the pivot constraint was translating when the pivot was offset along the rotation...
[blender-staging.git] / source / blender / blenkernel / intern / constraint.c
1 /**
2  * $Id$
3  *
4  * ***** BEGIN GPL LICENSE BLOCK *****
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19  *
20  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
21  * All rights reserved.
22  *
23  * The Original Code is: all of this file.
24  *
25  * Contributor(s): 2007, Joshua Leung, major recode
26  *
27  * ***** END GPL LICENSE BLOCK *****
28  */
29
30 #include <stdio.h> 
31 #include <stddef.h>
32 #include <string.h>
33 #include <math.h>
34 #include <float.h>
35
36 #include "MEM_guardedalloc.h"
37
38 #include "BLI_blenlib.h"
39 #include "BLI_listbase.h"
40 #include "BLI_math.h"
41 #include "BLI_editVert.h"
42
43 #include "DNA_armature_types.h"
44 #include "DNA_constraint_types.h"
45 #include "DNA_modifier_types.h"
46 #include "DNA_object_types.h"
47 #include "DNA_action_types.h"
48 #include "DNA_curve_types.h"
49 #include "DNA_mesh_types.h"
50 #include "DNA_meshdata_types.h"
51 #include "DNA_lattice_types.h"
52 #include "DNA_scene_types.h"
53 #include "DNA_text_types.h"
54
55 #include "BKE_utildefines.h"
56 #include "BKE_action.h"
57 #include "BKE_anim.h" /* for the curve calculation part */
58 #include "BKE_armature.h"
59 #include "BKE_blender.h"
60 #include "BKE_constraint.h"
61 #include "BKE_displist.h"
62 #include "BKE_deform.h"
63 #include "BKE_DerivedMesh.h"    /* for geometry targets */
64 #include "BKE_cdderivedmesh.h" /* for geometry targets */
65 #include "BKE_object.h"
66 #include "BKE_ipo.h"
67 #include "BKE_global.h"
68 #include "BKE_library.h"
69 #include "BKE_idprop.h"
70 #include "BKE_shrinkwrap.h"
71 #include "BKE_mesh.h"
72
73 #ifndef DISABLE_PYTHON
74 #include "BPY_extern.h"
75 #endif
76
77 #ifndef M_PI
78 #define M_PI            3.14159265358979323846
79 #endif
80
81
82
83 /* ************************ Constraints - General Utilities *************************** */
84 /* These functions here don't act on any specific constraints, and are therefore should/will
85  * not require any of the special function-pointers afforded by the relevant constraint 
86  * type-info structs.
87  */
88
89 /* -------------- Naming -------------- */
90
91 /* Find the first available, non-duplicate name for a given constraint */
92 void unique_constraint_name (bConstraint *con, ListBase *list)
93 {
94         BLI_uniquename(list, con, "Const", '.', offsetof(bConstraint, name), sizeof(con->name));
95 }
96
97 /* ----------------- Evaluation Loop Preparation --------------- */
98
99 /* package an object/bone for use in constraint evaluation */
100 /* This function MEM_calloc's a bConstraintOb struct, that will need to be freed after evaluation */
101 bConstraintOb *constraints_make_evalob (Scene *scene, Object *ob, void *subdata, short datatype)
102 {
103         bConstraintOb *cob;
104         
105         /* create regardless of whether we have any data! */
106         cob= MEM_callocN(sizeof(bConstraintOb), "bConstraintOb");
107         
108         /* for system time, part of deglobalization, code nicer later with local time (ton) */
109         cob->scene= scene;
110         
111         /* based on type of available data */
112         switch (datatype) {
113                 case CONSTRAINT_OBTYPE_OBJECT:
114                 {
115                         /* disregard subdata... calloc should set other values right */
116                         if (ob) {
117                                 cob->ob = ob;
118                                 cob->type = datatype;
119                                 cob->rotOrder = EULER_ORDER_DEFAULT; // TODO: when objects have rotation order too, use that
120                                 copy_m4_m4(cob->matrix, ob->obmat);
121                         }
122                         else
123                                 unit_m4(cob->matrix);
124                         
125                         copy_m4_m4(cob->startmat, cob->matrix);
126                 }
127                         break;
128                 case CONSTRAINT_OBTYPE_BONE:
129                 {
130                         /* only set if we have valid bone, otherwise default */
131                         if (ob && subdata) {
132                                 cob->ob = ob;
133                                 cob->pchan = (bPoseChannel *)subdata;
134                                 cob->type = datatype;
135                                 
136                                 if (cob->pchan->rotmode > 0) {
137                                         /* should be some type of Euler order */
138                                         cob->rotOrder= cob->pchan->rotmode; 
139                                 }
140                                 else {
141                                         /* Quats, so eulers should just use default order */
142                                         cob->rotOrder= EULER_ORDER_DEFAULT;
143                                 }
144                                 
145                                 /* matrix in world-space */
146                                 mul_m4_m4m4(cob->matrix, cob->pchan->pose_mat, ob->obmat);
147                         }
148                         else
149                                 unit_m4(cob->matrix);
150                                 
151                         copy_m4_m4(cob->startmat, cob->matrix);
152                 }
153                         break;
154                         
155                 default: /* other types not yet handled */
156                         unit_m4(cob->matrix);
157                         unit_m4(cob->startmat);
158                         break;
159         }
160         
161         return cob;
162 }
163
164 /* cleanup after constraint evaluation */
165 void constraints_clear_evalob (bConstraintOb *cob)
166 {
167         float delta[4][4], imat[4][4];
168         
169         /* prevent crashes */
170         if (cob == NULL) 
171                 return;
172         
173         /* calculate delta of constraints evaluation */
174         invert_m4_m4(imat, cob->startmat);
175         mul_m4_m4m4(delta, imat, cob->matrix);
176         
177         /* copy matrices back to source */
178         switch (cob->type) {
179                 case CONSTRAINT_OBTYPE_OBJECT:
180                 {
181                         /* cob->ob might not exist! */
182                         if (cob->ob) {
183                                 /* copy new ob-matrix back to owner */
184                                 copy_m4_m4(cob->ob->obmat, cob->matrix);
185                                 
186                                 /* copy inverse of delta back to owner */
187                                 invert_m4_m4(cob->ob->constinv, delta);
188                         }
189                 }
190                         break;
191                 case CONSTRAINT_OBTYPE_BONE:
192                 {
193                         /* cob->ob or cob->pchan might not exist */
194                         if (cob->ob && cob->pchan) {
195                                 /* copy new pose-matrix back to owner */
196                                 mul_m4_m4m4(cob->pchan->pose_mat, cob->matrix, cob->ob->imat);
197                                 
198                                 /* copy inverse of delta back to owner */
199                                 invert_m4_m4(cob->pchan->constinv, delta);
200                         }
201                 }
202                         break;
203         }
204         
205         /* free tempolary struct */
206         MEM_freeN(cob);
207 }
208
209 /* -------------- Space-Conversion API -------------- */
210
211 /* This function is responsible for the correct transformations/conversions 
212  * of a matrix from one space to another for constraint evaluation.
213  * For now, this is only implemented for Objects and PoseChannels.
214  */
215 void constraint_mat_convertspace (Object *ob, bPoseChannel *pchan, float mat[][4], short from, short to)
216 {
217         float tempmat[4][4];
218         float diff_mat[4][4];
219         float imat[4][4];
220         
221         /* prevent crashes in these unlikely events  */
222         if (ob==NULL || mat==NULL) return;
223         /* optimise trick - check if need to do anything */
224         if (from == to) return;
225         
226         /* are we dealing with pose-channels or objects */
227         if (pchan) {
228                 /* pose channels */
229                 switch (from) {
230                         case CONSTRAINT_SPACE_WORLD: /* ---------- FROM WORLDSPACE ---------- */
231                         {
232                                 /* world to pose */
233                                 invert_m4_m4(imat, ob->obmat);
234                                 copy_m4_m4(tempmat, mat);
235                                 mul_m4_m4m4(mat, tempmat, imat);
236                                 
237                                 /* use pose-space as stepping stone for other spaces... */
238                                 if (ELEM(to, CONSTRAINT_SPACE_LOCAL, CONSTRAINT_SPACE_PARLOCAL)) {
239                                         /* call self with slightly different values */
240                                         constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
241                                 }
242                         }
243                                 break;
244                         case CONSTRAINT_SPACE_POSE:     /* ---------- FROM POSESPACE ---------- */
245                         {
246                                 /* pose to world */
247                                 if (to == CONSTRAINT_SPACE_WORLD) {
248                                         copy_m4_m4(tempmat, mat);
249                                         mul_m4_m4m4(mat, tempmat, ob->obmat);
250                                 }
251                                 /* pose to local */
252                                 else if (to == CONSTRAINT_SPACE_LOCAL) {
253                                         if (pchan->bone) {
254                                                 if (pchan->parent) {
255                                                         float offs_bone[4][4];
256                                                                 
257                                                         /* construct offs_bone the same way it is done in armature.c */
258                                                         copy_m4_m3(offs_bone, pchan->bone->bone_mat);
259                                                         copy_v3_v3(offs_bone[3], pchan->bone->head);
260                                                         offs_bone[3][1]+= pchan->bone->parent->length;
261                                                         
262                                                         if (pchan->bone->flag & BONE_HINGE) {
263                                                                 /* pose_mat = par_pose-space_location * chan_mat */
264                                                                 float tmat[4][4];
265                                                                 
266                                                                 /* the rotation of the parent restposition */
267                                                                 copy_m4_m4(tmat, pchan->bone->parent->arm_mat);
268                                                                 
269                                                                 /* the location of actual parent transform */
270                                                                 copy_v3_v3(tmat[3], offs_bone[3]);
271                                                                 offs_bone[3][0]= offs_bone[3][1]= offs_bone[3][2]= 0.0f;
272                                                                 mul_m4_v3(pchan->parent->pose_mat, tmat[3]);
273                                                                 
274                                                                 mul_m4_m4m4(diff_mat, offs_bone, tmat);
275                                                                 invert_m4_m4(imat, diff_mat);
276                                                         }
277                                                         else {
278                                                                 /* pose_mat = par_pose_mat * bone_mat * chan_mat */
279                                                                 mul_m4_m4m4(diff_mat, offs_bone, pchan->parent->pose_mat);
280                                                                 invert_m4_m4(imat, diff_mat);
281                                                         }
282                                                 }
283                                                 else {
284                                                         /* pose_mat = chan_mat * arm_mat */
285                                                         invert_m4_m4(imat, pchan->bone->arm_mat);
286                                                 }
287                                                 
288                                                 copy_m4_m4(tempmat, mat);
289                                                 mul_m4_m4m4(mat, tempmat, imat);
290                                         }
291                                 }
292                                 /* pose to local with parent */
293                                 else if (to == CONSTRAINT_SPACE_PARLOCAL) {
294                                         if (pchan->bone) {
295                                                 invert_m4_m4(imat, pchan->bone->arm_mat);
296                                                 copy_m4_m4(tempmat, mat);
297                                                 mul_m4_m4m4(mat, tempmat, imat);
298                                         }
299                                 }
300                         }
301                                 break;
302                         case CONSTRAINT_SPACE_LOCAL: /* ------------ FROM LOCALSPACE --------- */
303                         {
304                                 /* local to pose - do inverse procedure that was done for pose to local */
305                                 if (pchan->bone) {
306                                         /* we need the posespace_matrix = local_matrix + (parent_posespace_matrix + restpos) */                                         
307                                         if (pchan->parent) {
308                                                 float offs_bone[4][4];
309                                                 
310                                                 /* construct offs_bone the same way it is done in armature.c */
311                                                 copy_m4_m3(offs_bone, pchan->bone->bone_mat);
312                                                 copy_v3_v3(offs_bone[3], pchan->bone->head);
313                                                 offs_bone[3][1]+= pchan->bone->parent->length;
314                                                 
315                                                 if (pchan->bone->flag & BONE_HINGE) {
316                                                         /* pose_mat = par_pose-space_location * chan_mat */
317                                                         float tmat[4][4];
318                                                         
319                                                         /* the rotation of the parent restposition */
320                                                         copy_m4_m4(tmat, pchan->bone->parent->arm_mat);
321                                                         
322                                                         /* the location of actual parent transform */
323                                                         copy_v3_v3(tmat[3], offs_bone[3]);
324                                                         zero_v3(offs_bone[3]);
325                                                         mul_m4_v3(pchan->parent->pose_mat, tmat[3]);
326                                                         
327                                                         mul_m4_m4m4(diff_mat, offs_bone, tmat);
328                                                         copy_m4_m4(tempmat, mat);
329                                                         mul_m4_m4m4(mat, tempmat, diff_mat);
330                                                 }
331                                                 else {
332                                                         /* pose_mat = par_pose_mat * bone_mat * chan_mat */
333                                                         mul_m4_m4m4(diff_mat, offs_bone, pchan->parent->pose_mat);
334                                                         copy_m4_m4(tempmat, mat);
335                                                         mul_m4_m4m4(mat, tempmat, diff_mat);
336                                                 }
337                                         }
338                                         else {
339                                                 copy_m4_m4(diff_mat, pchan->bone->arm_mat);
340                                                 
341                                                 copy_m4_m4(tempmat, mat);
342                                                 mul_m4_m4m4(mat, tempmat, diff_mat);
343                                         }
344                                 }
345                                 
346                                 /* use pose-space as stepping stone for other spaces */
347                                 if (ELEM(to, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_PARLOCAL)) {
348                                         /* call self with slightly different values */
349                                         constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
350                                 }                               
351                         }
352                                 break;
353                         case CONSTRAINT_SPACE_PARLOCAL: /* -------------- FROM LOCAL WITH PARENT ---------- */
354                         {
355                                 /* local + parent to pose */
356                                 if (pchan->bone) {                                      
357                                         copy_m4_m4(diff_mat, pchan->bone->arm_mat);
358                                         copy_m4_m4(tempmat, mat);
359                                         mul_m4_m4m4(mat, diff_mat, tempmat);
360                                 }
361                                 
362                                 /* use pose-space as stepping stone for other spaces */
363                                 if (ELEM(to, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL)) {
364                                         /* call self with slightly different values */
365                                         constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
366                                 }
367                         }
368                                 break;
369                 }
370         }
371         else {
372                 /* objects */
373                 if (from==CONSTRAINT_SPACE_WORLD && to==CONSTRAINT_SPACE_LOCAL) {
374                         /* check if object has a parent - otherwise this won't work */
375                         if (ob->parent) {
376                                 /* 'subtract' parent's effects from owner */
377                                 mul_m4_m4m4(diff_mat, ob->parentinv, ob->parent->obmat);
378                                 invert_m4_m4(imat, diff_mat);
379                                 copy_m4_m4(tempmat, mat);
380                                 mul_m4_m4m4(mat, tempmat, imat);
381                         }
382                 }
383                 else if (from==CONSTRAINT_SPACE_LOCAL && to==CONSTRAINT_SPACE_WORLD) {
384                         /* check that object has a parent - otherwise this won't work */
385                         if (ob->parent) {
386                                 /* 'add' parent's effect back to owner */
387                                 copy_m4_m4(tempmat, mat);
388                                 mul_m4_m4m4(diff_mat, ob->parentinv, ob->parent->obmat);
389                                 mul_m4_m4m4(mat, tempmat, diff_mat);
390                         }
391                 }
392         }
393 }
394
395 /* ------------ General Target Matrix Tools ---------- */
396
397 /* function that sets the given matrix based on given vertex group in mesh */
398 static void contarget_get_mesh_mat (Scene *scene, Object *ob, char *substring, float mat[][4])
399 {
400         DerivedMesh *dm = NULL;
401         Mesh *me= ob->data;
402         EditMesh *em = BKE_mesh_get_editmesh(me);
403         float vec[3] = {0.0f, 0.0f, 0.0f};
404         float normal[3] = {0.0f, 0.0f, 0.0f}, plane[3];
405         float imat[3][3], tmat[3][3];
406         int dgroup;
407         short freeDM = 0;
408         
409         /* initialize target matrix using target matrix */
410         copy_m4_m4(mat, ob->obmat);
411         
412         /* get index of vertex group */
413         dgroup = defgroup_name_index(ob, substring);
414         if (dgroup < 0) return;
415         
416         /* get DerivedMesh */
417         if (em) {
418                 /* target is in editmode, so get a special derived mesh */
419                 dm = CDDM_from_editmesh(em, ob->data);
420                 freeDM= 1;
421         }
422         else {
423                 /* when not in EditMode, use the 'final' derived mesh 
424                  *      - check if the custom data masks for derivedFinal mean that we can just use that
425                  *        (this is more effficient + sufficient for most cases)
426                  */
427                 if (!(ob->lastDataMask & CD_MASK_MDEFORMVERT)) {
428                         dm = mesh_get_derived_final(scene, ob, CD_MASK_MDEFORMVERT);
429                         freeDM= 1;
430                 }
431                 else 
432                         dm = (DerivedMesh *)ob->derivedFinal;
433         }
434         
435         /* only continue if there's a valid DerivedMesh */
436         if (dm) {
437                 MDeformVert *dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
438                 int numVerts = dm->getNumVerts(dm);
439                 int i, j, count = 0;
440                 float co[3], nor[3];
441                 
442                 /* check that dvert is a valid pointers (just in case) */
443                 if (dvert) {
444                         /* get the average of all verts with that are in the vertex-group */
445                         for (i = 0; i < numVerts; i++) {        
446                                 for (j = 0; j < dvert[i].totweight; j++) {
447                                         /* does this vertex belong to nominated vertex group? */
448                                         if (dvert[i].dw[j].def_nr == dgroup) {
449                                                 dm->getVertCo(dm, i, co);
450                                                 dm->getVertNo(dm, i, nor);
451                                                 add_v3_v3(vec, co);
452                                                 add_v3_v3(normal, nor);
453                                                 count++;
454                                                 break;
455                                         }
456                                         
457                                 }
458                         }
459                         
460                         
461                         /* calculate averages of normal and coordinates */
462                         if (count > 0) {
463                                 mul_v3_fl(vec, 1.0f / count);
464                                 mul_v3_fl(normal, 1.0f / count);
465                         }
466                         
467                         
468                         /* derive the rotation from the average normal: 
469                          *              - code taken from transform_manipulator.c, 
470                          *                      calc_manipulator_stats, V3D_MANIP_NORMAL case
471                          */
472                         /*      we need the transpose of the inverse for a normal... */
473                         copy_m3_m4(imat, ob->obmat);
474                         
475                         invert_m3_m3(tmat, imat);
476                         transpose_m3(tmat);
477                         mul_m3_v3(tmat, normal);
478                         
479                         normalize_v3(normal);
480                         copy_v3_v3(plane, tmat[1]);
481                         
482                         copy_v3_v3(tmat[2], normal);
483                         cross_v3_v3v3(tmat[0], normal, plane);
484                         cross_v3_v3v3(tmat[1], tmat[2], tmat[0]);
485                         
486                         copy_m4_m3(mat, tmat);
487                         normalize_m4(mat);
488                         
489                         
490                         /* apply the average coordinate as the new location */
491                         mul_v3_m4v3(mat[3], ob->obmat, vec);
492                 }
493         }
494         
495         /* free temporary DerivedMesh created (in EditMode case) */
496         if (dm && freeDM)
497                 dm->release(dm);
498         if (em)
499                 BKE_mesh_end_editmesh(me, em);
500 }
501
502 /* function that sets the given matrix based on given vertex group in lattice */
503 static void contarget_get_lattice_mat (Object *ob, char *substring, float mat[][4])
504 {
505         Lattice *lt= (Lattice *)ob->data;
506         
507         DispList *dl = find_displist(&ob->disp, DL_VERTS);
508         float *co = dl?dl->verts:NULL;
509         BPoint *bp = lt->def;
510         
511         MDeformVert *dvert = lt->dvert;
512         int tot_verts= lt->pntsu*lt->pntsv*lt->pntsw;
513         float vec[3]= {0.0f, 0.0f, 0.0f}, tvec[3];
514         int dgroup=0, grouped=0;
515         int i, n;
516         
517         /* initialize target matrix using target matrix */
518         copy_m4_m4(mat, ob->obmat);
519         
520         /* get index of vertex group */
521         dgroup = defgroup_name_index(ob, substring);
522         if (dgroup < 0) return;
523         if (dvert == NULL) return;
524         
525         /* 1. Loop through control-points checking if in nominated vertex-group.
526          * 2. If it is, add it to vec to find the average point.
527          */
528         for (i=0; i < tot_verts; i++, dvert++) {
529                 for (n= 0; n < dvert->totweight; n++) {
530                         /* found match - vert is in vgroup */
531                         if (dvert->dw[n].def_nr == dgroup) {
532                                 /* copy coordinates of point to temporary vector, then add to find average */
533                                 if (co)
534                                         memcpy(tvec, co, 3*sizeof(float));
535                                 else
536                                         memcpy(tvec, bp->vec, 3*sizeof(float));
537                                         
538                                 add_v3_v3(vec, tvec);
539                                 grouped++;
540                                 
541                                 break;
542                         }
543                 }
544                 
545                 /* advance pointer to coordinate data */
546                 if (co) co+= 3;
547                 else bp++;
548         }
549         
550         /* find average location, then multiply by ob->obmat to find world-space location */
551         if (grouped)
552                 mul_v3_fl(vec, 1.0f / grouped);
553         mul_v3_m4v3(tvec, ob->obmat, vec);
554         
555         /* copy new location to matrix */
556         copy_v3_v3(mat[3], tvec);
557 }
558
559 /* generic function to get the appropriate matrix for most target cases */
560 /* The cases where the target can be object data have not been implemented */
561 static void constraint_target_to_mat4 (Scene *scene, Object *ob, char *substring, float mat[][4], short from, short to, float headtail)
562 {
563         /*      Case OBJECT */
564         if (!strlen(substring)) {
565                 copy_m4_m4(mat, ob->obmat);
566                 constraint_mat_convertspace(ob, NULL, mat, from, to);
567         }
568         /*      Case VERTEXGROUP */
569         /* Current method just takes the average location of all the points in the
570          * VertexGroup, and uses that as the location value of the targets. Where 
571          * possible, the orientation will also be calculated, by calculating an
572          * 'average' vertex normal, and deriving the rotaation from that.
573          *
574          * NOTE: EditMode is not currently supported, and will most likely remain that
575          *              way as constraints can only really affect things on object/bone level.
576          */
577         else if (ob->type == OB_MESH) {
578                 contarget_get_mesh_mat(scene, ob, substring, mat);
579                 constraint_mat_convertspace(ob, NULL, mat, from, to);
580         }
581         else if (ob->type == OB_LATTICE) {
582                 contarget_get_lattice_mat(ob, substring, mat);
583                 constraint_mat_convertspace(ob, NULL, mat, from, to);
584         }
585         /*      Case BONE */
586         else {
587                 bPoseChannel *pchan;
588                 
589                 pchan = get_pose_channel(ob->pose, substring);
590                 if (pchan) {
591                         /* Multiply the PoseSpace accumulation/final matrix for this
592                          * PoseChannel by the Armature Object's Matrix to get a worldspace
593                          * matrix.
594                          */
595                         if (headtail < 0.000001) {
596                                 /* skip length interpolation if set to head */
597                                 mul_m4_m4m4(mat, pchan->pose_mat, ob->obmat);
598                         }
599                         else {
600                                 float tempmat[4][4], loc[3];
601                                 
602                                 /* interpolate along length of bone */
603                                 interp_v3_v3v3(loc, pchan->pose_head, pchan->pose_tail, headtail);      
604                                 
605                                 /* use interpolated distance for subtarget */
606                                 copy_m4_m4(tempmat, pchan->pose_mat);   
607                                 copy_v3_v3(tempmat[3], loc);
608                                 
609                                 mul_m4_m4m4(mat, tempmat, ob->obmat);
610                         }
611                 } 
612                 else
613                         copy_m4_m4(mat, ob->obmat);
614                         
615                 /* convert matrix space as required */
616                 constraint_mat_convertspace(ob, pchan, mat, from, to);
617         }
618 }
619
620 /* ************************* Specific Constraints ***************************** */
621 /* Each constraint defines a set of functions, which will be called at the appropriate
622  * times. In addition to this, each constraint should have a type-info struct, where
623  * its functions are attached for use. 
624  */
625  
626 /* Template for type-info data:
627  *      - make a copy of this when creating new constraints, and just change the functions
628  *        pointed to as necessary
629  *      - although the naming of functions doesn't matter, it would help for code
630  *        readability, to follow the same naming convention as is presented here
631  *      - any functions that a constraint doesn't need to define, don't define
632  *        for such cases, just use NULL 
633  *      - these should be defined after all the functions have been defined, so that
634  *        forward-definitions/prototypes don't need to be used!
635  *      - keep this copy #if-def'd so that future constraints can get based off this
636  */
637 #if 0
638 static bConstraintTypeInfo CTI_CONSTRNAME = {
639         CONSTRAINT_TYPE_CONSTRNAME, /* type */
640         sizeof(bConstrNameConstraint), /* size */
641         "ConstrName", /* name */
642         "bConstrNameConstraint", /* struct name */
643         constrname_free, /* free data */
644         constrname_relink, /* relink data */
645         constrname_id_looper, /* id looper */
646         constrname_copy, /* copy data */
647         constrname_new_data, /* new data */
648         constrname_get_tars, /* get constraint targets */
649         constrname_flush_tars, /* flush constraint targets */
650         constrname_get_tarmat, /* get target matrix */
651         constrname_evaluate /* evaluate */
652 };
653 #endif
654
655 /* This function should be used for the get_target_matrix member of all 
656  * constraints that are not picky about what happens to their target matrix.
657  */
658 static void default_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
659 {
660         if (VALID_CONS_TARGET(ct))
661                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
662         else if (ct)
663                 unit_m4(ct->matrix);
664 }
665
666 /* This following macro should be used for all standard single-target *_get_tars functions 
667  * to save typing and reduce maintainance woes.
668  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
669  *  really just to help this code easier to read)
670  */
671 // TODO: cope with getting rotation order...
672 #define SINGLETARGET_GET_TARS(con, datatar, datasubtarget, ct, list) \
673         { \
674                 ct= MEM_callocN(sizeof(bConstraintTarget), "tempConstraintTarget"); \
675                  \
676                 ct->tar= datatar; \
677                 strcpy(ct->subtarget, datasubtarget); \
678                 ct->space= con->tarspace; \
679                 ct->flag= CONSTRAINT_TAR_TEMP; \
680                  \
681                 if (ct->tar) { \
682                         if ((ct->tar->type==OB_ARMATURE) && (ct->subtarget[0])) { \
683                                 bPoseChannel *pchan= get_pose_channel(ct->tar->pose, ct->subtarget); \
684                                 ct->type = CONSTRAINT_OBTYPE_BONE; \
685                                 ct->rotOrder= (pchan) ? (pchan->rotmode) : EULER_ORDER_DEFAULT; \
686                         }\
687                         else if (ELEM(ct->tar->type, OB_MESH, OB_LATTICE) && (ct->subtarget[0])) { \
688                                 ct->type = CONSTRAINT_OBTYPE_VERT; \
689                                 ct->rotOrder = EULER_ORDER_DEFAULT; \
690                         } \
691                         else {\
692                                 ct->type = CONSTRAINT_OBTYPE_OBJECT; \
693                                 ct->rotOrder= ct->tar->rotmode; \
694                         } \
695                 } \
696                  \
697                 BLI_addtail(list, ct); \
698         }
699         
700 /* This following macro should be used for all standard single-target *_get_tars functions 
701  * to save typing and reduce maintainance woes. It does not do the subtarget related operations
702  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
703  *  really just to help this code easier to read)
704  */
705 // TODO: cope with getting rotation order...
706 #define SINGLETARGETNS_GET_TARS(con, datatar, ct, list) \
707         { \
708                 ct= MEM_callocN(sizeof(bConstraintTarget), "tempConstraintTarget"); \
709                  \
710                 ct->tar= datatar; \
711                 ct->space= con->tarspace; \
712                 ct->flag= CONSTRAINT_TAR_TEMP; \
713                  \
714                 if (ct->tar) ct->type = CONSTRAINT_OBTYPE_OBJECT; \
715                  \
716                 BLI_addtail(list, ct); \
717         }
718
719 /* This following macro should be used for all standard single-target *_flush_tars functions
720  * to save typing and reduce maintainance woes.
721  * Note: the pointer to ct will be changed to point to the next in the list (as it gets removed)
722  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
723  *  really just to help this code easier to read)
724  */
725 #define SINGLETARGET_FLUSH_TARS(con, datatar, datasubtarget, ct, list, nocopy) \
726         { \
727                 if (ct) { \
728                         bConstraintTarget *ctn = ct->next; \
729                         if (nocopy == 0) { \
730                                 datatar= ct->tar; \
731                                 strcpy(datasubtarget, ct->subtarget); \
732                                 con->tarspace= (char)ct->space; \
733                         } \
734                          \
735                         BLI_freelinkN(list, ct); \
736                         ct= ctn; \
737                 } \
738         }
739         
740 /* This following macro should be used for all standard single-target *_flush_tars functions
741  * to save typing and reduce maintainance woes. It does not do the subtarget related operations.
742  * Note: the pointer to ct will be changed to point to the next in the list (as it gets removed)
743  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
744  *  really just to help this code easier to read)
745  */
746 #define SINGLETARGETNS_FLUSH_TARS(con, datatar, ct, list, nocopy) \
747         { \
748                 if (ct) { \
749                         bConstraintTarget *ctn = ct->next; \
750                         if (nocopy == 0) { \
751                                 datatar= ct->tar; \
752                                 con->tarspace= (char)ct->space; \
753                         } \
754                          \
755                         BLI_freelinkN(list, ct); \
756                         ct= ctn; \
757                 } \
758         }
759  
760 /* --------- ChildOf Constraint ------------ */
761
762 static void childof_new_data (void *cdata)
763 {
764         bChildOfConstraint *data= (bChildOfConstraint *)cdata;
765         
766         data->flag = (CHILDOF_LOCX | CHILDOF_LOCY | CHILDOF_LOCZ |
767                                         CHILDOF_ROTX |CHILDOF_ROTY | CHILDOF_ROTZ |
768                                         CHILDOF_SIZEX | CHILDOF_SIZEY | CHILDOF_SIZEZ);
769         unit_m4(data->invmat);
770 }
771
772 static void childof_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
773 {
774         bChildOfConstraint *data= con->data;
775         
776         /* target only */
777         func(con, (ID**)&data->tar, userdata);
778 }
779
780 static int childof_get_tars (bConstraint *con, ListBase *list)
781 {
782         if (con && list) {
783                 bChildOfConstraint *data= con->data;
784                 bConstraintTarget *ct;
785                 
786                 /* standard target-getting macro for single-target constraints */
787                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
788                 
789                 return 1;
790         }
791         
792         return 0;
793 }
794
795 static void childof_flush_tars (bConstraint *con, ListBase *list, short nocopy)
796 {
797         if (con && list) {
798                 bChildOfConstraint *data= con->data;
799                 bConstraintTarget *ct= list->first;
800                 
801                 /* the following macro is used for all standard single-target constraints */
802                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
803         }
804 }
805
806 static void childof_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
807 {
808         bChildOfConstraint *data= con->data;
809         bConstraintTarget *ct= targets->first;
810         
811         /* only evaluate if there is a target */
812         if (VALID_CONS_TARGET(ct)) {
813                 float parmat[4][4], invmat[4][4], tempmat[4][4];
814                 float loc[3], eul[3], size[3];
815                 float loco[3], eulo[3], sizo[3];
816                 
817                 /* get offset (parent-inverse) matrix */
818                 copy_m4_m4(invmat, data->invmat);
819                 
820                 /* extract components of both matrices */
821                 copy_v3_v3(loc, ct->matrix[3]);
822                 mat4_to_eulO(eul, ct->rotOrder, ct->matrix);
823                 mat4_to_size(size, ct->matrix);
824                 
825                 copy_v3_v3(loco, invmat[3]);
826                 mat4_to_eulO(eulo, cob->rotOrder, invmat);
827                 mat4_to_size(sizo, invmat);
828                 
829                 /* disable channels not enabled */
830                 if (!(data->flag & CHILDOF_LOCX)) loc[0]= loco[0]= 0.0f;
831                 if (!(data->flag & CHILDOF_LOCY)) loc[1]= loco[1]= 0.0f;
832                 if (!(data->flag & CHILDOF_LOCZ)) loc[2]= loco[2]= 0.0f;
833                 if (!(data->flag & CHILDOF_ROTX)) eul[0]= eulo[0]= 0.0f;
834                 if (!(data->flag & CHILDOF_ROTY)) eul[1]= eulo[1]= 0.0f;
835                 if (!(data->flag & CHILDOF_ROTZ)) eul[2]= eulo[2]= 0.0f;
836                 if (!(data->flag & CHILDOF_SIZEX)) size[0]= sizo[0]= 1.0f;
837                 if (!(data->flag & CHILDOF_SIZEY)) size[1]= sizo[1]= 1.0f;
838                 if (!(data->flag & CHILDOF_SIZEZ)) size[2]= sizo[2]= 1.0f;
839                 
840                 /* make new target mat and offset mat */
841                 loc_eulO_size_to_mat4(ct->matrix, loc, eul, size, ct->rotOrder);
842                 loc_eulO_size_to_mat4(invmat, loco, eulo, sizo, cob->rotOrder);
843                 
844                 /* multiply target (parent matrix) by offset (parent inverse) to get 
845                  * the effect of the parent that will be exherted on the owner
846                  */
847                 mul_m4_m4m4(parmat, invmat, ct->matrix);
848                 
849                 /* now multiply the parent matrix by the owner matrix to get the 
850                  * the effect of this constraint (i.e.  owner is 'parented' to parent)
851                  */
852                 copy_m4_m4(tempmat, cob->matrix);
853                 mul_m4_m4m4(cob->matrix, tempmat, parmat);
854
855                 /* without this, changes to scale and rotation can change location
856                  * of a parentless bone or a disconnected bone. Even though its set
857                  * to zero above. */
858                 if (!(data->flag & CHILDOF_LOCX)) cob->matrix[3][0]= tempmat[3][0];
859                 if (!(data->flag & CHILDOF_LOCY)) cob->matrix[3][1]= tempmat[3][1];
860                 if (!(data->flag & CHILDOF_LOCZ)) cob->matrix[3][2]= tempmat[3][2];     
861         }
862 }
863
864 static bConstraintTypeInfo CTI_CHILDOF = {
865         CONSTRAINT_TYPE_CHILDOF, /* type */
866         sizeof(bChildOfConstraint), /* size */
867         "ChildOf", /* name */
868         "bChildOfConstraint", /* struct name */
869         NULL, /* free data */
870         NULL, /* relink data */
871         childof_id_looper, /* id looper */
872         NULL, /* copy data */
873         childof_new_data, /* new data */
874         childof_get_tars, /* get constraint targets */
875         childof_flush_tars, /* flush constraint targets */
876         default_get_tarmat, /* get a target matrix */
877         childof_evaluate /* evaluate */
878 };
879
880 /* -------- TrackTo Constraint ------- */
881
882 static void trackto_new_data (void *cdata)
883 {
884         bTrackToConstraint *data= (bTrackToConstraint *)cdata;
885         
886         data->reserved1 = TRACK_Y;
887         data->reserved2 = UP_Z;
888 }       
889
890 static void trackto_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
891 {
892         bTrackToConstraint *data= con->data;
893         
894         /* target only */
895         func(con, (ID**)&data->tar, userdata);
896 }
897
898 static int trackto_get_tars (bConstraint *con, ListBase *list)
899 {
900         if (con && list) {
901                 bTrackToConstraint *data= con->data;
902                 bConstraintTarget *ct;
903                 
904                 /* standard target-getting macro for single-target constraints */
905                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
906                 
907                 return 1;
908         }
909         
910         return 0;
911 }
912
913 static void trackto_flush_tars (bConstraint *con, ListBase *list, short nocopy)
914 {
915         if (con && list) {
916                 bTrackToConstraint *data= con->data;
917                 bConstraintTarget *ct= list->first;
918                 
919                 /* the following macro is used for all standard single-target constraints */
920                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
921         }
922 }
923
924
925 static int basis_cross (int n, int m)
926 {
927         switch (n-m) {
928                 case 1: 
929                 case -2:
930                         return 1;
931                         
932                 case -1: 
933                 case 2:
934                         return -1;
935                         
936                 default:
937                         return 0;
938         }
939 }
940
941 static void vectomat (float *vec, float *target_up, short axis, short upflag, short flags, float m[][3])
942 {
943         float n[3];
944         float u[3]; /* vector specifying the up axis */
945         float proj[3];
946         float right[3];
947         float neg = -1;
948         int right_index;
949
950         if (normalize_v3_v3(n, vec) == 0.0) { 
951                 n[0] = 0.0;
952                 n[1] = 0.0;
953                 n[2] = 1.0;
954         }
955         if (axis > 2) axis -= 3;
956         else negate_v3(n);
957
958         /* n specifies the transformation of the track axis */
959         if (flags & TARGET_Z_UP) { 
960                 /* target Z axis is the global up axis */
961                 copy_v3_v3(u, target_up);
962         }
963         else { 
964                 /* world Z axis is the global up axis */
965                 u[0] = 0;
966                 u[1] = 0;
967                 u[2] = 1;
968         }
969
970         /* project the up vector onto the plane specified by n */
971         project_v3_v3v3(proj, u, n); /* first u onto n... */
972         sub_v3_v3v3(proj, u, proj); /* then onto the plane */
973         /* proj specifies the transformation of the up axis */
974
975         if (normalize_v3(proj) == 0.0) { /* degenerate projection */
976                 proj[0] = 0.0;
977                 proj[1] = 1.0;
978                 proj[2] = 0.0;
979         }
980
981         /* Normalized cross product of n and proj specifies transformation of the right axis */
982         cross_v3_v3v3(right, proj, n);
983         normalize_v3(right);
984
985         if (axis != upflag) {
986                 right_index = 3 - axis - upflag;
987                 neg = (float)basis_cross(axis, upflag);
988                 
989                 /* account for up direction, track direction */
990                 m[right_index][0] = neg * right[0];
991                 m[right_index][1] = neg * right[1];
992                 m[right_index][2] = neg * right[2];
993                 
994                 copy_v3_v3(m[upflag], proj);
995                 
996                 copy_v3_v3(m[axis], n);
997         }
998         /* identity matrix - don't do anything if the two axes are the same */
999         else {
1000                 unit_m3(m);
1001         }
1002 }
1003
1004
1005 static void trackto_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1006 {
1007         bTrackToConstraint *data= con->data;
1008         bConstraintTarget *ct= targets->first;
1009         
1010         if (VALID_CONS_TARGET(ct)) {
1011                 float size[3], vec[3];
1012                 float totmat[3][3];
1013                 float tmat[4][4];
1014                 
1015                 /* Get size property, since ob->size is only the object's own relative size, not its global one */
1016                 mat4_to_size(size, cob->matrix);
1017                 
1018                 /* Clear the object's rotation */       
1019                 cob->matrix[0][0]=size[0];
1020                 cob->matrix[0][1]=0;
1021                 cob->matrix[0][2]=0;
1022                 cob->matrix[1][0]=0;
1023                 cob->matrix[1][1]=size[1];
1024                 cob->matrix[1][2]=0;
1025                 cob->matrix[2][0]=0;
1026                 cob->matrix[2][1]=0;
1027                 cob->matrix[2][2]=size[2];
1028                 
1029                 /* targetmat[2] instead of ownermat[2] is passed to vectomat
1030                  * for backwards compatability it seems... (Aligorith)
1031                  */
1032                 sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);
1033                 vectomat(vec, ct->matrix[2], 
1034                                 (short)data->reserved1, (short)data->reserved2, 
1035                                 data->flags, totmat);
1036                 
1037                 copy_m4_m4(tmat, cob->matrix);
1038                 mul_m4_m3m4(cob->matrix, totmat, tmat);
1039         }
1040 }
1041
1042 static bConstraintTypeInfo CTI_TRACKTO = {
1043         CONSTRAINT_TYPE_TRACKTO, /* type */
1044         sizeof(bTrackToConstraint), /* size */
1045         "TrackTo", /* name */
1046         "bTrackToConstraint", /* struct name */
1047         NULL, /* free data */
1048         NULL, /* relink data */
1049         trackto_id_looper, /* id looper */
1050         NULL, /* copy data */
1051         trackto_new_data, /* new data */
1052         trackto_get_tars, /* get constraint targets */
1053         trackto_flush_tars, /* flush constraint targets */
1054         default_get_tarmat, /* get target matrix */
1055         trackto_evaluate /* evaluate */
1056 };
1057
1058 /* --------- Inverse-Kinemetics --------- */
1059
1060 static void kinematic_new_data (void *cdata)
1061 {
1062         bKinematicConstraint *data= (bKinematicConstraint *)cdata;
1063         
1064         data->weight= (float)1.0;
1065         data->orientweight= (float)1.0;
1066         data->iterations = 500;
1067         data->dist= (float)1.0;
1068         data->flag= CONSTRAINT_IK_TIP|CONSTRAINT_IK_STRETCH|CONSTRAINT_IK_POS;
1069 }
1070
1071 static void kinematic_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1072 {
1073         bKinematicConstraint *data= con->data;
1074         
1075         /* chain target */
1076         func(con, (ID**)&data->tar, userdata);
1077         
1078         /* poletarget */
1079         func(con, (ID**)&data->poletar, userdata);
1080 }
1081
1082 static int kinematic_get_tars (bConstraint *con, ListBase *list)
1083 {
1084         if (con && list) {
1085                 bKinematicConstraint *data= con->data;
1086                 bConstraintTarget *ct;
1087                 
1088                 /* standard target-getting macro for single-target constraints is used twice here */
1089                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1090                 SINGLETARGET_GET_TARS(con, data->poletar, data->polesubtarget, ct, list)
1091                 
1092                 return 2;
1093         }
1094         
1095         return 0;
1096 }
1097
1098 static void kinematic_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1099 {
1100         if (con && list) {
1101                 bKinematicConstraint *data= con->data;
1102                 bConstraintTarget *ct= list->first;
1103                 
1104                 /* the following macro is used for all standard single-target constraints */
1105                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1106                 SINGLETARGET_FLUSH_TARS(con, data->poletar, data->polesubtarget, ct, list, nocopy)
1107         }
1108 }
1109
1110 static void kinematic_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
1111 {
1112         bKinematicConstraint *data= con->data;
1113         
1114         if (VALID_CONS_TARGET(ct)) 
1115                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
1116         else if (ct) {
1117                 if (data->flag & CONSTRAINT_IK_AUTO) {
1118                         Object *ob= cob->ob;
1119                         
1120                         if (ob == NULL) {
1121                                 unit_m4(ct->matrix);
1122                         }
1123                         else {
1124                                 float vec[3];
1125                                 /* move grabtarget into world space */
1126                                 mul_v3_m4v3(vec, ob->obmat, data->grabtarget);
1127                                 copy_m4_m4(ct->matrix, ob->obmat);
1128                                 copy_v3_v3(ct->matrix[3], vec);
1129                         }
1130                 }
1131                 else
1132                         unit_m4(ct->matrix);
1133         }
1134 }
1135
1136 static bConstraintTypeInfo CTI_KINEMATIC = {
1137         CONSTRAINT_TYPE_KINEMATIC, /* type */
1138         sizeof(bKinematicConstraint), /* size */
1139         "IK", /* name */
1140         "bKinematicConstraint", /* struct name */
1141         NULL, /* free data */
1142         NULL, /* relink data */
1143         kinematic_id_looper, /* id looper */
1144         NULL, /* copy data */
1145         kinematic_new_data, /* new data */
1146         kinematic_get_tars, /* get constraint targets */
1147         kinematic_flush_tars, /* flush constraint targets */
1148         kinematic_get_tarmat, /* get target matrix */
1149         NULL /* evaluate - solved as separate loop */
1150 };
1151
1152 /* -------- Follow-Path Constraint ---------- */
1153
1154 static void followpath_new_data (void *cdata)
1155 {
1156         bFollowPathConstraint *data= (bFollowPathConstraint *)cdata;
1157         
1158         data->trackflag = TRACK_Y;
1159         data->upflag = UP_Z;
1160         data->offset = 0;
1161         data->followflag = 0;
1162 }
1163
1164 static void followpath_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1165 {
1166         bFollowPathConstraint *data= con->data;
1167         
1168         /* target only */
1169         func(con, (ID**)&data->tar, userdata);
1170 }
1171
1172 static int followpath_get_tars (bConstraint *con, ListBase *list)
1173 {
1174         if (con && list) {
1175                 bFollowPathConstraint *data= con->data;
1176                 bConstraintTarget *ct;
1177                 
1178                 /* standard target-getting macro for single-target constraints without subtargets */
1179                 SINGLETARGETNS_GET_TARS(con, data->tar, ct, list)
1180                 
1181                 return 1;
1182         }
1183         
1184         return 0;
1185 }
1186
1187 static void followpath_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1188 {
1189         if (con && list) {
1190                 bFollowPathConstraint *data= con->data;
1191                 bConstraintTarget *ct= list->first;
1192                 
1193                 /* the following macro is used for all standard single-target constraints */
1194                 SINGLETARGETNS_FLUSH_TARS(con, data->tar, ct, list, nocopy)
1195         }
1196 }
1197
1198 static void followpath_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
1199 {
1200         bFollowPathConstraint *data= con->data;
1201         
1202         if (VALID_CONS_TARGET(ct)) {
1203                 Curve *cu= ct->tar->data;
1204                 float vec[4], dir[3], radius;
1205                 float totmat[4][4];
1206                 float curvetime;
1207                 
1208                 unit_m4(totmat);
1209                 unit_m4(ct->matrix);
1210                 
1211                 /* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
1212                  *              currently for paths to work it needs to go through the bevlist/displist system (ton) 
1213                  */
1214                 
1215                 /* only happens on reload file, but violates depsgraph still... fix! */
1216                 if (cu->path==NULL || cu->path->data==NULL)
1217                         makeDispListCurveTypes(cob->scene, ct->tar, 0);
1218                 
1219                 if (cu->path && cu->path->data) {
1220                         float quat[4];
1221                         if ((data->followflag & FOLLOWPATH_STATIC) == 0) {
1222                                 /* animated position along curve depending on time */
1223                                 if (cob->scene)
1224                                         curvetime= bsystem_time(cob->scene, ct->tar, cu->ctime, 0.0) - data->offset;
1225                                 else    
1226                                         curvetime= cu->ctime - data->offset;
1227                                 
1228                                 /* ctime is now a proper var setting of Curve which gets set by Animato like any other var that's animated,
1229                                  * but this will only work if it actually is animated... 
1230                                  *
1231                                  * we divide the curvetime calculated in the previous step by the length of the path, to get a time
1232                                  * factor, which then gets clamped to lie within 0.0 - 1.0 range
1233                                  */
1234                                 curvetime /= cu->pathlen;
1235                                 CLAMP(curvetime, 0.0, 1.0);
1236                         }
1237                         else {
1238                                 /* fixed position along curve */
1239                                 curvetime= data->offset_fac;
1240                         }
1241                         
1242                         if ( where_on_path(ct->tar, curvetime, vec, dir, (data->followflag & FOLLOWPATH_FOLLOW) ? quat : NULL, &radius, NULL) ) { /* quat_pt is quat or NULL*/
1243                                 if (data->followflag & FOLLOWPATH_FOLLOW) {
1244 #if 0
1245                                         float x1, q[4];
1246                                         vec_to_quat(quat, dir, (short)data->trackflag, (short)data->upflag);
1247                                         
1248                                         normalize_v3(dir);
1249                                         q[0]= (float)cos(0.5*vec[3]);
1250                                         x1= (float)sin(0.5*vec[3]);
1251                                         q[1]= -x1*dir[0];
1252                                         q[2]= -x1*dir[1];
1253                                         q[3]= -x1*dir[2];
1254                                         mul_qt_qtqt(quat, q, quat);
1255 #else
1256                                         quat_apply_track(quat, data->trackflag, data->upflag);
1257 #endif
1258
1259                                         quat_to_mat4(totmat, quat);
1260                                 }
1261
1262                                 if (data->followflag & FOLLOWPATH_RADIUS) {
1263                                         float tmat[4][4], rmat[4][4];
1264                                         scale_m4_fl(tmat, radius);
1265                                         mul_m4_m4m4(rmat, totmat, tmat);
1266                                         copy_m4_m4(totmat, rmat);
1267                                 }
1268                                 
1269                                 copy_v3_v3(totmat[3], vec);
1270                                 
1271                                 mul_serie_m4(ct->matrix, ct->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
1272                         }
1273                 }
1274         }
1275         else if (ct)
1276                 unit_m4(ct->matrix);
1277 }
1278
1279 static void followpath_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1280 {
1281         bConstraintTarget *ct= targets->first;
1282         
1283         /* only evaluate if there is a target */
1284         if (VALID_CONS_TARGET(ct)) {
1285                 float obmat[4][4];
1286                 float size[3];
1287                 bFollowPathConstraint *data= con->data;
1288                 
1289                 /* get Object transform (loc/rot/size) to determine transformation from path */
1290                 // TODO: this used to be local at one point, but is probably more useful as-is
1291                 copy_m4_m4(obmat, cob->matrix);
1292                 
1293                 /* get scaling of object before applying constraint */
1294                 mat4_to_size(size, cob->matrix);
1295                 
1296                 /* apply targetmat - containing location on path, and rotation */
1297                 mul_serie_m4(cob->matrix, ct->matrix, obmat, NULL, NULL, NULL, NULL, NULL, NULL);
1298                 
1299                 /* un-apply scaling caused by path */
1300                 if ((data->followflag & FOLLOWPATH_RADIUS)==0) { /* XXX - assume that scale correction means that radius will have some scale error in it - Campbell */
1301                         float obsize[3];
1302                         
1303                         mat4_to_size( obsize,cob->matrix);
1304                         if (obsize[0])
1305                                 mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
1306                         if (obsize[1])
1307                                 mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
1308                         if (obsize[2])
1309                                 mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
1310                 }
1311         }
1312 }
1313
1314 static bConstraintTypeInfo CTI_FOLLOWPATH = {
1315         CONSTRAINT_TYPE_FOLLOWPATH, /* type */
1316         sizeof(bFollowPathConstraint), /* size */
1317         "Follow Path", /* name */
1318         "bFollowPathConstraint", /* struct name */
1319         NULL, /* free data */
1320         NULL, /* relink data */
1321         followpath_id_looper, /* id looper */
1322         NULL, /* copy data */
1323         followpath_new_data, /* new data */
1324         followpath_get_tars, /* get constraint targets */
1325         followpath_flush_tars, /* flush constraint targets */
1326         followpath_get_tarmat, /* get target matrix */
1327         followpath_evaluate /* evaluate */
1328 };
1329
1330 /* --------- Limit Location --------- */
1331
1332
1333 static void loclimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
1334 {
1335         bLocLimitConstraint *data = con->data;
1336         
1337         if (data->flag & LIMIT_XMIN) {
1338                 if (cob->matrix[3][0] < data->xmin)
1339                         cob->matrix[3][0] = data->xmin;
1340         }
1341         if (data->flag & LIMIT_XMAX) {
1342                 if (cob->matrix[3][0] > data->xmax)
1343                         cob->matrix[3][0] = data->xmax;
1344         }
1345         if (data->flag & LIMIT_YMIN) {
1346                 if (cob->matrix[3][1] < data->ymin)
1347                         cob->matrix[3][1] = data->ymin;
1348         }
1349         if (data->flag & LIMIT_YMAX) {
1350                 if (cob->matrix[3][1] > data->ymax)
1351                         cob->matrix[3][1] = data->ymax;
1352         }
1353         if (data->flag & LIMIT_ZMIN) {
1354                 if (cob->matrix[3][2] < data->zmin) 
1355                         cob->matrix[3][2] = data->zmin;
1356         }
1357         if (data->flag & LIMIT_ZMAX) {
1358                 if (cob->matrix[3][2] > data->zmax)
1359                         cob->matrix[3][2] = data->zmax;
1360         }
1361 }
1362
1363 static bConstraintTypeInfo CTI_LOCLIMIT = {
1364         CONSTRAINT_TYPE_LOCLIMIT, /* type */
1365         sizeof(bLocLimitConstraint), /* size */
1366         "Limit Location", /* name */
1367         "bLocLimitConstraint", /* struct name */
1368         NULL, /* free data */
1369         NULL, /* relink data */
1370         NULL, /* id looper */
1371         NULL, /* copy data */
1372         NULL, /* new data */
1373         NULL, /* get constraint targets */
1374         NULL, /* flush constraint targets */
1375         NULL, /* get target matrix */
1376         loclimit_evaluate /* evaluate */
1377 };
1378
1379 /* -------- Limit Rotation --------- */
1380
1381 static void rotlimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
1382 {
1383         bRotLimitConstraint *data = con->data;
1384         float eul_zero[3]= {0.0f, 0.0f, 0.0f};
1385         float loc[3];
1386         float eul[3];
1387         float size[3];
1388         
1389         copy_v3_v3(loc, cob->matrix[3]);
1390         mat4_to_size(size, cob->matrix);
1391         
1392         /* use compat function because it uses the rotation without axis flipping [#24002] */
1393         mat4_to_compatible_eulO(eul, eul_zero, cob->rotOrder, cob->matrix);
1394
1395         /* constraint data uses radians internally */
1396         
1397         /* limiting of euler values... */
1398         if (data->flag & LIMIT_XROT) {
1399                 if (eul[0] < data->xmin) 
1400                         eul[0] = data->xmin;
1401                         
1402                 if (eul[0] > data->xmax)
1403                         eul[0] = data->xmax;
1404         }
1405         if (data->flag & LIMIT_YROT) {
1406                 if (eul[1] < data->ymin)
1407                         eul[1] = data->ymin;
1408                         
1409                 if (eul[1] > data->ymax)
1410                         eul[1] = data->ymax;
1411         }
1412         if (data->flag & LIMIT_ZROT) {
1413                 if (eul[2] < data->zmin)
1414                         eul[2] = data->zmin;
1415                         
1416                 if (eul[2] > data->zmax)
1417                         eul[2] = data->zmax;
1418         }
1419                 
1420         loc_eulO_size_to_mat4(cob->matrix, loc, eul, size, cob->rotOrder);
1421 }
1422
1423 static bConstraintTypeInfo CTI_ROTLIMIT = {
1424         CONSTRAINT_TYPE_ROTLIMIT, /* type */
1425         sizeof(bRotLimitConstraint), /* size */
1426         "Limit Rotation", /* name */
1427         "bRotLimitConstraint", /* struct name */
1428         NULL, /* free data */
1429         NULL, /* relink data */
1430         NULL, /* id looper */
1431         NULL, /* copy data */
1432         NULL, /* new data */
1433         NULL, /* get constraint targets */
1434         NULL, /* flush constraint targets */
1435         NULL, /* get target matrix */
1436         rotlimit_evaluate /* evaluate */
1437 };
1438
1439 /* --------- Limit Scaling --------- */
1440
1441
1442 static void sizelimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
1443 {
1444         bSizeLimitConstraint *data = con->data;
1445         float obsize[3], size[3];
1446         
1447         mat4_to_size( size,cob->matrix);
1448         mat4_to_size( obsize,cob->matrix);
1449         
1450         if (data->flag & LIMIT_XMIN) {
1451                 if (size[0] < data->xmin) 
1452                         size[0] = data->xmin;   
1453         }
1454         if (data->flag & LIMIT_XMAX) {
1455                 if (size[0] > data->xmax) 
1456                         size[0] = data->xmax;
1457         }
1458         if (data->flag & LIMIT_YMIN) {
1459                 if (size[1] < data->ymin) 
1460                         size[1] = data->ymin;   
1461         }
1462         if (data->flag & LIMIT_YMAX) {
1463                 if (size[1] > data->ymax) 
1464                         size[1] = data->ymax;
1465         }
1466         if (data->flag & LIMIT_ZMIN) {
1467                 if (size[2] < data->zmin) 
1468                         size[2] = data->zmin;   
1469         }
1470         if (data->flag & LIMIT_ZMAX) {
1471                 if (size[2] > data->zmax) 
1472                         size[2] = data->zmax;
1473         }
1474         
1475         if (obsize[0]) 
1476                 mul_v3_fl(cob->matrix[0], size[0]/obsize[0]);
1477         if (obsize[1]) 
1478                 mul_v3_fl(cob->matrix[1], size[1]/obsize[1]);
1479         if (obsize[2]) 
1480                 mul_v3_fl(cob->matrix[2], size[2]/obsize[2]);
1481 }
1482
1483 static bConstraintTypeInfo CTI_SIZELIMIT = {
1484         CONSTRAINT_TYPE_SIZELIMIT, /* type */
1485         sizeof(bSizeLimitConstraint), /* size */
1486         "Limit Scaling", /* name */
1487         "bSizeLimitConstraint", /* struct name */
1488         NULL, /* free data */
1489         NULL, /* relink data */
1490         NULL, /* id looper */
1491         NULL, /* copy data */
1492         NULL, /* new data */
1493         NULL, /* get constraint targets */
1494         NULL, /* flush constraint targets */
1495         NULL, /* get target matrix */
1496         sizelimit_evaluate /* evaluate */
1497 };
1498
1499 /* ----------- Copy Location ------------- */
1500
1501 static void loclike_new_data (void *cdata)
1502 {
1503         bLocateLikeConstraint *data= (bLocateLikeConstraint *)cdata;
1504         
1505         data->flag = LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z;
1506 }
1507
1508 static void loclike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1509 {
1510         bLocateLikeConstraint *data= con->data;
1511         
1512         /* target only */
1513         func(con, (ID**)&data->tar, userdata);
1514 }
1515
1516 static int loclike_get_tars (bConstraint *con, ListBase *list)
1517 {
1518         if (con && list) {
1519                 bLocateLikeConstraint *data= con->data;
1520                 bConstraintTarget *ct;
1521                 
1522                 /* standard target-getting macro for single-target constraints */
1523                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1524                 
1525                 return 1;
1526         }
1527         
1528         return 0;
1529 }
1530
1531 static void loclike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1532 {
1533         if (con && list) {
1534                 bLocateLikeConstraint *data= con->data;
1535                 bConstraintTarget *ct= list->first;
1536                 
1537                 /* the following macro is used for all standard single-target constraints */
1538                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1539         }
1540 }
1541
1542 static void loclike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1543 {
1544         bLocateLikeConstraint *data= con->data;
1545         bConstraintTarget *ct= targets->first;
1546         
1547         if (VALID_CONS_TARGET(ct)) {
1548                 float offset[3] = {0.0f, 0.0f, 0.0f};
1549                 
1550                 if (data->flag & LOCLIKE_OFFSET)
1551                         copy_v3_v3(offset, cob->matrix[3]);
1552                         
1553                 if (data->flag & LOCLIKE_X) {
1554                         cob->matrix[3][0] = ct->matrix[3][0];
1555                         
1556                         if (data->flag & LOCLIKE_X_INVERT) cob->matrix[3][0] *= -1;
1557                         cob->matrix[3][0] += offset[0];
1558                 }
1559                 if (data->flag & LOCLIKE_Y) {
1560                         cob->matrix[3][1] = ct->matrix[3][1];
1561                         
1562                         if (data->flag & LOCLIKE_Y_INVERT) cob->matrix[3][1] *= -1;
1563                         cob->matrix[3][1] += offset[1];
1564                 }
1565                 if (data->flag & LOCLIKE_Z) {
1566                         cob->matrix[3][2] = ct->matrix[3][2];
1567                         
1568                         if (data->flag & LOCLIKE_Z_INVERT) cob->matrix[3][2] *= -1;
1569                         cob->matrix[3][2] += offset[2];
1570                 }
1571         }
1572 }
1573
1574 static bConstraintTypeInfo CTI_LOCLIKE = {
1575         CONSTRAINT_TYPE_LOCLIKE, /* type */
1576         sizeof(bLocateLikeConstraint), /* size */
1577         "Copy Location", /* name */
1578         "bLocateLikeConstraint", /* struct name */
1579         NULL, /* free data */
1580         NULL, /* relink data */
1581         loclike_id_looper, /* id looper */
1582         NULL, /* copy data */
1583         loclike_new_data, /* new data */
1584         loclike_get_tars, /* get constraint targets */
1585         loclike_flush_tars, /* flush constraint targets */
1586         default_get_tarmat, /* get target matrix */
1587         loclike_evaluate /* evaluate */
1588 };
1589
1590 /* ----------- Copy Rotation ------------- */
1591
1592 static void rotlike_new_data (void *cdata)
1593 {
1594         bRotateLikeConstraint *data= (bRotateLikeConstraint *)cdata;
1595         
1596         data->flag = ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z;
1597 }
1598
1599 static void rotlike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1600 {
1601         bChildOfConstraint *data= con->data;
1602         
1603         /* target only */
1604         func(con, (ID**)&data->tar, userdata);
1605 }
1606
1607 static int rotlike_get_tars (bConstraint *con, ListBase *list)
1608 {
1609         if (con && list) {
1610                 bRotateLikeConstraint *data= con->data;
1611                 bConstraintTarget *ct;
1612                 
1613                 /* standard target-getting macro for single-target constraints */
1614                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1615                 
1616                 return 1;
1617         }
1618         
1619         return 0;
1620 }
1621
1622 static void rotlike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1623 {
1624         if (con && list) {
1625                 bRotateLikeConstraint *data= con->data;
1626                 bConstraintTarget *ct= list->first;
1627                 
1628                 /* the following macro is used for all standard single-target constraints */
1629                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1630         }
1631 }
1632
1633 static void rotlike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1634 {
1635         bRotateLikeConstraint *data= con->data;
1636         bConstraintTarget *ct= targets->first;
1637         
1638         if (VALID_CONS_TARGET(ct)) {
1639                 float   loc[3];
1640                 float   eul[3], obeul[3];
1641                 float   size[3];
1642                 
1643                 copy_v3_v3(loc, cob->matrix[3]);
1644                 mat4_to_size(size, cob->matrix);
1645                 
1646                 /* to allow compatible rotations, must get both rotations in the order of the owner... */
1647                 mat4_to_eulO(obeul, cob->rotOrder, cob->matrix);
1648                 /* we must get compatible eulers from the beginning because some of them can be modified below (see bug #21875) */
1649                 mat4_to_compatible_eulO(eul, obeul, cob->rotOrder, ct->matrix);
1650                 
1651                 if ((data->flag & ROTLIKE_X)==0)
1652                         eul[0] = obeul[0];
1653                 else {
1654                         if (data->flag & ROTLIKE_OFFSET)
1655                                 rotate_eulO(eul, cob->rotOrder, 'X', obeul[0]);
1656                         
1657                         if (data->flag & ROTLIKE_X_INVERT)
1658                                 eul[0] *= -1;
1659                 }
1660                 
1661                 if ((data->flag & ROTLIKE_Y)==0)
1662                         eul[1] = obeul[1];
1663                 else {
1664                         if (data->flag & ROTLIKE_OFFSET)
1665                                 rotate_eulO(eul, cob->rotOrder, 'Y', obeul[1]);
1666                         
1667                         if (data->flag & ROTLIKE_Y_INVERT)
1668                                 eul[1] *= -1;
1669                 }
1670                 
1671                 if ((data->flag & ROTLIKE_Z)==0)
1672                         eul[2] = obeul[2];
1673                 else {
1674                         if (data->flag & ROTLIKE_OFFSET)
1675                                 rotate_eulO(eul, cob->rotOrder, 'Z', obeul[2]);
1676                         
1677                         if (data->flag & ROTLIKE_Z_INVERT)
1678                                 eul[2] *= -1;
1679                 }
1680                 
1681                 /* good to make eulers compatible again, since we don't know how much they were changed above */
1682                 compatible_eul(eul, obeul);
1683                 loc_eulO_size_to_mat4(cob->matrix, loc, eul, size, cob->rotOrder);
1684         }
1685 }
1686
1687 static bConstraintTypeInfo CTI_ROTLIKE = {
1688         CONSTRAINT_TYPE_ROTLIKE, /* type */
1689         sizeof(bRotateLikeConstraint), /* size */
1690         "Copy Rotation", /* name */
1691         "bRotateLikeConstraint", /* struct name */
1692         NULL, /* free data */
1693         NULL, /* relink data */
1694         rotlike_id_looper, /* id looper */
1695         NULL, /* copy data */
1696         rotlike_new_data, /* new data */
1697         rotlike_get_tars, /* get constraint targets */
1698         rotlike_flush_tars, /* flush constraint targets */
1699         default_get_tarmat, /* get target matrix */
1700         rotlike_evaluate /* evaluate */
1701 };
1702
1703 /* ---------- Copy Scaling ---------- */
1704
1705 static void sizelike_new_data (void *cdata)
1706 {
1707         bSizeLikeConstraint *data= (bSizeLikeConstraint *)cdata;
1708         
1709         data->flag = SIZELIKE_X|SIZELIKE_Y|SIZELIKE_Z;
1710 }
1711
1712 static void sizelike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1713 {
1714         bSizeLikeConstraint *data= con->data;
1715         
1716         /* target only */
1717         func(con, (ID**)&data->tar, userdata);
1718 }
1719
1720 static int sizelike_get_tars (bConstraint *con, ListBase *list)
1721 {
1722         if (con && list) {
1723                 bSizeLikeConstraint *data= con->data;
1724                 bConstraintTarget *ct;
1725                 
1726                 /* standard target-getting macro for single-target constraints */
1727                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1728                 
1729                 return 1;
1730         }
1731         
1732         return 0;
1733 }
1734
1735 static void sizelike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1736 {
1737         if (con && list) {
1738                 bSizeLikeConstraint *data= con->data;
1739                 bConstraintTarget *ct= list->first;
1740                 
1741                 /* the following macro is used for all standard single-target constraints */
1742                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1743         }
1744 }
1745
1746 static void sizelike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1747 {
1748         bSizeLikeConstraint *data= con->data;
1749         bConstraintTarget *ct= targets->first;
1750         
1751         if (VALID_CONS_TARGET(ct)) {
1752                 float obsize[3], size[3];
1753                 
1754                 mat4_to_size(size, ct->matrix);
1755                 mat4_to_size(obsize, cob->matrix);
1756                 
1757                 if ((data->flag & SIZELIKE_X) && (obsize[0] != 0)) {
1758                         if (data->flag & SIZELIKE_OFFSET) {
1759                                 size[0] += (obsize[0] - 1.0f);
1760                                 mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
1761                         }
1762                         else
1763                                 mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
1764                 }
1765                 if ((data->flag & SIZELIKE_Y) && (obsize[1] != 0)) {
1766                         if (data->flag & SIZELIKE_OFFSET) {
1767                                 size[1] += (obsize[1] - 1.0f);
1768                                 mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
1769                         }
1770                         else
1771                                 mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
1772                 }
1773                 if ((data->flag & SIZELIKE_Z) && (obsize[2] != 0)) {
1774                         if (data->flag & SIZELIKE_OFFSET) {
1775                                 size[2] += (obsize[2] - 1.0f);
1776                                 mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
1777                         }
1778                         else
1779                                 mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
1780                 }
1781         }
1782 }
1783
1784 static bConstraintTypeInfo CTI_SIZELIKE = {
1785         CONSTRAINT_TYPE_SIZELIKE, /* type */
1786         sizeof(bSizeLikeConstraint), /* size */
1787         "Copy Scale", /* name */
1788         "bSizeLikeConstraint", /* struct name */
1789         NULL, /* free data */
1790         NULL, /* relink data */
1791         sizelike_id_looper, /* id looper */
1792         NULL, /* copy data */
1793         sizelike_new_data, /* new data */
1794         sizelike_get_tars, /* get constraint targets */
1795         sizelike_flush_tars, /* flush constraint targets */
1796         default_get_tarmat, /* get target matrix */
1797         sizelike_evaluate /* evaluate */
1798 };
1799
1800 /* ----------- Copy Transforms ------------- */
1801
1802 static void translike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1803 {
1804         bTransLikeConstraint *data= con->data;
1805         
1806         /* target only */
1807         func(con, (ID**)&data->tar, userdata);
1808 }
1809
1810 static int translike_get_tars (bConstraint *con, ListBase *list)
1811 {
1812         if (con && list) {
1813                 bTransLikeConstraint *data= con->data;
1814                 bConstraintTarget *ct;
1815                 
1816                 /* standard target-getting macro for single-target constraints */
1817                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1818                 
1819                 return 1;
1820         }
1821         
1822         return 0;
1823 }
1824
1825 static void translike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1826 {
1827         if (con && list) {
1828                 bTransLikeConstraint *data= con->data;
1829                 bConstraintTarget *ct= list->first;
1830                 
1831                 /* the following macro is used for all standard single-target constraints */
1832                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1833         }
1834 }
1835
1836 static void translike_evaluate (bConstraint *UNUSED(con), bConstraintOb *cob, ListBase *targets)
1837 {
1838         bConstraintTarget *ct= targets->first;
1839         
1840         if (VALID_CONS_TARGET(ct)) {
1841                 /* just copy the entire transform matrix of the target */
1842                 copy_m4_m4(cob->matrix, ct->matrix);
1843         }
1844 }
1845
1846 static bConstraintTypeInfo CTI_TRANSLIKE = {
1847         CONSTRAINT_TYPE_TRANSLIKE, /* type */
1848         sizeof(bTransLikeConstraint), /* size */
1849         "Copy Transforms", /* name */
1850         "bTransLikeConstraint", /* struct name */
1851         NULL, /* free data */
1852         NULL, /* relink data */
1853         translike_id_looper, /* id looper */
1854         NULL, /* copy data */
1855         NULL, /* new data */
1856         translike_get_tars, /* get constraint targets */
1857         translike_flush_tars, /* flush constraint targets */
1858         default_get_tarmat, /* get target matrix */
1859         translike_evaluate /* evaluate */
1860 };
1861
1862 /* ---------- Maintain Volume ---------- */
1863
1864 static void samevolume_new_data (void *cdata)
1865 {
1866         bSameVolumeConstraint *data= (bSameVolumeConstraint *)cdata;
1867
1868         data->flag = SAMEVOL_Y;
1869         data->volume = 1.0f;
1870 }
1871
1872 static void samevolume_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
1873 {
1874         bSameVolumeConstraint *data= con->data;
1875
1876         float volume = data->volume;
1877         float fac = 1.0f;
1878         float obsize[3];
1879
1880         mat4_to_size(obsize, cob->matrix);
1881         
1882         /* calculate normalising scale factor for non-essential values */
1883         if (obsize[data->flag] != 0) 
1884                 fac = sqrt(volume / obsize[data->flag]) / obsize[data->flag];
1885         
1886         /* apply scaling factor to the channels not being kept */
1887         switch (data->flag) {
1888                 case SAMEVOL_X:
1889                         mul_v3_fl(cob->matrix[1], fac);
1890                         mul_v3_fl(cob->matrix[2], fac);
1891                         break;
1892                 case SAMEVOL_Y:
1893                         mul_v3_fl(cob->matrix[0], fac);
1894                         mul_v3_fl(cob->matrix[2], fac);
1895                         break;
1896                 case SAMEVOL_Z:
1897                         mul_v3_fl(cob->matrix[0], fac);
1898                         mul_v3_fl(cob->matrix[1], fac);
1899                         break;
1900         }
1901 }
1902
1903 static bConstraintTypeInfo CTI_SAMEVOL = {
1904         CONSTRAINT_TYPE_SAMEVOL, /* type */
1905         sizeof(bSameVolumeConstraint), /* size */
1906         "Maintain Volume", /* name */
1907         "bSameVolumeConstraint", /* struct name */
1908         NULL, /* free data */
1909         NULL, /* relink data */
1910         NULL, /* id looper */
1911         NULL, /* copy data */
1912         samevolume_new_data, /* new data */
1913         NULL, /* get constraint targets */
1914         NULL, /* flush constraint targets */
1915         NULL, /* get target matrix */
1916         samevolume_evaluate /* evaluate */
1917 };
1918
1919 /* ----------- Python Constraint -------------- */
1920
1921 static void pycon_free (bConstraint *con)
1922 {
1923         bPythonConstraint *data= con->data;
1924         
1925         /* id-properties */
1926         IDP_FreeProperty(data->prop);
1927         MEM_freeN(data->prop);
1928         
1929         /* multiple targets */
1930         BLI_freelistN(&data->targets);
1931 }       
1932
1933 static void pycon_relink (bConstraint *con)
1934 {
1935         bPythonConstraint *data= con->data;
1936         
1937         ID_NEW(data->text);
1938 }
1939
1940 static void pycon_copy (bConstraint *con, bConstraint *srccon)
1941 {
1942         bPythonConstraint *pycon = (bPythonConstraint *)con->data;
1943         bPythonConstraint *opycon = (bPythonConstraint *)srccon->data;
1944         
1945         pycon->prop = IDP_CopyProperty(opycon->prop);
1946         BLI_duplicatelist(&pycon->targets, &opycon->targets);
1947 }
1948
1949 static void pycon_new_data (void *cdata)
1950 {
1951         bPythonConstraint *data= (bPythonConstraint *)cdata;
1952         
1953         /* everything should be set correctly by calloc, except for the prop->type constant.*/
1954         data->prop = MEM_callocN(sizeof(IDProperty), "PyConstraintProps");
1955         data->prop->type = IDP_GROUP;
1956 }
1957
1958 static int pycon_get_tars (bConstraint *con, ListBase *list)
1959 {
1960         if (con && list) {
1961                 bPythonConstraint *data= con->data;
1962                 
1963                 list->first = data->targets.first;
1964                 list->last = data->targets.last;
1965                 
1966                 return data->tarnum;
1967         }
1968         
1969         return 0;
1970 }
1971
1972 static void pycon_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1973 {
1974         bPythonConstraint *data= con->data;
1975         bConstraintTarget *ct;
1976         
1977         /* targets */
1978         for (ct= data->targets.first; ct; ct= ct->next)
1979                 func(con, (ID**)&ct->tar, userdata);
1980                 
1981         /* script */
1982         func(con, (ID**)&data->text, userdata);
1983 }
1984
1985 /* Whether this approach is maintained remains to be seen (aligorith) */
1986 static void pycon_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
1987 {
1988 #ifndef DISABLE_PYTHON
1989         bPythonConstraint *data= con->data;
1990 #endif
1991
1992         if (VALID_CONS_TARGET(ct)) {
1993                 /* special exception for curves - depsgraph issues */
1994                 if (ct->tar->type == OB_CURVE) {
1995                         Curve *cu= ct->tar->data;
1996                         
1997                         /* this check is to make sure curve objects get updated on file load correctly.*/
1998                         if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
1999                                 makeDispListCurveTypes(cob->scene, ct->tar, 0);                         
2000                 }
2001                 
2002                 /* firstly calculate the matrix the normal way, then let the py-function override
2003                  * this matrix if it needs to do so
2004                  */
2005                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
2006                 
2007                 /* only execute target calculation if allowed */
2008 #ifndef DISABLE_PYTHON
2009                 if (G.f & G_SCRIPT_AUTOEXEC)
2010                         BPY_pyconstraint_target(data, ct);
2011 #endif
2012         }
2013         else if (ct)
2014                 unit_m4(ct->matrix);
2015 }
2016
2017 static void pycon_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2018 {
2019 #ifdef DISABLE_PYTHON
2020         (void)con; (void)cob; (void)targets; /* unused */
2021         return;
2022 #else
2023         bPythonConstraint *data= con->data;
2024         
2025         /* only evaluate in python if we're allowed to do so */
2026         if ((G.f & G_SCRIPT_AUTOEXEC)==0)  return;
2027         
2028 /* currently removed, until I this can be re-implemented for multiple targets */
2029 #if 0
2030         /* Firstly, run the 'driver' function which has direct access to the objects involved 
2031          * Technically, this is potentially dangerous as users may abuse this and cause dependency-problems,
2032          * but it also allows certain 'clever' rigging hacks to work.
2033          */
2034         BPY_pyconstraint_driver(data, cob, targets);
2035 #endif
2036         
2037         /* Now, run the actual 'constraint' function, which should only access the matrices */
2038         BPY_pyconstraint_eval(data, cob, targets);
2039 #endif /* DISABLE_PYTHON */
2040 }
2041
2042 static bConstraintTypeInfo CTI_PYTHON = {
2043         CONSTRAINT_TYPE_PYTHON, /* type */
2044         sizeof(bPythonConstraint), /* size */
2045         "Script", /* name */
2046         "bPythonConstraint", /* struct name */
2047         pycon_free, /* free data */
2048         pycon_relink, /* relink data */
2049         pycon_id_looper, /* id looper */
2050         pycon_copy, /* copy data */
2051         pycon_new_data, /* new data */
2052         pycon_get_tars, /* get constraint targets */
2053         NULL, /* flush constraint targets */
2054         pycon_get_tarmat, /* get target matrix */
2055         pycon_evaluate /* evaluate */
2056 };
2057
2058 /* -------- Action Constraint ----------- */
2059
2060 static void actcon_relink (bConstraint *con)
2061 {
2062         bActionConstraint *data= con->data;
2063         ID_NEW(data->act);
2064 }
2065
2066 static void actcon_new_data (void *cdata)
2067 {
2068         bActionConstraint *data= (bActionConstraint *)cdata;
2069         
2070         /* set type to 20 (Loc X), as 0 is Rot X for backwards compatability */
2071         data->type = 20;
2072 }
2073
2074 static void actcon_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2075 {
2076         bActionConstraint *data= con->data;
2077         
2078         /* target */
2079         func(con, (ID**)&data->tar, userdata);
2080         
2081         /* action */
2082         func(con, (ID**)&data->act, userdata);
2083 }
2084
2085 static int actcon_get_tars (bConstraint *con, ListBase *list)
2086 {
2087         if (con && list) {
2088                 bActionConstraint *data= con->data;
2089                 bConstraintTarget *ct;
2090                 
2091                 /* standard target-getting macro for single-target constraints */
2092                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2093                 
2094                 return 1;
2095         }
2096         
2097         return 0;
2098 }
2099
2100 static void actcon_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2101 {
2102         if (con && list) {
2103                 bActionConstraint *data= con->data;
2104                 bConstraintTarget *ct= list->first;
2105                 
2106                 /* the following macro is used for all standard single-target constraints */
2107                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2108         }
2109 }
2110
2111 static void actcon_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
2112 {
2113         extern void chan_calc_mat(bPoseChannel *chan);
2114         bActionConstraint *data = con->data;
2115         
2116         if (VALID_CONS_TARGET(ct)) {
2117                 float tempmat[4][4], vec[3];
2118                 float s, t;
2119                 short axis;
2120                 
2121                 /* initialise return matrix */
2122                 unit_m4(ct->matrix);
2123                 
2124                 /* get the transform matrix of the target */
2125                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, tempmat, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
2126                 
2127                 /* determine where in transform range target is */
2128                 /* data->type is mapped as follows for backwards compatability:
2129                  *      00,01,02        - rotation (it used to be like this)
2130                  *      10,11,12        - scaling
2131                  *      20,21,22        - location
2132                  */
2133                 if (data->type < 10) {
2134                         /* extract rotation (is in whatever space target should be in) */
2135                         mat4_to_eul(vec, tempmat);
2136                         vec[0] *= (float)(180.0/M_PI);
2137                         vec[1] *= (float)(180.0/M_PI);
2138                         vec[2] *= (float)(180.0/M_PI);
2139                         axis= data->type;
2140                 }
2141                 else if (data->type < 20) {
2142                         /* extract scaling (is in whatever space target should be in) */
2143                         mat4_to_size(vec, tempmat);
2144                         axis= data->type - 10;
2145                 }
2146                 else {
2147                         /* extract location */
2148                         copy_v3_v3(vec, tempmat[3]);
2149                         axis= data->type - 20;
2150                 }
2151                 
2152                 /* Target defines the animation */
2153                 s = (vec[axis]-data->min) / (data->max-data->min);
2154                 CLAMP(s, 0, 1);
2155                 t = (s * (data->end-data->start)) + data->start;
2156                 
2157                 if (G.f & G_DEBUG)
2158                         printf("do Action Constraint %s - Ob %s Pchan %s \n", con->name, cob->ob->id.name+2, (cob->pchan)?cob->pchan->name:NULL);
2159                 
2160                 /* Get the appropriate information from the action */
2161                 if (cob->type == CONSTRAINT_OBTYPE_BONE) {
2162                         Object workob;
2163                         bPose *pose;
2164                         bPoseChannel *pchan, *tchan;
2165                         
2166                         /* make a temporary pose and evaluate using that */
2167                         pose = MEM_callocN(sizeof(bPose), "pose");
2168                         
2169                         /* make a copy of the bone of interest in the temp pose before evaluating action, so that it can get set 
2170                          *      - we need to manually copy over a few settings, including rotation order, otherwise this fails
2171                          */
2172                         pchan = cob->pchan;
2173                         
2174                         tchan= verify_pose_channel(pose, pchan->name);
2175                         tchan->rotmode= pchan->rotmode;
2176                         
2177                         /* evaluate action using workob (it will only set the PoseChannel in question) */
2178                         what_does_obaction(cob->scene, cob->ob, &workob, pose, data->act, pchan->name, t);
2179                         
2180                         /* convert animation to matrices for use here */
2181                         chan_calc_mat(tchan);
2182                         copy_m4_m4(ct->matrix, tchan->chan_mat);
2183                         
2184                         /* Clean up */
2185                         free_pose(pose);
2186                 }
2187                 else if (cob->type == CONSTRAINT_OBTYPE_OBJECT) {
2188                         Object workob;
2189                         
2190                         /* evaluate using workob */
2191                         // FIXME: we don't have any consistent standards on limiting effects on object...
2192                         what_does_obaction(cob->scene, cob->ob, &workob, NULL, data->act, NULL, t);
2193                         object_to_mat4(&workob, ct->matrix);
2194                 }
2195                 else {
2196                         /* behaviour undefined... */
2197                         puts("Error: unknown owner type for Action Constraint");
2198                 }
2199         }
2200 }
2201
2202 static void actcon_evaluate (bConstraint *UNUSED(con), bConstraintOb *cob, ListBase *targets)
2203 {
2204         bConstraintTarget *ct= targets->first;
2205         
2206         if (VALID_CONS_TARGET(ct)) {
2207                 float temp[4][4];
2208                 
2209                 /* Nice and simple... we just need to multiply the matrices, as the get_target_matrix
2210                  * function has already taken care of everything else.
2211                  */
2212                 copy_m4_m4(temp, cob->matrix);
2213                 mul_m4_m4m4(cob->matrix, ct->matrix, temp);
2214         }
2215 }
2216
2217 static bConstraintTypeInfo CTI_ACTION = {
2218         CONSTRAINT_TYPE_ACTION, /* type */
2219         sizeof(bActionConstraint), /* size */
2220         "Action", /* name */
2221         "bActionConstraint", /* struct name */
2222         NULL, /* free data */
2223         actcon_relink, /* relink data */
2224         actcon_id_looper, /* id looper */
2225         NULL, /* copy data */
2226         actcon_new_data, /* new data */
2227         actcon_get_tars, /* get constraint targets */
2228         actcon_flush_tars, /* flush constraint targets */
2229         actcon_get_tarmat, /* get target matrix */
2230         actcon_evaluate /* evaluate */
2231 };
2232
2233 /* --------- Locked Track ---------- */
2234
2235 static void locktrack_new_data (void *cdata)
2236 {
2237         bLockTrackConstraint *data= (bLockTrackConstraint *)cdata;
2238         
2239         data->trackflag = TRACK_Y;
2240         data->lockflag = LOCK_Z;
2241 }       
2242
2243 static void locktrack_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2244 {
2245         bLockTrackConstraint *data= con->data;
2246         
2247         /* target only */
2248         func(con, (ID**)&data->tar, userdata);
2249 }
2250
2251 static int locktrack_get_tars (bConstraint *con, ListBase *list)
2252 {
2253         if (con && list) {
2254                 bLockTrackConstraint *data= con->data;
2255                 bConstraintTarget *ct;
2256                 
2257                 /* the following macro is used for all standard single-target constraints */
2258                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2259                 
2260                 return 1;
2261         }
2262         
2263         return 0;
2264 }
2265
2266 static void locktrack_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2267 {
2268         if (con && list) {
2269                 bLockTrackConstraint *data= con->data;
2270                 bConstraintTarget *ct= list->first;
2271                 
2272                 /* the following macro is used for all standard single-target constraints */
2273                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2274         }
2275 }
2276
2277 static void locktrack_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2278 {
2279         bLockTrackConstraint *data= con->data;
2280         bConstraintTarget *ct= targets->first;
2281         
2282         if (VALID_CONS_TARGET(ct)) {
2283                 float vec[3],vec2[3];
2284                 float totmat[3][3];
2285                 float tmpmat[3][3];
2286                 float invmat[3][3];
2287                 float tmat[4][4];
2288                 float mdet;
2289                 
2290                 /* Vector object -> target */
2291                 sub_v3_v3v3(vec, ct->matrix[3], cob->matrix[3]);
2292                 switch (data->lockflag){
2293                 case LOCK_X: /* LOCK X */
2294                 {
2295                         switch (data->trackflag) {
2296                                 case TRACK_Y: /* LOCK X TRACK Y */
2297                                 {
2298                                         /* Projection of Vector on the plane */
2299                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2300                                         sub_v3_v3v3(totmat[1], vec, vec2);
2301                                         normalize_v3(totmat[1]);
2302                                         
2303                                         /* the x axis is fixed */
2304                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2305                                         
2306                                         /* the z axis gets mapped onto a third orthogonal vector */
2307                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2308                                 }
2309                                         break;
2310                                 case TRACK_Z: /* LOCK X TRACK Z */
2311                                 {
2312                                         /* Projection of Vector on the plane */
2313                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2314                                         sub_v3_v3v3(totmat[2], vec, vec2);
2315                                         normalize_v3(totmat[2]);
2316                                         
2317                                         /* the x axis is fixed */
2318                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2319                                         
2320                                         /* the z axis gets mapped onto a third orthogonal vector */
2321                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2322                                 }
2323                                         break;
2324                                 case TRACK_nY: /* LOCK X TRACK -Y */
2325                                 {
2326                                         /* Projection of Vector on the plane */
2327                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2328                                         sub_v3_v3v3(totmat[1], vec, vec2);
2329                                         normalize_v3(totmat[1]);
2330                                         negate_v3(totmat[1]);
2331                                         
2332                                         /* the x axis is fixed */
2333                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2334                                         
2335                                         /* the z axis gets mapped onto a third orthogonal vector */
2336                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2337                                 }
2338                                         break;
2339                                 case TRACK_nZ: /* LOCK X TRACK -Z */
2340                                 {
2341                                         /* Projection of Vector on the plane */
2342                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2343                                         sub_v3_v3v3(totmat[2], vec, vec2);
2344                                         normalize_v3(totmat[2]);
2345                                         negate_v3(totmat[2]);
2346                                                 
2347                                         /* the x axis is fixed */
2348                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2349                                                 
2350                                         /* the z axis gets mapped onto a third orthogonal vector */
2351                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2352                                 }
2353                                         break;
2354                                 default:
2355                                 {
2356                                         unit_m3(totmat);
2357                                 }
2358                                         break;
2359                         }
2360                 }
2361                         break;
2362                 case LOCK_Y: /* LOCK Y */
2363                 {
2364                         switch (data->trackflag) {
2365                                 case TRACK_X: /* LOCK Y TRACK X */
2366                                 {
2367                                         /* Projection of Vector on the plane */
2368                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2369                                         sub_v3_v3v3(totmat[0], vec, vec2);
2370                                         normalize_v3(totmat[0]);
2371                                         
2372                                         /* the y axis is fixed */
2373                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2374
2375                                         /* the z axis gets mapped onto a third orthogonal vector */
2376                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2377                                 }
2378                                         break;
2379                                 case TRACK_Z: /* LOCK Y TRACK Z */
2380                                 {
2381                                         /* Projection of Vector on the plane */
2382                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2383                                         sub_v3_v3v3(totmat[2], vec, vec2);
2384                                         normalize_v3(totmat[2]);
2385                                         
2386                                         /* the y axis is fixed */
2387                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2388                                         
2389                                         /* the z axis gets mapped onto a third orthogonal vector */
2390                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2391                                 }
2392                                         break;
2393                                 case TRACK_nX: /* LOCK Y TRACK -X */
2394                                 {
2395                                         /* Projection of Vector on the plane */
2396                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2397                                         sub_v3_v3v3(totmat[0], vec, vec2);
2398                                         normalize_v3(totmat[0]);
2399                                         negate_v3(totmat[0]);
2400                                         
2401                                         /* the y axis is fixed */
2402                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2403                                         
2404                                         /* the z axis gets mapped onto a third orthogonal vector */
2405                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2406                                 }
2407                                         break;
2408                                 case TRACK_nZ: /* LOCK Y TRACK -Z */
2409                                 {
2410                                         /* Projection of Vector on the plane */
2411                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2412                                         sub_v3_v3v3(totmat[2], vec, vec2);
2413                                         normalize_v3(totmat[2]);
2414                                         negate_v3(totmat[2]);
2415                                         
2416                                         /* the y axis is fixed */
2417                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2418                                         
2419                                         /* the z axis gets mapped onto a third orthogonal vector */
2420                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2421                                 }
2422                                         break;
2423                                 default:
2424                                 {
2425                                         unit_m3(totmat);
2426                                 }
2427                                         break;
2428                         }
2429                 }
2430                         break;
2431                 case LOCK_Z: /* LOCK Z */
2432                 {
2433                         switch (data->trackflag) {
2434                                 case TRACK_X: /* LOCK Z TRACK X */
2435                                 {
2436                                         /* Projection of Vector on the plane */
2437                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2438                                         sub_v3_v3v3(totmat[0], vec, vec2);
2439                                         normalize_v3(totmat[0]);
2440                                         
2441                                         /* the z axis is fixed */
2442                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2443                                         
2444                                         /* the x axis gets mapped onto a third orthogonal vector */
2445                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2446                                 }
2447                                         break;
2448                                 case TRACK_Y: /* LOCK Z TRACK Y */
2449                                 {
2450                                         /* Projection of Vector on the plane */
2451                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2452                                         sub_v3_v3v3(totmat[1], vec, vec2);
2453                                         normalize_v3(totmat[1]);
2454                                         
2455                                         /* the z axis is fixed */
2456                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2457                                                 
2458                                         /* the x axis gets mapped onto a third orthogonal vector */
2459                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2460                                 }
2461                                         break;
2462                                 case TRACK_nX: /* LOCK Z TRACK -X */
2463                                 {
2464                                         /* Projection of Vector on the plane */
2465                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2466                                         sub_v3_v3v3(totmat[0], vec, vec2);
2467                                         normalize_v3(totmat[0]);
2468                                         negate_v3(totmat[0]);
2469                                         
2470                                         /* the z axis is fixed */
2471                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2472                                         
2473                                         /* the x axis gets mapped onto a third orthogonal vector */
2474                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2475                                 }
2476                                         break;
2477                                 case TRACK_nY: /* LOCK Z TRACK -Y */
2478                                 {
2479                                         /* Projection of Vector on the plane */
2480                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2481                                         sub_v3_v3v3(totmat[1], vec, vec2);
2482                                         normalize_v3(totmat[1]);
2483                                         negate_v3(totmat[1]);
2484                                         
2485                                         /* the z axis is fixed */
2486                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2487                                                 
2488                                         /* the x axis gets mapped onto a third orthogonal vector */
2489                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2490                                 }
2491                                         break;
2492                                 default:
2493                                 {
2494                                         unit_m3(totmat);
2495                                 }
2496                                         break;
2497                         }
2498                 }
2499                         break;
2500                 default:
2501                 {
2502                         unit_m3(totmat);
2503                 }
2504                         break;
2505                 }
2506                 /* Block to keep matrix heading */
2507                 copy_m3_m4(tmpmat, cob->matrix);
2508                 normalize_m3(tmpmat);
2509                 invert_m3_m3(invmat, tmpmat);
2510                 mul_m3_m3m3(tmpmat, totmat, invmat);
2511                 totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2];
2512                 totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2];
2513                 totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2];
2514                 
2515                 copy_m4_m4(tmat, cob->matrix);
2516                 
2517                 mdet = determinant_m3(  totmat[0][0],totmat[0][1],totmat[0][2],
2518                                                 totmat[1][0],totmat[1][1],totmat[1][2],
2519                                                 totmat[2][0],totmat[2][1],totmat[2][2]);
2520                 if (mdet==0) {
2521                         unit_m3(totmat);
2522                 }
2523                 
2524                 /* apply out transformaton to the object */
2525                 mul_m4_m3m4(cob->matrix, totmat, tmat);
2526         }
2527 }
2528
2529 static bConstraintTypeInfo CTI_LOCKTRACK = {
2530         CONSTRAINT_TYPE_LOCKTRACK, /* type */
2531         sizeof(bLockTrackConstraint), /* size */
2532         "Locked Track", /* name */
2533         "bLockTrackConstraint", /* struct name */
2534         NULL, /* free data */
2535         NULL, /* relink data */
2536         locktrack_id_looper, /* id looper */
2537         NULL, /* copy data */
2538         locktrack_new_data, /* new data */
2539         locktrack_get_tars, /* get constraint targets */
2540         locktrack_flush_tars, /* flush constraint targets */
2541         default_get_tarmat, /* get target matrix */
2542         locktrack_evaluate /* evaluate */
2543 };
2544
2545 /* ---------- Limit Distance Constraint ----------- */
2546
2547 static void distlimit_new_data (void *cdata)
2548 {
2549         bDistLimitConstraint *data= (bDistLimitConstraint *)cdata;
2550         
2551         data->dist= 0.0f;
2552 }
2553
2554 static void distlimit_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2555 {
2556         bDistLimitConstraint *data= con->data;
2557         
2558         /* target only */
2559         func(con, (ID**)&data->tar, userdata);
2560 }
2561
2562 static int distlimit_get_tars (bConstraint *con, ListBase *list)
2563 {
2564         if (con && list) {
2565                 bDistLimitConstraint *data= con->data;
2566                 bConstraintTarget *ct;
2567                 
2568                 /* standard target-getting macro for single-target constraints */
2569                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2570                 
2571                 return 1;
2572         }
2573         
2574         return 0;
2575 }
2576
2577 static void distlimit_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2578 {
2579         if (con && list) {
2580                 bDistLimitConstraint *data= con->data;
2581                 bConstraintTarget *ct= list->first;
2582                 
2583                 /* the following macro is used for all standard single-target constraints */
2584                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2585         }
2586 }
2587
2588 static void distlimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2589 {
2590         bDistLimitConstraint *data= con->data;
2591         bConstraintTarget *ct= targets->first;
2592         
2593         /* only evaluate if there is a target */
2594         if (VALID_CONS_TARGET(ct)) {
2595                 float dvec[3], dist=0.0f, sfac=1.0f;
2596                 short clamp_surf= 0;
2597                 
2598                 /* calculate our current distance from the target */
2599                 dist= len_v3v3(cob->matrix[3], ct->matrix[3]);
2600                 
2601                 /* set distance (flag is only set when user demands it) */
2602                 if (data->dist == 0)
2603                         data->dist= dist;
2604                 
2605                 /* check if we're which way to clamp from, and calculate interpolation factor (if needed) */
2606                 if (data->mode == LIMITDIST_OUTSIDE) {
2607                         /* if inside, then move to surface */
2608                         if (dist <= data->dist) {
2609                                 clamp_surf= 1;
2610                                 sfac= data->dist / dist;
2611                         }
2612                         /* if soft-distance is enabled, start fading once owner is dist+softdist from the target */
2613                         else if (data->flag & LIMITDIST_USESOFT) {
2614                                 if (dist <= (data->dist + data->soft)) {
2615                                         
2616                                 }
2617                         }
2618                 }
2619                 else if (data->mode == LIMITDIST_INSIDE) {
2620                         /* if outside, then move to surface */
2621                         if (dist >= data->dist) {
2622                                 clamp_surf= 1;
2623                                 sfac= data->dist / dist;
2624                         }
2625                         /* if soft-distance is enabled, start fading once owner is dist-soft from the target */
2626                         else if (data->flag & LIMITDIST_USESOFT) {
2627                                 // FIXME: there's a problem with "jumping" when this kicks in
2628                                 if (dist >= (data->dist - data->soft)) {
2629                                         sfac = (float)( data->soft*(1.0 - exp(-(dist - data->dist)/data->soft)) + data->dist );
2630                                         sfac /= dist;
2631                                         
2632                                         clamp_surf= 1;
2633                                 }
2634                         }
2635                 }
2636                 else {
2637                         if (IS_EQ(dist, data->dist)==0) {
2638                                 clamp_surf= 1;
2639                                 sfac= data->dist / dist;
2640                         }
2641                 }
2642                 
2643                 /* clamp to 'surface' (i.e. move owner so that dist == data->dist) */
2644                 if (clamp_surf) {
2645                         /* simply interpolate along line formed by target -> owner */
2646                         interp_v3_v3v3(dvec, ct->matrix[3], cob->matrix[3], sfac);
2647                         
2648                         /* copy new vector onto owner */
2649                         copy_v3_v3(cob->matrix[3], dvec);
2650                 }
2651         }
2652 }
2653
2654 static bConstraintTypeInfo CTI_DISTLIMIT = {
2655         CONSTRAINT_TYPE_DISTLIMIT, /* type */
2656         sizeof(bDistLimitConstraint), /* size */
2657         "Limit Distance", /* name */
2658         "bDistLimitConstraint", /* struct name */
2659         NULL, /* free data */
2660         NULL, /* relink data */
2661         distlimit_id_looper, /* id looper */
2662         NULL, /* copy data */
2663         distlimit_new_data, /* new data */
2664         distlimit_get_tars, /* get constraint targets */
2665         distlimit_flush_tars, /* flush constraint targets */
2666         default_get_tarmat, /* get a target matrix */
2667         distlimit_evaluate /* evaluate */
2668 };
2669
2670 /* ---------- Stretch To ------------ */
2671
2672 static void stretchto_new_data (void *cdata)
2673 {
2674         bStretchToConstraint *data= (bStretchToConstraint *)cdata;
2675         
2676         data->volmode = 0;
2677         data->plane = 0;
2678         data->orglength = 0.0; 
2679         data->bulge = 1.0;
2680 }
2681
2682 static void stretchto_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2683 {
2684         bStretchToConstraint *data= con->data;
2685         
2686         /* target only */
2687         func(con, (ID**)&data->tar, userdata);
2688 }
2689
2690 static int stretchto_get_tars (bConstraint *con, ListBase *list)
2691 {
2692         if (con && list) {
2693                 bStretchToConstraint *data= con->data;
2694                 bConstraintTarget *ct;
2695                 
2696                 /* standard target-getting macro for single-target constraints */
2697                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2698                 
2699                 return 1;
2700         }
2701         
2702         return 0;
2703 }
2704
2705 static void stretchto_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2706 {
2707         if (con && list) {
2708                 bStretchToConstraint *data= con->data;
2709                 bConstraintTarget *ct= list->first;
2710                 
2711                 /* the following macro is used for all standard single-target constraints */
2712                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2713         }
2714 }
2715
2716 static void stretchto_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2717 {
2718         bStretchToConstraint *data= con->data;
2719         bConstraintTarget *ct= targets->first;
2720         
2721         /* only evaluate if there is a target */
2722         if (VALID_CONS_TARGET(ct)) {
2723                 float size[3], scale[3], vec[3], xx[3], zz[3], orth[3];
2724                 float totmat[3][3];
2725                 float tmat[4][4];
2726                 float dist;
2727                 
2728                 /* store scaling before destroying obmat */
2729                 mat4_to_size(size, cob->matrix);
2730                 
2731                 /* store X orientation before destroying obmat */
2732                 normalize_v3_v3(xx, cob->matrix[0]);
2733                 
2734                 /* store Z orientation before destroying obmat */
2735                 normalize_v3_v3(zz, cob->matrix[2]);
2736                 
2737                 sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);
2738                 vec[0] /= size[0];
2739                 vec[1] /= size[1];
2740                 vec[2] /= size[2];
2741                 
2742                 dist = normalize_v3(vec);
2743                 //dist = len_v3v3( ob->obmat[3], targetmat[3]);
2744                 
2745                 /* data->orglength==0 occurs on first run, and after 'R' button is clicked */
2746                 if (data->orglength == 0)  
2747                         data->orglength = dist;
2748                 if (data->bulge == 0) 
2749                         data->bulge = 1.0;
2750                 
2751                 scale[1] = dist/data->orglength;
2752                 switch (data->volmode) {
2753                 /* volume preserving scaling */
2754                 case VOLUME_XZ :
2755                         scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist));
2756                         scale[2] = scale[0];
2757                         break;
2758                 case VOLUME_X:
2759                         scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1);
2760                         scale[2] = 1.0;
2761                         break;
2762                 case VOLUME_Z:
2763                         scale[0] = 1.0;
2764                         scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1);
2765                         break;
2766                         /* don't care for volume */
2767                 case NO_VOLUME:
2768                         scale[0] = 1.0;
2769                         scale[2] = 1.0;
2770                         break;
2771                 default: /* should not happen, but in case*/
2772                         return;    
2773                 } /* switch (data->volmode) */
2774
2775                 /* Clear the object's rotation and scale */
2776                 cob->matrix[0][0]=size[0]*scale[0];
2777                 cob->matrix[0][1]=0;
2778                 cob->matrix[0][2]=0;
2779                 cob->matrix[1][0]=0;
2780                 cob->matrix[1][1]=size[1]*scale[1];
2781                 cob->matrix[1][2]=0;
2782                 cob->matrix[2][0]=0;
2783                 cob->matrix[2][1]=0;
2784                 cob->matrix[2][2]=size[2]*scale[2];
2785                 
2786                 sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);
2787                 normalize_v3(vec);
2788                 
2789                 /* new Y aligns  object target connection*/
2790                 negate_v3_v3(totmat[1], vec);
2791                 switch (data->plane) {
2792                 case PLANE_X:
2793                         /* build new Z vector */
2794                         /* othogonal to "new Y" "old X! plane */
2795                         cross_v3_v3v3(orth, vec, xx);
2796                         normalize_v3(orth);
2797                         
2798                         /* new Z*/
2799                         copy_v3_v3(totmat[2], orth);
2800                         
2801                         /* we decided to keep X plane*/
2802                         cross_v3_v3v3(xx, orth, vec);
2803                         normalize_v3_v3(totmat[0], xx);
2804                         break;
2805                 case PLANE_Z:
2806                         /* build new X vector */
2807                         /* othogonal to "new Y" "old Z! plane */
2808                         cross_v3_v3v3(orth, vec, zz);
2809                         normalize_v3(orth);
2810                         
2811                         /* new X */
2812                         negate_v3_v3(totmat[0], orth);
2813                         
2814                         /* we decided to keep Z */
2815                         cross_v3_v3v3(zz, orth, vec);
2816                         normalize_v3_v3(totmat[2], zz);
2817                         break;
2818                 } /* switch (data->plane) */
2819                 
2820                 copy_m4_m4(tmat, cob->matrix);
2821                 mul_m4_m3m4(cob->matrix, totmat, tmat);
2822         }
2823 }
2824
2825 static bConstraintTypeInfo CTI_STRETCHTO = {
2826         CONSTRAINT_TYPE_STRETCHTO, /* type */
2827         sizeof(bStretchToConstraint), /* size */
2828         "Stretch To", /* name */
2829         "bStretchToConstraint", /* struct name */
2830         NULL, /* free data */
2831         NULL, /* relink data */
2832         stretchto_id_looper, /* id looper */
2833         NULL, /* copy data */
2834         stretchto_new_data, /* new data */
2835         stretchto_get_tars, /* get constraint targets */
2836         stretchto_flush_tars, /* flush constraint targets */
2837         default_get_tarmat, /* get target matrix */
2838         stretchto_evaluate /* evaluate */
2839 };
2840
2841 /* ---------- Floor ------------ */
2842
2843 static void minmax_new_data (void *cdata)
2844 {
2845         bMinMaxConstraint *data= (bMinMaxConstraint *)cdata;
2846         
2847         data->minmaxflag = TRACK_Z;
2848         data->offset = 0.0f;
2849         data->cache[0] = data->cache[1] = data->cache[2] = 0.0f;
2850         data->flag = 0;
2851 }
2852
2853 static void minmax_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2854 {
2855         bMinMaxConstraint *data= con->data;
2856         
2857         /* target only */
2858         func(con, (ID**)&data->tar, userdata);
2859 }
2860
2861 static int minmax_get_tars (bConstraint *con, ListBase *list)
2862 {
2863         if (con && list) {
2864                 bMinMaxConstraint *data= con->data;
2865                 bConstraintTarget *ct;
2866                 
2867                 /* standard target-getting macro for single-target constraints */
2868                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2869                 
2870                 return 1;
2871         }
2872         
2873         return 0;
2874 }
2875
2876 static void minmax_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2877 {
2878         if (con && list) {
2879                 bMinMaxConstraint *data= con->data;
2880                 bConstraintTarget *ct= list->first;
2881                 
2882                 /* the following macro is used for all standard single-target constraints */
2883                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2884         }
2885 }
2886