2 // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
4 // This software is provided 'as-is', without any express or implied
5 // warranty. In no event will the authors be held liable for any damages
6 // arising from the use of this software.
7 // Permission is granted to anyone to use this software for any purpose,
8 // including commercial applications, and to alter it and redistribute it
9 // freely, subject to the following restrictions:
10 // 1. The origin of this software must not be misrepresented; you must not
11 // claim that you wrote the original software. If you use this software
12 // in a product, an acknowledgment in the product documentation would be
13 // appreciated but is not required.
14 // 2. Altered source versions must be plainly marked as such, and must not be
15 // misrepresented as being the original software.
16 // 3. This notice may not be removed or altered from any source distribution.
19 #define _USE_MATH_DEFINES
24 #include "RecastAlloc.h"
25 #include "RecastAssert.h"
28 static int getCornerHeight(int x, int y, int i, int dir,
29 const rcCompactHeightfield& chf,
32 const rcCompactSpan& s = chf.spans[i];
34 int dirp = (dir+1) & 0x3;
36 unsigned int regs[4] = {0,0,0,0};
38 // Combine region and area codes in order to prevent
39 // border vertices which are in between two areas to be removed.
40 regs[0] = chf.spans[i].reg | (chf.areas[i] << 16);
42 if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
44 const int ax = x + rcGetDirOffsetX(dir);
45 const int ay = y + rcGetDirOffsetY(dir);
46 const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
47 const rcCompactSpan& as = chf.spans[ai];
48 ch = rcMax(ch, (int)as.y);
49 regs[1] = chf.spans[ai].reg | (chf.areas[ai] << 16);
50 if (rcGetCon(as, dirp) != RC_NOT_CONNECTED)
52 const int ax2 = ax + rcGetDirOffsetX(dirp);
53 const int ay2 = ay + rcGetDirOffsetY(dirp);
54 const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp);
55 const rcCompactSpan& as2 = chf.spans[ai2];
56 ch = rcMax(ch, (int)as2.y);
57 regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
60 if (rcGetCon(s, dirp) != RC_NOT_CONNECTED)
62 const int ax = x + rcGetDirOffsetX(dirp);
63 const int ay = y + rcGetDirOffsetY(dirp);
64 const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp);
65 const rcCompactSpan& as = chf.spans[ai];
66 ch = rcMax(ch, (int)as.y);
67 regs[3] = chf.spans[ai].reg | (chf.areas[ai] << 16);
68 if (rcGetCon(as, dir) != RC_NOT_CONNECTED)
70 const int ax2 = ax + rcGetDirOffsetX(dir);
71 const int ay2 = ay + rcGetDirOffsetY(dir);
72 const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir);
73 const rcCompactSpan& as2 = chf.spans[ai2];
74 ch = rcMax(ch, (int)as2.y);
75 regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
79 // Check if the vertex is special edge vertex, these vertices will be removed later.
80 for (int j = 0; j < 4; ++j)
83 const int b = (j+1) & 0x3;
84 const int c = (j+2) & 0x3;
85 const int d = (j+3) & 0x3;
87 // The vertex is a border vertex there are two same exterior cells in a row,
88 // followed by two interior cells and none of the regions are out of bounds.
89 const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b];
90 const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0;
91 const bool intsSameArea = (regs[c]>>16) == (regs[d]>>16);
92 const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0;
93 if (twoSameExts && twoInts && intsSameArea && noZeros)
95 isBorderVertex = true;
103 static void walkContour(int x, int y, int i,
104 rcCompactHeightfield& chf,
105 unsigned char* flags, rcIntArray& points)
107 // Choose the first non-connected edge
108 unsigned char dir = 0;
109 while ((flags[i] & (1 << dir)) == 0)
112 unsigned char startDir = dir;
115 const unsigned char area = chf.areas[i];
118 while (++iter < 40000)
120 if (flags[i] & (1 << dir))
122 // Choose the edge corner
123 bool isBorderVertex = false;
124 bool isAreaBorder = false;
126 int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex);
131 case 1: px++; pz++; break;
135 const rcCompactSpan& s = chf.spans[i];
136 if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
138 const int ax = x + rcGetDirOffsetX(dir);
139 const int ay = y + rcGetDirOffsetY(dir);
140 const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
141 r = (int)chf.spans[ai].reg;
142 if (area != chf.areas[ai])
146 r |= RC_BORDER_VERTEX;
154 flags[i] &= ~(1 << dir); // Remove visited edges
155 dir = (dir+1) & 0x3; // Rotate CW
160 const int nx = x + rcGetDirOffsetX(dir);
161 const int ny = y + rcGetDirOffsetY(dir);
162 const rcCompactSpan& s = chf.spans[i];
163 if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
165 const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
166 ni = (int)nc.index + rcGetCon(s, dir);
170 // Should not happen.
176 dir = (dir+3) & 0x3; // Rotate CCW
179 if (starti == i && startDir == dir)
186 static float distancePtSeg(const int x, const int z,
187 const int px, const int pz,
188 const int qx, const int qz)
190 /* float pqx = (float)(qx - px);
191 float pqy = (float)(qy - py);
192 float pqz = (float)(qz - pz);
193 float dx = (float)(x - px);
194 float dy = (float)(y - py);
195 float dz = (float)(z - pz);
196 float d = pqx*pqx + pqy*pqy + pqz*pqz;
197 float t = pqx*dx + pqy*dy + pqz*dz;
209 return dx*dx + dy*dy + dz*dz;*/
211 float pqx = (float)(qx - px);
212 float pqz = (float)(qz - pz);
213 float dx = (float)(x - px);
214 float dz = (float)(z - pz);
215 float d = pqx*pqx + pqz*pqz;
216 float t = pqx*dx + pqz*dz;
227 return dx*dx + dz*dz;
230 static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
231 const float maxError, const int maxEdgeLen, const int buildFlags)
233 // Add initial points.
234 bool hasConnections = false;
235 for (int i = 0; i < points.size(); i += 4)
237 if ((points[i+3] & RC_CONTOUR_REG_MASK) != 0)
239 hasConnections = true;
246 // The contour has some portals to other regions.
247 // Add a new point to every location where the region changes.
248 for (int i = 0, ni = points.size()/4; i < ni; ++i)
251 const bool differentRegs = (points[i*4+3] & RC_CONTOUR_REG_MASK) != (points[ii*4+3] & RC_CONTOUR_REG_MASK);
252 const bool areaBorders = (points[i*4+3] & RC_AREA_BORDER) != (points[ii*4+3] & RC_AREA_BORDER);
253 if (differentRegs || areaBorders)
255 simplified.push(points[i*4+0]);
256 simplified.push(points[i*4+1]);
257 simplified.push(points[i*4+2]);
263 if (simplified.size() == 0)
265 // If there is no connections at all,
266 // create some initial points for the simplification process.
267 // Find lower-left and upper-right vertices of the contour.
276 for (int i = 0; i < points.size(); i += 4)
281 if (x < llx || (x == llx && z < llz))
288 if (x > urx || (x == urx && z > urz))
296 simplified.push(llx);
297 simplified.push(lly);
298 simplified.push(llz);
299 simplified.push(lli);
301 simplified.push(urx);
302 simplified.push(ury);
303 simplified.push(urz);
304 simplified.push(uri);
307 // Add points until all raw points are within
308 // error tolerance to the simplified shape.
309 const int pn = points.size()/4;
310 for (int i = 0; i < simplified.size()/4; )
312 int ii = (i+1) % (simplified.size()/4);
314 const int ax = simplified[i*4+0];
315 const int az = simplified[i*4+2];
316 const int ai = simplified[i*4+3];
318 const int bx = simplified[ii*4+0];
319 const int bz = simplified[ii*4+2];
320 const int bi = simplified[ii*4+3];
322 // Find maximum deviation from the segment.
327 // Traverse the segment in lexilogical order so that the
328 // max deviation is calculated similarly when traversing
329 // opposite segments.
330 if (bx > ax || (bx == ax && bz > az))
343 // Tessellate only outer edges or edges between areas.
344 if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 ||
345 (points[ci*4+3] & RC_AREA_BORDER))
349 float d = distancePtSeg(points[ci*4+0], points[ci*4+2], ax, az, bx, bz);
360 // If the max deviation is larger than accepted error,
361 // add new point, else continue to next segment.
362 if (maxi != -1 && maxd > (maxError*maxError))
364 // Add space for the new point.
365 simplified.resize(simplified.size()+4);
366 const int n = simplified.size()/4;
367 for (int j = n-1; j > i; --j)
369 simplified[j*4+0] = simplified[(j-1)*4+0];
370 simplified[j*4+1] = simplified[(j-1)*4+1];
371 simplified[j*4+2] = simplified[(j-1)*4+2];
372 simplified[j*4+3] = simplified[(j-1)*4+3];
375 simplified[(i+1)*4+0] = points[maxi*4+0];
376 simplified[(i+1)*4+1] = points[maxi*4+1];
377 simplified[(i+1)*4+2] = points[maxi*4+2];
378 simplified[(i+1)*4+3] = maxi;
386 // Split too long edges.
387 if (maxEdgeLen > 0 && (buildFlags & (RC_CONTOUR_TESS_WALL_EDGES|RC_CONTOUR_TESS_AREA_EDGES)) != 0)
389 for (int i = 0; i < simplified.size()/4; )
391 const int ii = (i+1) % (simplified.size()/4);
393 const int ax = simplified[i*4+0];
394 const int az = simplified[i*4+2];
395 const int ai = simplified[i*4+3];
397 const int bx = simplified[ii*4+0];
398 const int bz = simplified[ii*4+2];
399 const int bi = simplified[ii*4+3];
401 // Find maximum deviation from the segment.
403 int ci = (ai+1) % pn;
405 // Tessellate only outer edges or edges between areas.
408 if ((buildFlags & RC_CONTOUR_TESS_WALL_EDGES) && (points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0)
410 // Edges between areas.
411 if ((buildFlags & RC_CONTOUR_TESS_AREA_EDGES) && (points[ci*4+3] & RC_AREA_BORDER))
418 if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen)
420 // Round based on the segments in lexilogical order so that the
421 // max tesselation is consistent regardles in which direction
422 // segments are traversed.
423 if (bx > ax || (bx == ax && bz > az))
425 const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
426 maxi = (ai + n/2) % pn;
430 const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
431 maxi = (ai + (n+1)/2) % pn;
436 // If the max deviation is larger than accepted error,
437 // add new point, else continue to next segment.
440 // Add space for the new point.
441 simplified.resize(simplified.size()+4);
442 const int n = simplified.size()/4;
443 for (int j = n-1; j > i; --j)
445 simplified[j*4+0] = simplified[(j-1)*4+0];
446 simplified[j*4+1] = simplified[(j-1)*4+1];
447 simplified[j*4+2] = simplified[(j-1)*4+2];
448 simplified[j*4+3] = simplified[(j-1)*4+3];
451 simplified[(i+1)*4+0] = points[maxi*4+0];
452 simplified[(i+1)*4+1] = points[maxi*4+1];
453 simplified[(i+1)*4+2] = points[maxi*4+2];
454 simplified[(i+1)*4+3] = maxi;
463 for (int i = 0; i < simplified.size()/4; ++i)
465 // The edge vertex flag is take from the current raw point,
466 // and the neighbour region is take from the next raw point.
467 const int ai = (simplified[i*4+3]+1) % pn;
468 const int bi = simplified[i*4+3];
469 simplified[i*4+3] = (points[ai*4+3] & RC_CONTOUR_REG_MASK) | (points[bi*4+3] & RC_BORDER_VERTEX);
474 static void removeDegenerateSegments(rcIntArray& simplified)
476 // Remove adjacent vertices which are equal on xz-plane,
477 // or else the triangulator will get confused.
478 for (int i = 0; i < simplified.size()/4; ++i)
481 if (ni >= (simplified.size()/4))
484 if (simplified[i*4+0] == simplified[ni*4+0] &&
485 simplified[i*4+2] == simplified[ni*4+2])
487 // Degenerate segment, remove.
488 for (int j = i; j < simplified.size()/4-1; ++j)
490 simplified[j*4+0] = simplified[(j+1)*4+0];
491 simplified[j*4+1] = simplified[(j+1)*4+1];
492 simplified[j*4+2] = simplified[(j+1)*4+2];
493 simplified[j*4+3] = simplified[(j+1)*4+3];
495 simplified.resize(simplified.size()-4);
500 static int calcAreaOfPolygon2D(const int* verts, const int nverts)
503 for (int i = 0, j = nverts-1; i < nverts; j=i++)
505 const int* vi = &verts[i*4];
506 const int* vj = &verts[j*4];
507 area += vi[0] * vj[2] - vj[0] * vi[2];
512 inline bool ileft(const int* a, const int* b, const int* c)
514 return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]) <= 0;
517 static void getClosestIndices(const int* vertsa, const int nvertsa,
518 const int* vertsb, const int nvertsb,
521 int closestDist = 0xfffffff;
523 for (int i = 0; i < nvertsa; ++i)
525 const int in = (i+1) % nvertsa;
526 const int ip = (i+nvertsa-1) % nvertsa;
527 const int* va = &vertsa[i*4];
528 const int* van = &vertsa[in*4];
529 const int* vap = &vertsa[ip*4];
531 for (int j = 0; j < nvertsb; ++j)
533 const int* vb = &vertsb[j*4];
534 // vb must be "infront" of va.
535 if (ileft(vap,va,vb) && ileft(va,van,vb))
537 const int dx = vb[0] - va[0];
538 const int dz = vb[2] - va[2];
539 const int d = dx*dx + dz*dz;
551 static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
553 const int maxVerts = ca.nverts + cb.nverts + 2;
554 int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM);
561 for (int i = 0; i <= ca.nverts; ++i)
563 int* dst = &verts[nv*4];
564 const int* src = &ca.verts[((ia+i)%ca.nverts)*4];
573 for (int i = 0; i <= cb.nverts; ++i)
575 int* dst = &verts[nv*4];
576 const int* src = &cb.verts[((ib+i)%cb.nverts)*4];
597 /// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
598 /// parameters control how closely the simplified contours will match the raw contours.
600 /// Simplified contours are generated such that the vertices for portals between areas match up.
601 /// (They are considered mandatory vertices.)
603 /// Setting @p maxEdgeLength to zero will disabled the edge length feature.
605 /// See the #rcConfig documentation for more information on the configuration parameters.
607 /// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
608 bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
609 const float maxError, const int maxEdgeLen,
610 rcContourSet& cset, const int buildFlags)
614 const int w = chf.width;
615 const int h = chf.height;
616 const int borderSize = chf.borderSize;
618 ctx->startTimer(RC_TIMER_BUILD_CONTOURS);
620 rcVcopy(cset.bmin, chf.bmin);
621 rcVcopy(cset.bmax, chf.bmax);
624 // If the heightfield was build with bordersize, remove the offset.
625 const float pad = borderSize*chf.cs;
633 cset.width = chf.width - chf.borderSize*2;
634 cset.height = chf.height - chf.borderSize*2;
635 cset.borderSize = chf.borderSize;
637 int maxContours = rcMax((int)chf.maxRegions, 8);
638 cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
643 rcScopedDelete<unsigned char> flags = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
646 ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount);
650 ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
653 for (int y = 0; y < h; ++y)
655 for (int x = 0; x < w; ++x)
657 const rcCompactCell& c = chf.cells[x+y*w];
658 for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
660 unsigned char res = 0;
661 const rcCompactSpan& s = chf.spans[i];
662 if (!chf.spans[i].reg || (chf.spans[i].reg & RC_BORDER_REG))
667 for (int dir = 0; dir < 4; ++dir)
669 unsigned short r = 0;
670 if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
672 const int ax = x + rcGetDirOffsetX(dir);
673 const int ay = y + rcGetDirOffsetY(dir);
674 const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
675 r = chf.spans[ai].reg;
677 if (r == chf.spans[i].reg)
680 flags[i] = res ^ 0xf; // Inverse, mark non connected edges.
685 ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
687 rcIntArray verts(256);
688 rcIntArray simplified(64);
690 for (int y = 0; y < h; ++y)
692 for (int x = 0; x < w; ++x)
694 const rcCompactCell& c = chf.cells[x+y*w];
695 for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
697 if (flags[i] == 0 || flags[i] == 0xf)
702 const unsigned short reg = chf.spans[i].reg;
703 if (!reg || (reg & RC_BORDER_REG))
705 const unsigned char area = chf.areas[i];
708 simplified.resize(0);
710 ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
711 walkContour(x, y, i, chf, flags, verts);
712 ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
714 ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
715 simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
716 removeDegenerateSegments(simplified);
717 ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
720 // Store region->contour remap info.
722 if (simplified.size()/4 >= 3)
724 if (cset.nconts >= maxContours)
726 // Allocate more contours.
727 // This can happen when there are tiny holes in the heightfield.
728 const int oldMax = maxContours;
730 rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
731 for (int j = 0; j < cset.nconts; ++j)
733 newConts[j] = cset.conts[j];
734 // Reset source pointers to prevent data deletion.
735 cset.conts[j].verts = 0;
736 cset.conts[j].rverts = 0;
739 cset.conts = newConts;
741 ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours);
744 rcContour* cont = &cset.conts[cset.nconts++];
746 cont->nverts = simplified.size()/4;
747 cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM);
750 ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d).", cont->nverts);
753 memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4);
756 // If the heightfield was build with bordersize, remove the offset.
757 for (int i = 0; i < cont->nverts; ++i)
759 int* v = &cont->verts[i*4];
765 cont->nrverts = verts.size()/4;
766 cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM);
769 ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d).", cont->nrverts);
772 memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4);
775 // If the heightfield was build with bordersize, remove the offset.
776 for (int i = 0; i < cont->nrverts; ++i)
778 int* v = &cont->rverts[i*4];
784 /* cont->cx = cont->cy = cont->cz = 0;
785 for (int i = 0; i < cont->nverts; ++i)
787 cont->cx += cont->verts[i*4+0];
788 cont->cy += cont->verts[i*4+1];
789 cont->cz += cont->verts[i*4+2];
791 cont->cx /= cont->nverts;
792 cont->cy /= cont->nverts;
793 cont->cz /= cont->nverts;*/
802 // Check and merge droppings.
803 // Sometimes the previous algorithms can fail and create several contours
804 // per area. This pass will try to merge the holes into the main region.
805 for (int i = 0; i < cset.nconts; ++i)
807 rcContour& cont = cset.conts[i];
808 // Check if the contour is would backwards.
809 if (calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0)
811 // Find another contour which has the same region ID.
813 for (int j = 0; j < cset.nconts; ++j)
815 if (i == j) continue;
816 if (cset.conts[j].nverts && cset.conts[j].reg == cont.reg)
818 // Make sure the polygon is correctly oriented.
819 if (calcAreaOfPolygon2D(cset.conts[j].verts, cset.conts[j].nverts))
828 ctx->log(RC_LOG_WARNING, "rcBuildContours: Could not find merge target for bad contour %d.", i);
832 rcContour& mcont = cset.conts[mergeIdx];
833 // Merge by closest points.
835 getClosestIndices(mcont.verts, mcont.nverts, cont.verts, cont.nverts, ia, ib);
836 if (ia == -1 || ib == -1)
838 ctx->log(RC_LOG_WARNING, "rcBuildContours: Failed to find merge points for %d and %d.", i, mergeIdx);
841 if (!mergeContours(mcont, cont, ia, ib))
843 ctx->log(RC_LOG_WARNING, "rcBuildContours: Failed to merge contours %d and %d.", i, mergeIdx);
850 ctx->stopTimer(RC_TIMER_BUILD_CONTOURS);