verts[t.v[2]]);
1813                         }
1814                 }
1815                 dscene->prim_tri_verts.copy_to_device();
1816         }
1817 }
1818
1819 void MeshManager::device_update_bvh(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
1820 {
1821         /* bvh build */
1822         progress.set_status("Updating Scene BVH", "Building");
1823
1824         BVHParams bparams;
1825         bparams.top_level = true;
1826         bparams.bvh_layout = BVHParams::best_bvh_layout(
1827                 scene->params.bvh_layout,
1828                 device->info.bvh_layout_mask);
1829         bparams.use_spatial_split = scene->params.use_bvh_spatial_split;
1830         bparams.use_unaligned_nodes = dscene->data.bvh.have_curves &&
1831                                       scene->params.use_bvh_unaligned_nodes;
1832         bparams.num_motion_triangle_steps = scene->params.num_bvh_time_steps;
1833         bparams.num_motion_curve_steps = scene->params.num_bvh_time_steps;
1834
1835         VLOG(1) << "Using " << bvh_layout_name(bparams.bvh_layout)
1836                 << " layout.";
1837
1838         BVH *bvh = BVH::create(bparams, scene->objects);
1839         bvh->build(progress);
1840
1841         if(progress.get_cancel()) {
1842                 delete bvh;
1843                 return;
1844         }
1845
1846         /* copy to device */
1847         progress.set_status("Updating Scene BVH", "Copying BVH to device");
1848
1849         PackedBVH& pack = bvh->pack;
1850
1851         if(pack.nodes.size()) {
1852                 dscene->bvh_nodes.steal_data(pack.nodes);
1853                 dscene->bvh_nodes.copy_to_device();
1854         }
1855         if(pack.leaf_nodes.size()) {
1856                 dscene->bvh_leaf_nodes.steal_data(pack.leaf_nodes);
1857                 dscene->bvh_leaf_nodes.copy_to_device();
1858         }
1859         if(pack.object_node.size()) {
1860                 dscene->object_node.steal_data(pack.object_node);
1861                 dscene->object_node.copy_to_device();
1862         }
1863         if(pack.prim_tri_index.size()) {
1864                 dscene->prim_tri_index.steal_data(pack.prim_tri_index);
1865                 dscene->prim_tri_index.copy_to_device();
1866         }
1867         if(pack.prim_tri_verts.size()) {
1868                 dscene->prim_tri_verts.steal_data(pack.prim_tri_verts);
1869                 dscene->prim_tri_verts.copy_to_device();
1870         }
1871         if(pack.prim_type.size()) {
1872                 dscene->prim_type.steal_data(pack.prim_type);
1873                 dscene->prim_type.copy_to_device();
1874         }
1875         if(pack.prim_visibility.size()) {
1876                 dscene->prim_visibility.steal_data(pack.prim_visibility);
1877                 dscene->prim_visibility.copy_to_device();
1878         }
1879         if(pack.prim_index.size()) {
1880                 dscene->prim_index.steal_data(pack.prim_index);
1881                 dscene->prim_index.copy_to_device();
1882         }
1883         if(pack.prim_object.size()) {
1884                 dscene->prim_object.steal_data(pack.prim_object);
1885                 dscene->prim_object.copy_to_device();
1886         }
1887         if(pack.prim_time.size()) {
1888                 dscene->prim_time.steal_data(pack.prim_time);
1889                 dscene->prim_time.copy_to_device();
1890         }
1891
1892         dscene->data.bvh.root = pack.root_index;
1893         dscene->data.bvh.bvh_layout = bparams.bvh_layout;
1894         dscene->data.bvh.use_bvh_steps = (scene->params.num_bvh_time_steps != 0);
1895
1896         delete bvh;
1897 }
1898
1899 void MeshManager::device_update_preprocess(Device *device,
1900                                            Scene *scene,
1901                                            Progress& progress)
1902 {
1903         if(!need_update && !need_flags_update) {
1904                 return;
1905         }
1906
1907         progress.set_status("Updating Meshes Flags");
1908
1909         /* Update flags. */
1910         bool volume_images_updated = false;
1911
1912         foreach(Mesh *mesh, scene->meshes) {
1913                 mesh->has_volume = false;
1914
1915                 foreach(const Shader *shader, mesh->used_shaders) {
1916                         if(shader->has_volume) {
1917                                 mesh->has_volume = true;
1918                         }
1919                         if(shader->has_surface_bssrdf) {
1920                                 mesh->has_surface_bssrdf = true;
1921                         }
1922                 }
1923
1924                 if(need_update && mesh->has_volume) {
1925                         /* Create volume meshes if there is voxel data. */
1926                         bool has_voxel_attributes = false;
1927
1928                         foreach(Attribute& attr, mesh->attributes.attributes) {
1929                                 if(attr.element == ATTR_ELEMENT_VOXEL) {
1930                                         has_voxel_attributes = true;
1931                                 }
1932                         }
1933
1934                         if(has_voxel_attributes) {
1935                                 if(!volume_images_updated) {
1936                                         progress.set_status("Updating Meshes Volume Bounds");
1937                                         device_update_volume_images(device, scene, progress);
1938                                         volume_images_updated = true;
1939                                 }
1940
1941                                 create_volume_mesh(scene, mesh, progress);
1942                         }
1943                 }
1944         }
1945
1946         need_flags_update = false;
1947 }
1948
1949 void MeshManager::device_update_displacement_images(Device *device,
1950                                                     Scene *scene,
1951                                                     Progress& progress)
1952 {
1953         progress.set_status("Updating Displacement Images");
1954         TaskPool pool;
1955         ImageManager *image_manager = scene->image_manager;
1956         set<int> bump_images;
1957         foreach(Mesh *mesh, scene->meshes) {
1958                 if(mesh->need_update) {
1959                         foreach(Shader *shader, mesh->used_shaders) {
1960                                 if(!shader->has_displacement || shader->displacement_method == DISPLACE_BUMP) {
1961                                         continue;
1962                                 }
1963                                 foreach(ShaderNode* node, shader->graph->nodes) {
1964                                         if(node->special_type != SHADER_SPECIAL_TYPE_IMAGE_SLOT) {
1965                                                 continue;
1966                                         }
1967
1968                                         ImageSlotTextureNode *image_node = static_cast<ImageSlotTextureNode*>(node);
1969                                         int slot = image_node->slot;
1970                                         if(slot != -1) {
1971                                                 bump_images.insert(slot);
1972                                         }
1973                                 }
1974                         }
1975                 }
1976         }
1977         foreach(int slot, bump_images) {
1978                 pool.push(function_bind(&ImageManager::device_update_slot,
1979                                         image_manager,
1980                                         device,
1981                                         scene,
1982                                         slot,
1983                                         &progress));
1984         }
1985         pool.wait_work();
1986 }
1987
1988 void MeshManager::device_update_volume_images(Device *device,
1989                                                                                           Scene *scene,
1990                                                                                           Progress& progress)
1991 {
1992         progress.set_status("Updating Volume Images");
1993         TaskPool pool;
1994         ImageManager *image_manager = scene->image_manager;
1995         set<int> volume_images;
1996
1997         foreach(Mesh *mesh, scene->meshes) {
1998                 if(!mesh->need_update) {
1999                         continue;
2000                 }
2001
2002                 foreach(Attribute& attr, mesh->attributes.attributes) {
2003                         if(attr.element != ATTR_ELEMENT_VOXEL) {
2004                                 continue;
2005                         }
2006
2007                         VoxelAttribute *voxel = attr.data_voxel();
2008
2009                         if(voxel->slot != -1) {
2010                                 volume_images.insert(voxel->slot);
2011                         }
2012                 }
2013         }
2014
2015         foreach(int slot, volume_images) {
2016                 pool.push(function_bind(&ImageManager::device_update_slot,
2017                                                                 image_manager,
2018                                                                 device,
2019                                                                 scene,
2020                                                                 slot,
2021                                                                 &progress));
2022         }
2023         pool.wait_work();
2024 }
2025
2026 void MeshManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
2027 {
2028         if(!need_update)
2029                 return;
2030
2031         VLOG(1) << "Total " << scene->meshes.size() << " meshes.";
2032
2033         /* Update normals. */
2034         foreach(Mesh *mesh, scene->meshes) {
2035                 foreach(Shader *shader, mesh->used_shaders) {
2036                         if(shader->need_update_mesh)
2037                                 mesh->need_update = true;
2038                 }
2039
2040                 if(mesh->need_update) {
2041                         mesh->add_face_normals();
2042                         mesh->add_vertex_normals();
2043
2044                         if(mesh->need_attribute(scene, ATTR_STD_POSITION_UNDISPLACED)) {
2045                                 mesh->add_undisplaced();
2046                         }
2047
2048                         if(progress.get_cancel()) return;
2049                 }
2050         }
2051
2052         /* Tessellate meshes that are using subdivision */
2053         size_t total_tess_needed = 0;
2054         foreach(Mesh *mesh, scene->meshes) {
2055                 if(mesh->need_update &&
2056                    mesh->subdivision_type != Mesh::SUBDIVISION_NONE &&
2057                    mesh->num_subd_verts == 0 &&
2058                    mesh->subd_params)
2059                 {
2060                         total_tess_needed++;
2061                 }
2062         }
2063
2064         size_t i = 0;
2065         foreach(Mesh *mesh, scene->meshes) {
2066                 if(mesh->need_update &&
2067                    mesh->subdivision_type != Mesh::SUBDIVISION_NONE &&
2068                    mesh->num_subd_verts == 0 &&
2069                    mesh->subd_params)
2070                 {
2071                         string msg = "Tessellating ";
2072                         if(mesh->name == "")
2073                                 msg += string_printf("%u/%u", (uint)(i+1), (uint)total_tess_needed);
2074                         else
2075                                 msg += string_printf("%s %u/%u", mesh->name.c_str(), (uint)(i+1), (uint)total_tess_needed);
2076
2077                         progress.set_status("Updating Mesh", msg);
2078
2079                         DiagSplit dsplit(*mesh->subd_params);
2080                         mesh->tessellate(&dsplit);
2081
2082                         i++;
2083
2084                         if(progress.get_cancel()) return;
2085                 }
2086         }
2087
2088         /* Update images needed for true displacement. */
2089         bool true_displacement_used = false;
2090         bool old_need_object_flags_update = false;
2091         foreach(Mesh *mesh, scene->meshes) {
2092                 if(mesh->need_update &&
2093                    mesh->has_true_displacement())
2094                 {
2095                         true_displacement_used = true;
2096                         break;
2097                 }
2098         }
2099         if(true_displacement_used) {
2100                 VLOG(1) << "Updating images used for true displacement.";
2101                 device_update_displacement_images(device, scene, progress);
2102                 old_need_object_flags_update = scene->object_manager->need_flags_update;
2103                 scene->object_manager->device_update_flags(device,
2104                                                            dscene,
2105                                                            scene,
2106                                                            progress,
2107                                                            false);
2108         }
2109
2110         /* Device update. */
2111         device_free(device, dscene);
2112
2113         mesh_calc_offset(scene);
2114         if(true_displacement_used) {
2115                 device_update_mesh(device, dscene, scene, true, progress);
2116         }
2117         if(progress.get_cancel()) return;
2118
2119         device_update_attributes(device, dscene, scene, progress);
2120         if(progress.get_cancel()) return;
2121
2122         /* Update displacement. */
2123         bool displacement_done = false;
2124         foreach(Mesh *mesh, scene->meshes) {
2125                 if(mesh->need_update &&
2126                    displace(device, dscene, scene, mesh, progress))
2127                 {
2128                         displacement_done = true;
2129                 }
2130         }
2131
2132         /* TODO: properly handle cancel halfway displacement */
2133         if(progress.get_cancel()) return;
2134
2135         /* Device re-update after displacement. */
2136         if(displacement_done) {
2137                 device_free(device, dscene);
2138
2139                 device_update_attributes(device, dscene, scene, progress);
2140                 if(progress.get_cancel()) return;
2141         }
2142
2143         /* Update bvh. */
2144         size_t num_bvh = 0;
2145         foreach(Mesh *mesh, scene->meshes) {
2146                 if(mesh->need_update && mesh->need_build_bvh()) {
2147                         num_bvh++;
2148                 }
2149         }
2150
2151         TaskPool pool;
2152
2153         i = 0;
2154         foreach(Mesh *mesh, scene->meshes) {
2155                 if(mesh->need_update) {
2156                         pool.push(function_bind(&Mesh::compute_bvh,
2157                                                 mesh,
2158                                                 device,
2159                                                 dscene,
2160                                                 &scene->params,
2161                                                 &progress,
2162                                                 i,
2163                                                 num_bvh));
2164                         if(mesh->need_build_bvh()) {
2165                                 i++;
2166                         }
2167                 }
2168         }
2169
2170         TaskPool::Summary summary;
2171         pool.wait_work(&summary);
2172         VLOG(2) << "Objects BVH build pool statistics:\n"
2173                 << summary.full_report();
2174
2175         foreach(Shader *shader, scene->shaders) {
2176                 shader->need_update_mesh = false;
2177         }
2178
2179         Scene::MotionType need_motion = scene->need_motion();
2180         bool motion_blur = need_motion == Scene::MOTION_BLUR;
2181
2182         /* Update objects. */
2183         vector<Object *> volume_objects;
2184         foreach(Object *object, scene->objects) {
2185                 object->compute_bounds(motion_blur);
2186         }
2187
2188         if(progress.get_cancel()) return;
2189
2190         device_update_bvh(device, dscene, scene, progress);
2191         if(progress.get_cancel()) return;
2192
2193         device_update_mesh(device, dscene, scene, false, progress);
2194         if(progress.get_cancel()) return;
2195
2196         need_update = false;
2197
2198         if(true_displacement_used) {
2199                 /* Re-tag flags for update, so they're re-evaluated
2200                  * for meshes with correct bounding boxes.
2201                  *
2202                  * This wouldn't cause wrong results, just true
2203                  * displacement might be less optimal ot calculate.
2204                  */
2205                 scene->object_manager->need_flags_update = old_need_object_flags_update;
2206         }
2207 }
2208
2209 void MeshManager::device_free(Device *device, DeviceScene *dscene)
2210 {
2211         dscene->bvh_nodes.free();
2212         dscene->bvh_leaf_nodes.free();
2213         dscene->object_node.free();
2214         dscene->prim_tri_verts.free();
2215         dscene->prim_tri_index.free();
2216         dscene->prim_type.free();
2217         dscene->prim_visibility.free();
2218         dscene->prim_index.free();
2219         dscene->prim_object.free();
2220         dscene->prim_time.free();
2221         dscene->tri_shader.free();
2222         dscene->tri_vnormal.free();
2223         dscene->tri_vindex.free();
2224         dscene->tri_patch.free();
2225         dscene->tri_patch_uv.free();
2226         dscene->curves.free();
2227         dscene->curve_keys.free();
2228         dscene->patches.free();
2229         dscene->attributes_map.free();
2230         dscene->attributes_float.free();
2231         dscene->attributes_float3.free();
2232         dscene->attributes_uchar4.free();
2233
2234 #ifdef WITH_OSL
2235         OSLGlobals *og = (OSLGlobals*)device->osl_memory();
2236
2237         if(og) {
2238                 og->object_name_map.clear();
2239                 og->attribute_map.clear();
2240                 og->object_names.clear();
2241         }
2242 #else
2243         (void)device;
2244 #endif
2245 }
2246
2247 void MeshManager::tag_update(Scene *scene)
2248 {
2249         need_update = true;
2250         scene->object_manager->need_update = true;
2251 }
2252
2253 bool Mesh::need_attribute(Scene *scene, AttributeStandard std)
2254 {
2255         if(std == ATTR_STD_NONE)
2256                 return false;
2257
2258         if(scene->need_global_attribute(std))
2259                 return true;
2260
2261         foreach(Shader *shader, used_shaders)
2262                 if(shader->attributes.find(std))
2263                         return true;
2264
2265         return false;
2266 }
2267
2268 bool Mesh::need_attribute(Scene * /*scene*/, ustring name)
2269 {
2270         if(name == ustring())
2271                 return false;
2272
2273         foreach(Shader *shader, used_shaders)
2274                 if(shader->attributes.find(name))
2275                         return true;
2276
2277         return false;
2278 }
2279
2280 CCL_NAMESPACE_END