5 * Functions to paint images in 2D and 3D.
7 * ***** BEGIN GPL LICENSE BLOCK *****
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software Foundation,
21 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
24 * All rights reserved.
26 * The Original Code is: some of this file.
28 * Contributor(s): Jens Ole Wund (bjornmose), Campbell Barton (ideasman42)
30 * ***** END GPL LICENSE BLOCK *****
38 #include "MEM_guardedalloc.h"
41 #include "BLI_winstuff.h"
43 #include "BLI_arithb.h"
44 #include "BLI_blenlib.h"
45 #include "BLI_dynstr.h"
46 #include "BLI_linklist.h"
47 #include "BLI_memarena.h"
49 #include "BLI_threads.h"
51 #include "IMB_imbuf.h"
52 #include "IMB_imbuf_types.h"
54 #include "DNA_brush_types.h"
55 #include "DNA_image_types.h"
56 #include "DNA_mesh_types.h"
57 #include "DNA_meshdata_types.h"
58 #include "DNA_node_types.h"
59 #include "DNA_object_types.h"
60 #include "DNA_scene_types.h"
61 #include "DNA_screen_types.h"
62 #include "DNA_space_types.h"
63 #include "DNA_userdef_types.h"
64 #include "DNA_view3d_types.h"
65 #include "DNA_windowmanager_types.h"
67 #include "BKE_context.h"
68 #include "BKE_brush.h"
69 #include "BKE_global.h"
70 #include "BKE_image.h"
74 #include "BKE_utildefines.h"
75 #include "BKE_DerivedMesh.h"
76 #include "BKE_report.h"
77 #include "BKE_depsgraph.h"
80 #include "BIF_glutil.h"
82 #include "UI_interface.h"
83 #include "UI_view2d.h"
86 #include "ED_object.h"
87 #include "ED_screen.h"
88 #include "ED_view3d.h"
93 #include "RNA_access.h"
94 #include "RNA_define.h"
98 #include "paint_intern.h"
100 /* Defines and Structs */
102 #define IMAPAINT_CHAR_TO_FLOAT(c) ((c)/255.0f)
104 #define IMAPAINT_FLOAT_RGB_TO_CHAR(c, f) { (c)[0]=FTOCHAR((f)[0]); (c)[1]=FTOCHAR((f)[1]); (c)[2]=FTOCHAR((f)[2]); }
105 #define IMAPAINT_FLOAT_RGBA_TO_CHAR(c, f) { (c)[0]=FTOCHAR((f)[0]); (c)[1]=FTOCHAR((f)[1]); (c)[2]=FTOCHAR((f)[2]); (c)[3]=FTOCHAR((f)[3]); }
107 #define IMAPAINT_CHAR_RGB_TO_FLOAT(f, c) { (f)[0]=IMAPAINT_CHAR_TO_FLOAT((c)[0]); (f)[1]=IMAPAINT_CHAR_TO_FLOAT((c)[1]); (f)[2]=IMAPAINT_CHAR_TO_FLOAT((c)[2]); }
108 #define IMAPAINT_CHAR_RGBA_TO_FLOAT(f, c) { (f)[0]=IMAPAINT_CHAR_TO_FLOAT((c)[0]); (f)[1]=IMAPAINT_CHAR_TO_FLOAT((c)[1]); (f)[2]=IMAPAINT_CHAR_TO_FLOAT((c)[2]); (f)[3]=IMAPAINT_CHAR_TO_FLOAT((c)[3]); }
109 #define IMAPAINT_FLOAT_RGB_COPY(a, b) VECCOPY(a, b)
111 #define IMAPAINT_TILE_BITS 6
112 #define IMAPAINT_TILE_SIZE (1 << IMAPAINT_TILE_BITS)
113 #define IMAPAINT_TILE_NUMBER(size) (((size)+IMAPAINT_TILE_SIZE-1) >> IMAPAINT_TILE_BITS)
115 #define MAXUNDONAME 64
117 static void imapaint_image_update(SpaceImage *sima, Image *image, ImBuf *ibuf, short texpaint);
120 typedef struct ImagePaintState {
131 short clonefreefloat;
132 char *warnpackedfile;
135 /* texture paint only */
142 typedef struct ImagePaintPartialRedraw {
145 } ImagePaintPartialRedraw;
148 /* ProjectionPaint defines */
150 /* approx the number of buckets to have under the brush,
151 * used with the brush size to set the ps->buckets_x and ps->buckets_y value.
153 * When 3 - a brush should have ~9 buckets under it at once
154 * ...this helps for threading while painting as well as
155 * avoiding initializing pixels that wont touch the brush */
156 #define PROJ_BUCKET_BRUSH_DIV 4
158 #define PROJ_BUCKET_RECT_MIN 4
159 #define PROJ_BUCKET_RECT_MAX 256
161 #define PROJ_BOUNDBOX_DIV 8
162 #define PROJ_BOUNDBOX_SQUARED (PROJ_BOUNDBOX_DIV * PROJ_BOUNDBOX_DIV)
164 //#define PROJ_DEBUG_PAINT 1
165 //#define PROJ_DEBUG_NOSEAMBLEED 1
166 //#define PROJ_DEBUG_PRINT_CLIP 1
167 #define PROJ_DEBUG_WINCLIP 1
169 /* projectFaceSeamFlags options */
170 //#define PROJ_FACE_IGNORE 1<<0 /* When the face is hidden, backfacing or occluded */
171 //#define PROJ_FACE_INIT 1<<1 /* When we have initialized the faces data */
172 #define PROJ_FACE_SEAM1 1<<0 /* If this face has a seam on any of its edges */
173 #define PROJ_FACE_SEAM2 1<<1
174 #define PROJ_FACE_SEAM3 1<<2
175 #define PROJ_FACE_SEAM4 1<<3
177 #define PROJ_FACE_NOSEAM1 1<<4
178 #define PROJ_FACE_NOSEAM2 1<<5
179 #define PROJ_FACE_NOSEAM3 1<<6
180 #define PROJ_FACE_NOSEAM4 1<<7
182 /* a slightly scaled down face is used to get fake 3D location for edge pixels in the seams
183 * as this number approaches 1.0f the likelihood increases of float precision errors where
184 * it is occluded by an adjacent face */
185 #define PROJ_FACE_SCALE_SEAM 0.99f
187 #define PROJ_BUCKET_NULL 0
188 #define PROJ_BUCKET_INIT 1<<0
189 // #define PROJ_BUCKET_CLONE_INIT 1<<1
191 /* used for testing doubles, if a point is on a line etc */
192 #define PROJ_GEOM_TOLERANCE 0.00075f
195 #define PROJ_VERT_CULL 1
197 #define PI_80_DEG ((M_PI_2 / 9) * 8)
199 /* This is mainly a convenience struct used so we can keep an array of images we use
200 * Thir imbufs, etc, in 1 array, When using threads this array is copied for each thread
201 * because 'partRedrawRect' and 'touch' values would not be thread safe */
202 typedef struct ProjPaintImage {
205 ImagePaintPartialRedraw *partRedrawRect;
206 struct UndoTile **undoRect; /* only used to build undo tiles after painting */
210 /* Main projection painting struct passed to all projection painting functions */
211 typedef struct ProjPaintState {
220 /* end similarities with ImagePaintState */
229 MTFace *dm_mtface_clone; /* other UV layer, use for cloning between layers */
230 MTFace *dm_mtface_mask;
232 /* projection painting only */
233 MemArena *arena_mt[BLENDER_MAX_THREADS];/* for multithreading, the first item is sometimes used for non threaded cases too */
234 LinkNode **bucketRect; /* screen sized 2D array, each pixel has a linked list of ProjPixel's */
235 LinkNode **bucketFaces; /* bucketRect aligned array linkList of faces overlapping each bucket */
236 unsigned char *bucketFlags; /* store if the bucks have been initialized */
237 #ifndef PROJ_DEBUG_NOSEAMBLEED
238 char *faceSeamFlags; /* store info about faces, if they are initialized etc*/
239 float (*faceSeamUVs)[4][2]; /* expanded UVs for faces to use as seams */
240 LinkNode **vertFaces; /* Only needed for when seam_bleed_px is enabled, use to find UV seams */
242 char *vertFlags; /* store options per vert, now only store if the vert is pointing away from the view */
243 int buckets_x; /* The size of the bucket grid, the grid span's screenMin/screenMax so you can paint outsize the screen or with 2 brushes at once */
246 ProjPaintImage *projImages;
248 int image_tot; /* size of projectImages array */
250 float (*screenCoords)[4]; /* verts projected into floating point screen space */
252 float screenMin[2]; /* 2D bounds for mesh verts on the screen's plane (screenspace) */
254 float screen_width; /* Calculated from screenMin & screenMax */
257 /* options for projection painting */
260 int do_layer_mask_inv;
262 short do_occlude; /* Use raytraced occlusion? - ortherwise will paint right through to the back*/
263 short do_backfacecull; /* ignore faces with normals pointing away, skips a lot of raycasts if your normals are correctly flipped */
264 short do_mask_normal; /* mask out pixels based on their normals */
265 float normal_angle; /* what angle to mask at*/
266 float normal_angle_inner;
267 float normal_angle_range; /* difference between normal_angle and normal_angle_inner, for easy access */
270 short is_airbrush; /* only to avoid using (ps.brush->flag & BRUSH_AIRBRUSH) */
271 short is_texbrush; /* only to avoid running */
272 #ifndef PROJ_DEBUG_NOSEAMBLEED
276 float cloneOffset[2];
278 float projectMat[4][4]; /* Projection matrix, use for getting screen coords */
279 float viewDir[3]; /* View vector, use for do_backfacecull and for ray casting with an ortho viewport */
280 float viewPos[3]; /* View location in object relative 3D space, so can compare to verts */
281 float clipsta, clipend;
287 int context_bucket_x, context_bucket_y; /* must lock threads while accessing these */
290 typedef union pixelPointer
292 float *f_pt; /* float buffer */
293 unsigned int *uint_pt; /* 2 ways to access a char buffer */
294 unsigned char *ch_pt;
297 typedef union pixelStore
304 typedef struct ProjPixel {
305 float projCoSS[2]; /* the floating point screen projection of this pixel */
307 /* Only used when the airbrush is disabled.
308 * Store the max mask value to avoid painting over an area with a lower opacity
309 * with an advantage that we can avoid touching the pixel at all, if the
310 * new mask value is lower then mask_max */
311 unsigned short mask_max;
313 /* for various reasons we may want to mask out painting onto this pixel */
318 PixelStore origColor;
322 short image_index; /* if anyone wants to paint onto more then 32768 images they can bite me */
323 unsigned char bb_cell_index;
326 typedef struct ProjPixelClone {
327 struct ProjPixel __pp;
331 /* Finish projection painting structs */
334 typedef struct UndoTile {
335 struct UndoTile *next, *prev;
341 typedef struct UndoElem {
342 struct UndoElem *next, *prev;
343 char name[MAXUNDONAME];
350 static ListBase undobase = {NULL, NULL};
351 static UndoElem *curundo = NULL;
352 static ImagePaintPartialRedraw imapaintpartial = {0, 0, 0, 0, 0};
356 /* internal functions */
358 static void undo_copy_tile(UndoTile *tile, ImBuf *tmpibuf, ImBuf *ibuf, int restore)
360 /* copy or swap contents of tile->rect and region in ibuf->rect */
361 IMB_rectcpy(tmpibuf, ibuf, 0, 0, tile->x*IMAPAINT_TILE_SIZE,
362 tile->y*IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE);
364 if(ibuf->rect_float) {
365 SWAP(void*, tmpibuf->rect_float, tile->rect);
367 SWAP(void*, tmpibuf->rect, tile->rect);
371 IMB_rectcpy(ibuf, tmpibuf, tile->x*IMAPAINT_TILE_SIZE,
372 tile->y*IMAPAINT_TILE_SIZE, 0, 0, IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE);
375 static UndoTile *undo_init_tile(ID *id, ImBuf *ibuf, ImBuf **tmpibuf, int x_tile, int y_tile)
381 *tmpibuf = IMB_allocImBuf(IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE, 32, IB_rectfloat|IB_rect, 0);
383 tile= MEM_callocN(sizeof(UndoTile), "ImaUndoTile");
388 allocsize= IMAPAINT_TILE_SIZE*IMAPAINT_TILE_SIZE*4;
389 allocsize *= (ibuf->rect_float)? sizeof(float): sizeof(char);
390 tile->rect= MEM_mapallocN(allocsize, "ImaUndoRect");
392 undo_copy_tile(tile, *tmpibuf, ibuf, 0);
393 curundo->undosize += allocsize;
395 BLI_addtail(&curundo->tiles, tile);
400 static void undo_restore(UndoElem *undo)
403 ImBuf *ibuf, *tmpibuf;
409 tmpibuf= IMB_allocImBuf(IMAPAINT_TILE_SIZE, IMAPAINT_TILE_SIZE, 32,
410 IB_rectfloat|IB_rect, 0);
412 for(tile=undo->tiles.first; tile; tile=tile->next) {
413 /* find image based on name, pointer becomes invalid with global undo */
414 if(ima && strcmp(tile->id.name, ima->id.name)==0);
416 for(ima=G.main->image.first; ima; ima=ima->id.next)
417 if(strcmp(tile->id.name, ima->id.name)==0)
421 ibuf= BKE_image_get_ibuf(ima, NULL);
423 if (!ima || !ibuf || !(ibuf->rect || ibuf->rect_float))
426 undo_copy_tile(tile, tmpibuf, ibuf, 1);
428 GPU_free_image(ima); /* force OpenGL reload */
430 imb_freerectImBuf(ibuf); /* force recreate of char rect */
433 IMB_freeImBuf(tmpibuf);
436 static void undo_free(UndoElem *undo)
440 for(tile=undo->tiles.first; tile; tile=tile->next)
441 MEM_freeN(tile->rect);
442 BLI_freelistN(&undo->tiles);
445 static void undo_imagepaint_push_begin(char *name)
450 /* Undo push is split up in begin and end, the reason is that as painting
451 * happens more tiles are added to the list, and at the very end we know
452 * how much memory the undo used to remove old undo elements */
454 /* remove all undos after (also when curundo==NULL) */
455 while(undobase.last != curundo) {
458 BLI_freelinkN(&undobase, uel);
462 curundo= uel= MEM_callocN(sizeof(UndoElem), "undo file");
463 BLI_addtail(&undobase, uel);
465 /* name can be a dynamic string */
466 strncpy(uel->name, name, MAXUNDONAME-1);
468 /* limit amount to the maximum amount*/
473 if(nr==U.undosteps) break;
477 while(undobase.first!=uel) {
478 UndoElem *first= undobase.first;
480 BLI_freelinkN(&undobase, first);
485 static void undo_imagepaint_push_end()
488 uintptr_t totmem, maxmem;
490 if(U.undomemory != 0) {
491 /* limit to maximum memory (afterwards, we can't know in advance) */
493 maxmem= ((uintptr_t)U.undomemory)*1024*1024;
497 totmem+= uel->undosize;
498 if(totmem>maxmem) break;
503 while(undobase.first!=uel) {
504 UndoElem *first= undobase.first;
506 BLI_freelinkN(&undobase, first);
512 void undo_imagepaint_step(int step)
519 if(G.f & G_DEBUG) printf("undo %s\n", curundo->name);
520 undo_restore(curundo);
521 curundo= curundo->prev;
525 if((curundo!=NULL && curundo->next==NULL) || undobase.first==NULL);
527 undo= (curundo && curundo->next)? curundo->next: undobase.first;
530 if(G.f & G_DEBUG) printf("redo %s\n", undo->name);
535 void undo_imagepaint_clear(void)
545 BLI_freelistN(&undobase);
549 /* fast projection bucket array lookup, use the safe version for bound checking */
550 static int project_bucket_offset(const ProjPaintState *ps, const float projCoSS[2])
552 /* If we were not dealing with screenspace 2D coords we could simple do...
553 * ps->bucketRect[x + (y*ps->buckets_y)] */
556 * projCoSS[0] - ps->screenMin[0] : zero origin
557 * ... / ps->screen_width : range from 0.0 to 1.0
558 * ... * ps->buckets_x : use as a bucket index
560 * Second multiplication does similar but for vertical offset
562 return ( (int)(((projCoSS[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x)) +
563 ( ( (int)(((projCoSS[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y)) * ps->buckets_x);
566 static int project_bucket_offset_safe(const ProjPaintState *ps, const float projCoSS[2])
568 int bucket_index = project_bucket_offset(ps, projCoSS);
570 if (bucket_index < 0 || bucket_index >= ps->buckets_x*ps->buckets_y) {
578 #define SIDE_OF_LINE(pa, pb, pp) ((pa[0]-pp[0])*(pb[1]-pp[1]))-((pb[0]-pp[0])*(pa[1]-pp[1]))
580 static float AreaSignedF2Dfl(float *v1, float *v2, float *v3)
582 return (float)(0.5f*((v1[0]-v2[0])*(v2[1]-v3[1]) +
583 (v1[1]-v2[1])*(v3[0]-v2[0])));
586 static void BarycentricWeights2f(float pt[2], float v1[2], float v2[2], float v3[2], float w[3])
588 float wtot_inv, wtot;
590 w[0] = AreaSignedF2Dfl(v2, v3, pt);
591 w[1] = AreaSignedF2Dfl(v3, v1, pt);
592 w[2] = AreaSignedF2Dfl(v1, v2, pt);
593 wtot = w[0]+w[1]+w[2];
596 wtot_inv = 1.0f/wtot;
598 w[0] = w[0]*wtot_inv;
599 w[1] = w[1]*wtot_inv;
600 w[2] = w[2]*wtot_inv;
602 else /* dummy values for zero area face */
603 w[0] = w[1] = w[2] = 1.0f/3.0f;
606 /* still use 2D X,Y space but this works for verts transformed by a perspective matrix, using their 4th component as a weight */
607 static void BarycentricWeightsPersp2f(float pt[2], float v1[4], float v2[4], float v3[4], float w[3])
609 float wtot_inv, wtot;
611 w[0] = AreaSignedF2Dfl(v2, v3, pt) / v1[3];
612 w[1] = AreaSignedF2Dfl(v3, v1, pt) / v2[3];
613 w[2] = AreaSignedF2Dfl(v1, v2, pt) / v3[3];
614 wtot = w[0]+w[1]+w[2];
617 wtot_inv = 1.0f/wtot;
619 w[0] = w[0]*wtot_inv;
620 w[1] = w[1]*wtot_inv;
621 w[2] = w[2]*wtot_inv;
623 else /* dummy values for zero area face */
624 w[0] = w[1] = w[2] = 1.0f/3.0f;
627 static void VecWeightf(float p[3], const float v1[3], const float v2[3], const float v3[3], const float w[3])
629 p[0] = v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2];
630 p[1] = v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2];
631 p[2] = v1[2]*w[0] + v2[2]*w[1] + v3[2]*w[2];
634 static void Vec2Weightf(float p[2], const float v1[2], const float v2[2], const float v3[2], const float w[3])
636 p[0] = v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2];
637 p[1] = v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2];
640 static float VecZDepthOrtho(float pt[2], float v1[3], float v2[3], float v3[3], float w[3])
642 BarycentricWeights2f(pt, v1, v2, v3, w);
643 return (v1[2]*w[0]) + (v2[2]*w[1]) + (v3[2]*w[2]);
646 static float VecZDepthPersp(float pt[2], float v1[3], float v2[3], float v3[3], float w[3])
648 BarycentricWeightsPersp2f(pt, v1, v2, v3, w);
649 return (v1[2]*w[0]) + (v2[2]*w[1]) + (v3[2]*w[2]);
653 /* Return the top-most face index that the screen space coord 'pt' touches (or -1) */
654 static int project_paint_PickFace(const ProjPaintState *ps, float pt[2], float w[3], int *side)
658 float *v1, *v2, *v3, *v4;
662 int best_face_index = -1;
663 float z_depth_best = FLT_MAX, z_depth;
666 bucket_index = project_bucket_offset_safe(ps, pt);
667 if (bucket_index==-1)
672 /* we could return 0 for 1 face buckets, as long as this function assumes
673 * that the point its testing is only every originated from an existing face */
675 for (node= ps->bucketFaces[bucket_index]; node; node= node->next) {
676 face_index = GET_INT_FROM_POINTER(node->link);
677 mf= ps->dm_mface + face_index;
679 v1= ps->screenCoords[mf->v1];
680 v2= ps->screenCoords[mf->v2];
681 v3= ps->screenCoords[mf->v3];
683 if (IsectPT2Df(pt, v1, v2, v3)) {
684 if (ps->is_ortho) z_depth= VecZDepthOrtho(pt, v1, v2, v3, w_tmp);
685 else z_depth= VecZDepthPersp(pt, v1, v2, v3, w_tmp);
687 if (z_depth < z_depth_best) {
688 best_face_index = face_index;
690 z_depth_best = z_depth;
695 v4= ps->screenCoords[mf->v4];
697 if (IsectPT2Df(pt, v1, v3, v4)) {
698 if (ps->is_ortho) z_depth= VecZDepthOrtho(pt, v1, v3, v4, w_tmp);
699 else z_depth= VecZDepthPersp(pt, v1, v3, v4, w_tmp);
701 if (z_depth < z_depth_best) {
702 best_face_index = face_index;
704 z_depth_best = z_depth;
712 return best_face_index; /* will be -1 or a valid face */
715 /* Converts a uv coord into a pixel location wrapping if the uv is outside 0-1 range */
716 static void uvco_to_wrapped_pxco(float uv[2], int ibuf_x, int ibuf_y, float *x, float *y)
719 *x = (float)fmodf(uv[0], 1.0f);
720 *y = (float)fmodf(uv[1], 1.0f);
722 if (*x < 0.0f) *x += 1.0f;
723 if (*y < 0.0f) *y += 1.0f;
725 *x = *x * ibuf_x - 0.5f;
726 *y = *y * ibuf_y - 0.5f;
729 /* Set the top-most face color that the screen space coord 'pt' touches (or return 0 if none touch) */
730 static int project_paint_PickColor(const ProjPaintState *ps, float pt[2], float *rgba_fp, unsigned char *rgba, const int interp)
740 face_index = project_paint_PickFace(ps, pt, w, &side);
742 if (face_index == -1)
745 tf = ps->dm_mtface + face_index;
748 Vec2Weightf(uv, tf->uv[0], tf->uv[1], tf->uv[2], w);
751 Vec2Weightf(uv, tf->uv[0], tf->uv[2], tf->uv[3], w);
754 ibuf = tf->tpage->ibufs.first; /* we must have got the imbuf before getting here */
759 uvco_to_wrapped_pxco(uv, ibuf->x, ibuf->y, &x, &y);
761 if (ibuf->rect_float) {
763 bilinear_interpolation_color_wrap(ibuf, NULL, rgba_fp, x, y);
767 bilinear_interpolation_color_wrap(ibuf, NULL, rgba_tmp_f, x, y);
768 IMAPAINT_FLOAT_RGBA_TO_CHAR(rgba, rgba_tmp_f);
773 bilinear_interpolation_color_wrap(ibuf, rgba, NULL, x, y);
776 unsigned char rgba_tmp[4];
777 bilinear_interpolation_color_wrap(ibuf, rgba_tmp, NULL, x, y);
778 IMAPAINT_CHAR_RGBA_TO_FLOAT(rgba_fp, rgba_tmp);
783 xi = (uv[0]*ibuf->x) + 0.5f;
784 yi = (uv[1]*ibuf->y) + 0.5f;
786 //if (xi<0 || xi>=ibuf->x || yi<0 || yi>=ibuf->y) return 0;
789 xi = ((int)(uv[0]*ibuf->x)) % ibuf->x;
790 if (xi<0) xi += ibuf->x;
791 yi = ((int)(uv[1]*ibuf->y)) % ibuf->y;
792 if (yi<0) yi += ibuf->y;
796 if (ibuf->rect_float) {
797 float *rgba_tmp_fp = ibuf->rect_float + (xi + yi * ibuf->x * 4);
798 IMAPAINT_FLOAT_RGBA_TO_CHAR(rgba, rgba_tmp_fp);
801 *((unsigned int *)rgba) = *(unsigned int *)(((char *)ibuf->rect) + ((xi + yi * ibuf->x) * 4));
806 if (ibuf->rect_float) {
807 QUATCOPY(rgba_fp, ((float *)ibuf->rect_float + ((xi + yi * ibuf->x) * 4)));
810 char *tmp_ch= ((char *)ibuf->rect) + ((xi + yi * ibuf->x) * 4);
811 IMAPAINT_CHAR_RGBA_TO_FLOAT(rgba_fp, tmp_ch);
818 /* Check if 'pt' is infront of the 3 verts on the Z axis (used for screenspace occlusuion test)
821 * -1 : no occlusion but 2D intersection is true (avoid testing the other half of a quad)
823 2 : occluded with w[3] weights set (need to know in some cases) */
825 static int project_paint_occlude_ptv(float pt[3], float v1[3], float v2[3], float v3[3], float w[3], int is_ortho)
827 /* if all are behind us, return false */
828 if(v1[2] > pt[2] && v2[2] > pt[2] && v3[2] > pt[2])
831 /* do a 2D point in try intersection */
832 if (!IsectPT2Df(pt, v1, v2, v3))
833 return 0; /* we know there is */
836 /* From here on we know there IS an intersection */
837 /* if ALL of the verts are infront of us then we know it intersects ? */
838 if(v1[2] < pt[2] && v2[2] < pt[2] && v3[2] < pt[2]) {
842 /* we intersect? - find the exact depth at the point of intersection */
843 /* Is this point is occluded by another face? */
845 if (VecZDepthOrtho(pt, v1, v2, v3, w) < pt[2]) return 2;
848 if (VecZDepthPersp(pt, v1, v2, v3, w) < pt[2]) return 2;
855 static int project_paint_occlude_ptv_clip(
856 const ProjPaintState *ps, const MFace *mf,
857 float pt[3], float v1[3], float v2[3], float v3[3],
861 int ret = project_paint_occlude_ptv(pt, v1, v2, v3, w, ps->is_ortho);
866 if (ret==1) { /* weights not calculated */
867 if (ps->is_ortho) BarycentricWeights2f(pt, v1, v2, v3, w);
868 else BarycentricWeightsPersp2f(pt, v1, v2, v3, w);
871 /* Test if we're in the clipped area, */
872 if (side) VecWeightf(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v3].co, ps->dm_mvert[mf->v4].co, w);
873 else VecWeightf(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v2].co, ps->dm_mvert[mf->v3].co, w);
875 Mat4MulVecfl(ps->ob->obmat, wco);
876 if(!view3d_test_clipping(ps->rv3d, wco)) {
884 /* Check if a screenspace location is occluded by any other faces
885 * check, pixelScreenCo must be in screenspace, its Z-Depth only needs to be used for comparison
886 * and dosn't need to be correct in relation to X and Y coords (this is the case in perspective view) */
887 static int project_bucket_point_occluded(const ProjPaintState *ps, LinkNode *bucketFace, const int orig_face, float pixelScreenCo[4])
892 float w[3]; /* not needed when clipping */
894 /* we could return 0 for 1 face buckets, as long as this function assumes
895 * that the point its testing is only every originated from an existing face */
897 for (; bucketFace; bucketFace = bucketFace->next) {
898 face_index = GET_INT_FROM_POINTER(bucketFace->link);
900 if (orig_face != face_index) {
901 mf = ps->dm_mface + face_index;
902 if(ps->rv3d->rflag & RV3D_CLIPPING)
903 isect_ret = project_paint_occlude_ptv_clip(ps, mf, pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v2], ps->screenCoords[mf->v3], 0);
905 isect_ret = project_paint_occlude_ptv(pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v2], ps->screenCoords[mf->v3], w, ps->is_ortho);
907 /* Note, if isect_ret==-1 then we dont want to test the other side of the quad */
908 if (isect_ret==0 && mf->v4) {
909 if(ps->rv3d->rflag & RV3D_CLIPPING)
910 isect_ret = project_paint_occlude_ptv_clip(ps, mf, pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v3], ps->screenCoords[mf->v4], 1);
912 isect_ret = project_paint_occlude_ptv(pixelScreenCo, ps->screenCoords[mf->v1], ps->screenCoords[mf->v3], ps->screenCoords[mf->v4], w, ps->is_ortho);
915 /* TODO - we may want to cache the first hit,
916 * it is not possible to swap the face order in the list anymore */
924 /* basic line intersection, could move to arithb.c, 2 points with a horiz line
925 * 1 for an intersection, 2 if the first point is aligned, 3 if the second point is aligned */
927 #define ISECT_TRUE_P1 2
928 #define ISECT_TRUE_P2 3
929 static int line_isect_y(const float p1[2], const float p2[2], const float y_level, float *x_isect)
933 if (y_level==p1[1]) { /* are we touching the first point? - no interpolation needed */
935 return ISECT_TRUE_P1;
937 if (y_level==p2[1]) { /* are we touching the second point? - no interpolation needed */
939 return ISECT_TRUE_P2;
942 y_diff= fabsf(p1[1]-p2[1]); /* yuck, horizontal line, we cant do much here */
944 if (y_diff < 0.000001f) {
945 *x_isect = (p1[0]+p2[0]) * 0.5f;
949 if (p1[1] > y_level && p2[1] < y_level) {
950 *x_isect = (p2[0]*(p1[1]-y_level) + p1[0]*(y_level-p2[1])) / y_diff; /*(p1[1]-p2[1]);*/
953 else if (p1[1] < y_level && p2[1] > y_level) {
954 *x_isect = (p2[0]*(y_level-p1[1]) + p1[0]*(p2[1]-y_level)) / y_diff; /*(p2[1]-p1[1]);*/
962 static int line_isect_x(const float p1[2], const float p2[2], const float x_level, float *y_isect)
966 if (x_level==p1[0]) { /* are we touching the first point? - no interpolation needed */
968 return ISECT_TRUE_P1;
970 if (x_level==p2[0]) { /* are we touching the second point? - no interpolation needed */
972 return ISECT_TRUE_P2;
975 x_diff= fabsf(p1[0]-p2[0]); /* yuck, horizontal line, we cant do much here */
977 if (x_diff < 0.000001) { /* yuck, vertical line, we cant do much here */
978 *y_isect = (p1[0]+p2[0]) * 0.5f;
982 if (p1[0] > x_level && p2[0] < x_level) {
983 *y_isect = (p2[1]*(p1[0]-x_level) + p1[1]*(x_level-p2[0])) / x_diff; /*(p1[0]-p2[0]);*/
986 else if (p1[0] < x_level && p2[0] > x_level) {
987 *y_isect = (p2[1]*(x_level-p1[0]) + p1[1]*(p2[0]-x_level)) / x_diff; /*(p2[0]-p1[0]);*/
995 /* simple func use for comparing UV locations to check if there are seams.
996 * Its possible this gives incorrect results, when the UVs for 1 face go into the next
997 * tile, but do not do this for the adjacent face, it could return a false positive.
998 * This is so unlikely that Id not worry about it. */
999 #ifndef PROJ_DEBUG_NOSEAMBLEED
1000 static int cmp_uv(const float vec2a[2], const float vec2b[2])
1002 /* if the UV's are not between 0.0 and 1.0 */
1003 float xa = (float)fmodf(vec2a[0], 1.0f);
1004 float ya = (float)fmodf(vec2a[1], 1.0f);
1006 float xb = (float)fmodf(vec2b[0], 1.0f);
1007 float yb = (float)fmodf(vec2b[1], 1.0f);
1009 if (xa < 0.0f) xa += 1.0f;
1010 if (ya < 0.0f) ya += 1.0f;
1012 if (xb < 0.0f) xb += 1.0f;
1013 if (yb < 0.0f) yb += 1.0f;
1015 return ((fabsf(xa-xb) < PROJ_GEOM_TOLERANCE) && (fabsf(ya-yb) < PROJ_GEOM_TOLERANCE)) ? 1:0;
1019 /* set min_px and max_px to the image space bounds of the UV coords
1020 * return zero if there is no area in the returned rectangle */
1021 #ifndef PROJ_DEBUG_NOSEAMBLEED
1022 static int pixel_bounds_uv(
1023 const float uv1[2], const float uv2[2], const float uv3[2], const float uv4[2],
1025 const int ibuf_x, const int ibuf_y,
1028 float min_uv[2], max_uv[2]; /* UV bounds */
1030 INIT_MINMAX2(min_uv, max_uv);
1032 DO_MINMAX2(uv1, min_uv, max_uv);
1033 DO_MINMAX2(uv2, min_uv, max_uv);
1034 DO_MINMAX2(uv3, min_uv, max_uv);
1036 DO_MINMAX2(uv4, min_uv, max_uv);
1038 bounds_px->xmin = (int)(ibuf_x * min_uv[0]);
1039 bounds_px->ymin = (int)(ibuf_y * min_uv[1]);
1041 bounds_px->xmax = (int)(ibuf_x * max_uv[0]) +1;
1042 bounds_px->ymax = (int)(ibuf_y * max_uv[1]) +1;
1044 /*printf("%d %d %d %d \n", min_px[0], min_px[1], max_px[0], max_px[1]);*/
1046 /* face uses no UV area when quantized to pixels? */
1047 return (bounds_px->xmin == bounds_px->xmax || bounds_px->ymin == bounds_px->ymax) ? 0 : 1;
1051 static int pixel_bounds_array(float (* uv)[2], rcti *bounds_px, const int ibuf_x, const int ibuf_y, int tot)
1053 float min_uv[2], max_uv[2]; /* UV bounds */
1059 INIT_MINMAX2(min_uv, max_uv);
1062 DO_MINMAX2((*uv), min_uv, max_uv);
1066 bounds_px->xmin = (int)(ibuf_x * min_uv[0]);
1067 bounds_px->ymin = (int)(ibuf_y * min_uv[1]);
1069 bounds_px->xmax = (int)(ibuf_x * max_uv[0]) +1;
1070 bounds_px->ymax = (int)(ibuf_y * max_uv[1]) +1;
1072 /*printf("%d %d %d %d \n", min_px[0], min_px[1], max_px[0], max_px[1]);*/
1074 /* face uses no UV area when quantized to pixels? */
1075 return (bounds_px->xmin == bounds_px->xmax || bounds_px->ymin == bounds_px->ymax) ? 0 : 1;
1078 #ifndef PROJ_DEBUG_NOSEAMBLEED
1080 /* This function returns 1 if this face has a seam along the 2 face-vert indicies
1081 * 'orig_i1_fidx' and 'orig_i2_fidx' */
1082 static int check_seam(const ProjPaintState *ps, const int orig_face, const int orig_i1_fidx, const int orig_i2_fidx, int *other_face, int *orig_fidx)
1087 int i1_fidx = -1, i2_fidx = -1; /* index in face */
1090 const MFace *orig_mf = ps->dm_mface + orig_face;
1091 const MTFace *orig_tf = ps->dm_mtface + orig_face;
1093 /* vert indicies from face vert order indicies */
1094 i1 = (*(&orig_mf->v1 + orig_i1_fidx));
1095 i2 = (*(&orig_mf->v1 + orig_i2_fidx));
1097 for (node = ps->vertFaces[i1]; node; node = node->next) {
1098 face_index = GET_INT_FROM_POINTER(node->link);
1100 if (face_index != orig_face) {
1101 mf = ps->dm_mface + face_index;
1102 /* could check if the 2 faces images match here,
1103 * but then there wouldn't be a way to return the opposite face's info */
1106 /* We need to know the order of the verts in the adjacent face
1107 * set the i1_fidx and i2_fidx to (0,1,2,3) */
1108 if (mf->v1==i1) i1_fidx = 0;
1109 else if (mf->v2==i1) i1_fidx = 1;
1110 else if (mf->v3==i1) i1_fidx = 2;
1111 else if (mf->v4 && mf->v4==i1) i1_fidx = 3;
1113 if (mf->v1==i2) i2_fidx = 0;
1114 else if (mf->v2==i2) i2_fidx = 1;
1115 else if (mf->v3==i2) i2_fidx = 2;
1116 else if (mf->v4 && mf->v4==i2) i2_fidx = 3;
1118 /* Only need to check if 'i2_fidx' is valid because we know i1_fidx is the same vert on both faces */
1119 if (i2_fidx != -1) {
1120 /* This IS an adjacent face!, now lets check if the UVs are ok */
1121 tf = ps->dm_mtface + face_index;
1123 /* set up the other face */
1124 *other_face = face_index;
1125 *orig_fidx = (i1_fidx < i2_fidx) ? i1_fidx : i2_fidx;
1127 /* first test if they have the same image */
1128 if ( (orig_tf->tpage == tf->tpage) &&
1129 cmp_uv(orig_tf->uv[orig_i1_fidx], tf->uv[i1_fidx]) &&
1130 cmp_uv(orig_tf->uv[orig_i2_fidx], tf->uv[i2_fidx]) )
1132 // printf("SEAM (NONE)\n");
1137 // printf("SEAM (UV GAP)\n");
1143 // printf("SEAM (NO FACE)\n");
1148 /* TODO - move to arithb.c */
1149 /* Converts an angle to a length that can be used for maintaining an even margin around UV's */
1150 static float angleToLength(float angle)
1152 // already accounted for
1153 if (angle < 0.000001f) {
1157 return fabsf(1.0f / cosf(angle * (M_PI/180.0f)));
1161 /* Calculate outset UV's, this is not the same as simply scaling the UVs,
1162 * since the outset coords are a margin that keep an even distance from the original UV's,
1163 * note that the image aspect is taken into account */
1164 static void uv_image_outset(float (*orig_uv)[2], float (*outset_uv)[2], const float scaler, const int ibuf_x, const int ibuf_y, const int is_quad)
1166 float a1, a2, a3, a4=0.0f;
1167 float puv[4][2]; /* pixelspace uv's */
1168 float no1[2], no2[2], no3[2], no4[2]; /* normals */
1169 float dir1[2], dir2[2], dir3[2], dir4[2];
1170 float ibuf_x_inv = 1.0f / (float)ibuf_x;
1171 float ibuf_y_inv = 1.0f / (float)ibuf_y;
1173 /* make UV's in pixel space so we can */
1174 puv[0][0] = orig_uv[0][0] * ibuf_x;
1175 puv[0][1] = orig_uv[0][1] * ibuf_y;
1177 puv[1][0] = orig_uv[1][0] * ibuf_x;
1178 puv[1][1] = orig_uv[1][1] * ibuf_y;
1180 puv[2][0] = orig_uv[2][0] * ibuf_x;
1181 puv[2][1] = orig_uv[2][1] * ibuf_y;
1184 puv[3][0] = orig_uv[3][0] * ibuf_x;
1185 puv[3][1] = orig_uv[3][1] * ibuf_y;
1188 /* face edge directions */
1189 Vec2Subf(dir1, puv[1], puv[0]);
1190 Vec2Subf(dir2, puv[2], puv[1]);
1195 Vec2Subf(dir3, puv[3], puv[2]);
1196 Vec2Subf(dir4, puv[0], puv[3]);
1201 Vec2Subf(dir3, puv[0], puv[2]);
1206 a1 = angleToLength(NormalizedVecAngle2_2D(dir4, dir1));
1207 a2 = angleToLength(NormalizedVecAngle2_2D(dir1, dir2));
1208 a3 = angleToLength(NormalizedVecAngle2_2D(dir2, dir3));
1209 a4 = angleToLength(NormalizedVecAngle2_2D(dir3, dir4));
1212 a1 = angleToLength(NormalizedVecAngle2_2D(dir3, dir1));
1213 a2 = angleToLength(NormalizedVecAngle2_2D(dir1, dir2));
1214 a3 = angleToLength(NormalizedVecAngle2_2D(dir2, dir3));
1218 Vec2Subf(no1, dir4, dir1);
1219 Vec2Subf(no2, dir1, dir2);
1220 Vec2Subf(no3, dir2, dir3);
1221 Vec2Subf(no4, dir3, dir4);
1226 Vec2Mulf(no1, a1*scaler);
1227 Vec2Mulf(no2, a2*scaler);
1228 Vec2Mulf(no3, a3*scaler);
1229 Vec2Mulf(no4, a4*scaler);
1230 Vec2Addf(outset_uv[0], puv[0], no1);
1231 Vec2Addf(outset_uv[1], puv[1], no2);
1232 Vec2Addf(outset_uv[2], puv[2], no3);
1233 Vec2Addf(outset_uv[3], puv[3], no4);
1234 outset_uv[0][0] *= ibuf_x_inv;
1235 outset_uv[0][1] *= ibuf_y_inv;
1237 outset_uv[1][0] *= ibuf_x_inv;
1238 outset_uv[1][1] *= ibuf_y_inv;
1240 outset_uv[2][0] *= ibuf_x_inv;
1241 outset_uv[2][1] *= ibuf_y_inv;
1243 outset_uv[3][0] *= ibuf_x_inv;
1244 outset_uv[3][1] *= ibuf_y_inv;
1247 Vec2Subf(no1, dir3, dir1);
1248 Vec2Subf(no2, dir1, dir2);
1249 Vec2Subf(no3, dir2, dir3);
1253 Vec2Mulf(no1, a1*scaler);
1254 Vec2Mulf(no2, a2*scaler);
1255 Vec2Mulf(no3, a3*scaler);
1256 Vec2Addf(outset_uv[0], puv[0], no1);
1257 Vec2Addf(outset_uv[1], puv[1], no2);
1258 Vec2Addf(outset_uv[2], puv[2], no3);
1259 outset_uv[0][0] *= ibuf_x_inv;
1260 outset_uv[0][1] *= ibuf_y_inv;
1262 outset_uv[1][0] *= ibuf_x_inv;
1263 outset_uv[1][1] *= ibuf_y_inv;
1265 outset_uv[2][0] *= ibuf_x_inv;
1266 outset_uv[2][1] *= ibuf_y_inv;
1271 * Be tricky with flags, first 4 bits are PROJ_FACE_SEAM1 to 4, last 4 bits are PROJ_FACE_NOSEAM1 to 4
1272 * 1<<i - where i is (0-3)
1274 * If we're multithreadng, make sure threads are locked when this is called
1276 static void project_face_seams_init(const ProjPaintState *ps, const int face_index, const int is_quad)
1278 int other_face, other_fidx; /* vars for the other face, we also set its flag */
1279 int fidx1 = is_quad ? 3 : 2;
1280 int fidx2 = 0; /* next fidx in the face (0,1,2,3) -> (1,2,3,0) or (0,1,2) -> (1,2,0) for a tri */
1283 if ((ps->faceSeamFlags[face_index] & (1<<fidx1|16<<fidx1)) == 0) {
1284 if (check_seam(ps, face_index, fidx1, fidx2, &other_face, &other_fidx)) {
1285 ps->faceSeamFlags[face_index] |= 1<<fidx1;
1286 if (other_face != -1)
1287 ps->faceSeamFlags[other_face] |= 1<<other_fidx;
1290 ps->faceSeamFlags[face_index] |= 16<<fidx1;
1291 if (other_face != -1)
1292 ps->faceSeamFlags[other_face] |= 16<<other_fidx; /* second 4 bits for disabled */
1299 #endif // PROJ_DEBUG_NOSEAMBLEED
1302 /* TODO - move to arithb.c */
1304 /* little sister we only need to know lambda */
1305 static float lambda_cp_line2(const float p[2], const float l1[2], const float l2[2])
1309 u[0] = l2[0] - l1[0];
1310 u[1] = l2[1] - l1[1];
1312 h[0] = p[0] - l1[0];
1313 h[1] = p[1] - l1[1];
1315 return(Inp2f(u, h)/Inp2f(u, u));
1319 /* Converts a UV location to a 3D screenspace location
1320 * Takes a 'uv' and 3 UV coords, and sets the values of pixelScreenCo
1322 * This is used for finding a pixels location in screenspace for painting */
1323 static void screen_px_from_ortho(
1325 float v1co[3], float v2co[3], float v3co[3], /* Screenspace coords */
1326 float uv1co[2], float uv2co[2], float uv3co[2],
1327 float pixelScreenCo[4],
1330 BarycentricWeights2f(uv, uv1co, uv2co, uv3co, w);
1331 VecWeightf(pixelScreenCo, v1co, v2co, v3co, w);
1334 /* same as screen_px_from_ortho except we need to take into account
1335 * the perspective W coord for each vert */
1336 static void screen_px_from_persp(
1338 float v1co[3], float v2co[3], float v3co[3], /* screenspace coords */
1339 float uv1co[2], float uv2co[2], float uv3co[2],
1340 float pixelScreenCo[4],
1344 float wtot_inv, wtot;
1345 BarycentricWeights2f(uv, uv1co, uv2co, uv3co, w);
1347 /* re-weight from the 4th coord of each screen vert */
1352 wtot = w[0]+w[1]+w[2];
1355 wtot_inv = 1.0f / wtot;
1361 w[0] = w[1] = w[2] = 1.0/3.0; /* dummy values for zero area face */
1363 /* done re-weighting */
1365 VecWeightf(pixelScreenCo, v1co, v2co, v3co, w);
1368 static void project_face_pixel(const MTFace *tf_other, ImBuf *ibuf_other, const float w[3], int side, unsigned char rgba_ub[4], float rgba_f[4])
1370 float *uvCo1, *uvCo2, *uvCo3;
1371 float uv_other[2], x, y;
1373 uvCo1 = (float *)tf_other->uv[0];
1375 uvCo2 = (float *)tf_other->uv[2];
1376 uvCo3 = (float *)tf_other->uv[3];
1379 uvCo2 = (float *)tf_other->uv[1];
1380 uvCo3 = (float *)tf_other->uv[2];
1383 Vec2Weightf(uv_other, uvCo1, uvCo2, uvCo3, w);
1386 uvco_to_wrapped_pxco(uv_other, ibuf_other->x, ibuf_other->y, &x, &y);
1389 if (ibuf_other->rect_float) { /* from float to float */
1390 bilinear_interpolation_color_wrap(ibuf_other, NULL, rgba_f, x, y);
1392 else { /* from char to float */
1393 bilinear_interpolation_color_wrap(ibuf_other, rgba_ub, NULL, x, y);
1398 /* run this outside project_paint_uvpixel_init since pixels with mask 0 dont need init */
1399 float project_paint_uvpixel_mask(
1400 const ProjPaintState *ps,
1401 const int face_index,
1408 if (ps->do_layer_mask) {
1409 /* another UV layers image is masking this one's */
1411 const MTFace *tf_other = ps->dm_mtface_mask + face_index;
1413 if (tf_other->tpage && (ibuf_other = BKE_image_get_ibuf(tf_other->tpage, NULL))) {
1414 /* BKE_image_get_ibuf - TODO - this may be slow */
1415 unsigned char rgba_ub[4];
1418 project_face_pixel(tf_other, ibuf_other, w, side, rgba_ub, rgba_f);
1420 if (ibuf_other->rect_float) { /* from float to float */
1421 mask = ((rgba_f[0]+rgba_f[1]+rgba_f[2])/3.0f) * rgba_f[3];
1423 else { /* from char to float */
1424 mask = ((rgba_ub[0]+rgba_ub[1]+rgba_ub[2])/(256*3.0f)) * (rgba_ub[3]/256.0f);
1427 if (!ps->do_layer_mask_inv) /* matching the gimps layer mask black/white rules, white==full opacity */
1428 mask = (1.0f - mask);
1441 /* calculate mask */
1442 if (ps->do_mask_normal) {
1443 MFace *mf = ps->dm_mface + face_index;
1444 short *no1, *no2, *no3;
1446 no1 = ps->dm_mvert[mf->v1].no;
1448 no2 = ps->dm_mvert[mf->v3].no;
1449 no3 = ps->dm_mvert[mf->v4].no;
1452 no2 = ps->dm_mvert[mf->v2].no;
1453 no3 = ps->dm_mvert[mf->v3].no;
1456 no[0] = w[0]*no1[0] + w[1]*no2[0] + w[2]*no3[0];
1457 no[1] = w[0]*no1[1] + w[1]*no2[1] + w[2]*no3[1];
1458 no[2] = w[0]*no1[2] + w[1]*no2[2] + w[2]*no3[2];
1461 /* now we can use the normal as a mask */
1463 angle = NormalizedVecAngle2((float *)ps->viewDir, no);
1466 /* Annoying but for the perspective view we need to get the pixels location in 3D space :/ */
1467 float viewDirPersp[3];
1468 float *co1, *co2, *co3;
1469 co1 = ps->dm_mvert[mf->v1].co;
1471 co2 = ps->dm_mvert[mf->v3].co;
1472 co3 = ps->dm_mvert[mf->v4].co;
1475 co2 = ps->dm_mvert[mf->v2].co;
1476 co3 = ps->dm_mvert[mf->v3].co;
1479 /* Get the direction from the viewPoint to the pixel and normalize */
1480 viewDirPersp[0] = (ps->viewPos[0] - (w[0]*co1[0] + w[1]*co2[0] + w[2]*co3[0]));
1481 viewDirPersp[1] = (ps->viewPos[1] - (w[0]*co1[1] + w[1]*co2[1] + w[2]*co3[1]));
1482 viewDirPersp[2] = (ps->viewPos[2] - (w[0]*co1[2] + w[1]*co2[2] + w[2]*co3[2]));
1483 Normalize(viewDirPersp);
1485 angle = NormalizedVecAngle2(viewDirPersp, no);
1488 if (angle >= ps->normal_angle) {
1489 return 0.0f; /* outsize the normal limit*/
1491 else if (angle > ps->normal_angle_inner) {
1492 mask *= (ps->normal_angle - angle) / ps->normal_angle_range;
1493 } /* otherwise no mask normal is needed, were within the limit */
1496 // This only works when the opacity dosnt change while painting, stylus pressure messes with this
1498 // if (ps->is_airbrush==0) mask *= ps->brush->alpha;
1503 /* run this function when we know a bucket's, face's pixel can be initialized,
1504 * return the ProjPixel which is added to 'ps->bucketRect[bucket_index]' */
1505 static ProjPixel *project_paint_uvpixel_init(
1506 const ProjPaintState *ps,
1509 short x_px, short y_px,
1511 const int face_index,
1512 const int image_index,
1513 const float pixelScreenCo[4],
1517 ProjPixel *projPixel;
1520 /* wrap pixel location */
1521 x_px = x_px % ibuf->x;
1522 if (x_px<0) x_px += ibuf->x;
1523 y_px = y_px % ibuf->y;
1524 if (y_px<0) y_px += ibuf->y;
1526 if (ps->tool==PAINT_TOOL_CLONE) {
1527 size = sizeof(ProjPixelClone);
1529 else if (ps->tool==PAINT_TOOL_SMEAR) {
1530 size = sizeof(ProjPixelClone);
1533 size = sizeof(ProjPixel);
1536 projPixel = (ProjPixel *)BLI_memarena_alloc(arena, size);
1537 //memset(projPixel, 0, size);
1539 if (ibuf->rect_float) {
1540 projPixel->pixel.f_pt = (float *)ibuf->rect_float + ((x_px + y_px * ibuf->x) * 4);
1541 projPixel->origColor.f[0] = projPixel->newColor.f[0] = projPixel->pixel.f_pt[0];
1542 projPixel->origColor.f[1] = projPixel->newColor.f[1] = projPixel->pixel.f_pt[1];
1543 projPixel->origColor.f[2] = projPixel->newColor.f[2] = projPixel->pixel.f_pt[2];
1544 projPixel->origColor.f[3] = projPixel->newColor.f[3] = projPixel->pixel.f_pt[3];
1547 projPixel->pixel.ch_pt = ((unsigned char *)ibuf->rect + ((x_px + y_px * ibuf->x) * 4));
1548 projPixel->origColor.uint = projPixel->newColor.uint = *projPixel->pixel.uint_pt;
1551 /* screenspace unclamped, we could keep its z and w values but dont need them at the moment */
1552 VECCOPY2D(projPixel->projCoSS, pixelScreenCo);
1554 projPixel->x_px = x_px;
1555 projPixel->y_px = y_px;
1557 projPixel->mask = (unsigned short)(mask * 65535);
1558 projPixel->mask_max = 0;
1560 /* which bounding box cell are we in?, needed for undo */
1561 projPixel->bb_cell_index = ((int)(((float)x_px/(float)ibuf->x) * PROJ_BOUNDBOX_DIV)) + ((int)(((float)y_px/(float)ibuf->y) * PROJ_BOUNDBOX_DIV)) * PROJ_BOUNDBOX_DIV ;
1563 /* done with view3d_project_float inline */
1564 if (ps->tool==PAINT_TOOL_CLONE) {
1565 if (ps->dm_mtface_clone) {
1567 const MTFace *tf_other = ps->dm_mtface_clone + face_index;
1569 if (tf_other->tpage && (ibuf_other = BKE_image_get_ibuf(tf_other->tpage, NULL))) {
1570 /* BKE_image_get_ibuf - TODO - this may be slow */
1572 if (ibuf->rect_float) {
1573 if (ibuf_other->rect_float) { /* from float to float */
1574 project_face_pixel(tf_other, ibuf_other, w, side, NULL, ((ProjPixelClone *)projPixel)->clonepx.f);
1576 else { /* from char to float */
1577 unsigned char rgba_ub[4];
1578 project_face_pixel(tf_other, ibuf_other, w, side, rgba_ub, NULL);
1579 IMAPAINT_CHAR_RGBA_TO_FLOAT(((ProjPixelClone *)projPixel)->clonepx.f, rgba_ub);
1583 if (ibuf_other->rect_float) { /* float to char */
1585 project_face_pixel(tf_other, ibuf_other, w, side, NULL, rgba);
1586 IMAPAINT_FLOAT_RGBA_TO_CHAR(((ProjPixelClone *)projPixel)->clonepx.ch, rgba)
1588 else { /* char to char */
1589 project_face_pixel(tf_other, ibuf_other, w, side, ((ProjPixelClone *)projPixel)->clonepx.ch, NULL);
1594 if (ibuf->rect_float) {
1595 ((ProjPixelClone *)projPixel)->clonepx.f[3] = 0;
1598 ((ProjPixelClone *)projPixel)->clonepx.ch[3] = 0;
1605 Vec2Subf(co, projPixel->projCoSS, (float *)ps->cloneOffset);
1607 /* no need to initialize the bucket, we're only checking buckets faces and for this
1608 * the faces are alredy initialized in project_paint_delayed_face_init(...) */
1609 if (ibuf->rect_float) {
1610 if (!project_paint_PickColor(ps, co, ((ProjPixelClone *)projPixel)->clonepx.f, NULL, 1)) {
1611 ((ProjPixelClone *)projPixel)->clonepx.f[3] = 0; /* zero alpha - ignore */
1615 if (!project_paint_PickColor(ps, co, NULL, ((ProjPixelClone *)projPixel)->clonepx.ch, 1)) {
1616 ((ProjPixelClone *)projPixel)->clonepx.ch[3] = 0; /* zero alpha - ignore */
1622 #ifdef PROJ_DEBUG_PAINT
1623 if (ibuf->rect_float) projPixel->pixel.f_pt[0] = 0;
1624 else projPixel->pixel.ch_pt[0] = 0;
1626 projPixel->image_index = image_index;
1631 static int line_clip_rect2f(
1633 const float l1[2], const float l2[2],
1634 float l1_clip[2], float l2_clip[2])
1636 /* first account for horizontal, then vertical lines */
1638 if (fabsf(l1[1]-l2[1]) < PROJ_GEOM_TOLERANCE) {
1639 /* is the line out of range on its Y axis? */
1640 if (l1[1] < rect->ymin || l1[1] > rect->ymax) {
1643 /* line is out of range on its X axis */
1644 if ((l1[0] < rect->xmin && l2[0] < rect->xmin) || (l1[0] > rect->xmax && l2[0] > rect->xmax)) {
1649 if (fabsf(l1[0]-l2[0]) < PROJ_GEOM_TOLERANCE) { /* this is a single point (or close to)*/
1650 if (BLI_in_rctf(rect, l1[0], l1[1])) {
1651 VECCOPY2D(l1_clip, l1);
1652 VECCOPY2D(l2_clip, l2);
1660 VECCOPY2D(l1_clip, l1);
1661 VECCOPY2D(l2_clip, l2);
1662 CLAMP(l1_clip[0], rect->xmin, rect->xmax);
1663 CLAMP(l2_clip[0], rect->xmin, rect->xmax);
1666 else if (fabsf(l1[0]-l2[0]) < PROJ_GEOM_TOLERANCE) {
1667 /* is the line out of range on its X axis? */
1668 if (l1[0] < rect->xmin || l1[0] > rect->xmax) {
1672 /* line is out of range on its Y axis */
1673 if ((l1[1] < rect->ymin && l2[1] < rect->ymin) || (l1[1] > rect->ymax && l2[1] > rect->ymax)) {
1677 if (fabsf(l1[1]-l2[1]) < PROJ_GEOM_TOLERANCE) { /* this is a single point (or close to)*/
1678 if (BLI_in_rctf(rect, l1[0], l1[1])) {
1679 VECCOPY2D(l1_clip, l1);
1680 VECCOPY2D(l2_clip, l2);
1688 VECCOPY2D(l1_clip, l1);
1689 VECCOPY2D(l2_clip, l2);
1690 CLAMP(l1_clip[1], rect->ymin, rect->ymax);
1691 CLAMP(l2_clip[1], rect->ymin, rect->ymax);
1699 /* Done with vertical lines */
1701 /* are either of the points inside the rectangle ? */
1702 if (BLI_in_rctf(rect, l1[0], l1[1])) {
1703 VECCOPY2D(l1_clip, l1);
1707 if (BLI_in_rctf(rect, l2[0], l2[1])) {
1708 VECCOPY2D(l2_clip, l2);
1712 /* line inside rect */
1713 if (ok1 && ok2) return 1;
1716 if (line_isect_y(l1, l2, rect->ymin, &isect) && (isect >= rect->xmin) && (isect <= rect->xmax)) {
1717 if (l1[1] < l2[1]) { /* line 1 is outside */
1719 l1_clip[1] = rect->ymin;
1724 l2_clip[1] = rect->ymin;
1729 if (ok1 && ok2) return 1;
1731 if (line_isect_y(l1, l2, rect->ymax, &isect) && (isect >= rect->xmin) && (isect <= rect->xmax)) {
1732 if (l1[1] > l2[1]) { /* line 1 is outside */
1734 l1_clip[1] = rect->ymax;
1739 l2_clip[1] = rect->ymax;
1744 if (ok1 && ok2) return 1;
1747 if (line_isect_x(l1, l2, rect->xmin, &isect) && (isect >= rect->ymin) && (isect <= rect->ymax)) {
1748 if (l1[0] < l2[0]) { /* line 1 is outside */
1749 l1_clip[0] = rect->xmin;
1754 l2_clip[0] = rect->xmin;
1760 if (ok1 && ok2) return 1;
1762 if (line_isect_x(l1, l2, rect->xmax, &isect) && (isect >= rect->ymin) && (isect <= rect->ymax)) {
1763 if (l1[0] > l2[0]) { /* line 1 is outside */
1764 l1_clip[0] = rect->xmax;
1769 l2_clip[0] = rect->xmax;
1786 /* scale the quad & tri about its center
1787 * scaling by PROJ_FACE_SCALE_SEAM (0.99x) is used for getting fake UV pixel coords that are on the
1788 * edge of the face but slightly inside it occlusion tests dont return hits on adjacent faces */
1789 static void scale_quad(float insetCos[4][3], float *origCos[4], const float inset)
1792 cent[0] = (origCos[0][0] + origCos[1][0] + origCos[2][0] + origCos[3][0]) / 4.0f;
1793 cent[1] = (origCos[0][1] + origCos[1][1] + origCos[2][1] + origCos[3][1]) / 4.0f;
1794 cent[2] = (origCos[0][2] + origCos[1][2] + origCos[2][2] + origCos[3][2]) / 4.0f;
1796 VecSubf(insetCos[0], origCos[0], cent);
1797 VecSubf(insetCos[1], origCos[1], cent);
1798 VecSubf(insetCos[2], origCos[2], cent);
1799 VecSubf(insetCos[3], origCos[3], cent);
1801 VecMulf(insetCos[0], inset);
1802 VecMulf(insetCos[1], inset);
1803 VecMulf(insetCos[2], inset);
1804 VecMulf(insetCos[3], inset);
1806 VecAddf(insetCos[0], insetCos[0], cent);
1807 VecAddf(insetCos[1], insetCos[1], cent);
1808 VecAddf(insetCos[2], insetCos[2], cent);
1809 VecAddf(insetCos[3], insetCos[3], cent);
1813 static void scale_tri(float insetCos[4][3], float *origCos[4], const float inset)
1816 cent[0] = (origCos[0][0] + origCos[1][0] + origCos[2][0]) / 3.0f;
1817 cent[1] = (origCos[0][1] + origCos[1][1] + origCos[2][1]) / 3.0f;
1818 cent[2] = (origCos[0][2] + origCos[1][2] + origCos[2][2]) / 3.0f;
1820 VecSubf(insetCos[0], origCos[0], cent);
1821 VecSubf(insetCos[1], origCos[1], cent);
1822 VecSubf(insetCos[2], origCos[2], cent);
1824 VecMulf(insetCos[0], inset);
1825 VecMulf(insetCos[1], inset);
1826 VecMulf(insetCos[2], inset);
1828 VecAddf(insetCos[0], insetCos[0], cent);
1829 VecAddf(insetCos[1], insetCos[1], cent);
1830 VecAddf(insetCos[2], insetCos[2], cent);
1834 static float Vec2Lenf_nosqrt(const float *v1, const float *v2)
1843 static float Vec2Lenf_nosqrt_other(const float *v1, const float v2_1, const float v2_2)
1852 /* note, use a squared value so we can use Vec2Lenf_nosqrt
1853 * be sure that you have done a bounds check first or this may fail */
1854 /* only give bucket_bounds as an arg because we need it elsewhere */
1855 static int project_bucket_isect_circle(const int bucket_x, const int bucket_y, const float cent[2], const float radius_squared, rctf *bucket_bounds)
1858 /* Would normally to a simple intersection test, however we know the bounds of these 2 alredy intersect
1859 * so we only need to test if the center is inside the vertical or horizontal bounds on either axis,
1860 * this is even less work then an intersection test
1862 if (BLI_in_rctf(bucket_bounds, cent[0], cent[1]))
1866 if((bucket_bounds->xmin <= cent[0] && bucket_bounds->xmax >= cent[0]) || (bucket_bounds->ymin <= cent[1] && bucket_bounds->ymax >= cent[1]) ) {
1870 /* out of bounds left */
1871 if (cent[0] < bucket_bounds->xmin) {
1872 /* lower left out of radius test */
1873 if (cent[1] < bucket_bounds->ymin) {
1874 return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmin, bucket_bounds->ymin) < radius_squared) ? 1 : 0;
1877 else if (cent[1] > bucket_bounds->ymax) {
1878 return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmin, bucket_bounds->ymax) < radius_squared) ? 1 : 0;
1881 else if (cent[0] > bucket_bounds->xmax) {
1882 /* lower right out of radius test */
1883 if (cent[1] < bucket_bounds->ymin) {
1884 return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmax, bucket_bounds->ymin) < radius_squared) ? 1 : 0;
1886 /* top right test */
1887 else if (cent[1] > bucket_bounds->ymax) {
1888 return (Vec2Lenf_nosqrt_other(cent, bucket_bounds->xmax, bucket_bounds->ymax) < radius_squared) ? 1 : 0;
1897 /* Note for rect_to_uvspace_ortho() and rect_to_uvspace_persp()
1898 * in ortho view this function gives good results when bucket_bounds are outside the triangle
1899 * however in some cases, perspective view will mess up with faces that have minimal screenspace area (viewed from the side)
1901 * for this reason its not relyable in this case so we'll use the Simple Barycentric' funcs that only account for points inside the triangle.
1902 * however switching back to this for ortho is always an option */
1904 static void rect_to_uvspace_ortho(
1905 rctf *bucket_bounds,
1906 float *v1coSS, float *v2coSS, float *v3coSS,
1907 float *uv1co, float *uv2co, float *uv3co,
1908 float bucket_bounds_uv[4][2],
1914 /* get the UV space bounding box */
1915 uv[0] = bucket_bounds->xmax;
1916 uv[1] = bucket_bounds->ymin;
1917 BarycentricWeights2f(uv, v1coSS, v2coSS, v3coSS, w);
1918 Vec2Weightf(bucket_bounds_uv[flip?3:0], uv1co, uv2co, uv3co, w);
1920 //uv[0] = bucket_bounds->xmax; // set above
1921 uv[1] = bucket_bounds->ymax;
1922 BarycentricWeights2f(uv, v1coSS, v2coSS, v3coSS, w);
1923 Vec2Weightf(bucket_bounds_uv[flip?2:1], uv1co, uv2co, uv3co, w);
1925 uv[0] = bucket_bounds->xmin;
1926 //uv[1] = bucket_bounds->ymax; // set above
1927 BarycentricWeights2f(uv, v1coSS, v2coSS, v3coSS, w);
1928 Vec2Weightf(bucket_bounds_uv[flip?1:2], uv1co, uv2co, uv3co, w);
1930 //uv[0] = bucket_bounds->xmin; // set above
1931 uv[1] = bucket_bounds->ymin;
1932 BarycentricWeights2f(uv, v1coSS, v2coSS, v3coSS, w);
1933 Vec2Weightf(bucket_bounds_uv[flip?0:3], uv1co, uv2co, uv3co, w);
1936 /* same as above but use BarycentricWeightsPersp2f */
1937 static void rect_to_uvspace_persp(
1938 rctf *bucket_bounds,
1939 float *v1coSS, float *v2coSS, float *v3coSS,
1940 float *uv1co, float *uv2co, float *uv3co,
1941 float bucket_bounds_uv[4][2],
1948 /* get the UV space bounding box */
1949 uv[0] = bucket_bounds->xmax;
1950 uv[1] = bucket_bounds->ymin;
1951 BarycentricWeightsPersp2f(uv, v1coSS, v2coSS, v3coSS, w);
1952 Vec2Weightf(bucket_bounds_uv[flip?3:0], uv1co, uv2co, uv3co, w);
1954 //uv[0] = bucket_bounds->xmax; // set above
1955 uv[1] = bucket_bounds->ymax;
1956 BarycentricWeightsPersp2f(uv, v1coSS, v2coSS, v3coSS, w);
1957 Vec2Weightf(bucket_bounds_uv[flip?2:1], uv1co, uv2co, uv3co, w);
1959 uv[0] = bucket_bounds->xmin;
1960 //uv[1] = bucket_bounds->ymax; // set above
1961 BarycentricWeightsPersp2f(uv, v1coSS, v2coSS, v3coSS, w);
1962 Vec2Weightf(bucket_bounds_uv[flip?1:2], uv1co, uv2co, uv3co, w);
1964 //uv[0] = bucket_bounds->xmin; // set above
1965 uv[1] = bucket_bounds->ymin;
1966 BarycentricWeightsPersp2f(uv, v1coSS, v2coSS, v3coSS, w);
1967 Vec2Weightf(bucket_bounds_uv[flip?0:3], uv1co, uv2co, uv3co, w);
1970 /* This works as we need it to but we can save a few steps and not use it */
1973 static float angle_2d_clockwise(const float p1[2], const float p2[2], const float p3[2])
1977 v1[0] = p1[0]-p2[0]; v1[1] = p1[1]-p2[1];
1978 v2[0] = p3[0]-p2[0]; v2[1] = p3[1]-p2[1];
1980 return -atan2(v1[0]*v2[1] - v1[1]*v2[0], v1[0]*v2[0]+v1[1]*v2[1]);
1985 #define ISECT_2 (1<<1)
1986 #define ISECT_3 (1<<2)
1987 #define ISECT_4 (1<<3)
1988 #define ISECT_ALL3 ((1<<3)-1)
1989 #define ISECT_ALL4 ((1<<4)-1)
1991 /* limit must be a fraction over 1.0f */
1992 static int IsectPT2Df_limit(float pt[2], float v1[2], float v2[2], float v3[2], float limit)
1994 return ((AreaF2Dfl(pt,v1,v2) + AreaF2Dfl(pt,v2,v3) + AreaF2Dfl(pt,v3,v1)) / (AreaF2Dfl(v1,v2,v3))) < limit;
1997 /* Clip the face by a bucket and set the uv-space bucket_bounds_uv
1998 * so we have the clipped UV's to do pixel intersection tests with
2000 static int float_z_sort_flip(const void *p1, const void *p2) {
2001 return (((float *)p1)[2] < ((float *)p2)[2] ? 1:-1);
2004 static int float_z_sort(const void *p1, const void *p2) {
2005 return (((float *)p1)[2] < ((float *)p2)[2] ?-1:1);
2008 static void project_bucket_clip_face(
2010 rctf *bucket_bounds,
2011 float *v1coSS, float *v2coSS, float *v3coSS,
2012 float *uv1co, float *uv2co, float *uv3co,
2013 float bucket_bounds_uv[8][2],
2016 int inside_bucket_flag = 0;
2017 int inside_face_flag = 0;
2018 const int flip = ((SIDE_OF_LINE(v1coSS, v2coSS, v3coSS) > 0.0f) != (SIDE_OF_LINE(uv1co, uv2co, uv3co) > 0.0f));
2020 float bucket_bounds_ss[4][2];
2022 /* get the UV space bounding box */
2023 inside_bucket_flag |= BLI_in_rctf(bucket_bounds, v1coSS[0], v1coSS[1]);
2024 inside_bucket_flag |= BLI_in_rctf(bucket_bounds, v2coSS[0], v2coSS[1]) << 1;
2025 inside_bucket_flag |= BLI_in_rctf(bucket_bounds, v3coSS[0], v3coSS[1]) << 2;
2027 if (inside_bucket_flag == ISECT_ALL3) {
2028 /* all screenspace points are inside the bucket bounding box, this means we dont need to clip and can simply return the UVs */
2029 if (flip) { /* facing the back? */
2030 VECCOPY2D(bucket_bounds_uv[0], uv3co);
2031 VECCOPY2D(bucket_bounds_uv[1], uv2co);
2032 VECCOPY2D(bucket_bounds_uv[2], uv1co);
2035 VECCOPY2D(bucket_bounds_uv[0], uv1co);
2036 VECCOPY2D(bucket_bounds_uv[1], uv2co);
2037 VECCOPY2D(bucket_bounds_uv[2], uv3co);
2044 /* get the UV space bounding box */
2045 /* use IsectPT2Df_limit here so we catch points are are touching the tri edge (or a small fraction over) */
2046 bucket_bounds_ss[0][0] = bucket_bounds->xmax;
2047 bucket_bounds_ss[0][1] = bucket_bounds->ymin;
2048 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[0], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_1 : 0);
2050 bucket_bounds_ss[1][0] = bucket_bounds->xmax;
2051 bucket_bounds_ss[1][1] = bucket_bounds->ymax;
2052 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[1], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_2 : 0);
2054 bucket_bounds_ss[2][0] = bucket_bounds->xmin;
2055 bucket_bounds_ss[2][1] = bucket_bounds->ymax;
2056 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[2], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_3 : 0);
2058 bucket_bounds_ss[3][0] = bucket_bounds->xmin;
2059 bucket_bounds_ss[3][1] = bucket_bounds->ymin;
2060 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[3], v1coSS, v2coSS, v3coSS, 1+PROJ_GEOM_TOLERANCE) ? ISECT_4 : 0);
2062 if (inside_face_flag == ISECT_ALL4) {
2063 /* bucket is totally inside the screenspace face, we can safely use weights */
2065 if (is_ortho) rect_to_uvspace_ortho(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, bucket_bounds_uv, flip);
2066 else rect_to_uvspace_persp(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, bucket_bounds_uv, flip);
2072 /* The Complicated Case!
2074 * The 2 cases above are where the face is inside the bucket or the bucket is inside the face.
2076 * we need to make a convex polyline from the intersection between the screenspace face
2077 * and the bucket bounds.
2079 * There are a number of ways this could be done, currently it just collects all intersecting verts,
2080 * and line intersections, then sorts them clockwise, this is a lot easier then evaluating the geometry to
2081 * do a correct clipping on both shapes. */
2084 /* add a bunch of points, we know must make up the convex hull which is the clipped rect and triangle */
2088 /* Maximum possible 6 intersections when using a rectangle and triangle */
2089 float isectVCosSS[8][3]; /* The 3rd float is used to store angle for qsort(), NOT as a Z location */
2090 float v1_clipSS[2], v2_clipSS[2];
2094 float cent[2] = {0.0f, 0.0f};
2095 /*float up[2] = {0.0f, 1.0f};*/
2101 if (inside_face_flag & ISECT_1) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[0]); (*tot)++; }
2102 if (inside_face_flag & ISECT_2) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[1]); (*tot)++; }
2103 if (inside_face_flag & ISECT_3) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[2]); (*tot)++; }
2104 if (inside_face_flag & ISECT_4) { VECCOPY2D(isectVCosSS[*tot], bucket_bounds_ss[3]); (*tot)++; }
2106 if (inside_bucket_flag & ISECT_1) { VECCOPY2D(isectVCosSS[*tot], v1coSS); (*tot)++; }
2107 if (inside_bucket_flag & ISECT_2) { VECCOPY2D(isectVCosSS[*tot], v2coSS); (*tot)++; }
2108 if (inside_bucket_flag & ISECT_3) { VECCOPY2D(isectVCosSS[*tot], v3coSS); (*tot)++; }
2110 if ((inside_bucket_flag & (ISECT_1|ISECT_2)) != (ISECT_1|ISECT_2)) {
2111 if (line_clip_rect2f(bucket_bounds, v1coSS, v2coSS, v1_clipSS, v2_clipSS)) {
2112 if ((inside_bucket_flag & ISECT_1)==0) { VECCOPY2D(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2113 if ((inside_bucket_flag & ISECT_2)==0) { VECCOPY2D(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2117 if ((inside_bucket_flag & (ISECT_2|ISECT_3)) != (ISECT_2|ISECT_3)) {
2118 if (line_clip_rect2f(bucket_bounds, v2coSS, v3coSS, v1_clipSS, v2_clipSS)) {
2119 if ((inside_bucket_flag & ISECT_2)==0) { VECCOPY2D(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2120 if ((inside_bucket_flag & ISECT_3)==0) { VECCOPY2D(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2124 if ((inside_bucket_flag & (ISECT_3|ISECT_1)) != (ISECT_3|ISECT_1)) {
2125 if (line_clip_rect2f(bucket_bounds, v3coSS, v1coSS, v1_clipSS, v2_clipSS)) {
2126 if ((inside_bucket_flag & ISECT_3)==0) { VECCOPY2D(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2127 if ((inside_bucket_flag & ISECT_1)==0) { VECCOPY2D(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2132 if ((*tot) < 3) { /* no intersections to speak of */
2137 /* now we have all points we need, collect their angles and sort them clockwise */
2139 for(i=0; i<(*tot); i++) {
2140 cent[0] += isectVCosSS[i][0];
2141 cent[1] += isectVCosSS[i][1];
2143 cent[0] = cent[0] / (float)(*tot);
2144 cent[1] = cent[1] / (float)(*tot);
2148 /* Collect angles for every point around the center point */
2151 #if 0 /* uses a few more cycles then the above loop */
2152 for(i=0; i<(*tot); i++) {
2153 isectVCosSS[i][2] = angle_2d_clockwise(up, cent, isectVCosSS[i]);
2157 v1_clipSS[0] = cent[0]; /* Abuse this var for the loop below */
2158 v1_clipSS[1] = cent[1] + 1.0f;
2160 for(i=0; i<(*tot); i++) {
2161 v2_clipSS[0] = isectVCosSS[i][0] - cent[0];
2162 v2_clipSS[1] = isectVCosSS[i][1] - cent[1];
2163 isectVCosSS[i][2] = atan2f(v1_clipSS[0]*v2_clipSS[1] - v1_clipSS[1]*v2_clipSS[0], v1_clipSS[0]*v2_clipSS[0]+v1_clipSS[1]*v2_clipSS[1]);
2166 if (flip) qsort(isectVCosSS, *tot, sizeof(float)*3, float_z_sort_flip);
2167 else qsort(isectVCosSS, *tot, sizeof(float)*3, float_z_sort);
2169 /* remove doubles */
2170 /* first/last check */
2171 if (fabsf(isectVCosSS[0][0]-isectVCosSS[(*tot)-1][0]) < PROJ_GEOM_TOLERANCE && fabsf(isectVCosSS[0][1]-isectVCosSS[(*tot)-1][1]) < PROJ_GEOM_TOLERANCE) {
2175 /* its possible there is only a few left after remove doubles */
2177 // printf("removed too many doubles A\n");
2183 while (doubles==TRUE) {
2185 for(i=1; i<(*tot); i++) {
2186 if (fabsf(isectVCosSS[i-1][0]-isectVCosSS[i][0]) < PROJ_GEOM_TOLERANCE &&
2187 fabsf(isectVCosSS[i-1][1]-isectVCosSS[i][1]) < PROJ_GEOM_TOLERANCE)
2190 for(j=i+1; j<(*tot); j++) {
2191 isectVCosSS[j-1][0] = isectVCosSS[j][0];
2192 isectVCosSS[j-1][1] = isectVCosSS[j][1];
2194 doubles = TRUE; /* keep looking for more doubles */
2200 /* its possible there is only a few left after remove doubles */
2202 // printf("removed too many doubles B\n");
2209 for(i=0; i<(*tot); i++) {
2210 BarycentricWeights2f(isectVCosSS[i], v1coSS, v2coSS, v3coSS, w);
2211 Vec2Weightf(bucket_bounds_uv[i], uv1co, uv2co, uv3co, w);
2215 for(i=0; i<(*tot); i++) {
2216 BarycentricWeightsPersp2f(isectVCosSS[i], v1coSS, v2coSS, v3coSS, w);
2217 Vec2Weightf(bucket_bounds_uv[i], uv1co, uv2co, uv3co, w);
2222 #ifdef PROJ_DEBUG_PRINT_CLIP
2223 /* include this at the bottom of the above function to debug the output */
2226 /* If there are ever any problems, */
2227 float test_uv[4][2];
2229 if (is_ortho) rect_to_uvspace_ortho(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, test_uv, flip);
2230 else rect_to_uvspace_persp(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, test_uv, flip);
2231 printf("( [(%f,%f), (%f,%f), (%f,%f), (%f,%f)], ", test_uv[0][0], test_uv[0][1], test_uv[1][0], test_uv[1][1], test_uv[2][0], test_uv[2][1], test_uv[3][0], test_uv[3][1]);
2233 printf(" [(%f,%f), (%f,%f), (%f,%f)], ", uv1co[0], uv1co[1], uv2co[0], uv2co[1], uv3co[0], uv3co[1]);
2236 for (i=0; i < (*tot); i++) {
2237 printf("(%f, %f),", bucket_bounds_uv[i][0], bucket_bounds_uv[i][1]);
2245 # This script creates faces in a blender scene from printed data above.
2248 ...(output from above block)...
2251 from Blender import Scene, Mesh, Window, sys, Mathutils
2255 V = Mathutils.Vector
2258 sce = bpy.data.scenes.active
2260 for item in project_ls:
2265 me = bpy.data.meshes.new()
2266 ob = sce.objects.new(me)
2268 me.verts.extend([V(bb[0]).resize3D(), V(bb[1]).resize3D(), V(bb[2]).resize3D(), V(bb[3]).resize3D()])
2269 me.faces.extend([(0,1,2,3),])
2270 me.verts.extend([V(uv[0]).resize3D(), V(uv[1]).resize3D(), V(uv[2]).resize3D()])
2271 me.faces.extend([(4,5,6),])
2273 vs = [V(p).resize3D() for p in poly]
2279 while i < len(me.verts):
2281 if ii==len(me.verts):
2283 me.edges.extend([i, ii])
2286 if __name__ == '__main__':
2299 /* checks if pt is inside a convex 2D polyline, the polyline must be ordered rotating clockwise
2300 * otherwise it would have to test for mixed (SIDE_OF_LINE > 0.0f) cases */
2301 int IsectPoly2Df(const float pt[2], float uv[][2], const int tot)
2304 if (SIDE_OF_LINE(uv[tot-1], uv[0], pt) < 0.0f)
2307 for (i=1; i<tot; i++) {
2308 if (SIDE_OF_LINE(uv[i-1], uv[i], pt) < 0.0f)
2315 static int IsectPoly2Df_twoside(const float pt[2], float uv[][2], const int tot)
2318 int side = (SIDE_OF_LINE(uv[tot-1], uv[0], pt) > 0.0f);
2320 for (i=1; i<tot; i++) {
2321 if ((SIDE_OF_LINE(uv[i-1], uv[i], pt) > 0.0f) != side)
2329 /* One of the most important function for projectiopn painting, since it selects the pixels to be added into each bucket.
2330 * initialize pixels from this face where it intersects with the bucket_index, optionally initialize pixels for removing seams */
2331 static void project_paint_face_init(const ProjPaintState *ps, const int thread_index, const int bucket_index, const int face_index, const int image_index, rctf *bucket_bounds, const ImBuf *ibuf)
2333 /* Projection vars, to get the 3D locations into screen space */
2334 MemArena *arena = ps->arena_mt[thread_index];
2335 LinkNode **bucketPixelNodes = ps->bucketRect + bucket_index;
2336 LinkNode *bucketFaceNodes = ps->bucketFaces[bucket_index];
2338 const MFace *mf = ps->dm_mface + face_index;
2339 const MTFace *tf = ps->dm_mtface + face_index;
2341 /* UV/pixel seeking data */
2342 int x; /* Image X-Pixel */
2343 int y;/* Image Y-Pixel */
2345 float uv[2]; /* Image floating point UV - same as x, y but from 0.0-1.0 */
2348 float *v1coSS, *v2coSS, *v3coSS; /* vert co screen-space, these will be assigned to mf->v1,2,3 or mf->v1,3,4 */
2350 float *vCo[4]; /* vertex screenspace coords */
2354 float *uv1co, *uv2co, *uv3co; /* for convenience only, these will be assigned to tf->uv[0],1,2 or tf->uv[0],2,3 */
2355 float pixelScreenCo[4];
2357 rcti bounds_px; /* ispace bounds */
2358 /* vars for getting uvspace bounds */
2360 float tf_uv_pxoffset[4][2]; /* bucket bounds in UV space so we can init pixels only for this face, */
2361 float xhalfpx, yhalfpx;
2362 const float ibuf_xf = ibuf->x, ibuf_yf = ibuf->y;
2364 int has_x_isect = 0, has_isect = 0; /* for early loop exit */
2368 float uv_clip[8][2];
2370 const short is_ortho = ps->is_ortho;
2371 const short do_backfacecull = ps->do_backfacecull;
2373 vCo[0] = ps->dm_mvert[mf->v1].co;
2374 vCo[1] = ps->dm_mvert[mf->v2].co;
2375 vCo[2] = ps->dm_mvert[mf->v3].co;
2378 /* Use tf_uv_pxoffset instead of tf->uv so we can offset the UV half a pixel
2379 * this is done so we can avoid offseting all the pixels by 0.5 which causes
2380 * problems when wrapping negative coords */
2381 xhalfpx = (0.5f+ (PROJ_GEOM_TOLERANCE/3.0f) ) / ibuf_xf;
2382 yhalfpx = (0.5f+ (PROJ_GEOM_TOLERANCE/4.0f) ) / ibuf_yf;
2384 /* Note about (PROJ_GEOM_TOLERANCE/x) above...
2385 Needed to add this offset since UV coords are often quads aligned to pixels.
2386 In this case pixels can be exactly between 2 triangles causing nasty
2389 This workaround can be removed and painting will still work on most cases
2390 but since the first thing most people try is painting onto a quad- better make it work.
2395 tf_uv_pxoffset[0][0] = tf->uv[0][0] - xhalfpx;
2396 tf_uv_pxoffset[0][1] = tf->uv[0][1] - yhalfpx;
2398 tf_uv_pxoffset[1][0] = tf->uv[1][0] - xhalfpx;
2399 tf_uv_pxoffset[1][1] = tf->uv[1][1] - yhalfpx;
2401 tf_uv_pxoffset[2][0] = tf->uv[2][0] - xhalfpx;
2402 tf_uv_pxoffset[2][1] = tf->uv[2][1] - yhalfpx;
2405 vCo[3] = ps->dm_mvert[ mf->v4 ].co;
2407 tf_uv_pxoffset[3][0] = tf->uv[3][0] - xhalfpx;
2408 tf_uv_pxoffset[3][1] = tf->uv[3][1] - yhalfpx;
2423 uv1co = tf_uv_pxoffset[i1]; // was tf->uv[i1];
2424 uv2co = tf_uv_pxoffset[i2]; // was tf->uv[i2];
2425 uv3co = tf_uv_pxoffset[i3]; // was tf->uv[i3];
2427 v1coSS = ps->screenCoords[ (*(&mf->v1 + i1)) ];
2428 v2coSS = ps->screenCoords[ (*(&mf->v1 + i2)) ];
2429 v3coSS = ps->screenCoords[ (*(&mf->v1 + i3)) ];
2431 /* This funtion gives is a concave polyline in UV space from the clipped quad and tri*/
2432 project_bucket_clip_face(
2433 is_ortho, bucket_bounds,
2434 v1coSS, v2coSS, v3coSS,
2435 uv1co, uv2co, uv3co,
2436 uv_clip, &uv_clip_tot
2439 /* sometimes this happens, better just allow for 8 intersectiosn even though there should be max 6 */
2441 if (uv_clip_tot>6) {
2442 printf("this should never happen! %d\n", uv_clip_tot);
2446 if (pixel_bounds_array(uv_clip, &bounds_px, ibuf->x, ibuf->y, uv_clip_tot)) {
2451 for (y = bounds_px.ymin; y < bounds_px.ymax; y++) {
2452 //uv[1] = (((float)y) + 0.5f) / (float)ibuf->y;
2453 uv[1] = (float)y / ibuf_yf; /* use pixel offset UV coords instead */
2456 for (x = bounds_px.xmin; x < bounds_px.xmax; x++) {
2457 //uv[0] = (((float)x) + 0.5f) / ibuf->x;
2458 uv[0] = (float)x / ibuf_xf; /* use pixel offset UV coords instead */
2460 /* Note about IsectPoly2Df_twoside, checking the face or uv flipping doesnt work,
2461 * could check the poly direction but better to do this */
2462 if( (do_backfacecull && IsectPoly2Df(uv, uv_clip, uv_clip_tot)) ||
2463 (do_backfacecull==0 && IsectPoly2Df_twoside(uv, uv_clip, uv_clip_tot))) {
2465 has_x_isect = has_isect = 1;
2467 if (is_ortho) screen_px_from_ortho(uv, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, pixelScreenCo, w);
2468 else screen_px_from_persp(uv, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, pixelScreenCo, w);
2470 /* a pitty we need to get the worldspace pixel location here */
2471 if(ps->rv3d->rflag & RV3D_CLIPPING) {
2472 VecWeightf(wco, ps->dm_mvert[ (*(&mf->v1 + i1)) ].co, ps->dm_mvert[ (*(&mf->v1 + i2)) ].co, ps->dm_mvert[ (*(&mf->v1 + i3)) ].co, w);
2473 Mat4MulVecfl(ps->ob->obmat, wco);
2474 if(view3d_test_clipping(ps->rv3d, wco)) {
2475 continue; /* Watch out that no code below this needs to run */
2479 /* Is this UV visible from the view? - raytrace */
2480 /* project_paint_PickFace is less complex, use for testing */
2481 //if (project_paint_PickFace(ps, pixelScreenCo, w, &side) == face_index) {
2482 if (ps->do_occlude==0 || !project_bucket_point_occluded(ps, bucketFaceNodes, face_index, pixelScreenCo)) {
2484 mask = project_paint_uvpixel_mask(ps, face_index, side, w);
2487 BLI_linklist_prepend_arena(
2489 project_paint_uvpixel_init(ps, arena, ibuf, x, y, mask, face_index, image_index, pixelScreenCo, side, w),
2497 else if (has_x_isect) {
2498 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2505 #if 0 /* TODO - investigate why this dosnt work sometimes! it should! */
2506 /* no intersection for this entire row, after some intersection above means we can quit now */
2507 if (has_x_isect==0 && has_isect) {
2517 #ifndef PROJ_DEBUG_NOSEAMBLEED
2518 if (ps->seam_bleed_px > 0.0f) {
2521 if (ps->thread_tot > 1)
2522 BLI_lock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2524 face_seam_flag = ps->faceSeamFlags[face_index];
2526 /* are any of our edges un-initialized? */
2527 if ((face_seam_flag & (PROJ_FACE_SEAM1|PROJ_FACE_NOSEAM1))==0 ||
2528 (face_seam_flag & (PROJ_FACE_SEAM2|PROJ_FACE_NOSEAM2))==0 ||
2529 (face_seam_flag & (PROJ_FACE_SEAM3|PROJ_FACE_NOSEAM3))==0 ||
2530 (face_seam_flag & (PROJ_FACE_SEAM4|PROJ_FACE_NOSEAM4))==0
2532 project_face_seams_init(ps, face_index, mf->v4);
2533 face_seam_flag = ps->faceSeamFlags[face_index];
2534 //printf("seams - %d %d %d %d\n", flag&PROJ_FACE_SEAM1, flag&PROJ_FACE_SEAM2, flag&PROJ_FACE_SEAM3, flag&PROJ_FACE_SEAM4);
2537 if ((face_seam_flag & (PROJ_FACE_SEAM1|PROJ_FACE_SEAM2|PROJ_FACE_SEAM3|PROJ_FACE_SEAM4))==0) {
2539 if (ps->thread_tot > 1)
2540 BLI_unlock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2544 /* we have a seam - deal with it! */
2546 /* Now create new UV's for the seam face */
2547 float (*outset_uv)[2] = ps->faceSeamUVs[face_index];
2548 float insetCos[4][3]; /* inset face coords. NOTE!!! ScreenSace for ortho, Worldspace in prespective view */
2551 float *vCoSS[4]; /* vertex screenspace coords */
2553 float bucket_clip_edges[2][2]; /* store the screenspace coords of the face, clipped by the bucket's screen aligned rectangle */
2554 float edge_verts_inset_clip[2][3];
2555 int fidx1, fidx2; /* face edge pairs - loop throuh these ((0,1), (1,2), (2,3), (3,0)) or ((0,1), (1,2), (2,0)) for a tri */
2557 float seam_subsection[4][2];
2558 float fac1, fac2, ftot;
2561 if (outset_uv[0][0]==FLT_MAX) /* first time initialize */
2562 uv_image_outset(tf_uv_pxoffset, outset_uv, ps->seam_bleed_px, ibuf->x, ibuf->y, mf->v4);
2564 /* ps->faceSeamUVs cant be modified when threading, now this is done we can unlock */
2565 if (ps->thread_tot > 1)
2566 BLI_unlock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2568 vCoSS[0] = ps->screenCoords[mf->v1];
2569 vCoSS[1] = ps->screenCoords[mf->v2];
2570 vCoSS[2] = ps->screenCoords[mf->v3];
2572 vCoSS[3] = ps->screenCoords[ mf->v4 ];
2574 /* PROJ_FACE_SCALE_SEAM must be slightly less then 1.0f */
2576 if (mf->v4) scale_quad(insetCos, vCoSS, PROJ_FACE_SCALE_SEAM);
2577 else scale_tri(insetCos, vCoSS, PROJ_FACE_SCALE_SEAM);
2580 if (mf->v4) scale_quad(insetCos, vCo, PROJ_FACE_SCALE_SEAM);
2581 else scale_tri(insetCos, vCo, PROJ_FACE_SCALE_SEAM);
2584 side = 0; /* for triangles this wont need to change */
2586 for (fidx1 = 0; fidx1 < (mf->v4 ? 4 : 3); fidx1++) {
2587 if (mf->v4) fidx2 = (fidx1==3) ? 0 : fidx1+1; /* next fidx in the face (0,1,2,3) -> (1,2,3,0) */
2588 else fidx2 = (fidx1==2) ? 0 : fidx1+1; /* next fidx in the face (0,1,2) -> (1,2,0) */
2590 if ( (face_seam_flag & (1<<fidx1)) && /* 1<<fidx1 -> PROJ_FACE_SEAM# */
2591 line_clip_rect2f(bucket_bounds, vCoSS[fidx1], vCoSS[fidx2], bucket_clip_edges[0], bucket_clip_edges[1])
2594 ftot = Vec2Lenf(vCoSS[fidx1], vCoSS[fidx2]); /* screenspace edge length */
2596 if (ftot > 0.0f) { /* avoid div by zero */
2598 if (fidx1==2 || fidx2==2) side= 1;
2602 fac1 = Vec2Lenf(vCoSS[fidx1], bucket_clip_edges[0]) / ftot;
2603 fac2 = Vec2Lenf(vCoSS[fidx1], bucket_clip_edges[1]) / ftot;
2605 Vec2Lerpf(seam_subsection[0], tf_uv_pxoffset[fidx1], tf_uv_pxoffset[fidx2], fac1);
2606 Vec2Lerpf(seam_subsection[1], tf_uv_pxoffset[fidx1], tf_uv_pxoffset[fidx2], fac2);
2608 Vec2Lerpf(seam_subsection[2], outset_uv[fidx1], outset_uv[fidx2], fac2);
2609 Vec2Lerpf(seam_subsection[3], outset_uv[fidx1], outset_uv[fidx2], fac1);
2611 /* if the bucket_clip_edges values Z values was kept we could avoid this
2612 * Inset needs to be added so occlusion tests wont hit adjacent faces */
2613 VecLerpf(edge_verts_inset_clip[0], insetCos[fidx1], insetCos[fidx2], fac1);
2614 VecLerpf(edge_verts_inset_clip[1], insetCos[fidx1], insetCos[fidx2], fac2);
2617 if (pixel_bounds_uv(seam_subsection[0], seam_subsection[1], seam_subsection[2], seam_subsection[3], &bounds_px, ibuf->x, ibuf->y, 1)) {
2618 /* bounds between the seam rect and the uvspace bucket pixels */
2621 for (y = bounds_px.ymin; y < bounds_px.ymax; y++) {
2622 // uv[1] = (((float)y) + 0.5f) / (float)ibuf->y;
2623 uv[1] = (float)y / ibuf_yf; /* use offset uvs instead */
2626 for (x = bounds_px.xmin; x < bounds_px.xmax; x++) {
2627 //uv[0] = (((float)x) + 0.5f) / (float)ibuf->x;
2628 uv[0] = (float)x / ibuf_xf; /* use offset uvs instead */
2630 /* test we're inside uvspace bucket and triangle bounds */
2631 if (IsectPQ2Df(uv, seam_subsection[0], seam_subsection[1], seam_subsection[2], seam_subsection[3])) {
2633 /* We need to find the closest point along the face edge,
2634 * getting the screen_px_from_*** wont work because our actual location
2635 * is not relevent, since we are outside the face, Use VecLerpf to find
2636 * our location on the side of the face's UV */
2638 if (is_ortho) screen_px_from_ortho(ps, uv, v1co, v2co, v3co, uv1co, uv2co, uv3co, pixelScreenCo);
2639 else screen_px_from_persp(ps, uv, v1co, v2co, v3co, uv1co, uv2co, uv3co, pixelScreenCo);
2642 /* Since this is a seam we need to work out where on the line this pixel is */
2643 //fac = lambda_cp_line2(uv, uv_seam_quad[0], uv_seam_quad[1]);
2645 fac = lambda_cp_line2(uv, seam_subsection[0], seam_subsection[1]);
2646 if (fac < 0.0f) { VECCOPY(pixelScreenCo, edge_verts_inset_clip[0]); }
2647 else if (fac > 1.0f) { VECCOPY(pixelScreenCo, edge_verts_inset_clip[1]); }
2648 else { VecLerpf(pixelScreenCo, edge_verts_inset_clip[0], edge_verts_inset_clip[1], fac); }
2651 pixelScreenCo[3] = 1.0f;
2652 Mat4MulVec4fl((float(*)[4])ps->projectMat, pixelScreenCo); /* cast because of const */
2653 pixelScreenCo[0] = (float)(ps->ar->winx/2.0f)+(ps->ar->winx/2.0f)*pixelScreenCo[0]/pixelScreenCo[3];
2654 pixelScreenCo[1] = (float)(ps->ar->winy/2.0f)+(ps->ar->winy/2.0f)*pixelScreenCo[1]/pixelScreenCo[3];
2655 pixelScreenCo[2] = pixelScreenCo[2]/pixelScreenCo[3]; /* Use the depth for bucket point occlusion */
2658 if (ps->do_occlude==0 || !project_bucket_point_occluded(ps, bucketFaceNodes, face_index, pixelScreenCo)) {
2660 /* Only bother calculating the weights if we intersect */
2661 if (ps->do_mask_normal || ps->dm_mtface_clone) {
2663 /* This is not QUITE correct since UV is not inside the UV's but good enough for seams */
2665 BarycentricWeights2f(uv, tf_uv_pxoffset[0], tf_uv_pxoffset[2], tf_uv_pxoffset[3], w);
2668 BarycentricWeights2f(uv, tf_uv_pxoffset[0], tf_uv_pxoffset[1], tf_uv_pxoffset[2], w);
2672 /* Cheat, we know where we are along the edge so work out the weights from that */
2673 fac = fac1 + (fac * (fac2-fac1));
2674 w[0]=w[1]=w[2]= 0.0;
2676 w[fidx1?fidx1-1:0] = fac;
2677 w[fidx2?fidx2-1:0] = 1.0-fac;
2686 /* a pitty we need to get the worldspace pixel location here */
2687 if(ps->rv3d->rflag & RV3D_CLIPPING) {
2688 if (side) VecWeightf(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v3].co, ps->dm_mvert[mf->v4].co, w);
2689 else VecWeightf(wco, ps->dm_mvert[mf->v1].co, ps->dm_mvert[mf->v2].co, ps->dm_mvert[mf->v3].co, w);
2691 Mat4MulVecfl(ps->ob->obmat, wco);
2692 if(view3d_test_clipping(ps->rv3d, wco)) {
2693 continue; /* Watch out that no code below this needs to run */
2697 mask = project_paint_uvpixel_mask(ps, face_index, side, w);
2700 BLI_linklist_prepend_arena(
2702 project_paint_uvpixel_init(ps, arena, ibuf, x, y, mask, face_index, image_index, pixelScreenCo, side, w),
2709 else if (has_x_isect) {
2710 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2715 #if 0 /* TODO - investigate why this dosnt work sometimes! it should! */
2716 /* no intersection for this entire row, after some intersection above means we can quit now */
2717 if (has_x_isect==0 && has_isect) {
2728 #endif // PROJ_DEBUG_NOSEAMBLEED
2732 /* takes floating point screenspace min/max and returns int min/max to be used as indicies for ps->bucketRect, ps->bucketFlags */
2733 static void project_paint_bucket_bounds(const ProjPaintState *ps, const float min[2], const float max[2], int bucketMin[2], int bucketMax[2])
2735 /* divide by bucketWidth & bucketHeight so the bounds are offset in bucket grid units */
2736 bucketMin[0] = (int)(((float)(min[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x) + 0.5f; /* these offsets of 0.5 and 1.5 seem odd but they are correct */
2737 bucketMin[1] = (int)(((float)(min[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y) + 0.5f;
2739 bucketMax[0] = (int)(((float)(max[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x) + 1.5f;
2740 bucketMax[1] = (int)(((float)(max[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y) + 1.5f;
2742 /* incase the rect is outside the mesh 2d bounds */
2743 CLAMP(bucketMin[0], 0, ps->buckets_x);
2744 CLAMP(bucketMin[1], 0, ps->buckets_y);
2746 CLAMP(bucketMax[0], 0, ps->buckets_x);
2747 CLAMP(bucketMax[1], 0, ps->buckets_y);
2750 /* set bucket_bounds to a screen space-aligned floating point bound-box */
2751 static void project_bucket_bounds(const ProjPaintState *ps, const int bucket_x, const int bucket_y, rctf *bucket_bounds)
2753 bucket_bounds->xmin = ps->screenMin[0]+((bucket_x)*(ps->screen_width / ps->buckets_x)); /* left */
2754 bucket_bounds->xmax = ps->screenMin[0]+((bucket_x+1)*(ps->screen_width / ps->buckets_x)); /* right */
2756 bucket_bounds->ymin = ps->screenMin[1]+((bucket_y)*(ps->screen_height / ps->buckets_y)); /* bottom */
2757 bucket_bounds->ymax = ps->screenMin[1]+((bucket_y+1)*(ps->screen_height / ps->buckets_y)); /* top */
2760 /* Fill this bucket with pixels from the faces that intersect it.
2762 * have bucket_bounds as an argument so we don;t need to give bucket_x/y the rect function needs */
2763 static void project_bucket_init(const ProjPaintState *ps, const int thread_index, const int bucket_index, rctf *bucket_bounds)
2766 int face_index, image_index=0;
2770 Image *tpage_last = NULL;
2773 if (ps->image_tot==1) {
2774 /* Simple loop, no context switching */
2775 ibuf = ps->projImages[0].ibuf;
2777 for (node = ps->bucketFaces[bucket_index]; node; node= node->next) {
2778 project_paint_face_init(ps, thread_index, bucket_index, GET_INT_FROM_POINTER(node->link), 0, bucket_bounds, ibuf);
2783 /* More complicated loop, switch between images */
2784 for (node = ps->bucketFaces[bucket_index]; node; node= node->next) {
2785 face_index = GET_INT_FROM_POINTER(node->link);
2787 /* Image context switching */
2788 tf = ps->dm_mtface+face_index;
2789 if (tpage_last != tf->tpage) {
2790 tpage_last = tf->tpage;
2792 image_index = -1; /* sanity check */
2794 for (image_index=0; image_index < ps->image_tot; image_index++) {
2795 if (ps->projImages[image_index].ima == tpage_last) {
2796 ibuf = ps->projImages[image_index].ibuf;
2801 /* context switching done */
2803 project_paint_face_init(ps, thread_index, bucket_index, face_index, image_index, bucket_bounds, ibuf);