5 * Functions to paint images in 2D and 3D.
7 * ***** BEGIN GPL LICENSE BLOCK *****
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software Foundation,
21 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
24 * All rights reserved.
26 * The Original Code is: some of this file.
28 * Contributor(s): Jens Ole Wund (bjornmose), Campbell Barton (ideasman42)
30 * ***** END GPL LICENSE BLOCK *****
38 #include "MEM_guardedalloc.h"
41 #include "BLI_winstuff.h"
43 #include "BLI_arithb.h"
44 #include "BLI_blenlib.h"
45 #include "BLI_dynstr.h"
46 #include "BLI_linklist.h"
47 #include "BLI_memarena.h"
49 #include "BLI_threads.h"
51 #include "IMB_imbuf.h"
52 #include "IMB_imbuf_types.h"
54 #include "DNA_brush_types.h"
55 #include "DNA_image_types.h"
56 #include "DNA_mesh_types.h"
57 #include "DNA_meshdata_types.h"
58 #include "DNA_node_types.h"
59 #include "DNA_object_types.h"
60 #include "DNA_scene_types.h"
61 #include "DNA_screen_types.h"
62 #include "DNA_space_types.h"
63 #include "DNA_userdef_types.h"
64 #include "DNA_view3d_types.h"
65 #include "DNA_windowmanager_types.h"
67 #include "BKE_context.h"
68 #include "BKE_brush.h"
69 #include "BKE_global.h"
70 #include "BKE_image.h"
74 #include "BKE_paint.h"
75 #include "BKE_utildefines.h"
76 #include "BKE_DerivedMesh.h"
77 #include "BKE_report.h"
78 #include "BKE_depsgraph.h"
81 #include "BIF_glutil.h"
83 #include "UI_interface.h"
84 #include "UI_view2d.h"
87 #include "ED_object.h"
88 #include "ED_screen.h"
89 #include "ED_sculpt.h"
90 #include "ED_view3d.h"
95 #include "RNA_access.h"
96 #include "RNA_define.h"
100 #include "paint_intern.h"
102 /* Defines and Structs */
104 #define IMAPAINT_CHAR_TO_FLOAT(c) ((c)/255.0f)
106 #define IMAPAINT_FLOAT_RGB_TO_CHAR(c, f) { (c)[0]=FTOCHAR((f)[0]); (c)[1]=FTOCHAR((f)[1]); (c)[2]=FTOCHAR((f)[2]); }
107 #define IMAPAINT_FLOAT_RGBA_TO_CHAR(c, f) { (c)[0]=FTOCHAR((f)[0]); (c)[1]=FTOCHAR((f)[1]); (c)[2]=FTOCHAR((f)[2]); (c)[3]=FTOCHAR((f)[3]); }
109 #define IMAPAINT_CHAR_RGB_TO_FLOAT(f, c) { (f)[0]=IMAPAINT_CHAR_TO_FLOAT((c)[0]); (f)[1]=IMAPAINT_CHAR_TO_FLOAT((c)[1]); (f)[2]=IMAPAINT_CHAR_TO_FLOAT((c)[2]); }
110 #define IMAPAINT_CHAR_RGBA_TO_FLOAT(f, c) { (f)[0]=IMAPAINT_CHAR_TO_FLOAT((c)[0]); (f)[1]=IMAPAINT_CHAR_TO_FLOAT((c)[1]); (f)[2]=IMAPAINT_CHAR_TO_FLOAT((c)[2]); (f)[3]=IMAPAINT_CHAR_TO_FLOAT((c)[3]); }
111 #define IMAPAINT_FLOAT_RGB_COPY(a, b) VECCOPY(a, b)
113 #define IMAPAINT_TILE_BITS 6
114 #define IMAPAINT_TILE_SIZE (1 << IMAPAINT_TILE_BITS)
115 #define IMAPAINT_TILE_NUMBER(size) (((size)+IMAPAINT_TILE_SIZE-1) >> IMAPAINT_TILE_BITS)
117 static void imapaint_image_update(SpaceImage *sima, Image *image, ImBuf *ibuf, short texpaint);
120 typedef struct ImagePaintState {
131 short clonefreefloat;
132 char *warnpackedfile;
135 /* texture paint only */
142 typedef struct ImagePaintPartialRedraw {
145 } ImagePaintPartialRedraw;
148 /* ProjectionPaint defines */
150 /* approx the number of buckets to have under the brush,
151 * used with the brush size to set the ps->buckets_x and ps->buckets_y value.
153 * When 3 - a brush should have ~9 buckets under it at once
154 * ...this helps for threading while painting as well as
155 * avoiding initializing pixels that wont touch the brush */
156 #define PROJ_BUCKET_BRUSH_DIV 4
158 #define PROJ_BUCKET_RECT_MIN 4
159 #define PROJ_BUCKET_RECT_MAX 256
161 #define PROJ_BOUNDBOX_DIV 8
162 #define PROJ_BOUNDBOX_SQUARED (PROJ_BOUNDBOX_DIV * PROJ_BOUNDBOX_DIV)
164 //#define PROJ_DEBUG_PAINT 1
165 //#define PROJ_DEBUG_NOSEAMBLEED 1
166 //#define PROJ_DEBUG_PRINT_CLIP 1
167 #define PROJ_DEBUG_WINCLIP 1
169 /* projectFaceSeamFlags options */
170 //#define PROJ_FACE_IGNORE 1<<0 /* When the face is hidden, backfacing or occluded */
171 //#define PROJ_FACE_INIT 1<<1 /* When we have initialized the faces data */
172 #define PROJ_FACE_SEAM1 1<<0 /* If this face has a seam on any of its edges */
173 #define PROJ_FACE_SEAM2 1<<1
174 #define PROJ_FACE_SEAM3 1<<2
175 #define PROJ_FACE_SEAM4 1<<3
177 #define PROJ_FACE_NOSEAM1 1<<4
178 #define PROJ_FACE_NOSEAM2 1<<5
179 #define PROJ_FACE_NOSEAM3 1<<6
180 #define PROJ_FACE_NOSEAM4 1<<7
182 /* a slightly scaled down face is used to get fake 3D location for edge pixels in the seams
183 * as this number approaches 1.0f the likelihood increases of float precision errors where
184 * it is occluded by an adjacent face */
185 #define PROJ_FACE_SCALE_SEAM 0.99f
187 #define PROJ_BUCKET_NULL 0
188 #define PROJ_BUCKET_INIT 1<<0
189 // #define PROJ_BUCKET_CLONE_INIT 1<<1
191 /* used for testing doubles, if a point is on a line etc */
192 #define PROJ_GEOM_TOLERANCE 0.00075f
195 #define PROJ_VERT_CULL 1
197 #define PI_80_DEG ((M_PI_2 / 9) * 8)
199 /* This is mainly a convenience struct used so we can keep an array of images we use
200 * Thir imbufs, etc, in 1 array, When using threads this array is copied for each thread
201 * because 'partRedrawRect' and 'touch' values would not be thread safe */
202 typedef struct ProjPaintImage {
205 ImagePaintPartialRedraw *partRedrawRect;
206 void **undoRect; /* only used to build undo tiles after painting */
210 /* Main projection painting struct passed to all projection painting functions */
211 typedef struct ProjPaintState {
220 /* end similarities with ImagePaintState */
230 MTFace *dm_mtface_clone; /* other UV layer, use for cloning between layers */
231 MTFace *dm_mtface_mask;
233 /* projection painting only */
234 MemArena *arena_mt[BLENDER_MAX_THREADS];/* for multithreading, the first item is sometimes used for non threaded cases too */
235 LinkNode **bucketRect; /* screen sized 2D array, each pixel has a linked list of ProjPixel's */
236 LinkNode **bucketFaces; /* bucketRect aligned array linkList of faces overlapping each bucket */
237 unsigned char *bucketFlags; /* store if the bucks have been initialized */
238 #ifndef PROJ_DEBUG_NOSEAMBLEED
239 char *faceSeamFlags; /* store info about faces, if they are initialized etc*/
240 float (*faceSeamUVs)[4][2]; /* expanded UVs for faces to use as seams */
241 LinkNode **vertFaces; /* Only needed for when seam_bleed_px is enabled, use to find UV seams */
243 char *vertFlags; /* store options per vert, now only store if the vert is pointing away from the view */
244 int buckets_x; /* The size of the bucket grid, the grid span's screenMin/screenMax so you can paint outsize the screen or with 2 brushes at once */
247 ProjPaintImage *projImages;
249 int image_tot; /* size of projectImages array */
251 float (*screenCoords)[4]; /* verts projected into floating point screen space */
253 float screenMin[2]; /* 2D bounds for mesh verts on the screen's plane (screenspace) */
255 float screen_width; /* Calculated from screenMin & screenMax */
258 /* options for projection painting */
261 int do_layer_mask_inv;
263 short do_occlude; /* Use raytraced occlusion? - ortherwise will paint right through to the back*/
264 short do_backfacecull; /* ignore faces with normals pointing away, skips a lot of raycasts if your normals are correctly flipped */
265 short do_mask_normal; /* mask out pixels based on their normals */
266 float normal_angle; /* what angle to mask at*/
267 float normal_angle_inner;
268 float normal_angle_range; /* difference between normal_angle and normal_angle_inner, for easy access */
271 short is_airbrush; /* only to avoid using (ps.brush->flag & BRUSH_AIRBRUSH) */
272 short is_texbrush; /* only to avoid running */
273 #ifndef PROJ_DEBUG_NOSEAMBLEED
277 float cloneOffset[2];
279 float projectMat[4][4]; /* Projection matrix, use for getting screen coords */
280 float viewDir[3]; /* View vector, use for do_backfacecull and for ray casting with an ortho viewport */
281 float viewPos[3]; /* View location in object relative 3D space, so can compare to verts */
282 float clipsta, clipend;
288 int context_bucket_x, context_bucket_y; /* must lock threads while accessing these */
291 typedef union pixelPointer
293 float *f_pt; /* float buffer */
294 unsigned int *uint_pt; /* 2 ways to access a char buffer */
295 unsigned char *ch_pt;
298 typedef union pixelStore
305 typedef struct ProjPixel {
306 float projCoSS[2]; /* the floating point screen projection of this pixel */
308 /* Only used when the airbrush is disabled.
309 * Store the max mask value to avoid painting over an area with a lower opacity
310 * with an advantage that we can avoid touching the pixel at all, if the
311 * new mask value is lower then mask_max */
312 unsigned short mask_max;
314 /* for various reasons we may want to mask out painting onto this pixel */
319 PixelStore origColor;
323 short image_index; /* if anyone wants to paint onto more then 32768 images they can bite me */
324 unsigned char bb_cell_index;
327 typedef struct ProjPixelClone {
328 struct ProjPixel __pp;
332 /* Finish projection painting structs */
334 typedef struct UndoImageTile {
335 struct UndoImageTile *next, *prev;
337 char idname[MAX_ID_NAME]; /* name instead of pointer*/
343 static ImagePaintPartialRedraw imapaintpartial = {0, 0, 0, 0, 0};
347 static void undo_copy_tile(UndoImageTile *tile, ImBuf *tmpibuf, ImBuf *ibuf, int restore)
349 /* copy or swap contents of tile->rect and region in ibuf->rect */
350 IMB_rectcpy(tmpibuf, ibuf, 0, 0, tile->x*IMAPAINT_TILE_SIZE,
351 tile->y*IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE);
353 if(ibuf->rect_float) {
354 SWAP(void*, tmpibuf->rect_float, tile->rect);
356 SWAP(void*, tmpibuf->rect, tile->rect);
360 IMB_rectcpy(ibuf, tmpibuf, tile->x*IMAPAINT_TILE_SIZE,
361 tile->y*IMAPAINT_TILE_SIZE, 0, 0, IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE);
364 static void *image_undo_push_tile(Image *ima, ImBuf *ibuf, ImBuf **tmpibuf, int x_tile, int y_tile)
366 ListBase *lb= undo_paint_push_get_list(UNDO_PAINT_IMAGE);
370 for(tile=lb->first; tile; tile=tile->next)
371 if(tile->x == x_tile && tile->y == y_tile && strcmp(tile->idname, ima->id.name)==0)
375 *tmpibuf = IMB_allocImBuf(IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE, 32, IB_rectfloat|IB_rect, 0);
377 tile= MEM_callocN(sizeof(UndoImageTile), "UndoImageTile");
378 strcpy(tile->idname, ima->id.name);
382 allocsize= IMAPAINT_TILE_SIZE*IMAPAINT_TILE_SIZE*4;
383 allocsize *= (ibuf->rect_float)? sizeof(float): sizeof(char);
384 tile->rect= MEM_mapallocN(allocsize, "UndeImageTile.rect");
386 undo_copy_tile(tile, *tmpibuf, ibuf, 0);
387 undo_paint_push_count_alloc(UNDO_PAINT_IMAGE, allocsize);
389 BLI_addtail(lb, tile);
394 static void image_undo_restore(bContext *C, ListBase *lb)
396 Main *bmain= CTX_data_main(C);
398 ImBuf *ibuf, *tmpibuf;
401 tmpibuf= IMB_allocImBuf(IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE, 32,
402 IB_rectfloat|IB_rect, 0);
404 for(tile=lb->first; tile; tile=tile->next) {
405 /* find image based on name, pointer becomes invalid with global undo */
406 if(ima && strcmp(tile->idname, ima->id.name)==0);
408 for(ima=bmain->image.first; ima; ima=ima->id.next)
409 if(strcmp(tile->idname, ima->id.name)==0)
413 ibuf= BKE_image_get_ibuf(ima, NULL);
415 if (!ima || !ibuf || !(ibuf->rect || ibuf->rect_float))
418 undo_copy_tile(tile, tmpibuf, ibuf, 1);
420 GPU_free_image(ima); /* force OpenGL reload */
422 imb_freerectImBuf(ibuf); /* force recreate of char rect */
425 IMB_freeImBuf(tmpibuf);
428 static void image_undo_free(ListBase *lb)
432 for(tile=lb->first; tile; tile=tile->next)
433 MEM_freeN(tile->rect);
436 /* fast projection bucket array lookup, use the safe version for bound checking */
437 static int project_bucket_offset(const ProjPaintState *ps, const float projCoSS[2])
439 /* If we were not dealing with screenspace 2D coords we could simple do...
440 * ps->bucketRect[x + (y*ps->buckets_y)] */
443 * projCoSS[0] - ps->screenMin[0] : zero origin
444 * ... / ps->screen_width : range from 0.0 to 1.0
445 * ... * ps->buckets_x : use as a bucket index
447 * Second multiplication does similar but for vertical offset
449 return ( (int)(((projCoSS[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x)) +
450 ( ( (int)(((projCoSS[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y)) * ps->buckets_x);
453 static int project_bucket_offset_safe(const ProjPaintState *ps, const float projCoSS[2])
455 int bucket_index = project_bucket_offset(ps, projCoSS);
457 if (bucket_index < 0 || bucket_index >= ps->buckets_x*ps->buckets_y) {
465 #define SIDE_OF_LINE(pa, pb, pp) ((pa[0]-pp[0])*(pb[1]-pp[1]))-((pb[0]-pp[0])*(pa[1]-pp[1]))
467 static float AreaSignedF2Dfl(float *v1, float *v2, float *v3)
469 return (float)(0.5f*((v1[0]-v2[0])*(v2[1]-v3[1]) +
470 (v1[1]-v2[1])*(v3[0]-v2[0])));
473 static void BarycentricWeights2f(float pt[2], float v1[2], float v2[2], float v3[2], float w[3])
475 float wtot_inv, wtot;
477 w[0] = AreaSignedF2Dfl(v2, v3, pt);
478 w[1] = AreaSignedF2Dfl(v3, v1, pt);
479 w[2] = AreaSignedF2Dfl(v1, v2, pt);
480 wtot = w[0]+w[1]+w[2];
483 wtot_inv = 1.0f/wtot;
485 w[0] = w[0]*wtot_inv;
486 w[1] = w[1]*wtot_inv;
487 w[2] = w[2]*wtot_inv;
489 else /* dummy values for zero area face */
490 w[0] = w[1] = w[2] = 1.0f/3.0f;
493 /* still use 2D X,Y space but this works for verts transformed by a perspective matrix, using their 4th component as a weight */
494 static void BarycentricWeightsPersp2f(float pt[2], float v1[4], float v2[4], float v3[4], float w[3])
496 float wtot_inv, wtot;
498 w[0] = AreaSignedF2Dfl(v2, v3, pt) / v1[3];
499 w[1] = AreaSignedF2Dfl(v3, v1, pt) / v2[3];
500 w[2] = AreaSignedF2Dfl(v1, v2, pt) / v3[3];
501 wtot = w[0]+w[1]+w[2];
504 wtot_inv = 1.0f/wtot;
506 w[0] = w[0]*wtot_inv;
507 w[1] = w[1]*wtot_inv;
508 w[2] = w[2]*wtot_inv;
510 else /* dummy values for zero area face */
511 w[0] = w[1] = w[2] = 1.0f/3.0f;
514 static float VecZDepthOrtho(float pt[2], float v1[3], float v2[3], float v3[3], float w[3])
516 BarycentricWeights2f(pt, v1, v2, v3, w);
517 return (v1[2]*w[0]) + (v2[2]*w[1]) + (v3[2]*w[2]);
520 static float VecZDepthPersp(float pt[2], float v1[3], float v2[3], float v3[3], float w[3])
522 BarycentricWeightsPersp2f(pt, v1, v2, v3, w);
523 return (v1[2]*w[0]) + (v2[2]*w[1]) + (v3[2]*w[2]);
527 /* Return the top-most face index that the screen space coord 'pt' touches (or -1) */
528 static int project_paint_PickFace(const ProjPaintState *ps, float pt[2], float w[3], int *side)
532 float *v1, *v2, *v3, *v4;
536 int best_face_index = -1;
537 float z_depth_best = FLT_MAX, z_depth;
540 bucket_index = project_bucket_offset_safe(ps, pt);
541 if (bucket_index==-1)
546 /* we could return 0 for 1 face buckets, as long as this function assumes
547 * that the point its testing is only every originated from an existing face */
549 for (node= ps->bucketFaces[bucket_index]; node; node= node->next) {
550 face_index = GET_INT_FROM_POINTER(node->link);
551 mf= ps->dm_mface + face_index;
553 v1= ps->screenCoords[mf->v1];
554 v2= ps->screenCoords[mf->v2];
555 v3= ps->screenCoords[mf->v3];
557 if (IsectPT2Df(pt, v1, v2, v3)) {
558 if (ps->is_ortho) z_depth= VecZDepthOrtho(pt, v1, v2, v3, w_tmp);
559 else z_depth= VecZDepthPersp(pt, v1, v2, v3, w_tmp);
561 if (z_depth < z_depth_best) {
562 best_face_index = face_index;
564 z_depth_best = z_depth;
569 v4= ps->screenCoords[mf->v4];
571 if (IsectPT2Df(pt, v1, v3, v4)) {
572 if (ps->is_ortho) z_depth= VecZDepthOrtho(pt, v1, v3, v4, w_tmp);
573 else z_depth= VecZDepthPersp(pt, v1, v3, v4, w_tmp);
575 if (z_depth < z_depth_best) {
576 best_face_index = face_index;
578 z_depth_best = z_depth;
586 return best_face_index; /* will be -1 or a valid face */
589 /* Converts a uv coord into a pixel location wrapping if the uv is outside 0-1 range */
590 static void uvco_to_wrapped_pxco(float uv[2], int ibuf_x, int ibuf_y, float *x, float *y)
593 *x = (float)fmodf(uv[0], 1.0f);
594 *y = (float)fmodf(uv[1], 1.0f);
596 if (*x < 0.0f) *x += 1.0f;
597 if (*y < 0.0f) *y += 1.0f;
599 *x = *x * ibuf_x - 0.5f;
600 *y = *y * ibuf_y - 0.5f;
603 /* Set the top-most face color that the screen space coord 'pt' touches (or return 0 if none touch) */
604 static int project_paint_PickColor(const ProjPaintState *ps, float pt[2], float *rgba_fp, unsigned char *rgba, const int interp)
614 face_index = project_paint_PickFace(ps, pt, w, &side);
616 if (face_index == -1)
619 tf = ps->dm_mtface + face_index;
622 Vec2Lerp3f(uv, tf->uv[0], tf->uv[1], tf->uv[2], w);
625 Vec2Lerp3f(uv, tf->uv[0], tf->uv[2], tf->uv[3], w);
628 ibuf = tf->tpage->ibufs.first; /* we must have got the imbuf before getting here */
633 uvco_to_wrapped_pxco(uv, ibuf->x, ibuf->y, &x, &y);
635 if (ibuf->rect_float) {
637 bilinear_interpolation_color_wrap(ibuf, NULL, rgba_fp, x, y);
641 bilinear_interpolation_color_wrap(ibuf, NULL, rgba_tmp_f, x, y);
642 IMAPAINT_FLOAT_RGBA_TO_CHAR(rgba, rgba_tmp_f);
647 bilinear_interpolation_color_wrap(ibuf, rgba, NULL, x, y);
650 unsigned char rgba_tmp[4];
651 bilinear_interpolation_color_wrap(ibuf, rgba_tmp, NULL, x, y);
652 IMAPAINT_CHAR_RGBA_TO_FLOAT(rgba_fp, rgba_tmp);
657 xi = (uv[0]*ibuf->x) + 0.5f;
658 yi = (uv[1]*ibuf->y) + 0.5f;
660 //if (xi<0 || xi>=ibuf->x || yi<0 || yi>=ibuf->y) return 0;
663 xi = ((int)(uv[0]*ibuf->x)) % ibuf->x;
664 if (xi<0) xi += ibuf->x;
665 yi = ((int)(uv[1]*ibuf->y)) % ibuf->y;
666 if (yi<0) yi += ibuf->y;
670 if (ibuf->rect_float) {
671 float *rgba_tmp_fp = ibuf->rect_float + (xi + yi * ibuf->x * 4);
672 IMAPAINT_FLOAT_RGBA_TO_CHAR(rgba, rgba_tmp_fp);
675 *((unsigned int *)rgba) = *(unsigned int *)(((char *)ibuf->rect) + ((xi + yi * ibuf->x) * 4));
680 if (ibuf->rect_float) {
681 QUATCOPY(rgba_fp, ((float *)ibuf->rect_float + ((xi + yi * ibuf->x) * 4)));
684 char *tmp_ch= ((char *)ibuf->rect) + ((xi + yi * ibuf->x) * 4);
685 IMAPAINT_CHAR_RGBA_TO_FLOAT(rgba_fp, tmp_ch);
692 /* Check if 'pt' is infront of the 3 verts on the Z axis (used for screenspace occlusuion test)
695 * -1 : no occlusion but 2D intersection is true (avoid testing the other half of a quad)
697 2 : occluded with w[3] weights set (need to know in some cases) */
699 static int project_paint_occlude_ptv(float pt[3], float v1[3], float v2[3], float v3[3], float w[3], int is_ortho)
701 /* if all are behind us, return false */
702 if(v1[2] > pt[2] && v2[2] > pt[2] && v3[2] > pt[2])
705 /* do a 2D point in try intersection */
706 if (!IsectPT2Df(pt, v1, v2, v3))
707 return 0; /* we know there is */
710 /* From here on we know there IS an intersection */
711 /* if ALL of the verts are infront of us then we know it intersects ? */
712 if(v1[2] < pt[2] && v2[2] < pt[2] && v3[2] < pt[2]) {
716 /* we intersect? - find the exact depth at the point of intersection */
717 /* Is this point is occluded by another face? */
719 if (VecZDepthOrtho(pt, v1, v2, v3, w) < pt[2]) return 2;
722 if (VecZDepthPersp(pt, v1, v2, v3, w) < pt[2]) return 2;
729 static int project_paint_occlude_ptv_clip(
730 const ProjPaintState *ps, const MFace *mf,
731 float pt[3], float v1[3], float v2[3], float v3[3],
735 int ret = project_paint_occlude_ptv(pt, v1, v2, v3, w, ps->is_ortho);
740 if (ret==1) { /* weights not calculated */
741 if (ps->is_ortho) BarycentricWeights2f(pt, v1, v2, v3, w);
742 else BarycentricWeightsPersp2f(pt, v1, v2, v3, w);
745 /* Test if we're in the clipped area, */
746 if (side) VecLerp3f(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v3].co, ps->dm_mvert[mf->v4].co, w);
747 else VecLerp3f(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v2].co, ps->dm_mvert[mf->v3].co, w);
749 Mat4MulVecfl(ps->ob->obmat, wco);
750 if(!view3d_test_clipping(ps->rv3d, wco)) {
758 /* Check if a screenspace location is occluded by any other faces
759 * check, pixelScreenCo must be in screenspace, its Z-Depth only needs to be used for comparison
760 * and dosn't need to be correct in relation to X and Y coords (this is the case in perspective view) */
761 static int project_bucket_point_occluded(const ProjPaintState *ps, LinkNode *bucketFace, const int orig_face, float pixelScreenCo[4])
766 float w[3]; /* not needed when clipping */
768 /* we could return 0 for 1 face buckets, as long as this function assumes
769 * that the point its testing is only every originated from an existing face */
771 for (; bucketFace; bucketFace = bucketFace->next) {
772 face_index = GET_INT_FROM_POINTER(bucketFace->link);
774 if (orig_face != face_index) {
775 mf = ps->dm_mface + face_index;
776 if(ps->rv3d->rflag & RV3D_CLIPPING)
777 isect_ret = project_paint_occlude_ptv_clip(ps, mf, pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v2], ps->screenCoords[mf->v3], 0);
779 isect_ret = project_paint_occlude_ptv(pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v2], ps->screenCoords[mf->v3], w, ps->is_ortho);
781 /* Note, if isect_ret==-1 then we dont want to test the other side of the quad */
782 if (isect_ret==0 && mf->v4) {
783 if(ps->rv3d->rflag & RV3D_CLIPPING)
784 isect_ret = project_paint_occlude_ptv_clip(ps, mf, pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v3], ps->screenCoords[mf->v4], 1);
786 isect_ret = project_paint_occlude_ptv(pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v3], ps->screenCoords[mf->v4], w, ps->is_ortho);
789 /* TODO - we may want to cache the first hit,
790 * it is not possible to swap the face order in the list anymore */
798 /* basic line intersection, could move to arithb.c, 2 points with a horiz line
799 * 1 for an intersection, 2 if the first point is aligned, 3 if the second point is aligned */
801 #define ISECT_TRUE_P1 2
802 #define ISECT_TRUE_P2 3
803 static int line_isect_y(const float p1[2], const float p2[2], const float y_level, float *x_isect)
807 if (y_level==p1[1]) { /* are we touching the first point? - no interpolation needed */
809 return ISECT_TRUE_P1;
811 if (y_level==p2[1]) { /* are we touching the second point? - no interpolation needed */
813 return ISECT_TRUE_P2;
816 y_diff= fabsf(p1[1]-p2[1]); /* yuck, horizontal line, we cant do much here */
818 if (y_diff < 0.000001f) {
819 *x_isect = (p1[0]+p2[0]) * 0.5f;
823 if (p1[1] > y_level && p2[1] < y_level) {
824 *x_isect = (p2[0]*(p1[1]-y_level) + p1[0]*(y_level-p2[1])) / y_diff; /*(p1[1]-p2[1]);*/
827 else if (p1[1] < y_level && p2[1] > y_level) {
828 *x_isect = (p2[0]*(y_level-p1[1]) + p1[0]*(p2[1]-y_level)) / y_diff; /*(p2[1]-p1[1]);*/
836 static int line_isect_x(const float p1[2], const float p2[2], const float x_level, float *y_isect)
840 if (x_level==p1[0]) { /* are we touching the first point? - no interpolation needed */
842 return ISECT_TRUE_P1;
844 if (x_level==p2[0]) { /* are we touching the second point? - no interpolation needed */
846 return ISECT_TRUE_P2;
849 x_diff= fabsf(p1[0]-p2[0]); /* yuck, horizontal line, we cant do much here */
851 if (x_diff < 0.000001) { /* yuck, vertical line, we cant do much here */
852 *y_isect = (p1[0]+p2[0]) * 0.5f;
856 if (p1[0] > x_level && p2[0] < x_level) {
857 *y_isect = (p2[1]*(p1[0]-x_level) + p1[1]*(x_level-p2[0])) / x_diff; /*(p1[0]-p2[0]);*/
860 else if (p1[0] < x_level && p2[0] > x_level) {
861 *y_isect = (p2[1]*(x_level-p1[0]) + p1[1]*(p2[0]-x_level)) / x_diff; /*(p2[0]-p1[0]);*/
869 /* simple func use for comparing UV locations to check if there are seams.
870 * Its possible this gives incorrect results, when the UVs for 1 face go into the next
871 * tile, but do not do this for the adjacent face, it could return a false positive.
872 * This is so unlikely that Id not worry about it. */
873 #ifndef PROJ_DEBUG_NOSEAMBLEED
874 static int cmp_uv(const float vec2a[2], const float vec2b[2])
876 /* if the UV's are not between 0.0 and 1.0 */
877 float xa = (float)fmodf(vec2a[0], 1.0f);
878 float ya = (float)fmodf(vec2a[1], 1.0f);
880 float xb = (float)fmodf(vec2b[0], 1.0f);
881 float yb = (float)fmodf(vec2b[1], 1.0f);
883 if (xa < 0.0f) xa += 1.0f;
884 if (ya < 0.0f) ya += 1.0f;
886 if (xb < 0.0f) xb += 1.0f;
887 if (yb < 0.0f) yb += 1.0f;
889 return ((fabsf(xa-xb) < PROJ_GEOM_TOLERANCE) && (fabsf(ya-yb) < PROJ_GEOM_TOLERANCE)) ? 1:0;
893 /* set min_px and max_px to the image space bounds of the UV coords
894 * return zero if there is no area in the returned rectangle */
895 #ifndef PROJ_DEBUG_NOSEAMBLEED
896 static int pixel_bounds_uv(
897 const float uv1[2], const float uv2[2], const float uv3[2], const float uv4[2],
899 const int ibuf_x, const int ibuf_y,
902 float min_uv[2], max_uv[2]; /* UV bounds */
904 INIT_MINMAX2(min_uv, max_uv);
906 DO_MINMAX2(uv1, min_uv, max_uv);
907 DO_MINMAX2(uv2, min_uv, max_uv);
908 DO_MINMAX2(uv3, min_uv, max_uv);
910 DO_MINMAX2(uv4, min_uv, max_uv);
912 bounds_px->xmin = (int)(ibuf_x * min_uv[0]);
913 bounds_px->ymin = (int)(ibuf_y * min_uv[1]);
915 bounds_px->xmax = (int)(ibuf_x * max_uv[0]) +1;
916 bounds_px->ymax = (int)(ibuf_y * max_uv[1]) +1;
918 /*printf("%d %d %d %d \n", min_px[0], min_px[1], max_px[0], max_px[1]);*/
920 /* face uses no UV area when quantized to pixels? */
921 return (bounds_px->xmin == bounds_px->xmax || bounds_px->ymin == bounds_px->ymax) ? 0 : 1;
925 static int pixel_bounds_array(float (* uv)[2], rcti *bounds_px, const int ibuf_x, const int ibuf_y, int tot)
927 float min_uv[2], max_uv[2]; /* UV bounds */
933 INIT_MINMAX2(min_uv, max_uv);
936 DO_MINMAX2((*uv), min_uv, max_uv);
940 bounds_px->xmin = (int)(ibuf_x * min_uv[0]);
941 bounds_px->ymin = (int)(ibuf_y * min_uv[1]);
943 bounds_px->xmax = (int)(ibuf_x * max_uv[0]) +1;
944 bounds_px->ymax = (int)(ibuf_y * max_uv[1]) +1;
946 /*printf("%d %d %d %d \n", min_px[0], min_px[1], max_px[0], max_px[1]);*/
948 /* face uses no UV area when quantized to pixels? */
949 return (bounds_px->xmin == bounds_px->xmax || bounds_px->ymin == bounds_px->ymax) ? 0 : 1;
952 #ifndef PROJ_DEBUG_NOSEAMBLEED
954 /* This function returns 1 if this face has a seam along the 2 face-vert indicies
955 * 'orig_i1_fidx' and 'orig_i2_fidx' */
956 static int check_seam(const ProjPaintState *ps, const int orig_face, const int orig_i1_fidx, const int orig_i2_fidx, int *other_face, int *orig_fidx)
961 int i1_fidx = -1, i2_fidx = -1; /* index in face */
964 const MFace *orig_mf = ps->dm_mface + orig_face;
965 const MTFace *orig_tf = ps->dm_mtface + orig_face;
967 /* vert indicies from face vert order indicies */
968 i1 = (*(&orig_mf->v1 + orig_i1_fidx));
969 i2 = (*(&orig_mf->v1 + orig_i2_fidx));
971 for (node = ps->vertFaces[i1]; node; node = node->next) {
972 face_index = GET_INT_FROM_POINTER(node->link);
974 if (face_index != orig_face) {
975 mf = ps->dm_mface + face_index;
976 /* could check if the 2 faces images match here,
977 * but then there wouldn't be a way to return the opposite face's info */
980 /* We need to know the order of the verts in the adjacent face
981 * set the i1_fidx and i2_fidx to (0,1,2,3) */
982 if (mf->v1==i1) i1_fidx = 0;
983 else if (mf->v2==i1) i1_fidx = 1;
984 else if (mf->v3==i1) i1_fidx = 2;
985 else if (mf->v4 && mf->v4==i1) i1_fidx = 3;
987 if (mf->v1==i2) i2_fidx = 0;
988 else if (mf->v2==i2) i2_fidx = 1;
989 else if (mf->v3==i2) i2_fidx = 2;
990 else if (mf->v4 && mf->v4==i2) i2_fidx = 3;
992 /* Only need to check if 'i2_fidx' is valid because we know i1_fidx is the same vert on both faces */
994 /* This IS an adjacent face!, now lets check if the UVs are ok */
995 tf = ps->dm_mtface + face_index;
997 /* set up the other face */
998 *other_face = face_index;
999 *orig_fidx = (i1_fidx < i2_fidx) ? i1_fidx : i2_fidx;
1001 /* first test if they have the same image */
1002 if ( (orig_tf->tpage == tf->tpage) &&
1003 cmp_uv(orig_tf->uv[orig_i1_fidx], tf->uv[i1_fidx]) &&
1004 cmp_uv(orig_tf->uv[orig_i2_fidx], tf->uv[i2_fidx]) )
1006 // printf("SEAM (NONE)\n");
1011 // printf("SEAM (UV GAP)\n");
1017 // printf("SEAM (NO FACE)\n");
1022 /* Calculate outset UV's, this is not the same as simply scaling the UVs,
1023 * since the outset coords are a margin that keep an even distance from the original UV's,
1024 * note that the image aspect is taken into account */
1025 static void uv_image_outset(float (*orig_uv)[2], float (*outset_uv)[2], const float scaler, const int ibuf_x, const int ibuf_y, const int is_quad)
1027 float a1, a2, a3, a4=0.0f;
1028 float puv[4][2]; /* pixelspace uv's */
1029 float no1[2], no2[2], no3[2], no4[2]; /* normals */
1030 float dir1[2], dir2[2], dir3[2], dir4[2];
1031 float ibuf_x_inv = 1.0f / (float)ibuf_x;
1032 float ibuf_y_inv = 1.0f / (float)ibuf_y;
1034 /* make UV's in pixel space so we can */
1035 puv[0][0] = orig_uv[0][0] * ibuf_x;
1036 puv[0][1] = orig_uv[0][1] * ibuf_y;
1038 puv[1][0] = orig_uv[1][0] * ibuf_x;
1039 puv[1][1] = orig_uv[1][1] * ibuf_y;
1041 puv[2][0] = orig_uv[2][0] * ibuf_x;
1042 puv[2][1] = orig_uv[2][1] * ibuf_y;
1045 puv[3][0] = orig_uv[3][0] * ibuf_x;
1046 puv[3][1] = orig_uv[3][1] * ibuf_y;
1049 /* face edge directions */
1050 Vec2Subf(dir1, puv[1], puv[0]);
1051 Vec2Subf(dir2, puv[2], puv[1]);
1056 Vec2Subf(dir3, puv[3], puv[2]);
1057 Vec2Subf(dir4, puv[0], puv[3]);
1062 Vec2Subf(dir3, puv[0], puv[2]);
1067 a1 = AngleToLength(NormalizedVecAngle2_2D(dir4, dir1));
1068 a2 = AngleToLength(NormalizedVecAngle2_2D(dir1, dir2));
1069 a3 = AngleToLength(NormalizedVecAngle2_2D(dir2, dir3));
1070 a4 = AngleToLength(NormalizedVecAngle2_2D(dir3, dir4));
1073 a1 = AngleToLength(NormalizedVecAngle2_2D(dir3, dir1));
1074 a2 = AngleToLength(NormalizedVecAngle2_2D(dir1, dir2));
1075 a3 = AngleToLength(NormalizedVecAngle2_2D(dir2, dir3));
1079 Vec2Subf(no1, dir4, dir1);
1080 Vec2Subf(no2, dir1, dir2);
1081 Vec2Subf(no3, dir2, dir3);
1082 Vec2Subf(no4, dir3, dir4);
1087 Vec2Mulf(no1, a1*scaler);
1088 Vec2Mulf(no2, a2*scaler);
1089 Vec2Mulf(no3, a3*scaler);
1090 Vec2Mulf(no4, a4*scaler);
1091 Vec2Addf(outset_uv[0], puv[0], no1);
1092 Vec2Addf(outset_uv[1], puv[1], no2);
1093 Vec2Addf(outset_uv[2], puv[2], no3);
1094 Vec2Addf(outset_uv[3], puv[3], no4);
1095 outset_uv[0][0] *= ibuf_x_inv;
1096 outset_uv[0][1] *= ibuf_y_inv;
1098 outset_uv[1][0] *= ibuf_x_inv;
1099 outset_uv[1][1] *= ibuf_y_inv;
1101 outset_uv[2][0] *= ibuf_x_inv;
1102 outset_uv[2][1] *= ibuf_y_inv;
1104 outset_uv[3][0] *= ibuf_x_inv;
1105 outset_uv[3][1] *= ibuf_y_inv;
1108 Vec2Subf(no1, dir3, dir1);
1109 Vec2Subf(no2, dir1, dir2);
1110 Vec2Subf(no3, dir2, dir3);
1114 Vec2Mulf(no1, a1*scaler);
1115 Vec2Mulf(no2, a2*scaler);
1116 Vec2Mulf(no3, a3*scaler);
1117 Vec2Addf(outset_uv[0], puv[0], no1);
1118 Vec2Addf(outset_uv[1], puv[1], no2);
1119 Vec2Addf(outset_uv[2], puv[2], no3);
1120 outset_uv[0][0] *= ibuf_x_inv;
1121 outset_uv[0][1] *= ibuf_y_inv;
1123 outset_uv[1][0] *= ibuf_x_inv;
1124 outset_uv[1][1] *= ibuf_y_inv;
1126 outset_uv[2][0] *= ibuf_x_inv;
1127 outset_uv[2][1] *= ibuf_y_inv;
1132 * Be tricky with flags, first 4 bits are PROJ_FACE_SEAM1 to 4, last 4 bits are PROJ_FACE_NOSEAM1 to 4
1133 * 1<<i - where i is (0-3)
1135 * If we're multithreadng, make sure threads are locked when this is called
1137 static void project_face_seams_init(const ProjPaintState *ps, const int face_index, const int is_quad)
1139 int other_face, other_fidx; /* vars for the other face, we also set its flag */
1140 int fidx1 = is_quad ? 3 : 2;
1141 int fidx2 = 0; /* next fidx in the face (0,1,2,3) -> (1,2,3,0) or (0,1,2) -> (1,2,0) for a tri */
1144 if ((ps->faceSeamFlags[face_index] & (1<<fidx1|16<<fidx1)) == 0) {
1145 if (check_seam(ps, face_index, fidx1, fidx2, &other_face, &other_fidx)) {
1146 ps->faceSeamFlags[face_index] |= 1<<fidx1;
1147 if (other_face != -1)
1148 ps->faceSeamFlags[other_face] |= 1<<other_fidx;
1151 ps->faceSeamFlags[face_index] |= 16<<fidx1;
1152 if (other_face != -1)
1153 ps->faceSeamFlags[other_face] |= 16<<other_fidx; /* second 4 bits for disabled */
1160 #endif // PROJ_DEBUG_NOSEAMBLEED
1163 /* TODO - move to arithb.c */
1165 /* little sister we only need to know lambda */
1166 static float lambda_cp_line2(const float p[2], const float l1[2], const float l2[2])
1170 u[0] = l2[0] - l1[0];
1171 u[1] = l2[1] - l1[1];
1173 h[0] = p[0] - l1[0];
1174 h[1] = p[1] - l1[1];
1176 return(Inp2f(u, h)/Inp2f(u, u));
1180 /* Converts a UV location to a 3D screenspace location
1181 * Takes a 'uv' and 3 UV coords, and sets the values of pixelScreenCo
1183 * This is used for finding a pixels location in screenspace for painting */
1184 static void screen_px_from_ortho(
1186 float v1co[3], float v2co[3], float v3co[3], /* Screenspace coords */
1187 float uv1co[2], float uv2co[2], float uv3co[2],
1188 float pixelScreenCo[4],
1191 BarycentricWeights2f(uv, uv1co, uv2co, uv3co, w);
1192 VecLerp3f(pixelScreenCo, v1co, v2co, v3co, w);
1195 /* same as screen_px_from_ortho except we need to take into account
1196 * the perspective W coord for each vert */
1197 static void screen_px_from_persp(
1199 float v1co[3], float v2co[3], float v3co[3], /* screenspace coords */
1200 float uv1co[2], float uv2co[2], float uv3co[2],
1201 float pixelScreenCo[4],
1205 float wtot_inv, wtot;
1206 BarycentricWeights2f(uv, uv1co, uv2co, uv3co, w);
1208 /* re-weight from the 4th coord of each screen vert */
1213 wtot = w[0]+w[1]+w[2];
1216 wtot_inv = 1.0f / wtot;
1222 w[0] = w[1] = w[2] = 1.0/3.0; /* dummy values for zero area face */
1224 /* done re-weighting */
1226 VecLerp3f(pixelScreenCo, v1co, v2co, v3co, w);
1229 static void project_face_pixel(const MTFace *tf_other, ImBuf *ibuf_other, const float w[3], int side, unsigned char rgba_ub[4], float rgba_f[4])
1231 float *uvCo1, *uvCo2, *uvCo3;
1232 float uv_other[2], x, y;
1234 uvCo1 = (float *)tf_other->uv[0];
1236 uvCo2 = (float *)tf_other->uv[2];
1237 uvCo3 = (float *)tf_other->uv[3];
1240 uvCo2 = (float *)tf_other->uv[1];
1241 uvCo3 = (float *)tf_other->uv[2];
1244 Vec2Lerp3f(uv_other, uvCo1, uvCo2, uvCo3, w);
1247 uvco_to_wrapped_pxco(uv_other, ibuf_other->x, ibuf_other->y, &x, &y);
1250 if (ibuf_other->rect_float) { /* from float to float */
1251 bilinear_interpolation_color_wrap(ibuf_other, NULL, rgba_f, x, y);
1253 else { /* from char to float */
1254 bilinear_interpolation_color_wrap(ibuf_other, rgba_ub, NULL, x, y);
1259 /* run this outside project_paint_uvpixel_init since pixels with mask 0 dont need init */
1260 float project_paint_uvpixel_mask(
1261 const ProjPaintState *ps,
1262 const int face_index,
1269 if (ps->do_layer_mask) {
1270 /* another UV layers image is masking this one's */
1272 const MTFace *tf_other = ps->dm_mtface_mask + face_index;
1274 if (tf_other->tpage && (ibuf_other = BKE_image_get_ibuf(tf_other->tpage, NULL))) {
1275 /* BKE_image_get_ibuf - TODO - this may be slow */
1276 unsigned char rgba_ub[4];
1279 project_face_pixel(tf_other, ibuf_other, w, side, rgba_ub, rgba_f);
1281 if (ibuf_other->rect_float) { /* from float to float */
1282 mask = ((rgba_f[0]+rgba_f[1]+rgba_f[2])/3.0f) * rgba_f[3];
1284 else { /* from char to float */
1285 mask = ((rgba_ub[0]+rgba_ub[1]+rgba_ub[2])/(256*3.0f)) * (rgba_ub[3]/256.0f);
1288 if (!ps->do_layer_mask_inv) /* matching the gimps layer mask black/white rules, white==full opacity */
1289 mask = (1.0f - mask);
1302 /* calculate mask */
1303 if (ps->do_mask_normal) {
1304 MFace *mf = ps->dm_mface + face_index;
1305 short *no1, *no2, *no3;
1307 no1 = ps->dm_mvert[mf->v1].no;
1309 no2 = ps->dm_mvert[mf->v3].no;
1310 no3 = ps->dm_mvert[mf->v4].no;
1313 no2 = ps->dm_mvert[mf->v2].no;
1314 no3 = ps->dm_mvert[mf->v3].no;
1317 no[0] = w[0]*no1[0] + w[1]*no2[0] + w[2]*no3[0];
1318 no[1] = w[0]*no1[1] + w[1]*no2[1] + w[2]*no3[1];
1319 no[2] = w[0]*no1[2] + w[1]*no2[2] + w[2]*no3[2];
1322 /* now we can use the normal as a mask */
1324 angle = NormalizedVecAngle2((float *)ps->viewDir, no);
1327 /* Annoying but for the perspective view we need to get the pixels location in 3D space :/ */
1328 float viewDirPersp[3];
1329 float *co1, *co2, *co3;
1330 co1 = ps->dm_mvert[mf->v1].co;
1332 co2 = ps->dm_mvert[mf->v3].co;
1333 co3 = ps->dm_mvert[mf->v4].co;
1336 co2 = ps->dm_mvert[mf->v2].co;
1337 co3 = ps->dm_mvert[mf->v3].co;
1340 /* Get the direction from the viewPoint to the pixel and normalize */
1341 viewDirPersp[0] = (ps->viewPos[0] - (w[0]*co1[0] + w[1]*co2[0] + w[2]*co3[0]));
1342 viewDirPersp[1] = (ps->viewPos[1] - (w[0]*co1[1] + w[1]*co2[1] + w[2]*co3[1]));
1343 viewDirPersp[2] = (ps->viewPos[2] - (w[0]*co1[2] + w[1]*co2[2] + w[2]*co3[2]));
1344 Normalize(viewDirPersp);
1346 angle = NormalizedVecAngle2(viewDirPersp, no);
1349 if (angle >= ps->normal_angle) {
1350 return 0.0f; /* outsize the normal limit*/
1352 else if (angle > ps->normal_angle_inner) {
1353 mask *= (ps->normal_angle - angle) / ps->normal_angle_range;
1354 } /* otherwise no mask normal is needed, were within the limit */
1357 // This only works when the opacity dosnt change while painting, stylus pressure messes with this
1359 // if (ps->is_airbrush==0) mask *= ps->brush->alpha;
1364 /* run this function when we know a bucket's, face's pixel can be initialized,
1365 * return the ProjPixel which is added to 'ps->bucketRect[bucket_index]' */
1366 static ProjPixel *project_paint_uvpixel_init(
1367 const ProjPaintState *ps,
1370 short x_px, short y_px,
1372 const int face_index,
1373 const int image_index,
1374 const float pixelScreenCo[4],
1378 ProjPixel *projPixel;
1381 /* wrap pixel location */
1382 x_px = x_px % ibuf->x;
1383 if (x_px<0) x_px += ibuf->x;
1384 y_px = y_px % ibuf->y;
1385 if (y_px<0) y_px += ibuf->y;
1387 if (ps->tool==PAINT_TOOL_CLONE) {
1388 size = sizeof(ProjPixelClone);
1390 else if (ps->tool==PAINT_TOOL_SMEAR) {
1391 size = sizeof(ProjPixelClone);
1394 size = sizeof(ProjPixel);
1397 projPixel = (ProjPixel *)BLI_memarena_alloc(arena, size);
1398 //memset(projPixel, 0, size);
1400 if (ibuf->rect_float) {
1401 projPixel->pixel.f_pt = (float *)ibuf->rect_float + ((x_px + y_px * ibuf->x) * 4);
1402 projPixel->origColor.f[0] = projPixel->newColor.f[0] = projPixel->pixel.f_pt[0];
1403 projPixel->origColor.f[1] = projPixel->newColor.f[1] = projPixel->pixel.f_pt[1];
1404 projPixel->origColor.f[2] = projPixel->newColor.f[2] = projPixel->pixel.f_pt[2];
1405 projPixel->origColor.f[3] = projPixel->newColor.f[3] = projPixel->pixel.f_pt[3];
1408 projPixel->pixel.ch_pt = ((unsigned char *)ibuf->rect + ((x_px + y_px * ibuf->x) * 4));
1409 projPixel->origColor.uint = projPixel->newColor.uint = *projPixel->pixel.uint_pt;
1412 /* screenspace unclamped, we could keep its z and w values but dont need them at the moment */
1413 VECCOPY2D(projPixel->projCoSS, pixelScreenCo);
1415 projPixel->x_px = x_px;
1416 projPixel->y_px = y_px;
1418 projPixel->mask = (unsigned short)(mask * 65535);
1419 projPixel->mask_max = 0;
1421 /* which bounding box cell are we in?, needed for undo */
1422 projPixel->bb_cell_index = ((int)(((float)x_px/(float)ibuf->x) * PROJ_BOUNDBOX_DIV)) + ((int)(((float)y_px/(float)ibuf->y) * PROJ_BOUNDBOX_DIV)) * PROJ_BOUNDBOX_DIV ;
1424 /* done with view3d_project_float inline */
1425 if (ps->tool==PAINT_TOOL_CLONE) {
1426 if (ps->dm_mtface_clone) {
1428 const MTFace *tf_other = ps->dm_mtface_clone + face_index;
1430 if (tf_other->tpage && (ibuf_other = BKE_image_get_ibuf(tf_other->tpage, NULL))) {
1431 /* BKE_image_get_ibuf - TODO - this may be slow */
1433 if (ibuf->rect_float) {
1434 if (ibuf_other->rect_float) { /* from float to float */
1435 project_face_pixel(tf_other, ibuf_other, w, side, NULL, ((ProjPixelClone *)projPixel)->clonepx.f);
1437 else { /* from char to float */
1438 unsigned char rgba_ub[4];
1439 project_face_pixel(tf_other, ibuf_other, w, side, rgba_ub, NULL);
1440 IMAPAINT_CHAR_RGBA_TO_FLOAT(((ProjPixelClone *)projPixel)->clonepx.f, rgba_ub);
1444 if (ibuf_other->rect_float) { /* float to char */
1446 project_face_pixel(tf_other, ibuf_other, w, side, NULL, rgba);
1447 IMAPAINT_FLOAT_RGBA_TO_CHAR(((ProjPixelClone *)projPixel)->clonepx.ch, rgba)
1449 else { /* char to char */
1450 project_face_pixel(tf_other, ibuf_other, w, side, ((ProjPixelClone *)projPixel)->clonepx.ch, NULL);
1455 if (ibuf->rect_float) {
1456 ((ProjPixelClone *)projPixel)->clonepx.f[3] = 0;
1459 ((ProjPixelClone *)projPixel)->clonepx.ch[3] = 0;
1466 Vec2Subf(co, projPixel->projCoSS, (float *)ps->cloneOffset);
1468 /* no need to initialize the bucket, we're only checking buckets faces and for this
1469 * the faces are alredy initialized in project_paint_delayed_face_init(...) */
1470 if (ibuf->rect_float) {
1471 if (!project_paint_PickColor(ps, co, ((ProjPixelClone *)projPixel)->clonepx.f, NULL, 1)) {
1472 ((ProjPixelClone *)projPixel)->clonepx.f[3] = 0; /* zero alpha - ignore */
1476 if (!project_paint_PickColor(ps, co, NULL, ((ProjPixelClone *)projPixel)->clonepx.ch, 1)) {
1477 ((ProjPixelClone *)projPixel)->clonepx.ch[3] = 0; /* zero alpha - ignore */
1483 #ifdef PROJ_DEBUG_PAINT
1484 if (ibuf->rect_float) projPixel->pixel.f_pt[0] = 0;
1485 else projPixel->pixel.ch_pt[0] = 0;
1487 projPixel->image_index = image_index;
1492 static int line_clip_rect2f(
1494 const float l1[2], const float l2[2],
1495 float l1_clip[2], float l2_clip[2])
1497 /* first account for horizontal, then vertical lines */
1499 if (fabsf(l1[1]-l2[1]) < PROJ_GEOM_TOLERANCE) {
1500 /* is the line out of range on its Y axis? */
1501 if (l1[1] < rect->ymin || l1[1] > rect->ymax) {
1504 /* line is out of range on its X axis */
1505 if ((l1[0] < rect->xmin && l2[0] < rect->xmin) || (l1[0] > rect->xmax && l2[0] > rect->xmax)) {
1510 if (fabsf(l1[0]-l2[0]) < PROJ_GEOM_TOLERANCE) { /* this is a single point (or close to)*/
1511 if (BLI_in_rctf(rect, l1[0], l1[1])) {
1512 VECCOPY2D(l1_clip, l1);
1513 VECCOPY2D(l2_clip, l2);
1521 VECCOPY2D(l1_clip, l1);
1522 VECCOPY2D(l2_clip, l2);
1523 CLAMP(l1_clip[0], rect->xmin, rect->xmax);
1524 CLAMP(l2_clip[0], rect->xmin, rect->xmax);
1527 else if (fabsf(l1[0]-l2[0]) < PROJ_GEOM_TOLERANCE) {
1528 /* is the line out of range on its X axis? */
1529 if (l1[0] < rect->xmin || l1[0] > rect->xmax) {
1533 /* line is out of range on its Y axis */
1534 if ((l1[1] < rect->ymin && l2[1] < rect->ymin) || (l1[1] > rect->ymax && l2[1] > rect->ymax)) {
1538 if (fabsf(l1[1]-l2[1]) < PROJ_GEOM_TOLERANCE) { /* this is a single point (or close to)*/
1539 if (BLI_in_rctf(rect, l1[0], l1[1])) {
1540 VECCOPY2D(l1_clip, l1);
1541 VECCOPY2D(l2_clip, l2);
1549 VECCOPY2D(l1_clip, l1);
1550 VECCOPY2D(l2_clip, l2);
1551 CLAMP(l1_clip[1], rect->ymin, rect->ymax);
1552 CLAMP(l2_clip[1], rect->ymin, rect->ymax);
1560 /* Done with vertical lines */
1562 /* are either of the points inside the rectangle ? */
1563 if (BLI_in_rctf(rect, l1[0], l1[1])) {
1564 VECCOPY2D(l1_clip, l1);
1568 if (BLI_in_rctf(rect, l2[0], l2[1])) {
1569 VECCOPY2D(l2_clip, l2);
1573 /* line inside rect */
1574 if (ok1 && ok2) return 1;
1577 if (line_isect_y(l1, l2, rect->ymin, &isect) && (isect >= rect->xmin) && (isect <= rect->xmax)) {
1578 if (l1[1] < l2[1]) { /* line 1 is outside */
1580 l1_clip[1] = rect->ymin;
1585 l2_clip[1] = rect->ymin;
1590 if (ok1 && ok2) return 1;
1592 if (line_isect_y(l1, l2, rect->ymax, &isect) && (isect >= rect->xmin) && (isect <= rect->xmax)) {
1593 if (l1[1] > l2[1]) { /* line 1 is outside */
1595 l1_clip[1] = rect->ymax;
1600 l2_clip[1] = rect->ymax;
1605 if (ok1 && ok2) return 1;
1608 if (line_isect_x(l1, l2, rect->xmin, &isect) && (isect >= rect->ymin) && (isect <= rect->ymax)) {
1609 if (l1[0] < l2[0]) { /* line 1 is outside */
1610 l1_clip[0] = rect->xmin;
1615 l2_clip[0] = rect->xmin;
1621 if (ok1 && ok2) return 1;
1623 if (line_isect_x(l1, l2, rect->xmax, &isect) && (isect >= rect->ymin) && (isect <= rect->ymax)) {
1624 if (l1[0] > l2[0]) { /* line 1 is outside */
1625 l1_clip[0] = rect->xmax;
1630 l2_clip[0] = rect->xmax;
1647 /* scale the quad & tri about its center
1648 * scaling by PROJ_FACE_SCALE_SEAM (0.99x) is used for getting fake UV pixel coords that are on the
1649 * edge of the face but slightly inside it occlusion tests dont return hits on adjacent faces */
1650 static void scale_quad(float insetCos[4][3], float *origCos[4], const float inset)
1653 cent[0] = (origCos[0][0] + origCos[1][0] + origCos[2][0] + origCos[3][0]) / 4.0f;
1654 cent[1] = (origCos[0][1] + origCos[1][1] + origCos[2][1] + origCos[3][1]) / 4.0f;
1655 cent[2] = (origCos[0][2] + origCos[1][2] + origCos[2][2] + origCos[3][2]) / 4.0f;
1657 VecSubf(insetCos[0], origCos[0], cent);
1658 VecSubf(insetCos[1], origCos[1], cent);
1659 VecSubf(insetCos[2], origCos[2], cent);
1660 VecSubf(insetCos[3], origCos[3], cent);
1662 VecMulf(insetCos[0], inset);
1663 VecMulf(insetCos[1], inset);
1664 VecMulf(insetCos[2], inset);
1665 VecMulf(insetCos[3], inset);
1667 VecAddf(insetCos[0], insetCos[0], cent);
1668 VecAddf(insetCos[1], insetCos[1], cent);
1669 VecAddf(insetCos[2], insetCos[2], cent);
1670 VecAddf(insetCos[3], insetCos[3], cent);
1674 static void scale_tri(float insetCos[4][3], float *origCos[4], const float inset)
1677 cent[0] = (origCos[0][0] + origCos[1][0] + origCos[2][0]) / 3.0f;
1678 cent[1] = (origCos[0][1] + origCos[1][1] + origCos[2][1]) / 3.0f;
1679 cent[2] = (origCos[0][2] + origCos[1][2] + origCos[2][2]) / 3.0f;
1681 VecSubf(insetCos[0], origCos[0], cent);
1682 VecSubf(insetCos[1], origCos[1], cent);
1683 VecSubf(insetCos[2], origCos[2], cent);
1685 VecMulf(insetCos[0], inset);
1686 VecMulf(insetCos[1], inset);
1687 VecMulf(insetCos[2], inset);
1689 VecAddf(insetCos[0], insetCos[0], cent);
1690 VecAddf(insetCos[1], insetCos[1], cent);
1691 VecAddf(insetCos[2], insetCos[2], cent);
1695 static float Vec2Lenf_nosqrt(const float *v1, const float *v2)
1704 static float Vec2Lenf_nosqrt_other(const float *v1, const float v2_1, const float v2_2)
1713 /* note, use a squared value so we can use Vec2Lenf_nosqrt
1714 * be sure that you have done a bounds check first or this may fail */
1715 /* only give bucket_bounds as an arg because we need it elsewhere */
1716 static int project_bucket_isect_circle(const int bucket_x, const int bucket_y, const float cent[2], const float radius_squared, rctf *bucket_bounds)
1719 /* Would normally to a simple intersection test, however we know the bounds of these 2 alredy intersect
1720 * so we only need to test if the center is inside the vertical or horizontal bounds on either axis,
1721 * this is even less work then an intersection test
1723 if (BLI_in_rctf(bucket_bounds, cent[0], cent[1]))
1727 if((bucket_bounds->xmin <= cent[0] && bucket_bounds->xmax >= cent[0]) || (bucket_bounds->ymin <= cent[1] && bucket_bounds->ymax >= cent[1]) ) {
1731 /* out of bounds left */
1732 if (cent[0] < bucket_bounds->xmin) {
1733 /* lower left out of radius test */
1734 if (cent[1] < bucket_bounds->ymin) {
1735 return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmin, bucket_bounds->ymin) < radius_squared) ? 1 : 0;
1738 else if (cent[1] > bucket_bounds->ymax) {
1739 return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmin, bucket_bounds->ymax) < radius_squared) ? 1 : 0;
1742 else if (cent[0] > bucket_bounds->xmax) {
1743 /* lower right out of radius test */
1744 if (cent[1] < bucket_bounds->ymin) {
1745 return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmax, bucket_bounds->ymin) < radius_squared) ? 1 : 0;
1747 /* top right test */
1748 else if (cent[1] > bucket_bounds->ymax) {
1749 return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmax, bucket_bounds->ymax) < radius_squared) ? 1 : 0;
1758 /* Note for rect_to_uvspace_ortho() and rect_to_uvspace_persp()
1759 * in ortho view this function gives good results when bucket_bounds are outside the triangle
1760 * however in some cases, perspective view will mess up with faces that have minimal screenspace area (viewed from the side)
1762 * for this reason its not relyable in this case so we'll use the Simple Barycentric' funcs that only account for points inside the triangle.
1763 * however switching back to this for ortho is always an option */
1765 static void rect_to_uvspace_ortho(
1766 rctf *bucket_bounds,
1767 float *v1coSS, float *v2coSS, float *v3coSS,
1768 float *uv1co, float *uv2co, float *uv3co,
1769 float bucket_bounds_uv[4][2],
1775 /* get the UV space bounding box */
1776 uv[0] = bucket_bounds->xmax;
1777 uv[1] = bucket_bounds->ymin;
1778 BarycentricWeights2f(uv, v1coSS, v2coSS, v3coSS, w);
1779 Vec2Lerp3f(bucket_bounds_uv[flip?3:0], uv1co, uv2co, uv3co, w);
1781 //uv[0] = bucket_bounds->xmax; // set above
1782 uv[1] = bucket_bounds->ymax;
1783 BarycentricWeights2f(uv, v1coSS, v2coSS, v3coSS, w);
1784 Vec2Lerp3f(bucket_bounds_uv[flip?2:1], uv1co, uv2co, uv3co, w);
1786 uv[0] = bucket_bounds->xmin;
1787 //uv[1] = bucket_bounds->ymax; // set above
1788 BarycentricWeights2f(uv, v1coSS, v2coSS, v3coSS, w);
1789 Vec2Lerp3f(bucket_bounds_uv[flip?1:2], uv1co, uv2co, uv3co, w);
1791 //uv[0] = bucket_bounds->xmin; // set above
1792 uv[1] = bucket_bounds->ymin;
1793 BarycentricWeights2f(uv, v1coSS, v2coSS, v3coSS, w);
1794 Vec2Lerp3f(bucket_bounds_uv[flip?0:3], uv1co, uv2co, uv3co, w);
1797 /* same as above but use BarycentricWeightsPersp2f */
1798 static void rect_to_uvspace_persp(
1799 rctf *bucket_bounds,
1800 float *v1coSS, float *v2coSS, float *v3coSS,
1801 float *uv1co, float *uv2co, float *uv3co,
1802 float bucket_bounds_uv[4][2],
1809 /* get the UV space bounding box */
1810 uv[0] = bucket_bounds->xmax;
1811 uv[1] = bucket_bounds->ymin;
1812 BarycentricWeightsPersp2f(uv, v1coSS, v2coSS, v3coSS, w);
1813 Vec2Lerp3f(bucket_bounds_uv[flip?3:0], uv1co, uv2co, uv3co, w);
1815 //uv[0] = bucket_bounds->xmax; // set above
1816 uv[1] = bucket_bounds->ymax;
1817 BarycentricWeightsPersp2f(uv, v1coSS, v2coSS, v3coSS, w);
1818 Vec2Lerp3f(bucket_bounds_uv[flip?2:1], uv1co, uv2co, uv3co, w);
1820 uv[0] = bucket_bounds->xmin;
1821 //uv[1] = bucket_bounds->ymax; // set above
1822 BarycentricWeightsPersp2f(uv, v1coSS, v2coSS, v3coSS, w);
1823 Vec2Lerp3f(bucket_bounds_uv[flip?1:2], uv1co, uv2co, uv3co, w);
1825 //uv[0] = bucket_bounds->xmin; // set above
1826 uv[1] = bucket_bounds->ymin;
1827 BarycentricWeightsPersp2f(uv, v1coSS, v2coSS, v3coSS, w);
1828 Vec2Lerp3f(bucket_bounds_uv[flip?0:3], uv1co, uv2co, uv3co, w);
1831 /* This works as we need it to but we can save a few steps and not use it */
1834 static float angle_2d_clockwise(const float p1[2], const float p2[2], const float p3[2])
1838 v1[0] = p1[0]-p2[0]; v1[1] = p1[1]-p2[1];
1839 v2[0] = p3[0]-p2[0]; v2[1] = p3[1]-p2[1];
1841 return -atan2(v1[0]*v2[1] - v1[1]*v2[0], v1[0]*v2[0]+v1[1]*v2[1]);
1846 #define ISECT_2 (1<<1)
1847 #define ISECT_3 (1<<2)
1848 #define ISECT_4 (1<<3)
1849 #define ISECT_ALL3 ((1<<3)-1)
1850 #define ISECT_ALL4 ((1<<4)-1)
1852 /* limit must be a fraction over 1.0f */
1853 static int IsectPT2Df_limit(float pt[2], float v1[2], float v2[2], float v3[2], float limit)
1855 return ((AreaF2Dfl(pt,v1,v2) + AreaF2Dfl(pt,v2,v3) + AreaF2Dfl(pt,v3,v1)) / (AreaF2Dfl(v1,v2,v3))) < limit;
1858 /* Clip the face by a bucket and set the uv-space bucket_bounds_uv
1859 * so we have the clipped UV's to do pixel intersection tests with
1861 static int float_z_sort_flip(const void *p1, const void *p2) {
1862 return (((float *)p1)[2] < ((float *)p2)[2] ? 1:-1);
1865 static int float_z_sort(const void *p1, const void *p2) {
1866 return (((float *)p1)[2] < ((float *)p2)[2] ?-1:1);
1869 static void project_bucket_clip_face(
1871 rctf *bucket_bounds,
1872 float *v1coSS, float *v2coSS, float *v3coSS,
1873 float *uv1co, float *uv2co, float *uv3co,
1874 float bucket_bounds_uv[8][2],
1877 int inside_bucket_flag = 0;
1878 int inside_face_flag = 0;
1879 const int flip = ((SIDE_OF_LINE(v1coSS, v2coSS, v3coSS) > 0.0f) != (SIDE_OF_LINE(uv1co, uv2co, uv3co) > 0.0f));
1881 float bucket_bounds_ss[4][2];
1883 /* get the UV space bounding box */
1884 inside_bucket_flag |= BLI_in_rctf(bucket_bounds, v1coSS[0], v1coSS[1]);
1885 inside_bucket_flag |= BLI_in_rctf(bucket_bounds, v2coSS[0], v2coSS[1]) << 1;
1886 inside_bucket_flag |= BLI_in_rctf(bucket_bounds, v3coSS[0], v3coSS[1]) << 2;
1888 if (inside_bucket_flag == ISECT_ALL3) {
1889 /* all screenspace points are inside the bucket bounding box, this means we dont need to clip and can simply return the UVs */
1890 if (flip) { /* facing the back? */
1891 VECCOPY2D(bucket_bounds_uv[0], uv3co);
1892 VECCOPY2D(bucket_bounds_uv[1], uv2co);
1893 VECCOPY2D(bucket_bounds_uv[2], uv1co);
1896 VECCOPY2D(bucket_bounds_uv[0], uv1co);
1897 VECCOPY2D(bucket_bounds_uv[1], uv2co);
1898 VECCOPY2D(bucket_bounds_uv[2], uv3co);
1905 /* get the UV space bounding box */
1906 /* use IsectPT2Df_limit here so we catch points are are touching the tri edge (or a small fraction over) */
1907 bucket_bounds_ss[0][0] = bucket_bounds->xmax;
1908 bucket_bounds_ss[0][1] = bucket_bounds->ymin;
1909 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[0], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_1 : 0);
1911 bucket_bounds_ss[1][0] = bucket_bounds->xmax;
1912 bucket_bounds_ss[1][1] = bucket_bounds->ymax;
1913 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[1], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_2 : 0);
1915 bucket_bounds_ss[2][0] = bucket_bounds->xmin;
1916 bucket_bounds_ss[2][1] = bucket_bounds->ymax;
1917 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[2], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_3 : 0);
1919 bucket_bounds_ss[3][0] = bucket_bounds->xmin;
1920 bucket_bounds_ss[3][1] = bucket_bounds->ymin;
1921 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[3], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_4 : 0);
1923 if (inside_face_flag == ISECT_ALL4) {
1924 /* bucket is totally inside the screenspace face, we can safely use weights */
1926 if (is_ortho) rect_to_uvspace_ortho(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, bucket_bounds_uv, flip);
1927 else rect_to_uvspace_persp(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, bucket_bounds_uv, flip);
1933 /* The Complicated Case!
1935 * The 2 cases above are where the face is inside the bucket or the bucket is inside the face.
1937 * we need to make a convex polyline from the intersection between the screenspace face
1938 * and the bucket bounds.
1940 * There are a number of ways this could be done, currently it just collects all intersecting verts,
1941 * and line intersections, then sorts them clockwise, this is a lot easier then evaluating the geometry to
1942 * do a correct clipping on both shapes. */
1945 /* add a bunch of points, we know must make up the convex hull which is the clipped rect and triangle */
1949 /* Maximum possible 6 intersections when using a rectangle and triangle */
1950 float isectVCosSS[8][3]; /* The 3rd float is used to store angle for qsort(), NOT as a Z location */
1951 float v1_clipSS[2], v2_clipSS[2];
1955 float cent[2] = {0.0f, 0.0f};
1956 /*float up[2] = {0.0f, 1.0f};*/
1962 if (inside_face_flag & ISECT_1) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[0]); (*tot)++; }
1963 if (inside_face_flag & ISECT_2) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[1]); (*tot)++; }
1964 if (inside_face_flag & ISECT_3) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[2]); (*tot)++; }
1965 if (inside_face_flag & ISECT_4) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[3]); (*tot)++; }
1967 if (inside_bucket_flag & ISECT_1) { VECCOPY2D(isectVCosSS[*tot], v1coSS); (*tot)++; }
1968 if (inside_bucket_flag & ISECT_2) { VECCOPY2D(isectVCosSS[*tot], v2coSS); (*tot)++; }
1969 if (inside_bucket_flag & ISECT_3) { VECCOPY2D(isectVCosSS[*tot], v3coSS); (*tot)++; }
1971 if ((inside_bucket_flag & (ISECT_1|ISECT_2)) != (ISECT_1|ISECT_2)) {
1972 if (line_clip_rect2f(bucket_bounds, v1coSS, v2coSS, v1_clipSS, v2_clipSS)) {
1973 if ((inside_bucket_flag & ISECT_1)==0) { VECCOPY2D(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
1974 if ((inside_bucket_flag & ISECT_2)==0) { VECCOPY2D(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
1978 if ((inside_bucket_flag & (ISECT_2|ISECT_3)) != (ISECT_2|ISECT_3)) {
1979 if (line_clip_rect2f(bucket_bounds, v2coSS, v3coSS, v1_clipSS, v2_clipSS)) {
1980 if ((inside_bucket_flag & ISECT_2)==0) { VECCOPY2D(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
1981 if ((inside_bucket_flag & ISECT_3)==0) { VECCOPY2D(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
1985 if ((inside_bucket_flag & (ISECT_3|ISECT_1)) != (ISECT_3|ISECT_1)) {
1986 if (line_clip_rect2f(bucket_bounds, v3coSS, v1coSS, v1_clipSS, v2_clipSS)) {
1987 if ((inside_bucket_flag & ISECT_3)==0) { VECCOPY2D(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
1988 if ((inside_bucket_flag & ISECT_1)==0) { VECCOPY2D(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
1993 if ((*tot) < 3) { /* no intersections to speak of */
1998 /* now we have all points we need, collect their angles and sort them clockwise */
2000 for(i=0; i<(*tot); i++) {
2001 cent[0] += isectVCosSS[i][0];
2002 cent[1] += isectVCosSS[i][1];
2004 cent[0] = cent[0] / (float)(*tot);
2005 cent[1] = cent[1] / (float)(*tot);
2009 /* Collect angles for every point around the center point */
2012 #if 0 /* uses a few more cycles then the above loop */
2013 for(i=0; i<(*tot); i++) {
2014 isectVCosSS[i][2] = angle_2d_clockwise(up, cent, isectVCosSS[i]);
2018 v1_clipSS[0] = cent[0]; /* Abuse this var for the loop below */
2019 v1_clipSS[1] = cent[1] + 1.0f;
2021 for(i=0; i<(*tot); i++) {
2022 v2_clipSS[0] = isectVCosSS[i][0] - cent[0];
2023 v2_clipSS[1] = isectVCosSS[i][1] - cent[1];
2024 isectVCosSS[i][2] = atan2f(v1_clipSS[0]*v2_clipSS[1] - v1_clipSS[1]*v2_clipSS[0], v1_clipSS[0]*v2_clipSS[0]+v1_clipSS[1]*v2_clipSS[1]);
2027 if (flip) qsort(isectVCosSS, *tot, sizeof(float)*3, float_z_sort_flip);
2028 else qsort(isectVCosSS, *tot, sizeof(float)*3, float_z_sort);
2030 /* remove doubles */
2031 /* first/last check */
2032 if (fabsf(isectVCosSS[0][0]-isectVCosSS[(*tot)-1][0]) < PROJ_GEOM_TOLERANCE && fabsf(isectVCosSS[0][1]-isectVCosSS[(*tot)-1][1]) < PROJ_GEOM_TOLERANCE) {
2036 /* its possible there is only a few left after remove doubles */
2038 // printf("removed too many doubles A\n");
2044 while (doubles==TRUE) {
2046 for(i=1; i<(*tot); i++) {
2047 if (fabsf(isectVCosSS[i-1][0]-isectVCosSS[i][0]) < PROJ_GEOM_TOLERANCE &&
2048 fabsf(isectVCosSS[i-1][1]-isectVCosSS[i][1]) < PROJ_GEOM_TOLERANCE)
2051 for(j=i+1; j<(*tot); j++) {
2052 isectVCosSS[j-1][0] = isectVCosSS[j][0];
2053 isectVCosSS[j-1][1] = isectVCosSS[j][1];
2055 doubles = TRUE; /* keep looking for more doubles */
2061 /* its possible there is only a few left after remove doubles */
2063 // printf("removed too many doubles B\n");
2070 for(i=0; i<(*tot); i++) {
2071 BarycentricWeights2f(isectVCosSS[i], v1coSS, v2coSS, v3coSS, w);
2072 Vec2Lerp3f(bucket_bounds_uv[i], uv1co, uv2co, uv3co, w);
2076 for(i=0; i<(*tot); i++) {
2077 BarycentricWeightsPersp2f(isectVCosSS[i], v1coSS, v2coSS, v3coSS, w);
2078 Vec2Lerp3f(bucket_bounds_uv[i], uv1co, uv2co, uv3co, w);
2083 #ifdef PROJ_DEBUG_PRINT_CLIP
2084 /* include this at the bottom of the above function to debug the output */
2087 /* If there are ever any problems, */
2088 float test_uv[4][2];
2090 if (is_ortho) rect_to_uvspace_ortho(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, test_uv, flip);
2091 else rect_to_uvspace_persp(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, test_uv, flip);
2092 printf("( [(%f,%f), (%f,%f), (%f,%f), (%f,%f)], ", test_uv[0][0], test_uv[0][1], test_uv[1][0], test_uv[1][1], test_uv[2][0], test_uv[2][1], test_uv[3][0], test_uv[3][1]);
2094 printf(" [(%f,%f), (%f,%f), (%f,%f)], ", uv1co[0], uv1co[1], uv2co[0], uv2co[1], uv3co[0], uv3co[1]);
2097 for (i=0; i < (*tot); i++) {
2098 printf("(%f, %f),", bucket_bounds_uv[i][0], bucket_bounds_uv[i][1]);
2106 # This script creates faces in a blender scene from printed data above.
2109 ...(output from above block)...
2112 from Blender import Scene, Mesh, Window, sys, Mathutils
2116 V = Mathutils.Vector
2119 sce = bpy.data.scenes.active
2121 for item in project_ls:
2126 me = bpy.data.meshes.new()
2127 ob = sce.objects.new(me)
2129 me.verts.extend([V(bb[0]).resize3D(), V(bb[1]).resize3D(), V(bb[2]).resize3D(), V(bb[3]).resize3D()])
2130 me.faces.extend([(0,1,2,3),])
2131 me.verts.extend([V(uv[0]).resize3D(), V(uv[1]).resize3D(), V(uv[2]).resize3D()])
2132 me.faces.extend([(4,5,6),])
2134 vs = [V(p).resize3D() for p in poly]
2140 while i < len(me.verts):
2142 if ii==len(me.verts):
2144 me.edges.extend([i, ii])
2147 if __name__ == '__main__':
2160 /* checks if pt is inside a convex 2D polyline, the polyline must be ordered rotating clockwise
2161 * otherwise it would have to test for mixed (SIDE_OF_LINE > 0.0f) cases */
2162 int IsectPoly2Df(const float pt[2], float uv[][2], const int tot)
2165 if (SIDE_OF_LINE(uv[tot-1], uv[0], pt) < 0.0f)
2168 for (i=1; i<tot; i++) {
2169 if (SIDE_OF_LINE(uv[i-1], uv[i], pt) < 0.0f)
2176 static int IsectPoly2Df_twoside(const float pt[2], float uv[][2], const int tot)
2179 int side = (SIDE_OF_LINE(uv[tot-1], uv[0], pt) > 0.0f);
2181 for (i=1; i<tot; i++) {
2182 if ((SIDE_OF_LINE(uv[i-1], uv[i], pt) > 0.0f) != side)
2190 /* One of the most important function for projectiopn painting, since it selects the pixels to be added into each bucket.
2191 * initialize pixels from this face where it intersects with the bucket_index, optionally initialize pixels for removing seams */
2192 static void project_paint_face_init(const ProjPaintState *ps, const int thread_index, const int bucket_index, const int face_index, const int image_index, rctf *bucket_bounds, const ImBuf *ibuf)
2194 /* Projection vars, to get the 3D locations into screen space */
2195 MemArena *arena = ps->arena_mt[thread_index];
2196 LinkNode **bucketPixelNodes = ps->bucketRect + bucket_index;
2197 LinkNode *bucketFaceNodes = ps->bucketFaces[bucket_index];
2199 const MFace *mf = ps->dm_mface + face_index;
2200 const MTFace *tf = ps->dm_mtface + face_index;
2202 /* UV/pixel seeking data */
2203 int x; /* Image X-Pixel */
2204 int y;/* Image Y-Pixel */
2206 float uv[2]; /* Image floating point UV - same as x, y but from 0.0-1.0 */
2209 float *v1coSS, *v2coSS, *v3coSS; /* vert co screen-space, these will be assigned to mf->v1,2,3 or mf->v1,3,4 */
2211 float *vCo[4]; /* vertex screenspace coords */
2215 float *uv1co, *uv2co, *uv3co; /* for convenience only, these will be assigned to tf->uv[0],1,2 or tf->uv[0],2,3 */
2216 float pixelScreenCo[4];
2218 rcti bounds_px; /* ispace bounds */
2219 /* vars for getting uvspace bounds */
2221 float tf_uv_pxoffset[4][2]; /* bucket bounds in UV space so we can init pixels only for this face, */
2222 float xhalfpx, yhalfpx;
2223 const float ibuf_xf = ibuf->x, ibuf_yf = ibuf->y;
2225 int has_x_isect = 0, has_isect = 0; /* for early loop exit */
2229 float uv_clip[8][2];
2231 const short is_ortho = ps->is_ortho;
2232 const short do_backfacecull = ps->do_backfacecull;
2234 vCo[0] = ps->dm_mvert[mf->v1].co;
2235 vCo[1] = ps->dm_mvert[mf->v2].co;
2236 vCo[2] = ps->dm_mvert[mf->v3].co;
2239 /* Use tf_uv_pxoffset instead of tf->uv so we can offset the UV half a pixel
2240 * this is done so we can avoid offseting all the pixels by 0.5 which causes
2241 * problems when wrapping negative coords */
2242 xhalfpx = (0.5f+ (PROJ_GEOM_TOLERANCE/3.0f) ) / ibuf_xf;
2243 yhalfpx = (0.5f+ (PROJ_GEOM_TOLERANCE/4.0f) ) / ibuf_yf;
2245 /* Note about (PROJ_GEOM_TOLERANCE/x) above...
2246 Needed to add this offset since UV coords are often quads aligned to pixels.
2247 In this case pixels can be exactly between 2 triangles causing nasty
2250 This workaround can be removed and painting will still work on most cases
2251 but since the first thing most people try is painting onto a quad- better make it work.
2256 tf_uv_pxoffset[0][0] = tf->uv[0][0] - xhalfpx;
2257 tf_uv_pxoffset[0][1] = tf->uv[0][1] - yhalfpx;
2259 tf_uv_pxoffset[1][0] = tf->uv[1][0] - xhalfpx;
2260 tf_uv_pxoffset[1][1] = tf->uv[1][1] - yhalfpx;
2262 tf_uv_pxoffset[2][0] = tf->uv[2][0] - xhalfpx;
2263 tf_uv_pxoffset[2][1] = tf->uv[2][1] - yhalfpx;
2266 vCo[3] = ps->dm_mvert[ mf->v4 ].co;
2268 tf_uv_pxoffset[3][0] = tf->uv[3][0] - xhalfpx;
2269 tf_uv_pxoffset[3][1] = tf->uv[3][1] - yhalfpx;
2284 uv1co = tf_uv_pxoffset[i1]; // was tf->uv[i1];
2285 uv2co = tf_uv_pxoffset[i2]; // was tf->uv[i2];
2286 uv3co = tf_uv_pxoffset[i3]; // was tf->uv[i3];
2288 v1coSS = ps->screenCoords[ (*(&mf->v1 + i1)) ];
2289 v2coSS = ps->screenCoords[ (*(&mf->v1 + i2)) ];
2290 v3coSS = ps->screenCoords[ (*(&mf->v1 + i3)) ];
2292 /* This funtion gives is a concave polyline in UV space from the clipped quad and tri*/
2293 project_bucket_clip_face(
2294 is_ortho, bucket_bounds,
2295 v1coSS, v2coSS, v3coSS,
2296 uv1co, uv2co, uv3co,
2297 uv_clip, &uv_clip_tot
2300 /* sometimes this happens, better just allow for 8 intersectiosn even though there should be max 6 */
2302 if (uv_clip_tot>6) {
2303 printf("this should never happen! %d\n", uv_clip_tot);
2307 if (pixel_bounds_array(uv_clip, &bounds_px, ibuf->x, ibuf->y, uv_clip_tot)) {
2312 for (y = bounds_px.ymin; y < bounds_px.ymax; y++) {
2313 //uv[1] = (((float)y) + 0.5f) / (float)ibuf->y;
2314 uv[1] = (float)y / ibuf_yf; /* use pixel offset UV coords instead */
2317 for (x = bounds_px.xmin; x < bounds_px.xmax; x++) {
2318 //uv[0] = (((float)x) + 0.5f) / ibuf->x;
2319 uv[0] = (float)x / ibuf_xf; /* use pixel offset UV coords instead */
2321 /* Note about IsectPoly2Df_twoside, checking the face or uv flipping doesnt work,
2322 * could check the poly direction but better to do this */
2323 if( (do_backfacecull && IsectPoly2Df(uv, uv_clip, uv_clip_tot)) ||
2324 (do_backfacecull==0 && IsectPoly2Df_twoside(uv, uv_clip, uv_clip_tot))) {
2326 has_x_isect = has_isect = 1;
2328 if (is_ortho) screen_px_from_ortho(uv, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, pixelScreenCo, w);
2329 else screen_px_from_persp(uv, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, pixelScreenCo, w);
2331 /* a pitty we need to get the worldspace pixel location here */
2332 if(ps->rv3d->rflag & RV3D_CLIPPING) {
2333 VecLerp3f(wco, ps->dm_mvert[ (*(&mf->v1 + i1)) ].co, ps->dm_mvert[ (*(&mf->v1 + i2)) ].co, ps->dm_mvert[ (*(&mf->v1 + i3)) ].co, w);
2334 Mat4MulVecfl(ps->ob->obmat, wco);
2335 if(view3d_test_clipping(ps->rv3d, wco)) {
2336 continue; /* Watch out that no code below this needs to run */
2340 /* Is this UV visible from the view? - raytrace */
2341 /* project_paint_PickFace is less complex, use for testing */
2342 //if (project_paint_PickFace(ps, pixelScreenCo, w, &side) == face_index) {
2343 if (ps->do_occlude==0 || !project_bucket_point_occluded(ps, bucketFaceNodes, face_index, pixelScreenCo)) {
2345 mask = project_paint_uvpixel_mask(ps, face_index, side, w);
2348 BLI_linklist_prepend_arena(
2350 project_paint_uvpixel_init(ps, arena, ibuf, x, y, mask, face_index, image_index, pixelScreenCo, side, w),
2358 else if (has_x_isect) {
2359 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2366 #if 0 /* TODO - investigate why this dosnt work sometimes! it should! */
2367 /* no intersection for this entire row, after some intersection above means we can quit now */
2368 if (has_x_isect==0 && has_isect) {
2378 #ifndef PROJ_DEBUG_NOSEAMBLEED
2379 if (ps->seam_bleed_px > 0.0f) {
2382 if (ps->thread_tot > 1)
2383 BLI_lock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2385 face_seam_flag = ps->faceSeamFlags[face_index];
2387 /* are any of our edges un-initialized? */
2388 if ((face_seam_flag & (PROJ_FACE_SEAM1|PROJ_FACE_NOSEAM1))==0 ||
2389 (face_seam_flag & (PROJ_FACE_SEAM2|PROJ_FACE_NOSEAM2))==0 ||
2390 (face_seam_flag & (PROJ_FACE_SEAM3|PROJ_FACE_NOSEAM3))==0 ||
2391 (face_seam_flag & (PROJ_FACE_SEAM4|PROJ_FACE_NOSEAM4))==0
2393 project_face_seams_init(ps, face_index, mf->v4);
2394 face_seam_flag = ps->faceSeamFlags[face_index];
2395 //printf("seams - %d %d %d %d\n", flag&PROJ_FACE_SEAM1, flag&PROJ_FACE_SEAM2, flag&PROJ_FACE_SEAM3, flag&PROJ_FACE_SEAM4);
2398 if ((face_seam_flag & (PROJ_FACE_SEAM1|PROJ_FACE_SEAM2|PROJ_FACE_SEAM3|PROJ_FACE_SEAM4))==0) {
2400 if (ps->thread_tot > 1)
2401 BLI_unlock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2405 /* we have a seam - deal with it! */
2407 /* Now create new UV's for the seam face */
2408 float (*outset_uv)[2] = ps->faceSeamUVs[face_index];
2409 float insetCos[4][3]; /* inset face coords. NOTE!!! ScreenSace for ortho, Worldspace in prespective view */
2412 float *vCoSS[4]; /* vertex screenspace coords */
2414 float bucket_clip_edges[2][2]; /* store the screenspace coords of the face, clipped by the bucket's screen aligned rectangle */
2415 float edge_verts_inset_clip[2][3];
2416 int fidx1, fidx2; /* face edge pairs - loop throuh these ((0,1), (1,2), (2,3), (3,0)) or ((0,1), (1,2), (2,0)) for a tri */
2418 float seam_subsection[4][2];
2419 float fac1, fac2, ftot;
2422 if (outset_uv[0][0]==FLT_MAX) /* first time initialize */
2423 uv_image_outset(tf_uv_pxoffset, outset_uv, ps->seam_bleed_px, ibuf->x, ibuf->y, mf->v4);
2425 /* ps->faceSeamUVs cant be modified when threading, now this is done we can unlock */
2426 if (ps->thread_tot > 1)
2427 BLI_unlock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2429 vCoSS[0] = ps->screenCoords[mf->v1];
2430 vCoSS[1] = ps->screenCoords[mf->v2];
2431 vCoSS[2] = ps->screenCoords[mf->v3];
2433 vCoSS[3] = ps->screenCoords[ mf->v4 ];
2435 /* PROJ_FACE_SCALE_SEAM must be slightly less then 1.0f */
2437 if (mf->v4) scale_quad(insetCos, vCoSS, PROJ_FACE_SCALE_SEAM);
2438 else scale_tri(insetCos, vCoSS, PROJ_FACE_SCALE_SEAM);
2441 if (mf->v4) scale_quad(insetCos, vCo, PROJ_FACE_SCALE_SEAM);
2442 else scale_tri(insetCos, vCo, PROJ_FACE_SCALE_SEAM);
2445 side = 0; /* for triangles this wont need to change */
2447 for (fidx1 = 0; fidx1 < (mf->v4 ? 4 : 3); fidx1++) {
2448 if (mf->v4) fidx2 = (fidx1==3) ? 0 : fidx1+1; /* next fidx in the face (0,1,2,3) -> (1,2,3,0) */
2449 else fidx2 = (fidx1==2) ? 0 : fidx1+1; /* next fidx in the face (0,1,2) -> (1,2,0) */
2451 if ( (face_seam_flag & (1<<fidx1)) && /* 1<<fidx1 -> PROJ_FACE_SEAM# */
2452 line_clip_rect2f(bucket_bounds, vCoSS[fidx1], vCoSS[fidx2], bucket_clip_edges[0], bucket_clip_edges[1])
2455 ftot = Vec2Lenf(vCoSS[fidx1], vCoSS[fidx2]); /* screenspace edge length */
2457 if (ftot > 0.0f) { /* avoid div by zero */
2459 if (fidx1==2 || fidx2==2) side= 1;
2463 fac1 = Vec2Lenf(vCoSS[fidx1], bucket_clip_edges[0]) / ftot;
2464 fac2 = Vec2Lenf(vCoSS[fidx1], bucket_clip_edges[1]) / ftot;
2466 Vec2Lerpf(seam_subsection[0], tf_uv_pxoffset[fidx1], tf_uv_pxoffset[fidx2], fac1);
2467 Vec2Lerpf(seam_subsection[1], tf_uv_pxoffset[fidx1], tf_uv_pxoffset[fidx2], fac2);
2469 Vec2Lerpf(seam_subsection[2], outset_uv[fidx1], outset_uv[fidx2], fac2);
2470 Vec2Lerpf(seam_subsection[3], outset_uv[fidx1], outset_uv[fidx2], fac1);
2472 /* if the bucket_clip_edges values Z values was kept we could avoid this
2473 * Inset needs to be added so occlusion tests wont hit adjacent faces */
2474 VecLerpf(edge_verts_inset_clip[0], insetCos[fidx1], insetCos[fidx2], fac1);
2475 VecLerpf(edge_verts_inset_clip[1], insetCos[fidx1], insetCos[fidx2], fac2);
2478 if (pixel_bounds_uv(seam_subsection[0], seam_subsection[1], seam_subsection[2], seam_subsection[3], &bounds_px, ibuf->x, ibuf->y, 1)) {
2479 /* bounds between the seam rect and the uvspace bucket pixels */
2482 for (y = bounds_px.ymin; y < bounds_px.ymax; y++) {
2483 // uv[1] = (((float)y) + 0.5f) / (float)ibuf->y;
2484 uv[1] = (float)y / ibuf_yf; /* use offset uvs instead */
2487 for (x = bounds_px.xmin; x < bounds_px.xmax; x++) {
2488 //uv[0] = (((float)x) + 0.5f) / (float)ibuf->x;
2489 uv[0] = (float)x / ibuf_xf; /* use offset uvs instead */
2491 /* test we're inside uvspace bucket and triangle bounds */
2492 if (IsectPQ2Df(uv, seam_subsection[0], seam_subsection[1], seam_subsection[2], seam_subsection[3])) {
2494 /* We need to find the closest point along the face edge,
2495 * getting the screen_px_from_*** wont work because our actual location
2496 * is not relevent, since we are outside the face, Use VecLerpf to find
2497 * our location on the side of the face's UV */
2499 if (is_ortho) screen_px_from_ortho(ps, uv, v1co, v2co, v3co, uv1co, uv2co, uv3co, pixelScreenCo);
2500 else screen_px_from_persp(ps, uv, v1co, v2co, v3co, uv1co, uv2co, uv3co, pixelScreenCo);
2503 /* Since this is a seam we need to work out where on the line this pixel is */
2504 //fac = lambda_cp_line2(uv, uv_seam_quad[0], uv_seam_quad[1]);
2506 fac = lambda_cp_line2(uv, seam_subsection[0], seam_subsection[1]);
2507 if (fac < 0.0f) { VECCOPY(pixelScreenCo, edge_verts_inset_clip[0]); }
2508 else if (fac > 1.0f) { VECCOPY(pixelScreenCo, edge_verts_inset_clip[1]); }
2509 else { VecLerpf(pixelScreenCo, edge_verts_inset_clip[0], edge_verts_inset_clip[1], fac); }
2512 pixelScreenCo[3] = 1.0f;
2513 Mat4MulVec4fl((float(*)[4])ps->projectMat, pixelScreenCo); /* cast because of const */
2514 pixelScreenCo[0] = (float)(ps->ar->winx/2.0f)+(ps->ar->winx/2.0f)*pixelScreenCo[0]/pixelScreenCo[3];
2515 pixelScreenCo[1] = (float)(ps->ar->winy/2.0f)+(ps->ar->winy/2.0f)*pixelScreenCo[1]/pixelScreenCo[3];
2516 pixelScreenCo[2] = pixelScreenCo[2]/pixelScreenCo[3]; /* Use the depth for bucket point occlusion */
2519 if (ps->do_occlude==0 || !project_bucket_point_occluded(ps, bucketFaceNodes, face_index, pixelScreenCo)) {
2521 /* Only bother calculating the weights if we intersect */
2522 if (ps->do_mask_normal || ps->dm_mtface_clone) {
2524 /* This is not QUITE correct since UV is not inside the UV's but good enough for seams */
2526 BarycentricWeights2f(uv, tf_uv_pxoffset[0], tf_uv_pxoffset[2], tf_uv_pxoffset[3], w);
2529 BarycentricWeights2f(uv, tf_uv_pxoffset[0], tf_uv_pxoffset[1], tf_uv_pxoffset[2], w);
2533 /* Cheat, we know where we are along the edge so work out the weights from that */
2534 fac = fac1 + (fac * (fac2-fac1));
2535 w[0]=w[1]=w[2]= 0.0;
2537 w[fidx1?fidx1-1:0] = fac;
2538 w[fidx2?fidx2-1:0] = 1.0-fac;
2547 /* a pitty we need to get the worldspace pixel location here */
2548 if(ps->rv3d->rflag & RV3D_CLIPPING) {
2549 if (side) VecLerp3f(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v3].co, ps->dm_mvert[mf->v4].co, w);
2550 else VecLerp3f(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v2].co, ps->dm_mvert[mf->v3].co, w);
2552 Mat4MulVecfl(ps->ob->obmat, wco);
2553 if(view3d_test_clipping(ps->rv3d, wco)) {
2554 continue; /* Watch out that no code below this needs to run */
2558 mask = project_paint_uvpixel_mask(ps, face_index, side, w);
2561 BLI_linklist_prepend_arena(
2563 project_paint_uvpixel_init(ps, arena, ibuf, x, y, mask, face_index, image_index, pixelScreenCo, side, w),
2570 else if (has_x_isect) {
2571 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2576 #if 0 /* TODO - investigate why this dosnt work sometimes! it should! */
2577 /* no intersection for this entire row, after some intersection above means we can quit now */
2578 if (has_x_isect==0 && has_isect) {
2589 #endif // PROJ_DEBUG_NOSEAMBLEED
2593 /* takes floating point screenspace min/max and returns int min/max to be used as indicies for ps->bucketRect, ps->bucketFlags */
2594 static void project_paint_bucket_bounds(const ProjPaintState *ps, const float min[2], const float max[2], int bucketMin[2], int bucketMax[2])
2596 /* divide by bucketWidth & bucketHeight so the bounds are offset in bucket grid units */
2597 bucketMin[0] = (int)(((float)(min[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x) + 0.5f; /* these offsets of 0.5 and 1.5 seem odd but they are correct */
2598 bucketMin[1] = (int)(((float)(min[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y) + 0.5f;
2600 bucketMax[0] = (int)(((float)(max[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x) + 1.5f;
2601 bucketMax[1] = (int)(((float)(max[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y) + 1.5f;
2603 /* incase the rect is outside the mesh 2d bounds */
2604 CLAMP(bucketMin[0], 0, ps->buckets_x);
2605 CLAMP(bucketMin[1], 0, ps->buckets_y);
2607 CLAMP(bucketMax[0], 0, ps->buckets_x);
2608 CLAMP(bucketMax[1], 0, ps->buckets_y);
2611 /* set bucket_bounds to a screen space-aligned floating point bound-box */
2612 static void project_bucket_bounds(const ProjPaintState *ps, const int bucket_x, const int bucket_y, rctf *bucket_bounds)
2614 bucket_bounds->xmin = ps->screenMin[0]+((bucket_x)*(ps->screen_width / ps->buckets_x)); /* left */
2615 bucket_bounds->xmax = ps->screenMin[0]+((bucket_x+1)*(ps->screen_width / ps->buckets_x)); /* right */
2617 bucket_bounds->ymin = ps->screenMin[1]+((bucket_y)*(ps->screen_height / ps->buckets_y)); /* bottom */
2618 bucket_bounds->ymax = ps->screenMin[1]+((bucket_y+1)*(ps->screen_height / ps->buckets_y)); /* top */
2621 /* Fill this bucket with pixels from the faces that intersect it.
2623 * have bucket_bounds as an argument so we don;t need to give bucket_x/y the rect function needs */
2624 static void project_bucket_init(const ProjPaintState *ps, const int thread_index, const int bucket_index, rctf *bucket_bounds)
2627 int face_index, image_index=0;
2631 Image *tpage_last = NULL;
2634 if (ps->image_tot==1) {
2635 /* Simple loop, no context switching */
2636 ibuf = ps->projImages[0].ibuf;
2638 for (node = ps->bucketFaces[bucket_index]; node; node= node->next) {
2639 project_paint_face_init(ps, thread_index, bucket_index, GET_INT_FROM_POINTER(node->link), 0, bucket_bounds, ibuf);
2644 /* More complicated loop, switch between images */
2645 for (node = ps->bucketFaces[bucket_index]; node; node= node->next) {
2646 face_index = GET_INT_FROM_POINTER(node->link);
2648 /* Image context switching */
2649 tf = ps->dm_mtface+face_index;
2650 if (tpage_last != tf->tpage) {
2651 tpage_last = tf->tpage;
2653 image_index = -1; /* sanity check */
2655 for (image_index=0; image_index < ps->image_tot; image_index++) {
2656 if (ps->projImages[image_index].ima == tpage_last) {
2657 ibuf = ps->projImages[image_index].ibuf;
2662 /* context switching done */
2664 project_paint_face_init(ps, thread_index, bucket_index, face_index, image_index, bucket_bounds, ibuf);
2669 ps->bucketFlags[bucket_index] |= PROJ_BUCKET_INIT;
2673 /* We want to know if a bucket and a face overlap in screen-space
2675 * Note, if this ever returns false positives its not that bad, since a face in the bounding area will have its pixels
2676 * calculated when it might not be needed later, (at the moment at least)
2677 * obviously it shouldn't have bugs though */
2679 static int project_bucket_face_isect(ProjPaintState *ps, float min[2], float max[2], int bucket_x, int bucket_y, int bucket_index, const MFace *mf)
2681 /* TODO - replace this with a tricker method that uses sideofline for all screenCoords's edges against the closest bucket corner */
2683 float p1[2], p2[2], p3[2], p4[2];
2684 float *v, *v1,*v2,*v3,*v4=NULL;
2687 project_bucket_bounds(ps, bucket_x, bucket_y, &bucket_bounds);
2689 /* Is one of the faces verts in the bucket bounds? */
2691 fidx = mf->v4 ? 3:2;
2693 v = ps->screenCoords[ (*(&mf->v1 + fidx)) ];
2694 if (BLI_in_rctf(&bucket_bounds, v[0], v[1])) {
2699 v1 = ps->screenCoords[mf->v1];
2700 v2 = ps->screenCoords[mf->v2];
2701 v3 = ps->screenCoords[mf->v3];
2703 v4 = ps->screenCoords[mf->v4];
2706 p1[0] = bucket_bounds.xmin; p1[1] = bucket_bounds.ymin;
2707 p2[0] = bucket_bounds.xmin; p2[1] = bucket_bounds.ymax;
2708 p3[0] = bucket_bounds.xmax; p3[1] = bucket_bounds.ymax;
2709 p4[0] = bucket_bounds.xmax; p4[1] = bucket_bounds.ymin;
2712 if( IsectPQ2Df(p1, v1, v2, v3, v4) || IsectPQ2Df(p2, v1, v2, v3, v4) || IsectPQ2Df(p3, v1, v2, v3, v4) || IsectPQ2Df(p4, v1, v2, v3, v4) ||
2713 /* we can avoid testing v3,v1 because another intersection MUST exist if this intersects */
2714 (IsectLL2Df(p1, p2, v1, v2) || IsectLL2Df(p1, p2, v2, v3) || IsectLL2Df(p1, p2, v3, v4)) ||
2715 (IsectLL2Df(p2, p3, v1, v2) || IsectLL2Df(p2, p3, v2, v3) || IsectLL2Df(p2, p3, v3, v4)) ||
2716 (IsectLL2Df(p3, p4, v1, v2) || IsectLL2Df(p3, p4, v2, v3) || IsectLL2Df(p3, p4, v3, v4)) ||
2717 (IsectLL2Df(p4, p1, v1, v2) || IsectLL2Df(p4, p1, v2, v3) || IsectLL2Df(p4, p1, v3, v4))
2723 if( IsectPT2Df(p1, v1, v2, v3) || IsectPT2Df(p2, v1, v2, v3) || IsectPT2Df(p3, v1, v2, v3) || IsectPT2Df(p4, v1, v2, v3) ||
2724 /* we can avoid testing v3,v1 because another intersection MUST exist if this intersects */
2725 (IsectLL2Df(p1, p2, v1, v2) || IsectLL2Df(p1, p2, v2, v3)) ||
2726 (IsectLL2Df(p2, p3, v1, v2) || IsectLL2Df(p2, p3, v2, v3)) ||
2727 (IsectLL2Df(p3, p4, v1, v2) || IsectLL2Df(p3, p4, v2, v3)) ||
2728 (IsectLL2Df(p4, p1, v1, v2) || IsectLL2Df(p4, p1, v2, v3))
2737 /* Add faces to the bucket but dont initialize its pixels
2738 * TODO - when painting occluded, sort the faces on their min-Z and only add faces that faces that are not occluded */
2739 static void project_paint_delayed_face_init(ProjPaintState *ps, const MFace *mf, const MTFace *tf, const int face_index)
2741 float min[2], max[2], *vCoSS;
2742 int bucketMin[2], bucketMax[2]; /* for ps->bucketRect indexing */
2743 int fidx, bucket_x, bucket_y, bucket_index;
2744 int has_x_isect = -1, has_isect = 0; /* for early loop exit */
2745 MemArena *arena = ps->arena_mt[0]; /* just use the first thread arena since threading has not started yet */
2747 INIT_MINMAX2(min, max);
2749 fidx = mf->v4 ? 3:2;
2751 vCoSS = ps->screenCoords[ *(&mf->v1 + fidx) ];
2752 DO_MINMAX2(vCoSS, min, max);
2755 project_paint_bucket_bounds(ps, min, max, bucketMin, bucketMax);
2757 for (bucket_y = bucketMin[1]; bucket_y < bucketMax[1]; bucket_y++) {
2759 for (bucket_x = bucketMin[0]; bucket_x < bucketMax[0]; bucket_x++) {
2761 bucket_index = bucket_x + (bucket_y * ps->buckets_x);
2763 if (project_bucket_face_isect(ps, min, max, bucket_x, bucket_y, bucket_index, mf)) {
2764 BLI_linklist_prepend_arena(
2765 &ps->bucketFaces[ bucket_index ],
2766 SET_INT_IN_POINTER(face_index), /* cast to a pointer to shut up the compiler */
2770 has_x_isect = has_isect = 1;
2772 else if (has_x_isect) {
2773 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2778 /* no intersection for this entire row, after some intersection above means we can quit now */
2779 if (has_x_isect==0 && has_isect) {