Cleanup: style
[blender-staging.git] / source / blender / editors / sculpt_paint / paint_image_proj.c
1 /*
2  * ***** BEGIN GPL LICENSE BLOCK *****
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * along with this program; if not, write to the Free Software Foundation,
15  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
16  *
17  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
18  * All rights reserved.
19  *
20  * The Original Code is: some of this file.
21  *
22  * Contributor(s): Jens Ole Wund (bjornmose), Campbell Barton (ideasman42)
23  *
24  * ***** END GPL LICENSE BLOCK *****
25  */
26
27 /** \file blender/editors/sculpt_paint/paint_image_proj.c
28  *  \ingroup edsculpt
29  *  \brief Functions to paint images in 2D and 3D.
30  */
31
32 #include <float.h>
33 #include <string.h>
34 #include <stdio.h>
35 #include <math.h>
36
37 #include "MEM_guardedalloc.h"
38
39 #ifdef WIN32
40 #  include "BLI_winstuff.h"
41 #endif
42
43 #include "BLI_blenlib.h"
44 #include "BLI_linklist.h"
45 #include "BLI_math.h"
46 #include "BLI_math_bits.h"
47 #include "BLI_math_color_blend.h"
48 #include "BLI_memarena.h"
49 #include "BLI_threads.h"
50 #include "BLI_utildefines.h"
51
52 #include "BLT_translation.h"
53
54
55 #include "IMB_imbuf.h"
56 #include "IMB_imbuf_types.h"
57
58 #include "DNA_brush_types.h"
59 #include "DNA_material_types.h"
60 #include "DNA_mesh_types.h"
61 #include "DNA_node_types.h"
62 #include "DNA_object_types.h"
63
64 #include "BKE_camera.h"
65 #include "BKE_context.h"
66 #include "BKE_colortools.h"
67 #include "BKE_depsgraph.h"
68 #include "BKE_DerivedMesh.h"
69 #include "BKE_idprop.h"
70 #include "BKE_brush.h"
71 #include "BKE_image.h"
72 #include "BKE_library.h"
73 #include "BKE_main.h"
74 #include "BKE_material.h"
75 #include "BKE_mesh.h"
76 #include "BKE_mesh_mapping.h"
77 #include "BKE_node.h"
78 #include "BKE_paint.h"
79 #include "BKE_report.h"
80 #include "BKE_scene.h"
81 #include "BKE_texture.h"
82
83 #include "UI_interface.h"
84
85 #include "ED_mesh.h"
86 #include "ED_node.h"
87 #include "ED_paint.h"
88 #include "ED_screen.h"
89 #include "ED_uvedit.h"
90 #include "ED_view3d.h"
91
92 #include "GPU_extensions.h"
93
94 #include "WM_api.h"
95 #include "WM_types.h"
96
97 #include "RNA_access.h"
98 #include "RNA_define.h"
99 #include "RNA_enum_types.h"
100
101 #include "GPU_draw.h"
102
103 #include "IMB_colormanagement.h"
104
105 #include "bmesh.h"
106 //#include "bmesh_tools.h"
107
108 #include "paint_intern.h"
109
110 /* Defines and Structs */
111 /* FTOCHAR as inline function */
112 BLI_INLINE unsigned char f_to_char(const float val)
113 {
114         return FTOCHAR(val);
115 }
116
117 /* ProjectionPaint defines */
118
119 /* approx the number of buckets to have under the brush,
120  * used with the brush size to set the ps->buckets_x and ps->buckets_y value.
121  *
122  * When 3 - a brush should have ~9 buckets under it at once
123  * ...this helps for threading while painting as well as
124  * avoiding initializing pixels that wont touch the brush */
125 #define PROJ_BUCKET_BRUSH_DIV 4
126
127 #define PROJ_BUCKET_RECT_MIN 4
128 #define PROJ_BUCKET_RECT_MAX 256
129
130 #define PROJ_BOUNDBOX_DIV 8
131 #define PROJ_BOUNDBOX_SQUARED  (PROJ_BOUNDBOX_DIV * PROJ_BOUNDBOX_DIV)
132
133 //#define PROJ_DEBUG_PAINT 1
134 //#define PROJ_DEBUG_NOSEAMBLEED 1
135 //#define PROJ_DEBUG_PRINT_CLIP 1
136 #define PROJ_DEBUG_WINCLIP 1
137
138
139 #ifndef PROJ_DEBUG_NOSEAMBLEED
140 /* projectFaceSeamFlags options */
141 //#define PROJ_FACE_IGNORE      (1<<0)  /* When the face is hidden, backfacing or occluded */
142 //#define PROJ_FACE_INIT        (1<<1)  /* When we have initialized the faces data */
143 #define PROJ_FACE_SEAM1 (1 << 0)  /* If this face has a seam on any of its edges */
144 #define PROJ_FACE_SEAM2 (1 << 1)
145 #define PROJ_FACE_SEAM3 (1 << 2)
146
147 #define PROJ_FACE_NOSEAM1   (1 << 4)
148 #define PROJ_FACE_NOSEAM2   (1 << 5)
149 #define PROJ_FACE_NOSEAM3   (1 << 6)
150
151 /* face winding */
152 #define PROJ_FACE_WINDING_INIT 1
153 #define PROJ_FACE_WINDING_CW 2
154
155 /* a slightly scaled down face is used to get fake 3D location for edge pixels in the seams
156  * as this number approaches  1.0f the likelihood increases of float precision errors where
157  * it is occluded by an adjacent face */
158 #define PROJ_FACE_SCALE_SEAM    0.99f
159 #endif  /* PROJ_DEBUG_NOSEAMBLEED */
160
161
162 #define PROJ_SRC_VIEW       1
163 #define PROJ_SRC_IMAGE_CAM  2
164 #define PROJ_SRC_IMAGE_VIEW 3
165 #define PROJ_SRC_VIEW_FILL  4
166
167 #define PROJ_VIEW_DATA_ID "view_data"
168 #define PROJ_VIEW_DATA_SIZE (4 * 4 + 4 * 4 + 3) /* viewmat + winmat + clipsta + clipend + is_ortho */
169
170 #define PROJ_BUCKET_NULL        0
171 #define PROJ_BUCKET_INIT        (1 << 0)
172 // #define PROJ_BUCKET_CLONE_INIT       (1<<1)
173
174 /* used for testing doubles, if a point is on a line etc */
175 #define PROJ_GEOM_TOLERANCE 0.00075f
176 #define PROJ_PIXEL_TOLERANCE 0.01f
177
178 /* vert flags */
179 #define PROJ_VERT_CULL 1
180
181 /* to avoid locking in tile initialization */
182 #define TILE_PENDING SET_INT_IN_POINTER(-1)
183
184 /* This is mainly a convenience struct used so we can keep an array of images we use
185  * Thir imbufs, etc, in 1 array, When using threads this array is copied for each thread
186  * because 'partRedrawRect' and 'touch' values would not be thread safe */
187 typedef struct ProjPaintImage {
188         Image *ima;
189         ImBuf *ibuf;
190         ImagePaintPartialRedraw *partRedrawRect;
191         volatile void **undoRect; /* only used to build undo tiles during painting */
192         unsigned short **maskRect; /* the mask accumulation must happen on canvas, not on space screen bucket.
193                                     * Here we store the mask rectangle */
194         bool **valid; /* store flag to enforce validation of undo rectangle */
195         bool touch;
196 } ProjPaintImage;
197
198 /**
199  * Handle for stroke (operator customdata)
200  */
201 typedef struct ProjStrokeHandle {
202         /* Support for painting from multiple views at once,
203          * currently used to impliment summetry painting,
204          * we can assume at least the first is set while painting. */
205         struct ProjPaintState *ps_views[8];
206         int ps_views_tot;
207         int symmetry_flags;
208
209         int orig_brush_size;
210
211         bool need_redraw;
212
213         /* trick to bypass regular paint and allow clone picking */
214         bool is_clone_cursor_pick;
215
216         /* In ProjPaintState, only here for convenience */
217         Scene *scene;
218         Brush *brush;
219 } ProjStrokeHandle;
220
221 /* Main projection painting struct passed to all projection painting functions */
222 typedef struct ProjPaintState {
223         View3D *v3d;
224         RegionView3D *rv3d;
225         ARegion *ar;
226         Scene *scene;
227         int source; /* PROJ_SRC_**** */
228
229         /* the paint color. It can change depending of inverted mode or not */
230         float paint_color[3];
231         float paint_color_linear[3];
232         float dither;
233
234         Brush *brush;
235         short tool, blend, mode;
236
237         float brush_size;
238         Object *ob;
239         /* for symmetry, we need to store modified object matrix */
240         float obmat[4][4];
241         float obmat_imat[4][4];
242         /* end similarities with ImagePaintState */
243
244         Image *stencil_ima;
245         Image *canvas_ima;
246         Image *clone_ima;
247         float stencil_value;
248
249         /* projection painting only */
250         MemArena *arena_mt[BLENDER_MAX_THREADS]; /* for multithreading, the first item is sometimes used for non threaded cases too */
251         LinkNode **bucketRect;              /* screen sized 2D array, each pixel has a linked list of ProjPixel's */
252         LinkNode **bucketFaces;             /* bucketRect aligned array linkList of faces overlapping each bucket */
253         unsigned char *bucketFlags;         /* store if the bucks have been initialized  */
254
255         char *vertFlags;                    /* store options per vert, now only store if the vert is pointing away from the view */
256         int buckets_x;                      /* The size of the bucket grid, the grid span's screenMin/screenMax so you can paint outsize the screen or with 2 brushes at once */
257         int buckets_y;
258
259         int pixel_sizeof;           /* result of project_paint_pixel_sizeof(), constant per stroke */
260
261         int image_tot;              /* size of projectImages array */
262
263         float (*screenCoords)[4];   /* verts projected into floating point screen space */
264         float screenMin[2];         /* 2D bounds for mesh verts on the screen's plane (screenspace) */
265         float screenMax[2];
266         float screen_width;         /* Calculated from screenMin & screenMax */
267         float screen_height;
268         int winx, winy;             /* from the carea or from the projection render */
269
270         /* options for projection painting */
271         bool  do_layer_clone;
272         bool  do_layer_stencil;
273         bool  do_layer_stencil_inv;
274         bool  do_stencil_brush;
275         bool  do_material_slots;
276
277         bool  do_occlude;               /* Use raytraced occlusion? - ortherwise will paint right through to the back*/
278         bool  do_backfacecull;          /* ignore faces with normals pointing away, skips a lot of raycasts if your normals are correctly flipped */
279         bool  do_mask_normal;           /* mask out pixels based on their normals */
280         bool  do_mask_cavity;           /* mask out pixels based on cavity */
281         bool  do_new_shading_nodes;     /* cache BKE_scene_use_new_shading_nodes value */
282         float normal_angle;             /* what angle to mask at */
283         float normal_angle__cos;         /* cos(normal_angle), faster to compare */
284         float normal_angle_inner;
285         float normal_angle_inner__cos;
286         float normal_angle_range;       /* difference between normal_angle and normal_angle_inner, for easy access */
287
288         bool do_face_sel;               /* quick access to (me->editflag & ME_EDIT_PAINT_FACE_SEL) */
289         bool is_ortho;
290         bool is_flip_object;            /* the object is negative scaled */
291         bool do_masking;              /* use masking during painting. Some operations such as airbrush may disable */
292         bool is_texbrush;              /* only to avoid running  */
293         bool is_maskbrush;            /* mask brush is applied before masking */
294 #ifndef PROJ_DEBUG_NOSEAMBLEED
295         float seam_bleed_px;
296 #endif
297         /* clone vars */
298         float cloneOffset[2];
299
300         float projectMat[4][4];     /* Projection matrix, use for getting screen coords */
301         float viewDir[3];           /* View vector, use for do_backfacecull and for ray casting with an ortho viewport  */
302         float viewPos[3];           /* View location in object relative 3D space, so can compare to verts  */
303         float clipsta, clipend;
304
305         /* reproject vars */
306         Image *reproject_image;
307         ImBuf *reproject_ibuf;
308
309         /* threads */
310         int thread_tot;
311         int bucketMin[2];
312         int bucketMax[2];
313         int context_bucket_x, context_bucket_y; /* must lock threads while accessing these */
314
315         struct CurveMapping *cavity_curve;
316         BlurKernel *blurkernel;
317
318
319
320         /* -------------------------------------------------------------------- */
321         /* Vars shared between multiple views (keep last) */
322         /**
323          * This data is owned by ``ProjStrokeHandle.ps_views[0]``,
324          * all other views re-use the data.
325          */
326
327 #define PROJ_PAINT_STATE_SHARED_MEMCPY(ps_dst, ps_src) \
328         MEMCPY_STRUCT_OFS(ps_dst, ps_src, is_shared_user)
329
330 #define PROJ_PAINT_STATE_SHARED_CLEAR(ps) \
331         MEMSET_STRUCT_OFS(ps, 0, is_shared_user)
332
333         bool is_shared_user;
334
335         ProjPaintImage *projImages;
336         float *cavities;            /* cavity amount for vertices */
337
338 #ifndef PROJ_DEBUG_NOSEAMBLEED
339         char *faceSeamFlags;                /* store info about faces, if they are initialized etc*/
340         char *faceWindingFlags;             /* save the winding of the face in uv space, helps as an extra validation step for seam detection */
341         float (*faceSeamUVs)[3][2];         /* expanded UVs for faces to use as seams */
342         LinkNode **vertFaces;               /* Only needed for when seam_bleed_px is enabled, use to find UV seams */
343 #endif
344
345         SpinLock *tile_lock;
346
347         DerivedMesh    *dm;
348         int  dm_totlooptri;
349         int  dm_totpoly;
350         int  dm_totedge;
351         int  dm_totvert;
352         bool dm_release;
353
354         const MVert    *dm_mvert;
355         const MEdge    *dm_medge;
356         const MPoly    *dm_mpoly;
357         const MLoop    *dm_mloop;
358         const MLoopTri *dm_mlooptri;
359
360         const MLoopUV  *dm_mloopuv_stencil;
361
362         /**
363          * \note These UV layers are aligned to \a dm_mpoly
364          * but each pointer references the start of the layer,
365          * so a loop indirection is needed as well.
366          */
367         const MLoopUV **dm_mloopuv;
368         const MLoopUV **dm_mloopuv_clone;    /* other UV map, use for cloning between layers */
369 } ProjPaintState;
370
371 typedef union pixelPointer {
372         float *f_pt;            /* float buffer */
373         unsigned int *uint_pt; /* 2 ways to access a char buffer */
374         unsigned char *ch_pt;
375 } PixelPointer;
376
377 typedef union pixelStore {
378         unsigned char ch[4];
379         unsigned int uint;
380         float f[4];
381 } PixelStore;
382
383 typedef struct ProjPixel {
384         float projCoSS[2]; /* the floating point screen projection of this pixel */
385         float worldCoSS[3];
386
387         short x_px, y_px;
388
389         unsigned short image_index; /* if anyone wants to paint onto more than 65535 images they can bite me */
390         unsigned char bb_cell_index;
391
392         /* for various reasons we may want to mask out painting onto this pixel */
393         unsigned short mask;
394
395         /* Only used when the airbrush is disabled.
396          * Store the max mask value to avoid painting over an area with a lower opacity
397          * with an advantage that we can avoid touching the pixel at all, if the
398          * new mask value is lower then mask_accum */
399         unsigned short *mask_accum;
400
401         /* horrible hack, store tile valid flag pointer here to re-validate tiles used for anchored and drag-dot strokes */
402         bool *valid;
403
404         PixelPointer origColor;
405         PixelStore newColor;
406         PixelPointer pixel;
407 } ProjPixel;
408
409 typedef struct ProjPixelClone {
410         struct ProjPixel __pp;
411         PixelStore clonepx;
412 } ProjPixelClone;
413
414 /* undo tile pushing */
415 typedef struct {
416         SpinLock *lock;
417         bool masked;
418         unsigned short tile_width;
419         ImBuf **tmpibuf;
420         ProjPaintImage *pjima;
421 } TileInfo;
422
423
424
425 /* -------------------------------------------------------------------- */
426
427 /** \name MLoopTri accessor functions.
428  * \{ */
429
430 BLI_INLINE const MPoly *ps_tri_index_to_mpoly(const ProjPaintState *ps, int tri_index)
431 {
432         return &ps->dm_mpoly[ps->dm_mlooptri[tri_index].poly];
433 }
434
435 #define PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) \
436         ps->dm_mloop[lt->tri[0]].v, \
437         ps->dm_mloop[lt->tri[1]].v, \
438         ps->dm_mloop[lt->tri[2]].v,
439
440 #define PS_LOOPTRI_AS_UV_3(uvlayer, lt) \
441         uvlayer[lt->poly][lt->tri[0]].uv, \
442         uvlayer[lt->poly][lt->tri[1]].uv, \
443         uvlayer[lt->poly][lt->tri[2]].uv,
444
445 #define PS_LOOPTRI_ASSIGN_UV_3(uv_tri, uvlayer, lt)  { \
446         (uv_tri)[0] = uvlayer[lt->poly][lt->tri[0]].uv; \
447         (uv_tri)[1] = uvlayer[lt->poly][lt->tri[1]].uv; \
448         (uv_tri)[2] = uvlayer[lt->poly][lt->tri[2]].uv; \
449 } ((void)0)
450
451 /** \} */
452
453
454
455 /* Finish projection painting structs */
456
457 static TexPaintSlot *project_paint_face_paint_slot(const ProjPaintState *ps, int tri_index)
458 {
459         const MPoly *mp = ps_tri_index_to_mpoly(ps, tri_index);
460         Material *ma = ps->dm->mat[mp->mat_nr];
461         return ma ? ma->texpaintslot + ma->paint_active_slot : NULL;
462 }
463
464 static Image *project_paint_face_paint_image(const ProjPaintState *ps, int tri_index)
465 {
466         if (ps->do_stencil_brush) {
467                 return ps->stencil_ima;
468         }
469         else {
470                 const MPoly *mp = ps_tri_index_to_mpoly(ps, tri_index);
471                 Material *ma = ps->dm->mat[mp->mat_nr];
472                 TexPaintSlot *slot = ma ? ma->texpaintslot + ma->paint_active_slot : NULL;
473                 return slot ? slot->ima : ps->canvas_ima;
474         }
475 }
476
477 static TexPaintSlot *project_paint_face_clone_slot(const ProjPaintState *ps, int tri_index)
478 {
479         const MPoly *mp = ps_tri_index_to_mpoly(ps, tri_index);
480         Material *ma = ps->dm->mat[mp->mat_nr];
481         return ma ? ma->texpaintslot + ma->paint_clone_slot : NULL;
482 }
483
484 static Image *project_paint_face_clone_image(const ProjPaintState *ps, int tri_index)
485 {
486         const MPoly *mp = ps_tri_index_to_mpoly(ps, tri_index);
487         Material *ma = ps->dm->mat[mp->mat_nr];
488         TexPaintSlot *slot = ma ? ma->texpaintslot + ma->paint_clone_slot : NULL;
489         return slot ? slot->ima : ps->clone_ima;
490 }
491
492 /* fast projection bucket array lookup, use the safe version for bound checking  */
493 static int project_bucket_offset(const ProjPaintState *ps, const float projCoSS[2])
494 {
495         /* If we were not dealing with screenspace 2D coords we could simple do...
496          * ps->bucketRect[x + (y*ps->buckets_y)] */
497
498         /* please explain?
499          * projCoSS[0] - ps->screenMin[0]   : zero origin
500          * ... / ps->screen_width           : range from 0.0 to 1.0
501          * ... * ps->buckets_x              : use as a bucket index
502          *
503          * Second multiplication does similar but for vertical offset
504          */
505         return ( (int)(((projCoSS[0] - ps->screenMin[0]) / ps->screen_width)  * ps->buckets_x)) +
506                (((int)(((projCoSS[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y)) * ps->buckets_x);
507 }
508
509 static int project_bucket_offset_safe(const ProjPaintState *ps, const float projCoSS[2])
510 {
511         int bucket_index = project_bucket_offset(ps, projCoSS);
512
513         if (bucket_index < 0 || bucket_index >= ps->buckets_x * ps->buckets_y) {
514                 return -1;
515         }
516         else {
517                 return bucket_index;
518         }
519 }
520
521 static float VecZDepthOrtho(
522         const float pt[2],
523         const float v1[3], const float v2[3], const float v3[3],
524         float w[3])
525 {
526         barycentric_weights_v2(v1, v2, v3, pt, w);
527         return (v1[2] * w[0]) + (v2[2] * w[1]) + (v3[2] * w[2]);
528 }
529
530 static float VecZDepthPersp(
531         const float pt[2],
532         const float v1[4], const float v2[4], const float v3[4],
533         float w[3])
534 {
535         float wtot_inv, wtot;
536         float w_tmp[3];
537
538         barycentric_weights_v2_persp(v1, v2, v3, pt, w);
539         /* for the depth we need the weights to match what
540          * barycentric_weights_v2 would return, in this case its easiest just to
541          * undo the 4th axis division and make it unit-sum
542          *
543          * don't call barycentric_weights_v2() because our callers expect 'w'
544          * to be weighted from the perspective */
545         w_tmp[0] = w[0] * v1[3];
546         w_tmp[1] = w[1] * v2[3];
547         w_tmp[2] = w[2] * v3[3];
548
549         wtot = w_tmp[0] + w_tmp[1] + w_tmp[2];
550
551         if (wtot != 0.0f) {
552                 wtot_inv = 1.0f / wtot;
553
554                 w_tmp[0] = w_tmp[0] * wtot_inv;
555                 w_tmp[1] = w_tmp[1] * wtot_inv;
556                 w_tmp[2] = w_tmp[2] * wtot_inv;
557         }
558         else /* dummy values for zero area face */
559                 w_tmp[0] = w_tmp[1] = w_tmp[2] = 1.0f / 3.0f;
560         /* done mimicing barycentric_weights_v2() */
561
562         return (v1[2] * w_tmp[0]) + (v2[2] * w_tmp[1]) + (v3[2] * w_tmp[2]);
563 }
564
565
566 /* Return the top-most face index that the screen space coord 'pt' touches (or -1) */
567 static int project_paint_PickFace(
568         const ProjPaintState *ps, const float pt[2],
569         float w[3])
570 {
571         LinkNode *node;
572         float w_tmp[3];
573         int bucket_index;
574         int best_tri_index = -1;
575         float z_depth_best = FLT_MAX, z_depth;
576
577         bucket_index = project_bucket_offset_safe(ps, pt);
578         if (bucket_index == -1)
579                 return -1;
580
581
582
583         /* we could return 0 for 1 face buckets, as long as this function assumes
584          * that the point its testing is only every originated from an existing face */
585
586         for (node = ps->bucketFaces[bucket_index]; node; node = node->next) {
587                 const int tri_index = GET_INT_FROM_POINTER(node->link);
588                 const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
589                 const float *vtri_ss[3] = {
590                     ps->screenCoords[ps->dm_mloop[lt->tri[0]].v],
591                     ps->screenCoords[ps->dm_mloop[lt->tri[1]].v],
592                     ps->screenCoords[ps->dm_mloop[lt->tri[2]].v],
593                 };
594
595
596                 if (isect_point_tri_v2(pt, UNPACK3(vtri_ss))) {
597                         if (ps->is_ortho) {
598                                 z_depth = VecZDepthOrtho(pt, UNPACK3(vtri_ss), w_tmp);
599                         }
600                         else {
601                                 z_depth = VecZDepthPersp(pt, UNPACK3(vtri_ss), w_tmp);
602                         }
603
604                         if (z_depth < z_depth_best) {
605                                 best_tri_index = tri_index;
606                                 z_depth_best = z_depth;
607                                 copy_v3_v3(w, w_tmp);
608                         }
609                 }
610         }
611
612         return best_tri_index; /* will be -1 or a valid face */
613 }
614
615 /* Converts a uv coord into a pixel location wrapping if the uv is outside 0-1 range */
616 static void uvco_to_wrapped_pxco(const float uv[2], int ibuf_x, int ibuf_y, float *x, float *y)
617 {
618         /* use */
619         *x = fmodf(uv[0], 1.0f);
620         *y = fmodf(uv[1], 1.0f);
621
622         if (*x < 0.0f) *x += 1.0f;
623         if (*y < 0.0f) *y += 1.0f;
624
625         *x = *x * ibuf_x - 0.5f;
626         *y = *y * ibuf_y - 0.5f;
627 }
628
629 /* Set the top-most face color that the screen space coord 'pt' touches (or return 0 if none touch) */
630 static bool project_paint_PickColor(
631         const ProjPaintState *ps, const float pt[2],
632         float *rgba_fp, unsigned char *rgba, const bool interp)
633 {
634         const MLoopTri *lt;
635         const float *lt_tri_uv[3];
636         float w[3], uv[2];
637         int tri_index;
638         Image *ima;
639         ImBuf *ibuf;
640         int xi, yi;
641
642         tri_index = project_paint_PickFace(ps, pt, w);
643
644         if (tri_index == -1)
645                 return 0;
646
647         lt = &ps->dm_mlooptri[tri_index];
648         PS_LOOPTRI_ASSIGN_UV_3(lt_tri_uv, ps->dm_mloopuv, lt);
649
650         interp_v2_v2v2v2(uv, UNPACK3(lt_tri_uv), w);
651
652         ima = project_paint_face_paint_image(ps, tri_index);
653         ibuf = BKE_image_get_first_ibuf(ima); /* we must have got the imbuf before getting here */
654         if (!ibuf) return 0;
655
656         if (interp) {
657                 float x, y;
658                 uvco_to_wrapped_pxco(uv, ibuf->x, ibuf->y, &x, &y);
659
660                 if (ibuf->rect_float) {
661                         if (rgba_fp) {
662                                 bilinear_interpolation_color_wrap(ibuf, NULL, rgba_fp, x, y);
663                         }
664                         else {
665                                 float rgba_tmp_f[4];
666                                 bilinear_interpolation_color_wrap(ibuf, NULL, rgba_tmp_f, x, y);
667                                 premul_float_to_straight_uchar(rgba, rgba_tmp_f);
668                         }
669                 }
670                 else {
671                         if (rgba) {
672                                 bilinear_interpolation_color_wrap(ibuf, rgba, NULL, x, y);
673                         }
674                         else {
675                                 unsigned char rgba_tmp[4];
676                                 bilinear_interpolation_color_wrap(ibuf, rgba_tmp, NULL, x, y);
677                                 straight_uchar_to_premul_float(rgba_fp, rgba_tmp);
678                         }
679                 }
680         }
681         else {
682                 //xi = (int)((uv[0]*ibuf->x) + 0.5f);
683                 //yi = (int)((uv[1]*ibuf->y) + 0.5f);
684                 //if (xi < 0 || xi >= ibuf->x  ||  yi < 0 || yi >= ibuf->y) return 0;
685
686                 /* wrap */
687                 xi = mod_i((int)(uv[0] * ibuf->x), ibuf->x);
688                 yi = mod_i((int)(uv[1] * ibuf->y), ibuf->y);
689
690                 if (rgba) {
691                         if (ibuf->rect_float) {
692                                 const float *rgba_tmp_fp = ibuf->rect_float + (xi + yi * ibuf->x * 4);
693                                 premul_float_to_straight_uchar(rgba, rgba_tmp_fp);
694                         }
695                         else {
696                                 *((unsigned int *)rgba) = *(unsigned int *)(((char *)ibuf->rect) + ((xi + yi * ibuf->x) * 4));
697                         }
698                 }
699
700                 if (rgba_fp) {
701                         if (ibuf->rect_float) {
702                                 copy_v4_v4(rgba_fp, (ibuf->rect_float + ((xi + yi * ibuf->x) * 4)));
703                         }
704                         else {
705                                 unsigned char *tmp_ch = ((unsigned char *)ibuf->rect) + ((xi + yi * ibuf->x) * 4);
706                                 straight_uchar_to_premul_float(rgba_fp, tmp_ch);
707                         }
708                 }
709         }
710         BKE_image_release_ibuf(ima, ibuf, NULL);
711         return 1;
712 }
713
714 /**
715  * Check if 'pt' is infront of the 3 verts on the Z axis (used for screenspace occlusuion test)
716  * \return
717  * -  `0`:   no occlusion
718  * - `-1`: no occlusion but 2D intersection is true
719  * -  `1`: occluded
720  * -  `2`: occluded with `w[3]` weights set (need to know in some cases)
721  */
722 static int project_paint_occlude_ptv(
723         const float pt[3],
724         const float v1[4], const float v2[4], const float v3[4],
725         float w[3], const bool is_ortho)
726 {
727         /* if all are behind us, return false */
728         if (v1[2] > pt[2] && v2[2] > pt[2] && v3[2] > pt[2])
729                 return 0;
730
731         /* do a 2D point in try intersection */
732         if (!isect_point_tri_v2(pt, v1, v2, v3))
733                 return 0;  /* we know there is  */
734
735
736         /* From here on we know there IS an intersection */
737         /* if ALL of the verts are infront of us then we know it intersects ? */
738         if (v1[2] < pt[2] && v2[2] < pt[2] && v3[2] < pt[2]) {
739                 return 1;
740         }
741         else {
742                 /* we intersect? - find the exact depth at the point of intersection */
743                 /* Is this point is occluded by another face? */
744                 if (is_ortho) {
745                         if (VecZDepthOrtho(pt, v1, v2, v3, w) < pt[2]) return 2;
746                 }
747                 else {
748                         if (VecZDepthPersp(pt, v1, v2, v3, w) < pt[2]) return 2;
749                 }
750         }
751         return -1;
752 }
753
754
755 static int project_paint_occlude_ptv_clip(
756         const float pt[3],
757         const float v1[4], const float v2[4], const float v3[4],
758         const float v1_3d[3], const float v2_3d[3], const float v3_3d[3],
759         float w[3], const bool is_ortho, RegionView3D *rv3d)
760 {
761         float wco[3];
762         int ret = project_paint_occlude_ptv(pt, v1, v2, v3, w, is_ortho);
763
764         if (ret <= 0)
765                 return ret;
766
767         if (ret == 1) { /* weights not calculated */
768                 if (is_ortho) {
769                         barycentric_weights_v2(v1, v2, v3, pt, w);
770                 }
771                 else {
772                         barycentric_weights_v2_persp(v1, v2, v3, pt, w);
773                 }
774         }
775
776         /* Test if we're in the clipped area, */
777         interp_v3_v3v3v3(wco, v1_3d, v2_3d, v3_3d, w);
778
779         if (!ED_view3d_clipping_test(rv3d, wco, true)) {
780                 return 1;
781         }
782
783         return -1;
784 }
785
786
787 /* Check if a screenspace location is occluded by any other faces
788  * check, pixelScreenCo must be in screenspace, its Z-Depth only needs to be used for comparison
789  * and doesn't need to be correct in relation to X and Y coords (this is the case in perspective view) */
790 static bool project_bucket_point_occluded(
791         const ProjPaintState *ps, LinkNode *bucketFace,
792         const int orig_face, const float pixelScreenCo[4])
793 {
794         int isect_ret;
795         const bool do_clip = ps->rv3d ? (ps->rv3d->rflag & RV3D_CLIPPING) != 0 : 0;
796
797         /* we could return 0 for 1 face buckets, as long as this function assumes
798          * that the point its testing is only every originated from an existing face */
799
800         for (; bucketFace; bucketFace = bucketFace->next) {
801                 const int tri_index = GET_INT_FROM_POINTER(bucketFace->link);
802
803                 if (orig_face != tri_index) {
804                         const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
805                         const float *vtri_ss[3] = {
806                             ps->screenCoords[ps->dm_mloop[lt->tri[0]].v],
807                             ps->screenCoords[ps->dm_mloop[lt->tri[1]].v],
808                             ps->screenCoords[ps->dm_mloop[lt->tri[2]].v],
809                         };
810                         float w[3];
811
812                         if (do_clip) {
813                                 const float *vtri_co[3] = {
814                                     ps->dm_mvert[ps->dm_mloop[lt->tri[0]].v].co,
815                                     ps->dm_mvert[ps->dm_mloop[lt->tri[1]].v].co,
816                                     ps->dm_mvert[ps->dm_mloop[lt->tri[2]].v].co,
817                                 };
818                                 isect_ret = project_paint_occlude_ptv_clip(
819                                         pixelScreenCo, UNPACK3(vtri_ss), UNPACK3(vtri_co),
820                                         w, ps->is_ortho, ps->rv3d);
821                         }
822                         else {
823                                 isect_ret = project_paint_occlude_ptv(
824                                         pixelScreenCo, UNPACK3(vtri_ss),
825                                         w, ps->is_ortho);
826                         }
827
828                         if (isect_ret >= 1) {
829                                 /* TODO - we may want to cache the first hit,
830                                  * it is not possible to swap the face order in the list anymore */
831                                 return true;
832                         }
833                 }
834         }
835         return false;
836 }
837
838 /* basic line intersection, could move to math_geom.c, 2 points with a horiz line
839  * 1 for an intersection, 2 if the first point is aligned, 3 if the second point is aligned */
840 #define ISECT_TRUE 1
841 #define ISECT_TRUE_P1 2
842 #define ISECT_TRUE_P2 3
843 static int line_isect_y(const float p1[2], const float p2[2], const float y_level, float *x_isect)
844 {
845         float y_diff;
846
847         if (y_level == p1[1]) { /* are we touching the first point? - no interpolation needed */
848                 *x_isect = p1[0];
849                 return ISECT_TRUE_P1;
850         }
851         if (y_level == p2[1]) { /* are we touching the second point? - no interpolation needed */
852                 *x_isect = p2[0];
853                 return ISECT_TRUE_P2;
854         }
855
856         y_diff = fabsf(p1[1] - p2[1]); /* yuck, horizontal line, we cant do much here */
857
858         if (y_diff < 0.000001f) {
859                 *x_isect = (p1[0] + p2[0]) * 0.5f;
860                 return ISECT_TRUE;
861         }
862
863         if (p1[1] > y_level && p2[1] < y_level) {
864                 *x_isect = (p2[0] * (p1[1] - y_level) + p1[0] * (y_level - p2[1])) / y_diff;  /* (p1[1] - p2[1]); */
865                 return ISECT_TRUE;
866         }
867         else if (p1[1] < y_level && p2[1] > y_level) {
868                 *x_isect = (p2[0] * (y_level - p1[1]) + p1[0] * (p2[1] - y_level)) / y_diff;  /* (p2[1] - p1[1]); */
869                 return ISECT_TRUE;
870         }
871         else {
872                 return 0;
873         }
874 }
875
876 static int line_isect_x(const float p1[2], const float p2[2], const float x_level, float *y_isect)
877 {
878         float x_diff;
879
880         if (x_level == p1[0]) { /* are we touching the first point? - no interpolation needed */
881                 *y_isect = p1[1];
882                 return ISECT_TRUE_P1;
883         }
884         if (x_level == p2[0]) { /* are we touching the second point? - no interpolation needed */
885                 *y_isect = p2[1];
886                 return ISECT_TRUE_P2;
887         }
888
889         x_diff = fabsf(p1[0] - p2[0]); /* yuck, horizontal line, we cant do much here */
890
891         if (x_diff < 0.000001f) { /* yuck, vertical line, we cant do much here */
892                 *y_isect = (p1[0] + p2[0]) * 0.5f;
893                 return ISECT_TRUE;
894         }
895
896         if (p1[0] > x_level && p2[0] < x_level) {
897                 *y_isect = (p2[1] * (p1[0] - x_level) + p1[1] * (x_level - p2[0])) / x_diff;  /* (p1[0] - p2[0]); */
898                 return ISECT_TRUE;
899         }
900         else if (p1[0] < x_level && p2[0] > x_level) {
901                 *y_isect = (p2[1] * (x_level - p1[0]) + p1[1] * (p2[0] - x_level)) / x_diff;  /* (p2[0] - p1[0]); */
902                 return ISECT_TRUE;
903         }
904         else {
905                 return 0;
906         }
907 }
908
909 /* simple func use for comparing UV locations to check if there are seams.
910  * Its possible this gives incorrect results, when the UVs for 1 face go into the next
911  * tile, but do not do this for the adjacent face, it could return a false positive.
912  * This is so unlikely that Id not worry about it. */
913 #ifndef PROJ_DEBUG_NOSEAMBLEED
914 static bool cmp_uv(const float vec2a[2], const float vec2b[2])
915 {
916         /* if the UV's are not between 0.0 and 1.0 */
917         float xa = fmodf(vec2a[0], 1.0f);
918         float ya = fmodf(vec2a[1], 1.0f);
919
920         float xb = fmodf(vec2b[0], 1.0f);
921         float yb = fmodf(vec2b[1], 1.0f);
922
923         if (xa < 0.0f) xa += 1.0f;
924         if (ya < 0.0f) ya += 1.0f;
925
926         if (xb < 0.0f) xb += 1.0f;
927         if (yb < 0.0f) yb += 1.0f;
928
929         return ((fabsf(xa - xb) < PROJ_GEOM_TOLERANCE) && (fabsf(ya - yb) < PROJ_GEOM_TOLERANCE)) ? 1 : 0;
930 }
931 #endif
932
933 /* set min_px and max_px to the image space bounds of the UV coords
934  * return zero if there is no area in the returned rectangle */
935 #ifndef PROJ_DEBUG_NOSEAMBLEED
936 static bool pixel_bounds_uv(
937         const float uv_quad[4][2],
938         rcti *bounds_px,
939         const int ibuf_x, const int ibuf_y
940         )
941 {
942         float min_uv[2], max_uv[2]; /* UV bounds */
943
944         INIT_MINMAX2(min_uv, max_uv);
945
946         minmax_v2v2_v2(min_uv, max_uv, uv_quad[0]);
947         minmax_v2v2_v2(min_uv, max_uv, uv_quad[1]);
948         minmax_v2v2_v2(min_uv, max_uv, uv_quad[2]);
949         minmax_v2v2_v2(min_uv, max_uv, uv_quad[3]);
950
951         bounds_px->xmin = (int)(ibuf_x * min_uv[0]);
952         bounds_px->ymin = (int)(ibuf_y * min_uv[1]);
953
954         bounds_px->xmax = (int)(ibuf_x * max_uv[0]) + 1;
955         bounds_px->ymax = (int)(ibuf_y * max_uv[1]) + 1;
956
957         /*printf("%d %d %d %d\n", min_px[0], min_px[1], max_px[0], max_px[1]);*/
958
959         /* face uses no UV area when quantized to pixels? */
960         return (bounds_px->xmin == bounds_px->xmax || bounds_px->ymin == bounds_px->ymax) ? 0 : 1;
961 }
962 #endif
963
964 static bool pixel_bounds_array(float (*uv)[2], rcti *bounds_px, const int ibuf_x, const int ibuf_y, int tot)
965 {
966         float min_uv[2], max_uv[2]; /* UV bounds */
967
968         if (tot == 0) {
969                 return 0;
970         }
971
972         INIT_MINMAX2(min_uv, max_uv);
973
974         while (tot--) {
975                 minmax_v2v2_v2(min_uv, max_uv, (*uv));
976                 uv++;
977         }
978
979         bounds_px->xmin = (int)(ibuf_x * min_uv[0]);
980         bounds_px->ymin = (int)(ibuf_y * min_uv[1]);
981
982         bounds_px->xmax = (int)(ibuf_x * max_uv[0]) + 1;
983         bounds_px->ymax = (int)(ibuf_y * max_uv[1]) + 1;
984
985         /*printf("%d %d %d %d\n", min_px[0], min_px[1], max_px[0], max_px[1]);*/
986
987         /* face uses no UV area when quantized to pixels? */
988         return (bounds_px->xmin == bounds_px->xmax || bounds_px->ymin == bounds_px->ymax) ? 0 : 1;
989 }
990
991 #ifndef PROJ_DEBUG_NOSEAMBLEED
992
993 static void project_face_winding_init(const ProjPaintState *ps, const int tri_index)
994 {
995         /* detect the winding of faces in uv space */
996         const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
997         const float *lt_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, lt) };
998         float winding = cross_tri_v2(lt_tri_uv[0], lt_tri_uv[1], lt_tri_uv[2]);
999
1000         if (winding > 0)
1001                 ps->faceWindingFlags[tri_index] |= PROJ_FACE_WINDING_CW;
1002
1003         ps->faceWindingFlags[tri_index] |= PROJ_FACE_WINDING_INIT;
1004 }
1005
1006 /* This function returns 1 if this face has a seam along the 2 face-vert indices
1007  * 'orig_i1_fidx' and 'orig_i2_fidx' */
1008 static bool check_seam(
1009         const ProjPaintState *ps,
1010         const int orig_face, const int orig_i1_fidx, const int orig_i2_fidx,
1011         int *other_face, int *orig_fidx)
1012 {
1013         const MLoopTri *orig_lt = &ps->dm_mlooptri[orig_face];
1014         const float *orig_lt_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, orig_lt) };
1015         /* vert indices from face vert order indices */
1016         const unsigned int i1 = ps->dm_mloop[orig_lt->tri[orig_i1_fidx]].v;
1017         const unsigned int i2 = ps->dm_mloop[orig_lt->tri[orig_i2_fidx]].v;
1018         LinkNode *node;
1019         int i1_fidx = -1, i2_fidx = -1; /* index in face */
1020
1021         for (node = ps->vertFaces[i1]; node; node = node->next) {
1022                 const int tri_index = GET_INT_FROM_POINTER(node->link);
1023
1024                 if (tri_index != orig_face) {
1025                         const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
1026                         const int lt_vtri[3] = { PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) };
1027                         /* could check if the 2 faces images match here,
1028                          * but then there wouldn't be a way to return the opposite face's info */
1029
1030
1031                         /* We need to know the order of the verts in the adjacent face
1032                          * set the i1_fidx and i2_fidx to (0,1,2,3) */
1033                         i1_fidx = BKE_MESH_TESSTRI_VINDEX_ORDER(lt_vtri, i1);
1034                         i2_fidx = BKE_MESH_TESSTRI_VINDEX_ORDER(lt_vtri, i2);
1035
1036                         /* Only need to check if 'i2_fidx' is valid because we know i1_fidx is the same vert on both faces */
1037                         if (i2_fidx != -1) {
1038                                 const float *lt_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, lt) };
1039                                 Image *tpage = project_paint_face_paint_image(ps, tri_index);
1040                                 Image *orig_tpage = project_paint_face_paint_image(ps, orig_face);
1041
1042                                 BLI_assert(i1_fidx != -1);
1043
1044                                 /* This IS an adjacent face!, now lets check if the UVs are ok */
1045
1046                                 /* set up the other face */
1047                                 *other_face = tri_index;
1048                                 
1049                                 /* we check if difference is 1 here, else we might have a case of edge 2-0 for a tri */
1050                                 *orig_fidx = (i1_fidx < i2_fidx && (i2_fidx - i1_fidx == 1)) ? i1_fidx : i2_fidx;
1051
1052                                 /* initialize face winding if needed */
1053                                 if ((ps->faceWindingFlags[tri_index] & PROJ_FACE_WINDING_INIT) == 0)
1054                                         project_face_winding_init(ps, tri_index);
1055
1056                                 /* first test if they have the same image */
1057                                 if ((orig_tpage == tpage) &&
1058                                     cmp_uv(orig_lt_tri_uv[orig_i1_fidx], lt_tri_uv[i1_fidx]) &&
1059                                     cmp_uv(orig_lt_tri_uv[orig_i2_fidx], lt_tri_uv[i2_fidx]))
1060                                 {
1061                                         /* if faces don't have the same winding in uv space,
1062                                          * they are on the same side so edge is boundary */
1063                                         if ((ps->faceWindingFlags[tri_index] & PROJ_FACE_WINDING_CW) !=
1064                                             (ps->faceWindingFlags[orig_face] & PROJ_FACE_WINDING_CW))
1065                                         {
1066                                                 return 1;
1067                                         }
1068
1069                                         // printf("SEAM (NONE)\n");
1070                                         return 0;
1071
1072                                 }
1073                                 else {
1074                                         // printf("SEAM (UV GAP)\n");
1075                                         return 1;
1076                                 }
1077                         }
1078                 }
1079         }
1080         // printf("SEAM (NO FACE)\n");
1081         *other_face = -1;
1082         return 1;
1083 }
1084
1085 #define SMALL_NUMBER  1.e-6f
1086 BLI_INLINE float shell_v2v2_normal_dir_to_dist(float n[2], float d[2])
1087 {
1088         const float angle_cos = (normalize_v2(n) < SMALL_NUMBER) ? fabsf(dot_v2v2(d, n)) : 0.0f;
1089         return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
1090 }
1091 #undef SMALL_NUMBER
1092
1093 /* Calculate outset UV's, this is not the same as simply scaling the UVs,
1094  * since the outset coords are a margin that keep an even distance from the original UV's,
1095  * note that the image aspect is taken into account */
1096 static void uv_image_outset(
1097         float (*orig_uv)[2], float (*outset_uv)[2], const float scaler,
1098         const int ibuf_x, const int ibuf_y, const bool cw)
1099 {
1100         float a1, a2, a3;
1101         float puv[3][2]; /* pixelspace uv's */
1102         float no1[2], no2[2], no3[2]; /* normals */
1103         float dir1[2], dir2[2], dir3[2];
1104         float ibuf_inv[2];
1105
1106         ibuf_inv[0] = 1.0f / (float)ibuf_x;
1107         ibuf_inv[1] = 1.0f / (float)ibuf_y;
1108
1109         /* make UV's in pixel space so we can */
1110         puv[0][0] = orig_uv[0][0] * ibuf_x;
1111         puv[0][1] = orig_uv[0][1] * ibuf_y;
1112
1113         puv[1][0] = orig_uv[1][0] * ibuf_x;
1114         puv[1][1] = orig_uv[1][1] * ibuf_y;
1115
1116         puv[2][0] = orig_uv[2][0] * ibuf_x;
1117         puv[2][1] = orig_uv[2][1] * ibuf_y;
1118
1119         /* face edge directions */
1120         sub_v2_v2v2(dir1, puv[1], puv[0]);
1121         sub_v2_v2v2(dir2, puv[2], puv[1]);
1122         sub_v2_v2v2(dir3, puv[0], puv[2]);
1123         normalize_v2(dir1);
1124         normalize_v2(dir2);
1125         normalize_v2(dir3);
1126
1127         /* here we just use the orthonormality property (a1, a2) dot (a2, -a1) = 0
1128          * to get normals from the edge directions based on the winding */
1129         if (cw) {
1130                 no1[0] = -dir3[1] - dir1[1];
1131                 no1[1] =  dir3[0] + dir1[0];
1132                 no2[0] = -dir1[1] - dir2[1];
1133                 no2[1] =  dir1[0] + dir2[0];
1134                 no3[0] = -dir2[1] - dir3[1];
1135                 no3[1] =  dir2[0] + dir3[0];
1136         }
1137         else {
1138                 no1[0] =  dir3[1] + dir1[1];
1139                 no1[1] = -dir3[0] - dir1[0];
1140                 no2[0] =  dir1[1] + dir2[1];
1141                 no2[1] = -dir1[0] - dir2[0];
1142                 no3[0] =  dir2[1] + dir3[1];
1143                 no3[1] = -dir2[0] - dir3[0];
1144         }
1145
1146         a1 = shell_v2v2_normal_dir_to_dist(no1, dir3);
1147         a2 = shell_v2v2_normal_dir_to_dist(no2, dir1);
1148         a3 = shell_v2v2_normal_dir_to_dist(no3, dir2);
1149
1150         mul_v2_fl(no1, a1 * scaler);
1151         mul_v2_fl(no2, a2 * scaler);
1152         mul_v2_fl(no3, a3 * scaler);
1153         add_v2_v2v2(outset_uv[0], puv[0], no1);
1154         add_v2_v2v2(outset_uv[1], puv[1], no2);
1155         add_v2_v2v2(outset_uv[2], puv[2], no3);
1156
1157         mul_v2_v2(outset_uv[0], ibuf_inv);
1158         mul_v2_v2(outset_uv[1], ibuf_inv);
1159         mul_v2_v2(outset_uv[2], ibuf_inv);
1160 }
1161
1162 /*
1163  * Be tricky with flags, first 4 bits are PROJ_FACE_SEAM1 to 4, last 4 bits are PROJ_FACE_NOSEAM1 to 4
1164  * 1<<i - where i is (0-3)
1165  *
1166  * If we're multithreadng, make sure threads are locked when this is called
1167  */
1168 static void project_face_seams_init(const ProjPaintState *ps, const int tri_index)
1169 {
1170         int other_face, other_fidx; /* vars for the other face, we also set its flag */
1171         int fidx1 = 2;
1172         int fidx2 = 0; /* next fidx in the face (0,1,2,3) -> (1,2,3,0) or (0,1,2) -> (1,2,0) for a tri */
1173
1174         /* initialize face winding if needed */
1175         if ((ps->faceWindingFlags[tri_index] & PROJ_FACE_WINDING_INIT) == 0)
1176                 project_face_winding_init(ps, tri_index);
1177
1178         do {
1179                 if ((ps->faceSeamFlags[tri_index] & (1 << fidx1 | 16 << fidx1)) == 0) {
1180                         if (check_seam(ps, tri_index, fidx1, fidx2, &other_face, &other_fidx)) {
1181                                 ps->faceSeamFlags[tri_index] |= 1 << fidx1;
1182                                 if (other_face != -1)
1183                                         ps->faceSeamFlags[other_face] |= 1 << other_fidx;
1184                         }
1185                         else {
1186                                 ps->faceSeamFlags[tri_index] |= 16 << fidx1;
1187                                 if (other_face != -1)
1188                                         ps->faceSeamFlags[other_face] |= 16 << other_fidx;  /* second 4 bits for disabled */
1189                         }
1190                 }
1191
1192                 fidx2 = fidx1;
1193         } while (fidx1--);
1194 }
1195 #endif // PROJ_DEBUG_NOSEAMBLEED
1196
1197
1198 /* Converts a UV location to a 3D screenspace location
1199  * Takes a 'uv' and 3 UV coords, and sets the values of pixelScreenCo
1200  *
1201  * This is used for finding a pixels location in screenspace for painting */
1202 static void screen_px_from_ortho(
1203         const float uv[2],
1204         const float v1co[3], const float v2co[3], const float v3co[3],  /* Screenspace coords */
1205         const float uv1co[2], const float uv2co[2], const float uv3co[2],
1206         float pixelScreenCo[4],
1207         float w[3])
1208 {
1209         barycentric_weights_v2(uv1co, uv2co, uv3co, uv, w);
1210         interp_v3_v3v3v3(pixelScreenCo, v1co, v2co, v3co, w);
1211 }
1212
1213 /* same as screen_px_from_ortho except we
1214  * do perspective correction on the pixel coordinate */
1215 static void screen_px_from_persp(
1216         const float uv[2],
1217         const float v1co[4], const float v2co[4], const float v3co[4],  /* screenspace coords */
1218         const float uv1co[2], const float uv2co[2], const float uv3co[2],
1219         float pixelScreenCo[4],
1220         float w[3])
1221 {
1222         float w_int[3];
1223         float wtot_inv, wtot;
1224         barycentric_weights_v2(uv1co, uv2co, uv3co, uv, w);
1225
1226         /* re-weight from the 4th coord of each screen vert */
1227         w_int[0] = w[0] * v1co[3];
1228         w_int[1] = w[1] * v2co[3];
1229         w_int[2] = w[2] * v3co[3];
1230
1231         wtot = w_int[0] + w_int[1] + w_int[2];
1232
1233         if (wtot > 0.0f) {
1234                 wtot_inv = 1.0f / wtot;
1235                 w_int[0] *= wtot_inv;
1236                 w_int[1] *= wtot_inv;
1237                 w_int[2] *= wtot_inv;
1238         }
1239         else {
1240                 w[0] = w[1] = w[2] =
1241                 w_int[0] = w_int[1] = w_int[2] = 1.0f / 3.0f;  /* dummy values for zero area face */
1242         }
1243         /* done re-weighting */
1244
1245         /* do interpolation based on projected weight */
1246         interp_v3_v3v3v3(pixelScreenCo, v1co, v2co, v3co, w_int);
1247 }
1248
1249
1250 static void project_face_pixel(
1251         const float *lt_tri_uv[3], ImBuf *ibuf_other, const float w[3],
1252         unsigned char rgba_ub[4], float rgba_f[4])
1253 {
1254         float uv_other[2], x, y;
1255
1256         interp_v2_v2v2v2(uv_other, UNPACK3(lt_tri_uv), w);
1257
1258         /* use */
1259         uvco_to_wrapped_pxco(uv_other, ibuf_other->x, ibuf_other->y, &x, &y);
1260
1261         if (ibuf_other->rect_float) { /* from float to float */
1262                 bilinear_interpolation_color_wrap(ibuf_other, NULL, rgba_f, x, y);
1263         }
1264         else { /* from char to float */
1265                 bilinear_interpolation_color_wrap(ibuf_other, rgba_ub, NULL, x, y);
1266         }
1267
1268 }
1269
1270 /* run this outside project_paint_uvpixel_init since pixels with mask 0 don't need init */
1271 static float project_paint_uvpixel_mask(
1272         const ProjPaintState *ps,
1273         const int tri_index,
1274         const float w[3])
1275 {
1276         float mask;
1277
1278         /* Image Mask */
1279         if (ps->do_layer_stencil) {
1280                 /* another UV maps image is masking this one's */
1281                 ImBuf *ibuf_other;
1282                 Image *other_tpage = ps->stencil_ima;
1283
1284                 if (other_tpage && (ibuf_other = BKE_image_acquire_ibuf(other_tpage, NULL, NULL))) {
1285                         const MLoopTri *lt_other = &ps->dm_mlooptri[tri_index];
1286                         const float *lt_other_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, lt_other) };
1287
1288                         /* BKE_image_acquire_ibuf - TODO - this may be slow */
1289                         unsigned char rgba_ub[4];
1290                         float rgba_f[4];
1291
1292                         project_face_pixel(lt_other_tri_uv, ibuf_other, w, rgba_ub, rgba_f);
1293
1294                         if (ibuf_other->rect_float) { /* from float to float */
1295                                 mask = ((rgba_f[0] + rgba_f[1] + rgba_f[2]) * (1.0f / 3.0f)) * rgba_f[3];
1296                         }
1297                         else { /* from char to float */
1298                                 mask = ((rgba_ub[0] + rgba_ub[1] + rgba_ub[2]) * (1.0f / (255.0f * 3.0f))) * (rgba_ub[3] * (1.0f / 255.0f));
1299                         }
1300
1301                         BKE_image_release_ibuf(other_tpage, ibuf_other, NULL);
1302
1303                         if (!ps->do_layer_stencil_inv) /* matching the gimps layer mask black/white rules, white==full opacity */
1304                                 mask = (1.0f - mask);
1305
1306                         if (mask == 0.0f) {
1307                                 return 0.0f;
1308                         }
1309                 }
1310                 else {
1311                         return 0.0f;
1312                 }
1313         }
1314         else {
1315                 mask = 1.0f;
1316         }
1317
1318         if (ps->do_mask_cavity) {
1319                 const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
1320                 const int lt_vtri[3] = { PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) };
1321                 float ca1, ca2, ca3, ca_mask;
1322                 ca1 = ps->cavities[lt_vtri[0]];
1323                 ca2 = ps->cavities[lt_vtri[1]];
1324                 ca3 = ps->cavities[lt_vtri[2]];
1325
1326                 ca_mask = w[0] * ca1 + w[1] * ca2 + w[2] * ca3;
1327                 ca_mask = curvemapping_evaluateF(ps->cavity_curve, 0, ca_mask);
1328                 CLAMP(ca_mask, 0.0f, 1.0f);
1329                 mask *= ca_mask;
1330         }
1331
1332         /* calculate mask */
1333         if (ps->do_mask_normal) {
1334                 const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
1335                 const int lt_vtri[3] = { PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) };
1336                 const MPoly *mp = &ps->dm_mpoly[lt->poly];
1337                 float no[3], angle_cos;
1338
1339                 if (mp->flag & ME_SMOOTH) {
1340                         const short *no1, *no2, *no3;
1341                         no1 = ps->dm_mvert[lt_vtri[0]].no;
1342                         no2 = ps->dm_mvert[lt_vtri[1]].no;
1343                         no3 = ps->dm_mvert[lt_vtri[2]].no;
1344
1345                         no[0] = w[0] * no1[0] + w[1] * no2[0] + w[2] * no3[0];
1346                         no[1] = w[0] * no1[1] + w[1] * no2[1] + w[2] * no3[1];
1347                         no[2] = w[0] * no1[2] + w[1] * no2[2] + w[2] * no3[2];
1348                         normalize_v3(no);
1349                 }
1350                 else {
1351                         /* incase the */
1352 #if 1
1353                         /* normalizing per pixel isn't optimal, we could cache or check ps->*/
1354                         normal_tri_v3(no,
1355                                       ps->dm_mvert[lt_vtri[0]].co,
1356                                       ps->dm_mvert[lt_vtri[1]].co,
1357                                       ps->dm_mvert[lt_vtri[2]].co);
1358 #else
1359                         /* don't use because some modifiers dont have normal data (subsurf for eg) */
1360                         copy_v3_v3(no, (float *)ps->dm->getTessFaceData(ps->dm, tri_index, CD_NORMAL));
1361 #endif
1362                 }
1363
1364                 if (UNLIKELY(ps->is_flip_object)) {
1365                         negate_v3(no);
1366                 }
1367
1368                 /* now we can use the normal as a mask */
1369                 if (ps->is_ortho) {
1370                         angle_cos = dot_v3v3(ps->viewDir, no);
1371                 }
1372                 else {
1373                         /* Annoying but for the perspective view we need to get the pixels location in 3D space :/ */
1374                         float viewDirPersp[3];
1375                         const float *co1, *co2, *co3;
1376                         co1 = ps->dm_mvert[lt_vtri[0]].co;
1377                         co2 = ps->dm_mvert[lt_vtri[1]].co;
1378                         co3 = ps->dm_mvert[lt_vtri[2]].co;
1379
1380                         /* Get the direction from the viewPoint to the pixel and normalize */
1381                         viewDirPersp[0] = (ps->viewPos[0] - (w[0] * co1[0] + w[1] * co2[0] + w[2] * co3[0]));
1382                         viewDirPersp[1] = (ps->viewPos[1] - (w[0] * co1[1] + w[1] * co2[1] + w[2] * co3[1]));
1383                         viewDirPersp[2] = (ps->viewPos[2] - (w[0] * co1[2] + w[1] * co2[2] + w[2] * co3[2]));
1384                         normalize_v3(viewDirPersp);
1385                         if (UNLIKELY(ps->is_flip_object)) {
1386                                 negate_v3(viewDirPersp);
1387                         }
1388
1389                         angle_cos = dot_v3v3(viewDirPersp, no);
1390                 }
1391
1392                 if (angle_cos <= ps->normal_angle__cos) {
1393                         return 0.0f; /* outsize the normal limit*/
1394                 }
1395                 else if (angle_cos < ps->normal_angle_inner__cos) {
1396                         mask *= (ps->normal_angle - acosf(angle_cos)) / ps->normal_angle_range;
1397                 } /* otherwise no mask normal is needed, were within the limit */
1398         }
1399
1400         /* This only works when the opacity dosnt change while painting, stylus pressure messes with this
1401          * so don't use it. */
1402         // if (ps->is_airbrush == 0) mask *= BKE_brush_alpha_get(ps->brush);
1403
1404         return mask;
1405 }
1406
1407 static int project_paint_pixel_sizeof(const short tool)
1408 {
1409         if ((tool == PAINT_TOOL_CLONE) || (tool == PAINT_TOOL_SMEAR)) {
1410                 return sizeof(ProjPixelClone);
1411         }
1412         else {
1413                 return sizeof(ProjPixel);
1414         }
1415 }
1416
1417 static int project_paint_undo_subtiles(const TileInfo *tinf, int tx, int ty)
1418 {
1419         ProjPaintImage *pjIma = tinf->pjima;
1420         int tile_index = tx + ty * tinf->tile_width;
1421         bool generate_tile = false;
1422
1423         /* double check lock to avoid locking */
1424         if (UNLIKELY(!pjIma->undoRect[tile_index])) {
1425                 if (tinf->lock)
1426                         BLI_spin_lock(tinf->lock);
1427                 if (LIKELY(!pjIma->undoRect[tile_index])) {
1428                         pjIma->undoRect[tile_index] = TILE_PENDING;
1429                         generate_tile = true;
1430                 }
1431                 if (tinf->lock)
1432                         BLI_spin_unlock(tinf->lock);
1433         }
1434
1435
1436         if (generate_tile) {
1437                 volatile void *undorect;
1438                 if (tinf->masked) {
1439                         undorect = image_undo_push_tile(
1440                                 pjIma->ima, pjIma->ibuf, tinf->tmpibuf,
1441                                 tx, ty, &pjIma->maskRect[tile_index], &pjIma->valid[tile_index], true, false);
1442                 }
1443                 else {
1444                         undorect = image_undo_push_tile(
1445                                 pjIma->ima, pjIma->ibuf, tinf->tmpibuf,
1446                                 tx, ty, NULL, &pjIma->valid[tile_index], true, false);
1447                 }
1448
1449                 pjIma->ibuf->userflags |= IB_BITMAPDIRTY;
1450                 /* tile ready, publish */
1451                 if (tinf->lock)
1452                         BLI_spin_lock(tinf->lock);
1453                 pjIma->undoRect[tile_index] = undorect;
1454                 if (tinf->lock)
1455                         BLI_spin_unlock(tinf->lock);
1456
1457         }
1458
1459         return tile_index;
1460 }
1461
1462 /* run this function when we know a bucket's, face's pixel can be initialized,
1463  * return the ProjPixel which is added to 'ps->bucketRect[bucket_index]' */
1464 static ProjPixel *project_paint_uvpixel_init(
1465         const ProjPaintState *ps,
1466         MemArena *arena,
1467         const TileInfo *tinf,
1468         int x_px, int y_px,
1469         const float mask,
1470         const int tri_index,
1471         const float pixelScreenCo[4],
1472         const float world_spaceCo[3],
1473         const float w[3])
1474 {
1475         ProjPixel *projPixel;
1476         int x_tile, y_tile;
1477         int x_round, y_round;
1478         int tile_offset;
1479         /* volatile is important here to ensure pending check is not optimized away by compiler*/
1480         volatile int tile_index;
1481
1482         ProjPaintImage *projima = tinf->pjima;
1483         ImBuf *ibuf = projima->ibuf;
1484         /* wrap pixel location */
1485
1486         x_px = mod_i(x_px, ibuf->x);
1487         y_px = mod_i(y_px, ibuf->y);
1488
1489         BLI_assert(ps->pixel_sizeof == project_paint_pixel_sizeof(ps->tool));
1490         projPixel = BLI_memarena_alloc(arena, ps->pixel_sizeof);
1491
1492         /* calculate the undo tile offset of the pixel, used to store the original
1493          * pixel color and accumulated mask if any */
1494         x_tile =  x_px >> IMAPAINT_TILE_BITS;
1495         y_tile =  y_px >> IMAPAINT_TILE_BITS;
1496
1497         x_round = x_tile * IMAPAINT_TILE_SIZE;
1498         y_round = y_tile * IMAPAINT_TILE_SIZE;
1499         //memset(projPixel, 0, size);
1500
1501         tile_offset = (x_px - x_round) + (y_px - y_round) * IMAPAINT_TILE_SIZE;
1502         tile_index = project_paint_undo_subtiles(tinf, x_tile, y_tile);
1503
1504         /* other thread may be initializing the tile so wait here */
1505         while (projima->undoRect[tile_index] == TILE_PENDING)
1506                 ;
1507
1508         BLI_assert(tile_index < (IMAPAINT_TILE_NUMBER(ibuf->x) * IMAPAINT_TILE_NUMBER(ibuf->y)));
1509         BLI_assert(tile_offset < (IMAPAINT_TILE_SIZE * IMAPAINT_TILE_SIZE));
1510
1511         projPixel->valid = projima->valid[tile_index];
1512
1513         if (ibuf->rect_float) {
1514                 projPixel->pixel.f_pt = ibuf->rect_float + ((x_px + y_px * ibuf->x) * 4);
1515                 projPixel->origColor.f_pt = (float *)projima->undoRect[tile_index] + 4 * tile_offset;
1516                 zero_v4(projPixel->newColor.f);
1517         }
1518         else {
1519                 projPixel->pixel.ch_pt = (unsigned char *)(ibuf->rect + (x_px + y_px * ibuf->x));
1520                 projPixel->origColor.uint_pt = (unsigned int *)projima->undoRect[tile_index] + tile_offset;
1521                 projPixel->newColor.uint = 0;
1522         }
1523
1524         /* screenspace unclamped, we could keep its z and w values but don't need them at the moment */
1525         if (ps->brush->mtex.brush_map_mode == MTEX_MAP_MODE_3D) {
1526                 copy_v3_v3(projPixel->worldCoSS, world_spaceCo);
1527         }
1528
1529         copy_v2_v2(projPixel->projCoSS, pixelScreenCo);
1530
1531         projPixel->x_px = x_px;
1532         projPixel->y_px = y_px;
1533
1534         projPixel->mask = (unsigned short)(mask * 65535);
1535         if (ps->do_masking)
1536                 projPixel->mask_accum = projima->maskRect[tile_index] + tile_offset;
1537         else
1538                 projPixel->mask_accum = NULL;
1539
1540         /* which bounding box cell are we in?, needed for undo */
1541         projPixel->bb_cell_index = ((int)(((float)x_px / (float)ibuf->x) * PROJ_BOUNDBOX_DIV)) +
1542                                    ((int)(((float)y_px / (float)ibuf->y) * PROJ_BOUNDBOX_DIV)) * PROJ_BOUNDBOX_DIV;
1543
1544         /* done with view3d_project_float inline */
1545         if (ps->tool == PAINT_TOOL_CLONE) {
1546                 if (ps->dm_mloopuv_clone) {
1547                         ImBuf *ibuf_other;
1548                         Image *other_tpage = project_paint_face_clone_image(ps, tri_index);
1549
1550                         if (other_tpage && (ibuf_other = BKE_image_acquire_ibuf(other_tpage, NULL, NULL))) {
1551                                 const MLoopTri *lt_other = &ps->dm_mlooptri[tri_index];
1552                                 const float *lt_other_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv_clone, lt_other) };
1553
1554                                 /* BKE_image_acquire_ibuf - TODO - this may be slow */
1555
1556                                 if (ibuf->rect_float) {
1557                                         if (ibuf_other->rect_float) { /* from float to float */
1558                                                 project_face_pixel(lt_other_tri_uv, ibuf_other, w, NULL, ((ProjPixelClone *)projPixel)->clonepx.f);
1559                                         }
1560                                         else { /* from char to float */
1561                                                 unsigned char rgba_ub[4];
1562                                                 float rgba[4];
1563                                                 project_face_pixel(lt_other_tri_uv, ibuf_other, w, rgba_ub, NULL);
1564                                                 srgb_to_linearrgb_uchar4(rgba, rgba_ub);
1565                                                 straight_to_premul_v4_v4(((ProjPixelClone *)projPixel)->clonepx.f, rgba);
1566                                         }
1567                                 }
1568                                 else {
1569                                         if (ibuf_other->rect_float) { /* float to char */
1570                                                 float rgba[4];
1571                                                 project_face_pixel(lt_other_tri_uv, ibuf_other, w, NULL, rgba);
1572                                                 premul_to_straight_v4(rgba);
1573                                                 linearrgb_to_srgb_uchar3(((ProjPixelClone *)projPixel)->clonepx.ch, rgba);
1574                                                 ((ProjPixelClone *)projPixel)->clonepx.ch[3] =  rgba[3] * 255;
1575                                         }
1576                                         else { /* char to char */
1577                                                 project_face_pixel(lt_other_tri_uv, ibuf_other, w, ((ProjPixelClone *)projPixel)->clonepx.ch, NULL);
1578                                         }
1579                                 }
1580
1581                                 BKE_image_release_ibuf(other_tpage, ibuf_other, NULL);
1582                         }
1583                         else {
1584                                 if (ibuf->rect_float) {
1585                                         ((ProjPixelClone *)projPixel)->clonepx.f[3] = 0;
1586                                 }
1587                                 else {
1588                                         ((ProjPixelClone *)projPixel)->clonepx.ch[3] = 0;
1589                                 }
1590                         }
1591
1592                 }
1593                 else {
1594                         float co[2];
1595                         sub_v2_v2v2(co, projPixel->projCoSS, ps->cloneOffset);
1596
1597                         /* no need to initialize the bucket, we're only checking buckets faces and for this
1598                          * the faces are already initialized in project_paint_delayed_face_init(...) */
1599                         if (ibuf->rect_float) {
1600                                 if (!project_paint_PickColor(ps, co, ((ProjPixelClone *)projPixel)->clonepx.f, NULL, 1)) {
1601                                         ((ProjPixelClone *)projPixel)->clonepx.f[3] = 0; /* zero alpha - ignore */
1602                                 }
1603                         }
1604                         else {
1605                                 if (!project_paint_PickColor(ps, co, NULL, ((ProjPixelClone *)projPixel)->clonepx.ch, 1)) {
1606                                         ((ProjPixelClone *)projPixel)->clonepx.ch[3] = 0; /* zero alpha - ignore */
1607                                 }
1608                         }
1609                 }
1610         }
1611
1612 #ifdef PROJ_DEBUG_PAINT
1613         if (ibuf->rect_float) projPixel->pixel.f_pt[0] = 0;
1614         else                  projPixel->pixel.ch_pt[0] = 0;
1615 #endif
1616         /* pointer arithmetics */
1617         projPixel->image_index = projima - ps->projImages;
1618
1619         return projPixel;
1620 }
1621
1622 static bool line_clip_rect2f(
1623         const rctf *cliprect,
1624         const rctf *rect,
1625         const float l1[2], const float l2[2],
1626         float l1_clip[2], float l2_clip[2])
1627 {
1628         /* first account for horizontal, then vertical lines */
1629         /* horiz */
1630         if (fabsf(l1[1] - l2[1]) < PROJ_PIXEL_TOLERANCE) {
1631                 /* is the line out of range on its Y axis? */
1632                 if (l1[1] < rect->ymin || l1[1] > rect->ymax) {
1633                         return 0;
1634                 }
1635                 /* line is out of range on its X axis */
1636                 if ((l1[0] < rect->xmin && l2[0] < rect->xmin) || (l1[0] > rect->xmax && l2[0] > rect->xmax)) {
1637                         return 0;
1638                 }
1639
1640
1641                 if (fabsf(l1[0] - l2[0]) < PROJ_PIXEL_TOLERANCE) { /* this is a single point  (or close to)*/
1642                         if (BLI_rctf_isect_pt_v(rect, l1)) {
1643                                 copy_v2_v2(l1_clip, l1);
1644                                 copy_v2_v2(l2_clip, l2);
1645                                 return 1;
1646                         }
1647                         else {
1648                                 return 0;
1649                         }
1650                 }
1651
1652                 copy_v2_v2(l1_clip, l1);
1653                 copy_v2_v2(l2_clip, l2);
1654                 CLAMP(l1_clip[0], rect->xmin, rect->xmax);
1655                 CLAMP(l2_clip[0], rect->xmin, rect->xmax);
1656                 return 1;
1657         }
1658         else if (fabsf(l1[0] - l2[0]) < PROJ_PIXEL_TOLERANCE) {
1659                 /* is the line out of range on its X axis? */
1660                 if (l1[0] < rect->xmin || l1[0] > rect->xmax) {
1661                         return 0;
1662                 }
1663
1664                 /* line is out of range on its Y axis */
1665                 if ((l1[1] < rect->ymin && l2[1] < rect->ymin) || (l1[1] > rect->ymax && l2[1] > rect->ymax)) {
1666                         return 0;
1667                 }
1668
1669                 if (fabsf(l1[1] - l2[1]) < PROJ_PIXEL_TOLERANCE) { /* this is a single point  (or close to)*/
1670                         if (BLI_rctf_isect_pt_v(rect, l1)) {
1671                                 copy_v2_v2(l1_clip, l1);
1672                                 copy_v2_v2(l2_clip, l2);
1673                                 return 1;
1674                         }
1675                         else {
1676                                 return 0;
1677                         }
1678                 }
1679
1680                 copy_v2_v2(l1_clip, l1);
1681                 copy_v2_v2(l2_clip, l2);
1682                 CLAMP(l1_clip[1], rect->ymin, rect->ymax);
1683                 CLAMP(l2_clip[1], rect->ymin, rect->ymax);
1684                 return 1;
1685         }
1686         else {
1687                 float isect;
1688                 short ok1 = 0;
1689                 short ok2 = 0;
1690
1691                 /* Done with vertical lines */
1692
1693                 /* are either of the points inside the rectangle ? */
1694                 if (BLI_rctf_isect_pt_v(rect, l1)) {
1695                         copy_v2_v2(l1_clip, l1);
1696                         ok1 = 1;
1697                 }
1698
1699                 if (BLI_rctf_isect_pt_v(rect, l2)) {
1700                         copy_v2_v2(l2_clip, l2);
1701                         ok2 = 1;
1702                 }
1703
1704                 /* line inside rect */
1705                 if (ok1 && ok2) return 1;
1706
1707                 /* top/bottom */
1708                 if (line_isect_y(l1, l2, rect->ymin, &isect) && (isect >= cliprect->xmin) && (isect <= cliprect->xmax)) {
1709                         if (l1[1] < l2[1]) { /* line 1 is outside */
1710                                 l1_clip[0] = isect;
1711                                 l1_clip[1] = rect->ymin;
1712                                 ok1 = 1;
1713                         }
1714                         else {
1715                                 l2_clip[0] = isect;
1716                                 l2_clip[1] = rect->ymin;
1717                                 ok2 = 2;
1718                         }
1719                 }
1720
1721                 if (ok1 && ok2) return 1;
1722
1723                 if (line_isect_y(l1, l2, rect->ymax, &isect) && (isect >= cliprect->xmin) && (isect <= cliprect->xmax)) {
1724                         if (l1[1] > l2[1]) { /* line 1 is outside */
1725                                 l1_clip[0] = isect;
1726                                 l1_clip[1] = rect->ymax;
1727                                 ok1 = 1;
1728                         }
1729                         else {
1730                                 l2_clip[0] = isect;
1731                                 l2_clip[1] = rect->ymax;
1732                                 ok2 = 2;
1733                         }
1734                 }
1735
1736                 if (ok1 && ok2) return 1;
1737
1738                 /* left/right */
1739                 if (line_isect_x(l1, l2, rect->xmin, &isect) && (isect >= cliprect->ymin) && (isect <= cliprect->ymax)) {
1740                         if (l1[0] < l2[0]) { /* line 1 is outside */
1741                                 l1_clip[0] = rect->xmin;
1742                                 l1_clip[1] = isect;
1743                                 ok1 = 1;
1744                         }
1745                         else {
1746                                 l2_clip[0] = rect->xmin;
1747                                 l2_clip[1] = isect;
1748                                 ok2 = 2;
1749                         }
1750                 }
1751
1752                 if (ok1 && ok2) return 1;
1753
1754                 if (line_isect_x(l1, l2, rect->xmax, &isect) && (isect >= cliprect->ymin) && (isect <= cliprect->ymax)) {
1755                         if (l1[0] > l2[0]) { /* line 1 is outside */
1756                                 l1_clip[0] = rect->xmax;
1757                                 l1_clip[1] = isect;
1758                                 ok1 = 1;
1759                         }
1760                         else {
1761                                 l2_clip[0] = rect->xmax;
1762                                 l2_clip[1] = isect;
1763                                 ok2 = 2;
1764                         }
1765                 }
1766
1767                 if (ok1 && ok2) {
1768                         return 1;
1769                 }
1770                 else {
1771                         return 0;
1772                 }
1773         }
1774 }
1775
1776
1777
1778 /**
1779  * Scale the tri about its center
1780  * scaling by #PROJ_FACE_SCALE_SEAM (0.99x) is used for getting fake UV pixel coords that are on the
1781  * edge of the face but slightly inside it occlusion tests don't return hits on adjacent faces
1782  */
1783 #ifndef PROJ_DEBUG_NOSEAMBLEED
1784
1785 static void scale_tri(float insetCos[3][3], const float *origCos[4], const float inset)
1786 {
1787         float cent[3];
1788         cent[0] = (origCos[0][0] + origCos[1][0] + origCos[2][0]) * (1.0f / 3.0f);
1789         cent[1] = (origCos[0][1] + origCos[1][1] + origCos[2][1]) * (1.0f / 3.0f);
1790         cent[2] = (origCos[0][2] + origCos[1][2] + origCos[2][2]) * (1.0f / 3.0f);
1791
1792         sub_v3_v3v3(insetCos[0], origCos[0], cent);
1793         sub_v3_v3v3(insetCos[1], origCos[1], cent);
1794         sub_v3_v3v3(insetCos[2], origCos[2], cent);
1795
1796         mul_v3_fl(insetCos[0], inset);
1797         mul_v3_fl(insetCos[1], inset);
1798         mul_v3_fl(insetCos[2], inset);
1799
1800         add_v3_v3(insetCos[0], cent);
1801         add_v3_v3(insetCos[1], cent);
1802         add_v3_v3(insetCos[2], cent);
1803 }
1804 #endif //PROJ_DEBUG_NOSEAMBLEED
1805
1806 static float len_squared_v2v2_alt(const float v1[2], const float v2_1, const float v2_2)
1807 {
1808         float x, y;
1809
1810         x = v1[0] - v2_1;
1811         y = v1[1] - v2_2;
1812         return x * x + y * y;
1813 }
1814
1815 /* note, use a squared value so we can use len_squared_v2v2
1816  * be sure that you have done a bounds check first or this may fail */
1817 /* only give bucket_bounds as an arg because we need it elsewhere */
1818 static bool project_bucket_isect_circle(const float cent[2], const float radius_squared, const rctf *bucket_bounds)
1819 {
1820
1821         /* Would normally to a simple intersection test, however we know the bounds of these 2 already intersect
1822          * so we only need to test if the center is inside the vertical or horizontal bounds on either axis,
1823          * this is even less work then an intersection test
1824          */
1825 #if 0
1826         if (BLI_rctf_isect_pt_v(bucket_bounds, cent))
1827                 return 1;
1828 #endif
1829
1830         if ((bucket_bounds->xmin <= cent[0] && bucket_bounds->xmax >= cent[0]) ||
1831             (bucket_bounds->ymin <= cent[1] && bucket_bounds->ymax >= cent[1]))
1832         {
1833                 return 1;
1834         }
1835
1836         /* out of bounds left */
1837         if (cent[0] < bucket_bounds->xmin) {
1838                 /* lower left out of radius test */
1839                 if (cent[1] < bucket_bounds->ymin) {
1840                         return (len_squared_v2v2_alt(cent, bucket_bounds->xmin, bucket_bounds->ymin) < radius_squared) ? 1 : 0;
1841                 }
1842                 /* top left test */
1843                 else if (cent[1] > bucket_bounds->ymax) {
1844                         return (len_squared_v2v2_alt(cent, bucket_bounds->xmin, bucket_bounds->ymax) < radius_squared) ? 1 : 0;
1845                 }
1846         }
1847         else if (cent[0] > bucket_bounds->xmax) {
1848                 /* lower right out of radius test */
1849                 if (cent[1] < bucket_bounds->ymin) {
1850                         return (len_squared_v2v2_alt(cent, bucket_bounds->xmax, bucket_bounds->ymin) < radius_squared) ? 1 : 0;
1851                 }
1852                 /* top right test */
1853                 else if (cent[1] > bucket_bounds->ymax) {
1854                         return (len_squared_v2v2_alt(cent, bucket_bounds->xmax, bucket_bounds->ymax) < radius_squared) ? 1 : 0;
1855                 }
1856         }
1857
1858         return 0;
1859 }
1860
1861
1862
1863 /* Note for rect_to_uvspace_ortho() and rect_to_uvspace_persp()
1864  * in ortho view this function gives good results when bucket_bounds are outside the triangle
1865  * however in some cases, perspective view will mess up with faces that have minimal screenspace area
1866  * (viewed from the side)
1867  *
1868  * for this reason its not reliable in this case so we'll use the Simple Barycentric'
1869  * funcs that only account for points inside the triangle.
1870  * however switching back to this for ortho is always an option */
1871
1872 static void rect_to_uvspace_ortho(
1873         const rctf *bucket_bounds,
1874         const float *v1coSS, const float *v2coSS, const float *v3coSS,
1875         const float *uv1co, const float *uv2co, const float *uv3co,
1876         float bucket_bounds_uv[4][2],
1877         const int flip)
1878 {
1879         float uv[2];
1880         float w[3];
1881
1882         /* get the UV space bounding box */
1883         uv[0] = bucket_bounds->xmax;
1884         uv[1] = bucket_bounds->ymin;
1885         barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1886         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 3 : 0], uv1co, uv2co, uv3co, w);
1887
1888         //uv[0] = bucket_bounds->xmax; // set above
1889         uv[1] = bucket_bounds->ymax;
1890         barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1891         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 2 : 1], uv1co, uv2co, uv3co, w);
1892
1893         uv[0] = bucket_bounds->xmin;
1894         //uv[1] = bucket_bounds->ymax; // set above
1895         barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1896         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 1 : 2], uv1co, uv2co, uv3co, w);
1897
1898         //uv[0] = bucket_bounds->xmin; // set above
1899         uv[1] = bucket_bounds->ymin;
1900         barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1901         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 0 : 3], uv1co, uv2co, uv3co, w);
1902 }
1903
1904 /* same as above but use barycentric_weights_v2_persp */
1905 static void rect_to_uvspace_persp(
1906         const rctf *bucket_bounds,
1907         const float *v1coSS, const float *v2coSS, const float *v3coSS,
1908         const float *uv1co, const float *uv2co, const float *uv3co,
1909         float bucket_bounds_uv[4][2],
1910         const int flip
1911         )
1912 {
1913         float uv[2];
1914         float w[3];
1915
1916         /* get the UV space bounding box */
1917         uv[0] = bucket_bounds->xmax;
1918         uv[1] = bucket_bounds->ymin;
1919         barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1920         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 3 : 0], uv1co, uv2co, uv3co, w);
1921
1922         //uv[0] = bucket_bounds->xmax; // set above
1923         uv[1] = bucket_bounds->ymax;
1924         barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1925         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 2 : 1], uv1co, uv2co, uv3co, w);
1926
1927         uv[0] = bucket_bounds->xmin;
1928         //uv[1] = bucket_bounds->ymax; // set above
1929         barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1930         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 1 : 2], uv1co, uv2co, uv3co, w);
1931
1932         //uv[0] = bucket_bounds->xmin; // set above
1933         uv[1] = bucket_bounds->ymin;
1934         barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1935         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 0 : 3], uv1co, uv2co, uv3co, w);
1936 }
1937
1938 /* This works as we need it to but we can save a few steps and not use it */
1939
1940 #if 0
1941 static float angle_2d_clockwise(const float p1[2], const float p2[2], const float p3[2])
1942 {
1943         float v1[2], v2[2];
1944
1945         v1[0] = p1[0] - p2[0];    v1[1] = p1[1] - p2[1];
1946         v2[0] = p3[0] - p2[0];    v2[1] = p3[1] - p2[1];
1947
1948         return -atan2f(v1[0] * v2[1] - v1[1] * v2[0], v1[0] * v2[0] + v1[1] * v2[1]);
1949 }
1950 #endif
1951
1952 #define ISECT_1 (1)
1953 #define ISECT_2 (1 << 1)
1954 #define ISECT_3 (1 << 2)
1955 #define ISECT_4 (1 << 3)
1956 #define ISECT_ALL3 ((1 << 3) - 1)
1957 #define ISECT_ALL4 ((1 << 4) - 1)
1958
1959 /* limit must be a fraction over 1.0f */
1960 static bool IsectPT2Df_limit(
1961         const float pt[2],
1962         const float v1[2], const float v2[2], const float v3[2],
1963         const float limit)
1964 {
1965         return ((area_tri_v2(pt, v1, v2) +
1966                  area_tri_v2(pt, v2, v3) +
1967                  area_tri_v2(pt, v3, v1)) / (area_tri_v2(v1, v2, v3))) < limit;
1968 }
1969
1970 /* Clip the face by a bucket and set the uv-space bucket_bounds_uv
1971  * so we have the clipped UV's to do pixel intersection tests with
1972  * */
1973 static int float_z_sort_flip(const void *p1, const void *p2)
1974 {
1975         return (((float *)p1)[2] < ((float *)p2)[2] ? 1 : -1);
1976 }
1977
1978 static int float_z_sort(const void *p1, const void *p2)
1979 {
1980         return (((float *)p1)[2] < ((float *)p2)[2] ? -1 : 1);
1981 }
1982
1983 /* assumes one point is within the rectangle */
1984 static bool line_rect_clip(
1985         const rctf *rect,
1986         const float l1[4], const float l2[4],
1987         const float uv1[2], const float uv2[2],
1988         float uv[2], bool is_ortho)
1989 {
1990         float min = FLT_MAX, tmp;
1991         float xlen = l2[0] - l1[0];
1992         float ylen = l2[1] - l1[1];
1993
1994         /* 0.1 might seem too much, but remember, this is pixels! */
1995         if (xlen > 0.1f) {
1996                 if ((l1[0] - rect->xmin) * (l2[0] - rect->xmin) <= 0) {
1997                         tmp = rect->xmin;
1998                         min = min_ff((tmp - l1[0]) / xlen, min);
1999                 }
2000                 else if ((l1[0] - rect->xmax) * (l2[0] - rect->xmax) < 0) {
2001                         tmp = rect->xmax;
2002                         min = min_ff((tmp - l1[0]) / xlen, min);
2003                 }
2004         }
2005
2006         if (ylen > 0.1f) {
2007                 if ((l1[1] - rect->ymin) * (l2[1] - rect->ymin) <= 0) {
2008                         tmp = rect->ymin;
2009                         min = min_ff((tmp - l1[1]) / ylen, min);
2010                 }
2011                 else if ((l1[1] - rect->ymax) * (l2[1] - rect->ymax) < 0) {
2012                         tmp = rect->ymax;
2013                         min = min_ff((tmp - l1[1]) / ylen, min);
2014                 }
2015         }
2016
2017         if (min == FLT_MAX)
2018                 return false;
2019
2020         tmp = (is_ortho) ? 1.0f : (l1[3] + min * (l2[3] - l1[3]));
2021
2022         uv[0] = (uv1[0] + min / tmp * (uv2[0] - uv1[0]));
2023         uv[1] = (uv1[1] + min / tmp * (uv2[1] - uv1[1]));
2024
2025         return true;
2026 }
2027
2028
2029 static void project_bucket_clip_face(
2030         const bool is_ortho, const bool is_flip_object,
2031         const rctf *cliprect,
2032         const rctf *bucket_bounds,
2033         const float *v1coSS, const float *v2coSS, const float *v3coSS,
2034         const float *uv1co, const float *uv2co, const float *uv3co,
2035         float bucket_bounds_uv[8][2],
2036         int *tot, bool cull)
2037 {
2038         int inside_bucket_flag = 0;
2039         int inside_face_flag = 0;
2040         int flip;
2041         bool collinear = false;
2042         
2043         float bucket_bounds_ss[4][2];
2044
2045         /* detect pathological case where face the three vertices are almost collinear in screen space.
2046          * mostly those will be culled but when flood filling or with smooth shading it's a possibility */
2047         if (dist_squared_to_line_v2(v1coSS, v2coSS, v3coSS) < 0.5f ||
2048             dist_squared_to_line_v2(v2coSS, v3coSS, v1coSS) < 0.5f)
2049         {
2050                 collinear = true;
2051         }
2052         
2053         /* get the UV space bounding box */
2054         inside_bucket_flag |= BLI_rctf_isect_pt_v(bucket_bounds, v1coSS);
2055         inside_bucket_flag |= BLI_rctf_isect_pt_v(bucket_bounds, v2coSS) << 1;
2056         inside_bucket_flag |= BLI_rctf_isect_pt_v(bucket_bounds, v3coSS) << 2;
2057         
2058         if (inside_bucket_flag == ISECT_ALL3) {
2059                 /* is_flip_object is used here because we use the face winding */
2060                 flip = (((line_point_side_v2(v1coSS, v2coSS, v3coSS) > 0.0f) != is_flip_object) !=
2061                         (line_point_side_v2(uv1co, uv2co, uv3co) > 0.0f));
2062
2063                 /* all screenspace points are inside the bucket bounding box,
2064                  * this means we don't need to clip and can simply return the UVs */
2065                 if (flip) { /* facing the back? */
2066                         copy_v2_v2(bucket_bounds_uv[0], uv3co);
2067                         copy_v2_v2(bucket_bounds_uv[1], uv2co);
2068                         copy_v2_v2(bucket_bounds_uv[2], uv1co);
2069                 }
2070                 else {
2071                         copy_v2_v2(bucket_bounds_uv[0], uv1co);
2072                         copy_v2_v2(bucket_bounds_uv[1], uv2co);
2073                         copy_v2_v2(bucket_bounds_uv[2], uv3co);
2074                 }               
2075                 
2076                 *tot = 3;
2077                 return;
2078         }
2079         /* handle pathological case here, no need for further intersections below since tringle area is almost zero */
2080         if (collinear) {
2081                 int flag;
2082                 
2083                 (*tot) = 0;
2084
2085                 if (cull)
2086                         return;
2087                 
2088                 if (inside_bucket_flag & ISECT_1) { copy_v2_v2(bucket_bounds_uv[*tot], uv1co); (*tot)++; }
2089
2090                 flag = inside_bucket_flag & (ISECT_1 | ISECT_2);
2091                 if (flag && flag != (ISECT_1 | ISECT_2)) {
2092                         if (line_rect_clip(bucket_bounds, v1coSS, v2coSS, uv1co, uv2co, bucket_bounds_uv[*tot], is_ortho))
2093                                 (*tot)++;
2094                 }
2095                 
2096                 if (inside_bucket_flag & ISECT_2) { copy_v2_v2(bucket_bounds_uv[*tot], uv2co); (*tot)++; }
2097                 
2098                 flag = inside_bucket_flag & (ISECT_2 | ISECT_3);
2099                 if (flag && flag != (ISECT_2 | ISECT_3)) {
2100                         if (line_rect_clip(bucket_bounds, v2coSS, v3coSS, uv2co, uv3co, bucket_bounds_uv[*tot], is_ortho))
2101                                 (*tot)++;
2102                 }
2103
2104                 if (inside_bucket_flag & ISECT_3) { copy_v2_v2(bucket_bounds_uv[*tot], uv3co); (*tot)++; }
2105
2106                 flag = inside_bucket_flag & (ISECT_3 | ISECT_1);
2107                 if (flag && flag != (ISECT_3 | ISECT_1)) {
2108                         if (line_rect_clip(bucket_bounds, v3coSS, v1coSS, uv3co, uv1co, bucket_bounds_uv[*tot], is_ortho))
2109                                 (*tot)++;
2110                 }
2111                 
2112                 if ((*tot) < 3) {
2113                         /* no intersections to speak of, but more probable is that all face is just outside the
2114                          * rectangle and culled due to float precision issues. Since above teste have failed,
2115                          * just dump triangle as is for painting */
2116                         *tot = 0;
2117                         copy_v2_v2(bucket_bounds_uv[*tot], uv1co); (*tot)++;
2118                         copy_v2_v2(bucket_bounds_uv[*tot], uv2co); (*tot)++;
2119                         copy_v2_v2(bucket_bounds_uv[*tot], uv3co); (*tot)++;
2120                         return;
2121                 }
2122
2123                 return;
2124         }
2125
2126         /* get the UV space bounding box */
2127         /* use IsectPT2Df_limit here so we catch points are are touching the tri edge (or a small fraction over) */
2128         bucket_bounds_ss[0][0] = bucket_bounds->xmax;
2129         bucket_bounds_ss[0][1] = bucket_bounds->ymin;
2130         inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[0], v1coSS, v2coSS, v3coSS, 1 + PROJ_GEOM_TOLERANCE) ? ISECT_1 : 0);
2131
2132         bucket_bounds_ss[1][0] = bucket_bounds->xmax;
2133         bucket_bounds_ss[1][1] = bucket_bounds->ymax;
2134         inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[1], v1coSS, v2coSS, v3coSS, 1 + PROJ_GEOM_TOLERANCE) ? ISECT_2 : 0);
2135
2136         bucket_bounds_ss[2][0] = bucket_bounds->xmin;
2137         bucket_bounds_ss[2][1] = bucket_bounds->ymax;
2138         inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[2], v1coSS, v2coSS, v3coSS, 1 + PROJ_GEOM_TOLERANCE) ? ISECT_3 : 0);
2139
2140         bucket_bounds_ss[3][0] = bucket_bounds->xmin;
2141         bucket_bounds_ss[3][1] = bucket_bounds->ymin;
2142         inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[3], v1coSS, v2coSS, v3coSS, 1 + PROJ_GEOM_TOLERANCE) ? ISECT_4 : 0);
2143
2144         flip = ((line_point_side_v2(v1coSS, v2coSS, v3coSS) > 0.0f) !=
2145                 (line_point_side_v2(uv1co, uv2co, uv3co) > 0.0f));
2146
2147         if (inside_face_flag == ISECT_ALL4) {
2148                 /* bucket is totally inside the screenspace face, we can safely use weights */
2149
2150                 if (is_ortho) {
2151                         rect_to_uvspace_ortho(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, bucket_bounds_uv, flip);
2152                 }
2153                 else {
2154                         rect_to_uvspace_persp(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, bucket_bounds_uv, flip);
2155                 }
2156
2157                 *tot = 4;
2158                 return;
2159         }
2160         else {
2161                 /* The Complicated Case!
2162                  *
2163                  * The 2 cases above are where the face is inside the bucket or the bucket is inside the face.
2164                  *
2165                  * we need to make a convex polyline from the intersection between the screenspace face
2166                  * and the bucket bounds.
2167                  *
2168                  * There are a number of ways this could be done, currently it just collects all intersecting verts,
2169                  * and line intersections,  then sorts them clockwise, this is a lot easier then evaluating the geometry to
2170                  * do a correct clipping on both shapes. */
2171
2172
2173                 /* add a bunch of points, we know must make up the convex hull which is the clipped rect and triangle */
2174
2175
2176
2177                 /* Maximum possible 6 intersections when using a rectangle and triangle */
2178                 float isectVCosSS[8][3]; /* The 3rd float is used to store angle for qsort(), NOT as a Z location */
2179                 float v1_clipSS[2], v2_clipSS[2];
2180                 float w[3];
2181
2182                 /* calc center */
2183                 float cent[2] = {0.0f, 0.0f};
2184                 /*float up[2] = {0.0f, 1.0f};*/
2185                 int i;
2186                 bool doubles;
2187
2188                 (*tot) = 0;
2189
2190                 if (inside_face_flag & ISECT_1) { copy_v2_v2(isectVCosSS[*tot], bucket_bounds_ss[0]); (*tot)++; }
2191                 if (inside_face_flag & ISECT_2) { copy_v2_v2(isectVCosSS[*tot], bucket_bounds_ss[1]); (*tot)++; }
2192                 if (inside_face_flag & ISECT_3) { copy_v2_v2(isectVCosSS[*tot], bucket_bounds_ss[2]); (*tot)++; }
2193                 if (inside_face_flag & ISECT_4) { copy_v2_v2(isectVCosSS[*tot], bucket_bounds_ss[3]); (*tot)++; }
2194
2195                 if (inside_bucket_flag & ISECT_1) { copy_v2_v2(isectVCosSS[*tot], v1coSS); (*tot)++; }
2196                 if (inside_bucket_flag & ISECT_2) { copy_v2_v2(isectVCosSS[*tot], v2coSS); (*tot)++; }
2197                 if (inside_bucket_flag & ISECT_3) { copy_v2_v2(isectVCosSS[*tot], v3coSS); (*tot)++; }
2198
2199                 if ((inside_bucket_flag & (ISECT_1 | ISECT_2)) != (ISECT_1 | ISECT_2)) {
2200                         if (line_clip_rect2f(cliprect, bucket_bounds, v1coSS, v2coSS, v1_clipSS, v2_clipSS)) {
2201                                 if ((inside_bucket_flag & ISECT_1) == 0) { copy_v2_v2(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2202                                 if ((inside_bucket_flag & ISECT_2) == 0) { copy_v2_v2(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2203                         }
2204                 }
2205
2206                 if ((inside_bucket_flag & (ISECT_2 | ISECT_3)) != (ISECT_2 | ISECT_3)) {
2207                         if (line_clip_rect2f(cliprect, bucket_bounds, v2coSS, v3coSS, v1_clipSS, v2_clipSS)) {
2208                                 if ((inside_bucket_flag & ISECT_2) == 0) { copy_v2_v2(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2209                                 if ((inside_bucket_flag & ISECT_3) == 0) { copy_v2_v2(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2210                         }
2211                 }
2212
2213                 if ((inside_bucket_flag & (ISECT_3 | ISECT_1)) != (ISECT_3 | ISECT_1)) {
2214                         if (line_clip_rect2f(cliprect, bucket_bounds, v3coSS, v1coSS, v1_clipSS, v2_clipSS)) {
2215                                 if ((inside_bucket_flag & ISECT_3) == 0) { copy_v2_v2(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2216                                 if ((inside_bucket_flag & ISECT_1) == 0) { copy_v2_v2(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2217                         }
2218                 }
2219
2220
2221                 if ((*tot) < 3) { /* no intersections to speak of */
2222                         *tot = 0;
2223                         return;
2224                 }
2225
2226                 /* now we have all points we need, collect their angles and sort them clockwise */
2227
2228                 for (i = 0; i < (*tot); i++) {
2229                         cent[0] += isectVCosSS[i][0];
2230                         cent[1] += isectVCosSS[i][1];
2231                 }
2232                 cent[0] = cent[0] / (float)(*tot);
2233                 cent[1] = cent[1] / (float)(*tot);
2234
2235
2236
2237                 /* Collect angles for every point around the center point */
2238
2239
2240 #if 0   /* uses a few more cycles then the above loop */
2241                 for (i = 0; i < (*tot); i++) {
2242                         isectVCosSS[i][2] = angle_2d_clockwise(up, cent, isectVCosSS[i]);
2243                 }
2244 #endif
2245
2246                 v1_clipSS[0] = cent[0]; /* Abuse this var for the loop below */
2247                 v1_clipSS[1] = cent[1] + 1.0f;
2248
2249                 for (i = 0; i < (*tot); i++) {
2250                         v2_clipSS[0] = isectVCosSS[i][0] - cent[0];
2251                         v2_clipSS[1] = isectVCosSS[i][1] - cent[1];
2252                         isectVCosSS[i][2] = atan2f(v1_clipSS[0] * v2_clipSS[1] - v1_clipSS[1] * v2_clipSS[0],
2253                                                    v1_clipSS[0] * v2_clipSS[0] + v1_clipSS[1] * v2_clipSS[1]);
2254                 }
2255
2256                 if (flip) qsort(isectVCosSS, *tot, sizeof(float) * 3, float_z_sort_flip);
2257                 else      qsort(isectVCosSS, *tot, sizeof(float) * 3, float_z_sort);
2258
2259                 doubles = true;
2260                 while (doubles == true) {
2261                         doubles = false;
2262
2263                         for (i = 0; i < (*tot); i++) {
2264                                 if (fabsf(isectVCosSS[(i + 1) % *tot][0] - isectVCosSS[i][0]) < PROJ_PIXEL_TOLERANCE &&
2265                                     fabsf(isectVCosSS[(i + 1) % *tot][1] - isectVCosSS[i][1]) < PROJ_PIXEL_TOLERANCE)
2266                                 {
2267                                         int j;
2268                                         for (j = i; j < (*tot) - 1; j++) {
2269                                                 isectVCosSS[j][0] = isectVCosSS[j + 1][0];
2270                                                 isectVCosSS[j][1] = isectVCosSS[j + 1][1];
2271                                         }
2272                                         doubles = true; /* keep looking for more doubles */
2273                                         (*tot)--;
2274                                 }
2275                         }
2276                         
2277                         /* its possible there is only a few left after remove doubles */
2278                         if ((*tot) < 3) {
2279                                 // printf("removed too many doubles B\n");
2280                                 *tot = 0;
2281                                 return;
2282                         }
2283                 }
2284
2285                 if (is_ortho) {
2286                         for (i = 0; i < (*tot); i++) {
2287                                 barycentric_weights_v2(v1coSS, v2coSS, v3coSS, isectVCosSS[i], w);
2288                                 interp_v2_v2v2v2(bucket_bounds_uv[i], uv1co, uv2co, uv3co, w);
2289                         }
2290                 }
2291                 else {
2292                         for (i = 0; i < (*tot); i++) {
2293                                 barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, isectVCosSS[i], w);
2294                                 interp_v2_v2v2v2(bucket_bounds_uv[i], uv1co, uv2co, uv3co, w);
2295                         }
2296                 }
2297         }
2298
2299 #ifdef PROJ_DEBUG_PRINT_CLIP
2300         /* include this at the bottom of the above function to debug the output */
2301
2302         {
2303                 /* If there are ever any problems, */
2304                 float test_uv[4][2];
2305                 int i;
2306                 if (is_ortho) rect_to_uvspace_ortho(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, test_uv, flip);
2307                 else          rect_to_uvspace_persp(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, test_uv, flip);
2308                 printf("(  [(%f,%f), (%f,%f), (%f,%f), (%f,%f)], ",
2309                        test_uv[0][0], test_uv[0][1],   test_uv[1][0], test_uv[1][1],
2310                        test_uv[2][0], test_uv[2][1],    test_uv[3][0], test_uv[3][1]);
2311
2312                 printf("  [(%f,%f), (%f,%f), (%f,%f)], ", uv1co[0], uv1co[1],   uv2co[0], uv2co[1],    uv3co[0], uv3co[1]);
2313
2314                 printf("[");
2315                 for (i = 0; i < (*tot); i++) {
2316                         printf("(%f, %f),", bucket_bounds_uv[i][0], bucket_bounds_uv[i][1]);
2317                 }
2318                 printf("]),\\\n");
2319         }
2320 #endif
2321 }
2322
2323 /*
2324  * # This script creates faces in a blender scene from printed data above.
2325  *
2326  * project_ls = [
2327  * ...(output from above block)...
2328  * ]
2329  *
2330  * from Blender import Scene, Mesh, Window, sys, Mathutils
2331  *
2332  * import bpy
2333  *
2334  * V = Mathutils.Vector
2335  *
2336  * def main():
2337  *     sce = bpy.data.scenes.active
2338  *
2339  *     for item in project_ls:
2340  *         bb = item[0]
2341  *         uv = item[1]
2342  *         poly = item[2]
2343  *
2344  *         me = bpy.data.meshes.new()
2345  *         ob = sce.objects.new(me)
2346  *
2347  *         me.verts.extend([V(bb[0]).xyz, V(bb[1]).xyz, V(bb[2]).xyz, V(bb[3]).xyz])
2348  *         me.faces.extend([(0,1,2,3),])
2349  *         me.verts.extend([V(uv[0]).xyz, V(uv[1]).xyz, V(uv[2]).xyz])
2350  *         me.faces.extend([(4,5,6),])
2351  *
2352  *         vs = [V(p).xyz for p in poly]
2353  *         print len(vs)
2354  *         l = len(me.verts)
2355  *         me.verts.extend(vs)
2356  *
2357  *         i = l
2358  *         while i < len(me.verts):
2359  *             ii = i + 1
2360  *             if ii == len(me.verts):
2361  *                 ii = l
2362  *             me.edges.extend([i, ii])
2363  *             i += 1
2364  *
2365  * if __name__ == '__main__':
2366  *     main()
2367  */
2368
2369
2370 #undef ISECT_1
2371 #undef ISECT_2
2372 #undef ISECT_3
2373 #undef ISECT_4
2374 #undef ISECT_ALL3
2375 #undef ISECT_ALL4
2376
2377
2378 /* checks if pt is inside a convex 2D polyline, the polyline must be ordered rotating clockwise
2379  * otherwise it would have to test for mixed (line_point_side_v2 > 0.0f) cases */
2380 static bool IsectPoly2Df(const float pt[2], float uv[][2], const int tot)
2381 {
2382         int i;
2383         if (line_point_side_v2(uv[tot - 1], uv[0], pt) < 0.0f)
2384                 return 0;
2385
2386         for (i = 1; i < tot; i++) {
2387                 if (line_point_side_v2(uv[i - 1], uv[i], pt) < 0.0f)
2388                         return 0;
2389
2390         }
2391
2392         return 1;
2393 }
2394 static bool IsectPoly2Df_twoside(const float pt[2], float uv[][2], const int tot)
2395 {
2396         int i;
2397         bool side = (line_point_side_v2(uv[tot - 1], uv[0], pt) > 0.0f);
2398
2399         for (i = 1; i < tot; i++) {
2400                 if ((line_point_side_v2(uv[i - 1], uv[i], pt) > 0.0f) != side)
2401                         return 0;
2402
2403         }
2404
2405         return 1;
2406 }
2407
2408 /* One of the most important function for projection painting,
2409  * since it selects the pixels to be added into each bucket.
2410  *
2411  * initialize pixels from this face where it intersects with the bucket_index,
2412  * optionally initialize pixels for removing seams */
2413 static void project_paint_face_init(
2414         const ProjPaintState *ps,
2415         const int thread_index, const int bucket_index, const int tri_index, const int image_index,
2416         const rctf *clip_rect, const rctf *bucket_bounds, ImBuf *ibuf, ImBuf **tmpibuf,
2417         const bool clamp_u, const bool clamp_v)
2418 {
2419         /* Projection vars, to get the 3D locations into screen space  */
2420         MemArena *arena = ps->arena_mt[thread_index];
2421         LinkNode **bucketPixelNodes = ps->bucketRect + bucket_index;
2422         LinkNode *bucketFaceNodes = ps->bucketFaces[bucket_index];
2423         bool threaded = (ps->thread_tot > 1);
2424
2425         TileInfo tinf = {
2426                 ps->tile_lock,
2427                 ps->do_masking,
2428                 IMAPAINT_TILE_NUMBER(ibuf->x),
2429                 tmpibuf,
2430                 ps->projImages + image_index
2431         };
2432
2433         const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
2434         const int lt_vtri[3] = { PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) };
2435         const float *lt_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, lt) };
2436
2437         /* UV/pixel seeking data */
2438         int x; /* Image X-Pixel */
2439         int y; /* Image Y-Pixel */
2440         float mask;
2441         float uv[2]; /* Image floating point UV - same as x, y but from 0.0-1.0 */
2442
2443         const float *v1coSS, *v2coSS, *v3coSS; /* vert co screen-space, these will be assigned to lt_vtri[0-2] */
2444
2445         const float *vCo[3]; /* vertex screenspace coords */
2446
2447         float w[3], wco[3];
2448
2449         float *uv1co, *uv2co, *uv3co; /* for convenience only, these will be assigned to lt_tri_uv[0],1,2 or lt_tri_uv[0],2,3 */
2450         float pixelScreenCo[4];
2451         bool do_3d_mapping = ps->brush->mtex.brush_map_mode == MTEX_MAP_MODE_3D;
2452
2453         rcti bounds_px; /* ispace bounds */
2454         /* vars for getting uvspace bounds */
2455
2456         float lt_uv_pxoffset[3][2]; /* bucket bounds in UV space so we can init pixels only for this face,  */
2457         float xhalfpx, yhalfpx;
2458         const float ibuf_xf = (float)ibuf->x, ibuf_yf = (float)ibuf->y;
2459
2460         int has_x_isect = 0, has_isect = 0; /* for early loop exit */
2461
2462         float uv_clip[8][2];
2463         int uv_clip_tot;
2464         const bool is_ortho = ps->is_ortho;
2465         const bool is_flip_object = ps->is_flip_object;
2466         const bool do_backfacecull = ps->do_backfacecull;
2467         const bool do_clip = ps->rv3d ? ps->rv3d->rflag & RV3D_CLIPPING : 0;
2468
2469         vCo[0] = ps->dm_mvert[lt_vtri[0]].co;
2470         vCo[1] = ps->dm_mvert[lt_vtri[1]].co;
2471         vCo[2] = ps->dm_mvert[lt_vtri[2]].co;
2472
2473
2474         /* Use lt_uv_pxoffset instead of lt_tri_uv so we can offset the UV half a pixel
2475          * this is done so we can avoid offsetting all the pixels by 0.5 which causes
2476          * problems when wrapping negative coords */
2477         xhalfpx = (0.5f + (PROJ_PIXEL_TOLERANCE * (1.0f / 3.0f))) / ibuf_xf;
2478         yhalfpx = (0.5f + (PROJ_PIXEL_TOLERANCE * (1.0f / 4.0f))) / ibuf_yf;
2479
2480         /* Note about (PROJ_GEOM_TOLERANCE/x) above...
2481          * Needed to add this offset since UV coords are often quads aligned to pixels.
2482          * In this case pixels can be exactly between 2 triangles causing nasty
2483          * artifacts.
2484          *
2485          * This workaround can be removed and painting will still work on most cases
2486          * but since the first thing most people try is painting onto a quad- better make it work.
2487          */
2488
2489         lt_uv_pxoffset[0][0] = lt_tri_uv[0][0] - xhalfpx;
2490         lt_uv_pxoffset[0][1] = lt_tri_uv[0][1] - yhalfpx;
2491
2492         lt_uv_pxoffset[1][0] = lt_tri_uv[1][0] - xhalfpx;
2493         lt_uv_pxoffset[1][1] = lt_tri_uv[1][1] - yhalfpx;
2494
2495         lt_uv_pxoffset[2][0] = lt_tri_uv[2][0] - xhalfpx;
2496         lt_uv_pxoffset[2][1] = lt_tri_uv[2][1] - yhalfpx;
2497
2498         {
2499                 uv1co = lt_uv_pxoffset[0]; // was lt_tri_uv[i1];
2500                 uv2co = lt_uv_pxoffset[1]; // was lt_tri_uv[i2];
2501                 uv3co = lt_uv_pxoffset[2]; // was lt_tri_uv[i3];
2502
2503                 v1coSS = ps->screenCoords[lt_vtri[0]];
2504                 v2coSS = ps->screenCoords[lt_vtri[1]];
2505                 v3coSS = ps->screenCoords[lt_vtri[2]];
2506
2507                 /* This funtion gives is a concave polyline in UV space from the clipped tri*/
2508                 project_bucket_clip_face(
2509                         is_ortho, is_flip_object,
2510                         clip_rect, bucket_bounds,
2511                         v1coSS, v2coSS, v3coSS,
2512                         uv1co, uv2co, uv3co,
2513                         uv_clip, &uv_clip_tot,
2514                         do_backfacecull || ps->do_occlude);
2515
2516                 /* sometimes this happens, better just allow for 8 intersectiosn even though there should be max 6 */
2517 #if 0
2518                 if (uv_clip_tot > 6) {
2519                         printf("this should never happen! %d\n", uv_clip_tot);
2520                 }
2521 #endif
2522
2523                 if (pixel_bounds_array(uv_clip, &bounds_px, ibuf->x, ibuf->y, uv_clip_tot)) {
2524
2525                         if (clamp_u) {
2526                                 CLAMP(bounds_px.xmin, 0, ibuf->x);
2527                                 CLAMP(bounds_px.xmax, 0, ibuf->x);
2528                         }
2529
2530                         if (clamp_v) {
2531                                 CLAMP(bounds_px.ymin, 0, ibuf->y);
2532                                 CLAMP(bounds_px.ymax, 0, ibuf->y);
2533                         }
2534
2535 #if 0
2536                         project_paint_undo_tiles_init(&bounds_px, ps->projImages + image_index, tmpibuf,
2537                                                       tile_width, threaded, ps->do_masking);
2538 #endif
2539                         /* clip face and */
2540
2541                         has_isect = 0;
2542                         for (y = bounds_px.ymin; y < bounds_px.ymax; y++) {
2543                                 //uv[1] = (((float)y) + 0.5f) / (float)ibuf->y;
2544                                 uv[1] = (float)y / ibuf_yf; /* use pixel offset UV coords instead */
2545
2546                                 has_x_isect = 0;
2547                                 for (x = bounds_px.xmin; x < bounds_px.xmax; x++) {
2548                                         //uv[0] = (((float)x) + 0.5f) / ibuf->x;
2549                                         uv[0] = (float)x / ibuf_xf; /* use pixel offset UV coords instead */
2550
2551                                         /* Note about IsectPoly2Df_twoside, checking the face or uv flipping doesnt work,
2552                                          * could check the poly direction but better to do this */
2553                                         if ((do_backfacecull == true  && IsectPoly2Df(uv, uv_clip, uv_clip_tot)) ||
2554                                             (do_backfacecull == false && IsectPoly2Df_twoside(uv, uv_clip, uv_clip_tot)))
2555                                         {
2556
2557                                                 has_x_isect = has_isect = 1;
2558
2559                                                 if (is_ortho) screen_px_from_ortho(uv, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, pixelScreenCo, w);
2560                                                 else screen_px_from_persp(uv, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, pixelScreenCo, w);
2561
2562                                                 /* a pity we need to get the worldspace pixel location here */
2563                                                 if (do_clip || do_3d_mapping) {
2564                                                         interp_v3_v3v3v3(
2565                                                                 wco,
2566                                                                 ps->dm_mvert[lt_vtri[0]].co,
2567                                                                 ps->dm_mvert[lt_vtri[1]].co,
2568                                                                 ps->dm_mvert[lt_vtri[2]].co,
2569                                                                 w);
2570                                                         if (do_clip && ED_view3d_clipping_test(ps->rv3d, wco, true)) {
2571                                                                 continue; /* Watch out that no code below this needs to run */
2572                                                         }
2573                                                 }
2574
2575                                                 /* Is this UV visible from the view? - raytrace */
2576                                                 /* project_paint_PickFace is less complex, use for testing */
2577                                                 //if (project_paint_PickFace(ps, pixelScreenCo, w, &side) == tri_index) {
2578                                                 if ((ps->do_occlude == false) ||
2579                                                     !project_bucket_point_occluded(ps, bucketFaceNodes, tri_index, pixelScreenCo))
2580                                                 {
2581                                                         mask = project_paint_uvpixel_mask(ps, tri_index, w);
2582
2583                                                         if (mask > 0.0f) {
2584                                                                 BLI_linklist_prepend_arena(
2585                                                                         bucketPixelNodes,
2586                                                                         project_paint_uvpixel_init(ps, arena, &tinf, x, y, mask, tri_index,
2587                                                                                                    pixelScreenCo, wco, w),
2588                                                                         arena
2589                                                                         );
2590                                                         }
2591                                                 }
2592
2593                                         }
2594 //#if 0
2595                                         else if (has_x_isect) {
2596                                                 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2597                                                 break;
2598                                         }
2599 //#endif
2600                                 }
2601
2602
2603 #if 0           /* TODO - investigate why this dosnt work sometimes! it should! */
2604                                 /* no intersection for this entire row, after some intersection above means we can quit now */
2605                                 if (has_x_isect == 0 && has_isect) {
2606                                         break;
2607                                 }
2608 #endif
2609                         }
2610                 }
2611         }
2612
2613
2614 #ifndef PROJ_DEBUG_NOSEAMBLEED
2615         if (ps->seam_bleed_px > 0.0f) {
2616                 int face_seam_flag;
2617
2618                 if (threaded)
2619                         BLI_lock_thread(LOCK_CUSTOM1);  /* Other threads could be modifying these vars */
2620
2621                 face_seam_flag = ps->faceSeamFlags[tri_index];
2622
2623                 /* are any of our edges un-initialized? */
2624                 if ((face_seam_flag & (PROJ_FACE_SEAM1 | PROJ_FACE_NOSEAM1)) == 0 ||
2625                     (face_seam_flag & (PROJ_FACE_SEAM2 | PROJ_FACE_NOSEAM2)) == 0 ||
2626                     (face_seam_flag & (PROJ_FACE_SEAM3 | PROJ_FACE_NOSEAM3)) == 0)
2627                 {
2628                         project_face_seams_init(ps, tri_index);
2629                         face_seam_flag = ps->faceSeamFlags[tri_index];
2630                         //printf("seams - %d %d %d %d\n", flag&PROJ_FACE_SEAM1, flag&PROJ_FACE_SEAM2, flag&PROJ_FACE_SEAM3);
2631                 }
2632
2633                 if ((face_seam_flag & (PROJ_FACE_SEAM1 | PROJ_FACE_SEAM2 | PROJ_FACE_SEAM3)) == 0) {
2634
2635                         if (threaded)
2636                                 BLI_unlock_thread(LOCK_CUSTOM1);  /* Other threads could be modifying these vars */
2637
2638                 }
2639                 else {
2640                         /* we have a seam - deal with it! */
2641
2642                         /* Now create new UV's for the seam face */
2643                         float (*outset_uv)[2] = ps->faceSeamUVs[tri_index];
2644                         float insetCos[3][3]; /* inset face coords.  NOTE!!! ScreenSace for ortho, Worldspace in prespective view */
2645
2646                         const float *vCoSS[3]; /* vertex screenspace coords */
2647
2648                         float bucket_clip_edges[2][2]; /* store the screenspace coords of the face, clipped by the bucket's screen aligned rectangle */
2649                         float edge_verts_inset_clip[2][3];
2650                         int fidx1, fidx2; /* face edge pairs - loop throuh these ((0,1), (1,2), (2,3), (3,0)) or ((0,1), (1,2), (2,0)) for a tri */
2651
2652                         float seam_subsection[4][2];
2653                         float fac1, fac2;
2654
2655                         if (outset_uv[0][0] == FLT_MAX) /* first time initialize */
2656                                 uv_image_outset(
2657                                         lt_uv_pxoffset, outset_uv, ps->seam_bleed_px,
2658                                         ibuf->x, ibuf->y, (ps->faceWindingFlags[tri_index] & PROJ_FACE_WINDING_CW) == 0);
2659
2660                         /* ps->faceSeamUVs cant be modified when threading, now this is done we can unlock */
2661                         if (threaded)
2662                                 BLI_unlock_thread(LOCK_CUSTOM1);  /* Other threads could be modifying these vars */
2663
2664                         vCoSS[0] = ps->screenCoords[lt_vtri[0]];
2665                         vCoSS[1] = ps->screenCoords[lt_vtri[1]];
2666                         vCoSS[2] = ps->screenCoords[lt_vtri[2]];
2667
2668                         /* PROJ_FACE_SCALE_SEAM must be slightly less then 1.0f */
2669                         if (is_ortho) {
2670                                 scale_tri(insetCos, vCoSS, PROJ_FACE_SCALE_SEAM);
2671                         }
2672                         else {
2673                                 scale_tri(insetCos, vCo, PROJ_FACE_SCALE_SEAM);
2674                         }
2675
2676                         for (fidx1 = 0; fidx1 < 3; fidx1++) {
2677                                 fidx2 = (fidx1 == 2) ? 0 : fidx1 + 1;  /* next fidx in the face (0,1,2) -> (1,2,0) */
2678
2679                                 if ((face_seam_flag & (1 << fidx1)) && /* 1<<fidx1 -> PROJ_FACE_SEAM# */
2680                                     line_clip_rect2f(clip_rect, bucket_bounds, vCoSS[fidx1], vCoSS[fidx2], bucket_clip_edges[0], bucket_clip_edges[1]))
2681                                 {
2682                                         if (len_squared_v2v2(vCoSS[fidx1], vCoSS[fidx2]) > FLT_EPSILON) { /* avoid div by zero */
2683                                                 fac1 = line_point_factor_v2(bucket_clip_edges[0], vCoSS[fidx1], vCoSS[fidx2]);
2684                                                 fac2 = line_point_factor_v2(bucket_clip_edges[1], vCoSS[fidx1], vCoSS[fidx2]);
2685
2686                                                 interp_v2_v2v2(seam_subsection[0], lt_uv_pxoffset[fidx1], lt_uv_pxoffset[fidx2], fac1);
2687                                                 interp_v2_v2v2(seam_subsection[1], lt_uv_pxoffset[fidx1], lt_uv_pxoffset[fidx2], fac2);
2688
2689                                                 interp_v2_v2v2(seam_subsection[2], outset_uv[fidx1], outset_uv[fidx2], fac2);
2690                                                 interp_v2_v2v2(seam_subsection[3], outset_uv[fidx1], outset_uv[fidx2], fac1);
2691
2692                                                 /* if the bucket_clip_edges values Z values was kept we could avoid this
2693                                                  * Inset needs to be added so occlusion tests wont hit adjacent faces */
2694                                                 interp_v3_v3v3(edge_verts_inset_clip[0], insetCos[fidx1], insetCos[fidx2], fac1);
2695                                                 interp_v3_v3v3(edge_verts_inset_clip[1], insetCos[fidx1], insetCos[fidx2], fac2);
2696
2697
2698                                                 if (pixel_bounds_uv(seam_subsection, &bounds_px, ibuf->x, ibuf->y)) {
2699                                                         /* bounds between the seam rect and the uvspace bucket pixels */
2700
2701                                                         has_isect = 0;
2702                                                         for (y = bounds_px.ymin; y < bounds_px.ymax; y++) {
2703                                                                 // uv[1] = (((float)y) + 0.5f) / (float)ibuf->y;
2704                                                                 uv[1] = (float)y / ibuf_yf; /* use offset uvs instead */
2705
2706                                                                 has_x_isect = 0;
2707                                                                 for (x = bounds_px.xmin; x < bounds_px.xmax; x++) {
2708                                                                         //uv[0] = (((float)x) + 0.5f) / (float)ibuf->x;
2709                                                                         uv[0] = (float)x / ibuf_xf; /* use offset uvs instead */
2710
2711                                                                         /* test we're inside uvspace bucket and triangle bounds */
2712                                                                         if (isect_point_quad_v2(uv, UNPACK4(seam_subsection))) {
2713                                                                                 float fac;
2714
2715                                                                                 /* We need to find the closest point along the face edge,
2716                                                                                  * getting the screen_px_from_*** wont work because our actual location
2717                                                                                  * is not relevant, since we are outside the face, Use VecLerpf to find
2718                                                                                  * our location on the side of the face's UV */
2719 #if 0
2720                                                                                 if (is_ortho) screen_px_from_ortho(ps, uv, v1co, v2co, v3co, uv1co, uv2co, uv3co, pixelScreenCo);
2721                                                                                 else          screen_px_from_persp(ps, uv, v1co, v2co, v3co, uv1co, uv2co, uv3co, pixelScreenCo);
2722 #endif
2723
2724                                                                                 /* Since this is a seam we need to work out where on the line this pixel is */
2725                                                                                 //fac = line_point_factor_v2(uv, uv_seam_quad[0], uv_seam_quad[1]);
2726                                                                                 fac = resolve_quad_u_v2(uv, UNPACK4(seam_subsection));
2727                                                                                 interp_v3_v3v3(pixelScreenCo, edge_verts_inset_clip[0], edge_verts_inset_clip[1], fac);
2728
2729                                                                                 if (!is_ortho) {
2730                                                                                         pixelScreenCo[3] = 1.0f;
2731                                                                                         mul_m4_v4((float(*)[4])ps->projectMat, pixelScreenCo); /* cast because of const */
2732                                                                                         pixelScreenCo[0] = (float)(ps->winx * 0.5f) + (ps->winx * 0.5f) * pixelScreenCo[0] / pixelScreenCo[3];
2733                                                                                         pixelScreenCo[1] = (float)(ps->winy * 0.5f) + (ps->winy * 0.5f) * pixelScreenCo[1] / pixelScreenCo[3];
2734                                                                                         pixelScreenCo[2] = pixelScreenCo[2] / pixelScreenCo[3]; /* Use the depth for bucket point occlusion */
2735                                                                                 }
2736
2737                                                                                 if ((ps->do_occlude == false) ||
2738                                                                                     !project_bucket_point_occluded(ps, bucketFaceNodes, tri_index, pixelScreenCo))
2739                                                                                 {
2740                                                                                         /* Only bother calculating the weights if we intersect */
2741                                                                                         if (ps->do_mask_normal || ps->dm_mloopuv_clone) {
2742                                                                                                 const float uv_fac = fac1 + (fac * (fac2 - fac1));
2743 #if 0
2744                                                                                                 /* get the UV on the line since we want to copy the pixels from there for bleeding */
2745                                                                                                 float uv_close[2];
2746                                                                                                 interp_v2_v2v2(uv_close, lt_uv_pxoffset[fidx1], lt_uv_pxoffset[fidx2], uv_fac);
2747                                                                                                 barycentric_weights_v2(lt_uv_pxoffset[0], lt_uv_pxoffset[1], lt_uv_pxoffset[2], uv_close, w);
2748 #else
2749
2750                                                                                                 /* Cheat, we know where we are along the edge so work out the weights from that */
2751                                                                                                 w[0] = w[1] = w[2] = 0.0;
2752                                                                                                 w[fidx1] = 1.0f - uv_fac;
2753                                                                                                 w[fidx2] = uv_fac;
2754 #endif
2755                                                                                         }
2756
2757                                                                                         /* a pity we need to get the worldspace pixel location here */
2758                                                                                         if (do_clip || do_3d_mapping) {
2759                                                                                                 interp_v3_v3v3v3(wco, vCo[0], vCo[1], vCo[2], w);
2760
2761                                                                                                 if (do_clip && ED_view3d_clipping_test(ps->rv3d, wco, true)) {
2762                                                                                                         continue; /* Watch out that no code below this needs to run */
2763                                                                                                 }
2764                                                                                         }
2765
2766                                                                                         mask = project_paint_uvpixel_mask(ps, tri_index, w);
2767
2768                                                                                         if (mask > 0.0f) {
2769                                                                                                 BLI_linklist_prepend_arena(
2770                                                                                                         bucketPixelNodes,
2771                                                                                                         project_paint_uvpixel_init(ps, arena, &tinf, x, y, mask, tri_index,
2772                                                                                                         pixelScreenCo, wco, w),
2773                                                                                                         arena
2774                                                                                                         );
2775                                                                                         }
2776
2777                                                                                 }
2778                                                                         }
2779                                                                         else if (has_x_isect) {
2780                                                                                 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2781                                                                                 break;
2782                                                                         }
2783                                                                 }
2784
2785 #if 0                           /* TODO - investigate why this dosnt work sometimes! it should! */
2786                                                                 /* no intersection for this entire row, after some intersection above means we can quit now */
2787                                                                 if (has_x_isect == 0 && has_isect) {
2788                                                                         break;
2789                                                                 }
2790 #endif
2791                                                         }
2792                                                 }
2793                                         }
2794                                 }
2795                         }
2796                 }
2797         }
2798 #else
2799         UNUSED_VARS(vCo, threaded);
2800 #endif // PROJ_DEBUG_NOSEAMBLEED
2801 }
2802
2803
2804 /* takes floating point screenspace min/max and returns int min/max to be used as indices for ps->bucketRect, ps->bucketFlags */
2805 static void project_paint_bucket_bounds(const ProjPaintState *ps, const float min[2], const float max[2], int bucketMin[2], int bucketMax[2])
2806 {
2807         /* divide by bucketWidth & bucketHeight so the bounds are offset in bucket grid units */
2808         /* XXX: the offset of 0.5 is always truncated to zero and the offset of 1.5f is always truncated to 1, is this really correct?? - jwilkins */
2809         bucketMin[0] = (int)((int)(((float)(min[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x) + 0.5f); /* these offsets of 0.5 and 1.5 seem odd but they are correct */
2810         bucketMin[1] = (int)((int)(((float)(min[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y) + 0.5f);
2811
2812         bucketMax[0] = (int)((int)(((float)(max[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x) + 1.5f);
2813         bucketMax[1] = (int)((int)(((float)(max[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y) + 1.5f);
2814
2815         /* in case the rect is outside the mesh 2d bounds */
2816         CLAMP(bucketMin[0], 0, ps->buckets_x);
2817         CLAMP(bucketMin[1], 0, ps->buckets_y);
2818
2819         CLAMP(bucketMax[0], 0, ps->buckets_x);
2820         CLAMP(bucketMax[1], 0, ps->buckets_y);
2821 }
2822
2823 /* set bucket_bounds to a screen space-aligned floating point bound-box */
2824 static void project_bucket_bounds(const ProjPaintState *ps, const int bucket_x, const int bucket_y, rctf *bucket_bounds)
2825 {
2826         bucket_bounds->xmin = ps->screenMin[0] + ((bucket_x) * (ps->screen_width / ps->buckets_x));     /* left */
2827         bucket_bounds->xmax = ps->screenMin[0] + ((bucket_x + 1) * (ps->screen_width / ps->buckets_x)); /* right */
2828
2829         bucket_bounds->ymin = ps->screenMin[1] + ((bucket_y) * (ps->screen_height / ps->buckets_y));      /* bottom */
2830         bucket_bounds->ymax = ps->screenMin[1] + ((bucket_y + 1) * (ps->screen_height  / ps->buckets_y)); /* top */
2831 }
2832
2833 /* Fill this bucket with pixels from the faces that intersect it.
2834  *
2835  * have bucket_bounds as an argument so we don't need to give bucket_x/y the rect function needs */
2836 static void project_bucket_init(
2837         const ProjPaintState *ps, const int thread_index, const int bucket_index,
2838         const rctf *clip_rect, const rctf *bucket_bounds)
2839 {
2840         LinkNode *node;
2841         int tri_index, image_index = 0;
2842         ImBuf *ibuf = NULL;
2843         Image *tpage_last = NULL, *tpage;
2844         Image *ima = NULL;
2845         ImBuf *tmpibuf = NULL;
2846
2847         if (ps->image_tot == 1) {
2848                 /* Simple loop, no context switching */
2849                 ibuf = ps->projImages[0].ibuf;
2850                 ima = ps->projImages[0].ima;
2851
2852                 for (node = ps->bucketFaces[bucket_index]; node; node = node->next) {
2853                         project_paint_face_init(
2854                                 ps, thread_index, bucket_index, GET_INT_FROM_POINTER(node->link), 0,
2855                                 clip_rect, bucket_bounds, ibuf, &tmpibuf,
2856                                 (ima->tpageflag & IMA_CLAMP_U) != 0, (ima->tpageflag & IMA_CLAMP_V) != 0);
2857                 }
2858         }
2859         else {
2860
2861                 /* More complicated loop, switch between images */
2862                 for (node = ps->bucketFaces[bucket_index]; node; node = node->next) {
2863                         tri_index = GET_INT_FROM_POINTER(node->link);
2864
2865                         /* Image context switching */
2866                         tpage = project_paint_face_paint_image(ps, tri_index);
2867                         if (tpage_last != tpage) {