2 ***** BEGIN GPL LICENSE BLOCK *****
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * Contributor(s): Miika Hämäläinen
11 * ***** END GPL LICENSE BLOCK *****
15 #include "MEM_guardedalloc.h"
20 #include "BLI_blenlib.h"
22 #include "BLI_kdtree.h"
23 #include "BLI_threads.h"
24 #include "BLI_utildefines.h"
26 #include "DNA_anim_types.h"
27 #include "DNA_dynamicpaint_types.h"
28 #include "DNA_group_types.h" /*GroupObject*/
29 #include "DNA_material_types.h"
30 #include "DNA_mesh_types.h"
31 #include "DNA_meshdata_types.h"
32 #include "DNA_modifier_types.h"
33 #include "DNA_object_types.h"
34 #include "DNA_scene_types.h"
35 #include "DNA_space_types.h"
36 #include "DNA_texture_types.h"
38 #include "BKE_animsys.h"
39 #include "BKE_bvhutils.h" /* bvh tree */
40 #include "BKE_blender.h"
41 #include "BKE_cdderivedmesh.h"
42 #include "BKE_context.h"
43 #include "BKE_customdata.h"
44 #include "BKE_colortools.h"
45 #include "BKE_deform.h"
46 #include "BKE_depsgraph.h"
47 #include "BKE_DerivedMesh.h"
48 #include "BKE_dynamicpaint.h"
49 #include "BKE_effect.h"
50 #include "BKE_global.h"
51 #include "BKE_image.h"
53 #include "BKE_material.h"
54 #include "BKE_modifier.h"
55 #include "BKE_object.h"
56 #include "BKE_particle.h"
57 #include "BKE_pointcache.h"
58 #include "BKE_scene.h"
59 #include "BKE_texture.h"
61 #include "RNA_access.h"
62 #include "RNA_define.h"
63 #include "RNA_enum_types.h"
65 /* for image output */
66 #include "IMB_imbuf_types.h"
67 #include "IMB_imbuf.h"
69 /* to read material/texture color */
70 #include "RE_render_ext.h"
71 #include "RE_shader_ext.h"
77 /* precalculated gaussian factors for 5x super sampling */
78 static float gaussianFactors[5] = { 0.996849f,
83 static float gaussianTotal = 3.309425f;
85 /* UV Image neighbouring pixel table x and y list */
86 static int neighX[8] = {1,1,0,-1,-1,-1, 0, 1};
87 static int neighY[8] = {0,1,1, 1, 0,-1,-1,-1};
89 /* subframe_updateObject() flags */
90 #define UPDATE_PARENTS (1<<0)
91 #define UPDATE_MESH (1<<1)
92 #define UPDATE_EVERYTHING (UPDATE_PARENTS|UPDATE_MESH)
93 /* surface_getBrushFlags() return vals */
94 #define BRUSH_USES_VELOCITY (1<<0)
95 /* brush mesh raycast status */
97 #define HIT_PROXIMITY 2
98 /* paint effect default movement per frame in global units */
99 #define EFF_MOVEMENT_PER_FRAME 0.05f
100 /* initial wave time factor */
101 #define WAVE_TIME_FAC (1.0f/24.f)
102 #define WAVE_INIT_SIZE 5.0f
104 #define MIN_WETNESS 0.001f
106 #define VALUE_DISSOLVE(VALUE, TIME, SCALE, LOG) (VALUE) = (LOG) ? (VALUE) * (pow(MIN_WETNESS,1.0f/(1.2f*((float)(TIME))/(SCALE)))) : (VALUE) - 1.0f/(TIME)*(SCALE)
108 /***************************** Internal Structs ***************************/
110 typedef struct Bounds2D {
111 float min[2], max[2];
114 typedef struct Bounds3D {
116 float min[3], max[3];
119 typedef struct VolumeGrid {
121 Bounds3D grid_bounds; /* whole grid bounds */
123 Bounds3D *bounds; /* (x*y*z) precalculated grid cell bounds */
124 int *s_pos; /* (x*y*z) t_index begin id */
125 int *s_num; /* (x*y*z) number of t_index points */
126 int *t_index; /* actual surface point index,
127 access: (s_pos+s_num) */
130 typedef struct Vec3f {
134 typedef struct BakeNeighPoint {
135 float dir[3]; /* vector pointing towards this neighbour */
136 float dist; /* distance to */
139 /* Surface data used while processing a frame */
140 typedef struct PaintBakeNormal {
141 float invNorm[3]; /* current pixel world-space inverted normal */
142 float normal_scale; /* normal directional scale for displace mapping */
145 /* Temp surface data used to process a frame */
146 typedef struct PaintBakeData {
147 /* point space data */
148 PaintBakeNormal *bNormal;
149 int *s_pos; /* index to start reading point sample realCoord */
150 int *s_num; /* num of realCoord samples */
151 Vec3f *realCoord; /* current pixel center world-space coordinates for each sample
152 * ordered as (s_pos+s_num)*/
153 Bounds3D mesh_bounds;
156 BakeNeighPoint *bNeighs; /* current global neighbour distances and directions, if required */
158 /* space partitioning */
159 VolumeGrid *grid; /* space partitioning grid to optimize brush checks */
161 /* velocity and movement */
162 Vec3f *velocity; /* speed vector in global space movement per frame, if required */
163 Vec3f *prev_velocity;
164 float *brush_velocity; /* special temp data for post-p velocity based brushes like smudge
165 * 3 float dir vec + 1 float str */
166 MVert *prev_verts; /* copy of previous frame vertices. used to observe surface movement */
167 float prev_obmat[4][4]; /* previous frame object matrix */
168 int clear; /* flag to check if surface was cleared/reset -> have to redo velocity etc. */
172 /* UV Image sequence format point */
173 typedef struct PaintUVPoint {
174 /* Pixel / mesh data */
175 unsigned int face_index, pixel_index; /* face index on domain derived mesh */
176 unsigned int v1, v2, v3; /* vertex indexes */
178 unsigned int neighbour_pixel; /* If this pixel isn't uv mapped to any face,
179 but it's neighbouring pixel is */
183 typedef struct ImgSeqFormatData {
185 Vec3f *barycentricWeights; /* b-weights for all pixel samples */
188 typedef struct EffVelPoint {
189 float previous_pos[3];
190 float previous_vel[3];
194 /* adjacency data flags */
195 #define ADJ_ON_MESH_EDGE (1<<0)
197 typedef struct PaintAdjData {
198 int *n_target; /* array of neighbouring point indexes,
199 for single sample use (n_index+neigh_num) */
200 int *n_index; /* index to start reading n_target for each point */
201 int *n_num; /* num of neighs for each point */
202 int *flags; /* vertex adjacency flags */
203 int total_targets; /* size of n_target */
206 /***************************** General Utils ******************************/
208 /* Set canvas error string to display at the bake report */
209 static int setError(DynamicPaintCanvasSettings *canvas, const char *string)
211 /* Add error to canvas ui info label */
212 BLI_strncpy(canvas->error, string, sizeof(canvas->error));
216 /* Get number of surface points for cached types */
217 static int dynamicPaint_surfaceNumOfPoints(DynamicPaintSurface *surface)
219 if (surface->format == MOD_DPAINT_SURFACE_F_PTEX) {
220 return 0; /* not supported atm */
222 else if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
223 if (!surface->canvas->dm) return 0; /* invalid derived mesh */
224 return surface->canvas->dm->getNumVerts(surface->canvas->dm);
230 /* checks whether surface's format/type has realtime preview */
231 int dynamicPaint_surfaceHasColorPreview(DynamicPaintSurface *surface)
233 if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) return 0;
234 else if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
235 if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE ||
236 surface->type == MOD_DPAINT_SURFACE_T_WAVE) return 0;
242 /* get currently active surface (in user interface) */
243 struct DynamicPaintSurface *get_activeSurface(DynamicPaintCanvasSettings *canvas)
245 DynamicPaintSurface *surface = canvas->surfaces.first;
248 for(i=0; surface; surface=surface->next) {
249 if(i == canvas->active_sur)
256 /* set preview to first previewable surface */
257 void dynamicPaint_resetPreview(DynamicPaintCanvasSettings *canvas)
259 DynamicPaintSurface *surface = canvas->surfaces.first;
262 for(; surface; surface=surface->next) {
263 if (!done && dynamicPaint_surfaceHasColorPreview(surface)) {
264 surface->flags |= MOD_DPAINT_PREVIEW;
268 surface->flags &= ~MOD_DPAINT_PREVIEW;
272 /* set preview to defined surface */
273 static void dynamicPaint_setPreview(DynamicPaintSurface *t_surface)
275 DynamicPaintSurface *surface = t_surface->canvas->surfaces.first;
276 for(; surface; surface=surface->next) {
277 if (surface == t_surface)
278 surface->flags |= MOD_DPAINT_PREVIEW;
280 surface->flags &= ~MOD_DPAINT_PREVIEW;
284 int dynamicPaint_outputLayerExists(struct DynamicPaintSurface *surface, Object *ob, int output)
289 name = surface->output_name;
290 else if (output == 1)
291 name = surface->output_name2;
295 if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
296 if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
298 return (CustomData_get_named_layer_index(&me->fdata, CD_MCOL, name) != -1);
300 else if (surface->type == MOD_DPAINT_SURFACE_T_WEIGHT)
301 return (defgroup_name_index(ob, surface->output_name) != -1);
307 static int surface_duplicateOutputExists(void *arg, const char *name)
309 DynamicPaintSurface *t_surface = (DynamicPaintSurface*)arg;
310 DynamicPaintSurface *surface = t_surface->canvas->surfaces.first;
312 for(; surface; surface=surface->next) {
313 if (surface!=t_surface && surface->type==t_surface->type &&
314 surface->format==t_surface->format) {
315 if (surface->output_name[0]!='\0' && !strcmp(name, surface->output_name)) return 1;
316 if (surface->output_name2[0]!='\0' && !strcmp(name, surface->output_name2)) return 1;
322 static void surface_setUniqueOutputName(DynamicPaintSurface *surface, char *basename, int output)
325 BLI_strncpy(name, basename, sizeof(name)); /* in case basename is surface->name use a copy */
327 BLI_uniquename_cb(surface_duplicateOutputExists, surface, name, '.', surface->output_name, sizeof(surface->output_name));
329 BLI_uniquename_cb(surface_duplicateOutputExists, surface, name, '.', surface->output_name2, sizeof(surface->output_name2));
333 static int surface_duplicateNameExists(void *arg, const char *name)
335 DynamicPaintSurface *t_surface = (DynamicPaintSurface*)arg;
336 DynamicPaintSurface *surface = t_surface->canvas->surfaces.first;
338 for(; surface; surface=surface->next) {
339 if (surface!=t_surface && !strcmp(name, surface->name)) return 1;
344 void dynamicPaintSurface_setUniqueName(DynamicPaintSurface *surface, const char *basename)
347 BLI_strncpy(name, basename, sizeof(name)); /* in case basename is surface->name use a copy */
348 BLI_uniquename_cb(surface_duplicateNameExists, surface, name, '.', surface->name, sizeof(surface->name));
352 /* change surface data to defaults on new type */
353 void dynamicPaintSurface_updateType(struct DynamicPaintSurface *surface)
355 if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) {
356 surface->output_name[0]='\0';
357 surface->output_name2[0]='\0';
358 surface->flags |= MOD_DPAINT_ANTIALIAS;
359 surface->depth_clamp = 1.0f;
362 sprintf(surface->output_name, "dp_");
363 strcpy(surface->output_name2,surface->output_name);
364 surface->flags &= ~MOD_DPAINT_ANTIALIAS;
365 surface->depth_clamp = 0.0f;
368 if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
369 strcat(surface->output_name,"paintmap");
370 strcat(surface->output_name2,"wetmap");
371 surface_setUniqueOutputName(surface, surface->output_name2, 1);
373 else if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE) {
374 strcat(surface->output_name,"displace");
376 else if (surface->type == MOD_DPAINT_SURFACE_T_WEIGHT) {
377 strcat(surface->output_name,"weight");
379 else if (surface->type == MOD_DPAINT_SURFACE_T_WAVE) {
380 strcat(surface->output_name,"wave");
383 surface_setUniqueOutputName(surface, surface->output_name, 0);
386 if (dynamicPaint_surfaceHasColorPreview(surface))
387 dynamicPaint_setPreview(surface);
389 dynamicPaint_resetPreview(surface->canvas);
392 static int surface_totalSamples(DynamicPaintSurface *surface)
394 if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ &&
395 surface->flags & MOD_DPAINT_ANTIALIAS)
396 return (surface->data->total_points*5);
397 if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX &&
398 surface->flags & MOD_DPAINT_ANTIALIAS && surface->data->adj_data)
399 return (surface->data->total_points+surface->data->adj_data->total_targets);
401 return surface->data->total_points;
404 static void blendColors(float t_color[3], float t_alpha, float s_color[3], float s_alpha, float result[4])
407 float i_alpha = 1.0f - s_alpha;
408 float f_alpha = t_alpha*i_alpha + s_alpha;
412 for (i=0; i<3; i++) {
413 result[i] = (t_color[i]*t_alpha*i_alpha + s_color[i]*s_alpha)/f_alpha;
417 copy_v3_v3(result, t_color);
419 /* return final alpha */
423 /* assumes source alpha > 0.0f or results NaN colors */
424 static void mixColors(float *t_color, float t_alpha, float *s_color, float s_alpha)
426 float factor = (s_alpha<t_alpha) ? 1.0f : t_alpha/s_alpha;
428 /* set initial color depending on existing alpha */
429 interp_v3_v3v3(t_color, s_color, t_color, factor);
430 /* mix final color */
431 interp_v3_v3v3(t_color, t_color, s_color, s_alpha);
434 /* set "ignore cache" flag for all caches on this object */
435 static void object_cacheIgnoreClear(Object *ob, int state)
439 BKE_ptcache_ids_from_object(&pidlist, ob, NULL, 0);
441 for(pid=pidlist.first; pid; pid=pid->next) {
444 pid->cache->flag |= PTCACHE_IGNORE_CLEAR;
446 pid->cache->flag &= ~PTCACHE_IGNORE_CLEAR;
450 BLI_freelistN(&pidlist);
453 static void subframe_updateObject(Scene *scene, Object *ob, int flags, float frame)
455 DynamicPaintModifierData *pmd = (DynamicPaintModifierData *)modifiers_findByType(ob, eModifierType_DynamicPaint);
457 /* if other is dynamic paint canvas, dont update */
458 if (pmd && pmd->canvas)
461 /* if object has parent, update it too */
462 if ((flags & UPDATE_PARENTS) && ob->parent) subframe_updateObject(scene, ob->parent, 0, frame);
463 if ((flags & UPDATE_PARENTS) && ob->track) subframe_updateObject(scene, ob->track, 0, frame);
465 /* for curve following objects, parented curve has to be updated too */
466 if(ob->type==OB_CURVE) {
468 BKE_animsys_evaluate_animdata(scene, &cu->id, cu->adt, frame, ADT_RECALC_ANIM);
471 ob->recalc |= OB_RECALC_ALL;
472 BKE_animsys_evaluate_animdata(scene, &ob->id, ob->adt, frame, ADT_RECALC_ANIM);
473 if (flags & UPDATE_MESH) {
474 /* ignore cache clear during subframe updates
475 * to not mess up cache validity */
476 object_cacheIgnoreClear(ob, 1);
477 object_handle_update(scene, ob);
478 object_cacheIgnoreClear(ob, 0);
481 where_is_object_time(scene, ob, frame);
484 static void scene_setSubframe(Scene *scene, float subframe)
486 /* dynamic paint subframes must be done on previous frame */
488 scene->r.subframe = subframe;
491 #define BRUSH_USES_VELOCITY (1<<0)
493 static int surface_getBrushFlags(DynamicPaintSurface *surface, Scene *scene)
496 GroupObject *go = NULL;
497 Object *brushObj = NULL;
498 ModifierData *md = NULL;
502 if(surface->brush_group)
503 go = surface->brush_group->gobject.first;
505 base = scene->base.first;
512 if(surface->brush_group) {
513 if(go->ob) brushObj = go->ob;
516 brushObj = base->object;
520 if(surface->brush_group) go = go->next;
521 else base= base->next;
525 if(surface->brush_group)
530 md = modifiers_findByType(brushObj, eModifierType_DynamicPaint);
531 if(md && md->mode & (eModifierMode_Realtime | eModifierMode_Render))
533 DynamicPaintModifierData *pmd2 = (DynamicPaintModifierData *)md;
537 DynamicPaintBrushSettings *brush = pmd2->brush;
539 if (brush->flags & MOD_DPAINT_USES_VELOCITY)
540 flags |= BRUSH_USES_VELOCITY;
548 static int brush_usesMaterial(DynamicPaintBrushSettings *brush, Scene *scene)
550 return ((brush->flags & MOD_DPAINT_USE_MATERIAL) && (!strcmp(scene->r.engine, "BLENDER_RENDER")));
553 /* check whether two bounds intersect */
554 static int boundsIntersect(Bounds3D *b1, Bounds3D *b2)
557 if (!b1->valid || !b2->valid) return 0;
559 if (!(b1->min[i] <= b2->max[i] && b1->max[i] >= b2->min[i])) return 0;
563 /* check whether two bounds intersect inside defined proximity */
564 static int boundsIntersectDist(Bounds3D *b1, Bounds3D *b2, float dist)
567 if (!b1->valid || !b2->valid) return 0;
569 if (!(b1->min[i] <= (b2->max[i]+dist) && b1->max[i] >= (b2->min[i]-dist))) return 0;
573 /* check whether bounds intersects a point with given radius */
574 static int boundIntersectPoint(Bounds3D *b, float point[3], float radius)
577 if (!b->valid) return 0;
579 if (!(b->min[i] <= (point[i]+radius) && b->max[i] >= (point[i]-radius))) return 0;
583 /* expand bounds by a new point */
584 static void boundInsert(Bounds3D *b, float point[3])
588 copy_v3_v3(b->min, point);
589 copy_v3_v3(b->max, point);
594 if (point[i] < b->min[i]) b->min[i]=point[i];
595 if (point[i] > b->max[i]) b->max[i]=point[i];
600 static void freeGrid(PaintSurfaceData *data)
602 PaintBakeData *bData = data->bData;
603 VolumeGrid *grid = bData->grid;
605 if (grid->bounds) MEM_freeN(grid->bounds);
606 if (grid->s_pos) MEM_freeN(grid->s_pos);
607 if (grid->s_num) MEM_freeN(grid->s_num);
608 if (grid->t_index) MEM_freeN(grid->t_index);
610 MEM_freeN(bData->grid);
614 static void surfaceGenerateGrid(struct DynamicPaintSurface *surface)
616 PaintSurfaceData *sData = surface->data;
617 PaintBakeData *bData = sData->bData;
618 Bounds3D *grid_bounds;
620 int grid_cells, axis = 3;
621 int *temp_t_index = NULL;
622 int *temp_s_num = NULL;
625 int num_of_threads = omp_get_max_threads();
627 int num_of_threads = 1;
633 /* allocate separate bounds for each thread */
634 grid_bounds = MEM_callocN(sizeof(Bounds3D)*num_of_threads, "Grid Bounds");
635 bData->grid = MEM_callocN(sizeof(VolumeGrid), "Surface Grid");
638 if (grid && grid_bounds) {
640 float dim_factor, volume, dim[3];
644 /* calculate canvas dimensions */
645 #pragma omp parallel for schedule(static)
646 for (i=0; i<sData->total_points; i++) {
648 int id = omp_get_thread_num();
649 boundInsert(&grid_bounds[id], (bData->realCoord[bData->s_pos[i]].v));
651 boundInsert(&grid_bounds[0], (bData->realCoord[bData->s_pos[i]].v));
655 /* get final dimensions */
656 for (i=0; i<num_of_threads; i++) {
657 boundInsert(&grid->grid_bounds, grid_bounds[i].min);
658 boundInsert(&grid->grid_bounds, grid_bounds[i].max);
662 sub_v3_v3v3(dim, grid->grid_bounds.max, grid->grid_bounds.min);
664 min_dim = MAX3(td[0],td[1],td[2]) / 1000.f;
666 /* deactivate zero axises */
667 for (i=0; i<3; i++) {
668 if (td[i]<min_dim) {td[i]=1.0f; axis-=1;}
671 if (axis == 0 || MAX3(td[0],td[1],td[2]) < 0.0001f) {
672 MEM_freeN(grid_bounds);
673 MEM_freeN(bData->grid);
678 /* now calculate grid volume/area/width depending on num of active axis */
679 volume = td[0]*td[1]*td[2];
681 /* determine final grid size by trying to fit average 10.000 points per grid cell */
682 dim_factor = (float)pow(volume / ((double)sData->total_points / 10000.0), 1.0/(double)axis);
684 /* define final grid size using dim_factor, use min 3 for active axises */
685 for (i=0; i<3; i++) {
686 grid->dim[i] = (int)floor(td[i] / dim_factor);
687 CLAMP(grid->dim[i], (dim[i]>=min_dim) ? 3 : 1, 100);
689 grid_cells = grid->dim[0]*grid->dim[1]*grid->dim[2];
691 /* allocate memory for grids */
692 grid->bounds = MEM_callocN(sizeof(Bounds3D) * grid_cells, "Surface Grid Bounds");
693 grid->s_pos = MEM_callocN(sizeof(int) * grid_cells, "Surface Grid Position");
694 grid->s_num = MEM_callocN(sizeof(int) * grid_cells*num_of_threads, "Surface Grid Points");
695 temp_s_num = MEM_callocN(sizeof(int) * grid_cells, "Temp Surface Grid Points");
696 grid->t_index = MEM_callocN(sizeof(int) * sData->total_points, "Surface Grid Target Ids");
697 temp_t_index = MEM_callocN(sizeof(int) * sData->total_points, "Temp Surface Grid Target Ids");
699 /* in case of an allocation failture abort here */
700 if (!grid->bounds || !grid->s_pos || !grid->s_num || !grid->t_index || !temp_s_num || !temp_t_index)
704 /* calculate number of points withing each cell */
705 #pragma omp parallel for schedule(static)
706 for (i=0; i<sData->total_points; i++) {
708 for (j=0; j<3; j++) {
709 co[j] = (int)floor((bData->realCoord[bData->s_pos[i]].v[j] - grid->grid_bounds.min[j])/dim[j]*grid->dim[j]);
710 CLAMP(co[j], 0, grid->dim[j]-1);
713 temp_t_index[i] = co[0] + co[1] * grid->dim[0] + co[2] * grid->dim[0]*grid->dim[1];
715 grid->s_num[temp_t_index[i]+omp_get_thread_num()*grid_cells]++;
717 grid->s_num[temp_t_index[i]]++;
721 /* for first cell only calc s_num */
722 for (i=1; i<num_of_threads; i++) {
723 grid->s_num[0] += grid->s_num[i*grid_cells];
726 /* calculate grid indexes */
727 for (i=1; i<grid_cells; i++) {
729 for (id=1; id<num_of_threads; id++) {
730 grid->s_num[i] += grid->s_num[i+id*grid_cells];
732 grid->s_pos[i] = grid->s_pos[i-1] + grid->s_num[i-1];
735 /* save point indexes to final array */
736 for (i=0; i<sData->total_points; i++) {
737 int pos = grid->s_pos[temp_t_index[i]] + temp_s_num[temp_t_index[i]];
738 grid->t_index[pos] = i;
740 temp_s_num[temp_t_index[i]]++;
743 /* calculate cell bounds */
746 #pragma omp parallel for schedule(static)
747 for (x=0; x<grid->dim[0]; x++) {
749 for (y=0; y<grid->dim[1]; y++) {
751 for (z=0; z<grid->dim[2]; z++) {
752 int j, b_index = x + y * grid->dim[0] + z * grid->dim[0]*grid->dim[1];
754 for (j=0; j<3; j++) {
755 int s = (j==0) ? x : ((j==1) ? y : z);
756 grid->bounds[b_index].min[j] = grid->grid_bounds.min[j] + dim[j]/grid->dim[j]*s;
757 grid->bounds[b_index].max[j] = grid->grid_bounds.min[j] + dim[j]/grid->dim[j]*(s+1);
759 grid->bounds[b_index].valid = 1;
766 if (temp_s_num) MEM_freeN(temp_s_num);
767 if (temp_t_index) MEM_freeN(temp_t_index);
769 /* free per thread s_num values */
770 grid->s_num = MEM_reallocN(grid->s_num, sizeof(int) * grid_cells);
772 if (error || !grid->s_num) {
773 setError(surface->canvas, "Not enough free memory.");
778 if (grid_bounds) MEM_freeN(grid_bounds);
781 /***************************** Freeing data ******************************/
783 /* Free brush data */
784 void dynamicPaint_freeBrush(struct DynamicPaintModifierData *pmd)
788 pmd->brush->dm->release(pmd->brush->dm);
789 pmd->brush->dm = NULL;
791 if(pmd->brush->paint_ramp)
792 MEM_freeN(pmd->brush->paint_ramp);
793 pmd->brush->paint_ramp = NULL;
794 if(pmd->brush->vel_ramp)
795 MEM_freeN(pmd->brush->vel_ramp);
796 pmd->brush->vel_ramp = NULL;
798 MEM_freeN(pmd->brush);
803 static void dynamicPaint_freeAdjData(PaintSurfaceData *data)
805 if (data->adj_data) {
806 if (data->adj_data->n_index) MEM_freeN(data->adj_data->n_index);
807 if (data->adj_data->n_num) MEM_freeN(data->adj_data->n_num);
808 if (data->adj_data->n_target) MEM_freeN(data->adj_data->n_target);
809 if (data->adj_data->flags) MEM_freeN(data->adj_data->flags);
810 MEM_freeN(data->adj_data);
811 data->adj_data = NULL;
815 static void free_bakeData(PaintSurfaceData *data)
817 PaintBakeData *bData = data->bData;
819 if (bData->bNormal) MEM_freeN(bData->bNormal);
820 if (bData->s_pos) MEM_freeN(bData->s_pos);
821 if (bData->s_num) MEM_freeN(bData->s_num);
822 if (bData->realCoord) MEM_freeN(bData->realCoord);
823 if (bData->bNeighs) MEM_freeN(bData->bNeighs);
824 if (bData->grid) freeGrid(data);
825 if (bData->prev_verts) MEM_freeN(bData->prev_verts);
826 if (bData->velocity) MEM_freeN(bData->velocity);
827 if (bData->prev_velocity) MEM_freeN(bData->prev_velocity);
829 MEM_freeN(data->bData);
834 /* free surface data if it's not used anymore */
835 void surface_freeUnusedData(DynamicPaintSurface *surface)
837 if (!surface->data) return;
839 /* free bakedata if not active or surface is baked */
840 if (!(surface->flags & MOD_DPAINT_ACTIVE) ||
841 (surface->pointcache && surface->pointcache->flag & PTCACHE_BAKED))
842 free_bakeData(surface->data);
845 void dynamicPaint_freeSurfaceData(DynamicPaintSurface *surface)
847 PaintSurfaceData *data = surface->data;
849 if (data->format_data) {
850 /* format specific free */
851 if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) {
852 ImgSeqFormatData *format_data = (ImgSeqFormatData*)data->format_data;
853 if (format_data->uv_p)
854 MEM_freeN(format_data->uv_p);
855 if (format_data->barycentricWeights)
856 MEM_freeN(format_data->barycentricWeights);
858 MEM_freeN(data->format_data);
861 if (data->type_data) MEM_freeN(data->type_data);
862 dynamicPaint_freeAdjData(data);
866 MEM_freeN(surface->data);
867 surface->data = NULL;
870 void dynamicPaint_freeSurface(DynamicPaintSurface *surface)
873 BKE_ptcache_free_list(&(surface->ptcaches));
874 surface->pointcache = NULL;
876 if(surface->effector_weights)
877 MEM_freeN(surface->effector_weights);
878 surface->effector_weights = NULL;
880 BLI_remlink(&(surface->canvas->surfaces), surface);
881 dynamicPaint_freeSurfaceData(surface);
885 /* Free canvas data */
886 void dynamicPaint_freeCanvas(DynamicPaintModifierData *pmd)
889 /* Free surface data */
890 DynamicPaintSurface *surface = pmd->canvas->surfaces.first;
891 DynamicPaintSurface *next_surface = NULL;
894 next_surface = surface->next;
895 dynamicPaint_freeSurface(surface);
896 surface = next_surface;
901 pmd->canvas->dm->release(pmd->canvas->dm);
902 pmd->canvas->dm = NULL;
904 MEM_freeN(pmd->canvas);
909 /* Free whole dp modifier */
910 void dynamicPaint_Modifier_free(struct DynamicPaintModifierData *pmd)
913 dynamicPaint_freeCanvas(pmd);
914 dynamicPaint_freeBrush(pmd);
919 /***************************** Initialize and reset ******************************/
922 * Creates a new surface and adds it to the list
923 * If scene is null, frame range of 1-250 is used
924 * A pointer to this surface is returned
926 struct DynamicPaintSurface *dynamicPaint_createNewSurface(DynamicPaintCanvasSettings *canvas, Scene *scene)
928 DynamicPaintSurface *surface= MEM_callocN(sizeof(DynamicPaintSurface), "DynamicPaintSurface");
929 if (!surface) return NULL;
931 surface->canvas = canvas;
932 surface->format = MOD_DPAINT_SURFACE_F_VERTEX;
933 surface->type = MOD_DPAINT_SURFACE_T_PAINT;
936 surface->pointcache = BKE_ptcache_add(&(surface->ptcaches));
937 surface->pointcache->flag |= PTCACHE_DISK_CACHE;
938 surface->pointcache->step = 1;
940 /* Set initial values */
941 surface->flags = MOD_DPAINT_ANTIALIAS | MOD_DPAINT_MULALPHA | MOD_DPAINT_DRY_LOG | MOD_DPAINT_DISSOLVE_LOG |
942 MOD_DPAINT_ACTIVE | MOD_DPAINT_PREVIEW | MOD_DPAINT_OUT1;
944 surface->effect_ui = 1;
946 surface->diss_speed = 250;
947 surface->dry_speed = 500;
948 surface->depth_clamp = 0.0f;
949 surface->disp_factor = 1.0f;
950 surface->disp_type = MOD_DPAINT_DISP_DISPLACE;
951 surface->image_fileformat = MOD_DPAINT_IMGFORMAT_PNG;
953 surface->init_color[0] = 1.0f;
954 surface->init_color[1] = 1.0f;
955 surface->init_color[2] = 1.0f;
956 surface->init_color[3] = 1.0f;
958 surface->image_resolution = 256;
959 surface->substeps = 0;
962 surface->start_frame = scene->r.sfra;
963 surface->end_frame = scene->r.efra;
966 surface->start_frame = 1;
967 surface->end_frame = 250;
970 surface->spread_speed = 1.0f;
971 surface->color_spread_speed = 1.0f;
972 surface->shrink_speed = 1.0f;
974 surface->wave_damping = 0.04f;
975 surface->wave_speed = 1.0f;
976 surface->wave_timescale = 1.0f;
977 surface->wave_spring = 0.20f;
979 BLI_snprintf(surface->image_output_path, sizeof(surface->image_output_path), "%sdynamicpaint", U.textudir);
980 BLI_cleanup_dir(NULL, surface->image_output_path);
981 dynamicPaintSurface_setUniqueName(surface, "Surface");
983 surface->effector_weights = BKE_add_effector_weights(NULL);
985 dynamicPaintSurface_updateType(surface);
987 BLI_addtail(&canvas->surfaces, surface);
993 * Initialize modifier data
995 int dynamicPaint_createType(struct DynamicPaintModifierData *pmd, int type, struct Scene *scene)
998 if(type == MOD_DYNAMICPAINT_TYPE_CANVAS) {
999 DynamicPaintCanvasSettings *canvas;
1001 dynamicPaint_freeCanvas(pmd);
1003 canvas = pmd->canvas = MEM_callocN(sizeof(DynamicPaintCanvasSettings), "DynamicPaint Canvas");
1009 /* Create one surface */
1010 if (!dynamicPaint_createNewSurface(canvas, scene))
1014 else if(type == MOD_DYNAMICPAINT_TYPE_BRUSH) {
1015 DynamicPaintBrushSettings *brush;
1017 dynamicPaint_freeBrush(pmd);
1019 brush = pmd->brush = MEM_callocN(sizeof(DynamicPaintBrushSettings), "DynamicPaint Paint");
1026 brush->flags = MOD_DPAINT_ABS_ALPHA | MOD_DPAINT_RAMP_ALPHA;
1027 brush->collision = MOD_DPAINT_COL_VOLUME;
1033 brush->alpha = 1.0f;
1034 brush->wetness = 1.0f;
1036 brush->paint_distance = 1.0f;
1037 brush->proximity_falloff = MOD_DPAINT_PRFALL_SMOOTH;
1039 brush->particle_radius = 0.2f;
1040 brush->particle_smooth = 0.05f;
1042 brush->wave_type = MOD_DPAINT_WAVEB_CHANGE;
1043 brush->wave_factor = 1.0f;
1044 brush->wave_clamp = 0.0f;
1045 brush->smudge_strength = 0.3f;
1046 brush->max_velocity = 1.0f;
1050 /* Paint proximity falloff colorramp. */
1054 brush->paint_ramp = add_colorband(0);
1055 if (!brush->paint_ramp)
1057 ramp = brush->paint_ramp->data;
1058 /* Add default smooth-falloff ramp. */
1059 ramp[0].r = ramp[0].g = ramp[0].b = ramp[0].a = 1.0f;
1061 ramp[1].r = ramp[1].g = ramp[1].b = ramp[1].pos = 1.0f;
1063 pmd->brush->paint_ramp->tot = 2;
1066 /* Brush velocity ramp. */
1070 brush->vel_ramp = add_colorband(0);
1071 if (!brush->vel_ramp)
1073 ramp = brush->vel_ramp->data;
1074 ramp[0].r = ramp[0].g = ramp[0].b = ramp[0].a = ramp[0].pos = 0.0f;
1075 ramp[1].r = ramp[1].g = ramp[1].b = ramp[1].a = ramp[1].pos = 1.0f;
1076 brush->paint_ramp->tot = 2;
1086 void dynamicPaint_Modifier_copy(struct DynamicPaintModifierData *pmd, struct DynamicPaintModifierData *tpmd)
1089 tpmd->type = pmd->type;
1091 dynamicPaint_createType(tpmd, MOD_DYNAMICPAINT_TYPE_CANVAS, NULL);
1093 dynamicPaint_createType(tpmd, MOD_DYNAMICPAINT_TYPE_BRUSH, NULL);
1097 tpmd->canvas->pmd = tpmd;
1099 } else if (tpmd->brush) {
1100 DynamicPaintBrushSettings *brush = pmd->brush, *t_brush = tpmd->brush;
1101 t_brush->pmd = tpmd;
1103 t_brush->flags = brush->flags;
1104 t_brush->collision = brush->collision;
1106 t_brush->mat = brush->mat;
1107 t_brush->r = brush->r;
1108 t_brush->g = brush->g;
1109 t_brush->b = brush->b;
1110 t_brush->alpha = brush->alpha;
1111 t_brush->wetness = brush->wetness;
1113 t_brush->particle_radius = brush->particle_radius;
1114 t_brush->particle_smooth = brush->particle_smooth;
1115 t_brush->paint_distance = brush->paint_distance;
1116 t_brush->psys = brush->psys;
1118 if (brush->paint_ramp)
1119 memcpy(t_brush->paint_ramp, brush->paint_ramp, sizeof(ColorBand));
1120 if (brush->vel_ramp)
1121 memcpy(t_brush->vel_ramp, brush->vel_ramp, sizeof(ColorBand));
1123 t_brush->proximity_falloff = brush->proximity_falloff;
1124 t_brush->wave_type = brush->wave_type;
1125 t_brush->ray_dir = brush->ray_dir;
1127 t_brush->wave_factor = brush->wave_factor;
1128 t_brush->wave_clamp = brush->wave_clamp;
1129 t_brush->max_velocity = brush->max_velocity;
1130 t_brush->smudge_strength = brush->smudge_strength;
1134 /* allocates surface data depending on surface type */
1135 static void dynamicPaint_allocateSurfaceType(DynamicPaintSurface *surface)
1137 PaintSurfaceData *sData = surface->data;
1139 switch (surface->type) {
1140 case MOD_DPAINT_SURFACE_T_PAINT:
1141 sData->type_data = MEM_callocN(sizeof(PaintPoint)*sData->total_points, "DynamicPaintSurface Data");
1143 case MOD_DPAINT_SURFACE_T_DISPLACE:
1144 sData->type_data = MEM_callocN(sizeof(float)*sData->total_points, "DynamicPaintSurface DepthData");
1146 case MOD_DPAINT_SURFACE_T_WEIGHT:
1147 sData->type_data = MEM_callocN(sizeof(float)*sData->total_points, "DynamicPaintSurface WeightData");
1149 case MOD_DPAINT_SURFACE_T_WAVE:
1150 sData->type_data = MEM_callocN(sizeof(PaintWavePoint)*sData->total_points, "DynamicPaintSurface WaveData");
1154 if (sData->type_data == NULL) setError(surface->canvas, "Not enough free memory!");
1157 static int surface_usesAdjDistance(DynamicPaintSurface *surface)
1159 if (surface->type == MOD_DPAINT_SURFACE_T_PAINT && surface->effect) return 1;
1160 if (surface->type == MOD_DPAINT_SURFACE_T_WAVE) return 1;
1164 static int surface_usesAdjData(DynamicPaintSurface *surface)
1166 if (surface_usesAdjDistance(surface)) return 1;
1167 if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX &&
1168 surface->flags & MOD_DPAINT_ANTIALIAS) return 1;
1173 /* initialize surface adjacency data */
1174 static void dynamicPaint_initAdjacencyData(DynamicPaintSurface *surface, int force_init)
1176 PaintSurfaceData *sData = surface->data;
1179 int neigh_points = 0;
1181 if (!surface_usesAdjData(surface) && !force_init) return;
1183 if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
1184 /* For vertex format, neighbours are connected by edges */
1185 neigh_points = 2*surface->canvas->dm->getNumEdges(surface->canvas->dm);
1187 else if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ)
1188 neigh_points = sData->total_points*8;
1190 if (!neigh_points) return;
1192 /* allocate memory */
1193 ed = sData->adj_data = MEM_callocN(sizeof(PaintAdjData), "Surface Adj Data");
1195 ed->n_index = MEM_callocN(sizeof(int)*sData->total_points, "Surface Adj Index");
1196 ed->n_num = MEM_callocN(sizeof(int)*sData->total_points, "Surface Adj Counts");
1197 temp_data = MEM_callocN(sizeof(int)*sData->total_points, "Temp Adj Data");
1198 ed->n_target = MEM_callocN(sizeof(int)*neigh_points, "Surface Adj Targets");
1199 ed->flags = MEM_callocN(sizeof(int)*sData->total_points, "Surface Adj Flags");
1200 ed->total_targets = neigh_points;
1202 /* in case of allocation error, free memory */
1203 if (!ed->n_index || !ed->n_num || !ed->n_target || !temp_data) {
1204 dynamicPaint_freeAdjData(sData);
1205 if (temp_data) MEM_freeN(temp_data);
1206 setError(surface->canvas, "Not enough free memory.");
1210 if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
1214 /* For vertex format, count every vertex that is connected by an edge */
1215 int numOfEdges = surface->canvas->dm->getNumEdges(surface->canvas->dm);
1216 int numOfFaces = surface->canvas->dm->getNumFaces(surface->canvas->dm);
1217 struct MEdge *edge = surface->canvas->dm->getEdgeArray(surface->canvas->dm);
1218 struct MFace *face = surface->canvas->dm->getFaceArray(surface->canvas->dm);
1220 /* count number of edges per vertex */
1221 for (i=0; i<numOfEdges; i++) {
1222 ed->n_num[edge[i].v1]++;
1223 ed->n_num[edge[i].v2]++;
1225 temp_data[edge[i].v1]++;
1226 temp_data[edge[i].v2]++;
1229 /* to locate points on "mesh edge" */
1230 for (i=0; i<numOfFaces; i++) {
1231 temp_data[face[i].v1]++;
1232 temp_data[face[i].v2]++;
1233 temp_data[face[i].v3]++;
1235 temp_data[face[i].v4]++;
1238 /* now check if total number of edges+faces for
1239 * each vertex is even, if not -> vertex is on mesh edge */
1240 for (i=0; i<sData->total_points; i++) {
1241 if ((temp_data[i]%2) ||
1243 ed->flags[i] |= ADJ_ON_MESH_EDGE;
1245 /* reset temp data */
1249 /* order n_index array */
1251 for (i=0; i<sData->total_points; i++) {
1252 ed->n_index[i] = n_pos;
1253 n_pos += ed->n_num[i];
1256 /* and now add neighbour data using that info */
1257 for (i=0; i<numOfEdges; i++) {
1259 int index = edge[i].v1;
1260 n_pos = ed->n_index[index]+temp_data[index];
1261 ed->n_target[n_pos] = edge[i].v2;
1266 n_pos = ed->n_index[index]+temp_data[index];
1267 ed->n_target[n_pos] = edge[i].v1;
1271 else if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) {
1272 /* for image sequences, only allocate memory.
1273 * bake initialization takes care of rest */
1276 MEM_freeN(temp_data);
1279 void dynamicPaint_setInitialColor(DynamicPaintSurface *surface)
1281 PaintSurfaceData *sData = surface->data;
1282 PaintPoint* pPoint = (PaintPoint*)sData->type_data;
1283 DerivedMesh *dm = surface->canvas->dm;
1286 if (surface->type != MOD_DPAINT_SURFACE_T_PAINT)
1289 if (surface->init_color_type == MOD_DPAINT_INITIAL_NONE)
1292 else if (surface->init_color_type == MOD_DPAINT_INITIAL_COLOR) {
1293 /* apply color to every surface point */
1294 #pragma omp parallel for schedule(static)
1295 for (i=0; i<sData->total_points; i++) {
1296 copy_v3_v3(pPoint[i].color, surface->init_color);
1297 pPoint[i].alpha = surface->init_color[3];
1300 /* UV mapped texture */
1301 else if (surface->init_color_type == MOD_DPAINT_INITIAL_TEXTURE) {
1302 Tex *tex = surface->init_texture;
1304 MFace *mface = dm->getFaceArray(dm);
1305 int numOfFaces = dm->getNumFaces(dm);
1311 CustomData_validate_layer_name(&dm->faceData, CD_MTFACE, surface->init_layername, uvname);
1312 tface = CustomData_get_layer_named(&dm->faceData, CD_MTFACE, uvname);
1315 /* for vertex surface loop through tfaces and find uv color
1316 * that provides highest alpha */
1317 if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
1318 #pragma omp parallel for schedule(static)
1319 for (i=0; i<numOfFaces; i++) {
1320 int numOfVert = (mface[i].v4) ? 4 : 3;
1321 float uv[3] = {0.0f};
1323 for (j=0; j<numOfVert; j++) {
1324 TexResult texres = {0};
1325 unsigned int *vert = (&mface[i].v1)+j;
1327 /* remap to -1.0 to 1.0 */
1328 uv[0] = tface[i].uv[j][0]*2.0f - 1.0f;
1329 uv[1] = tface[i].uv[j][1]*2.0f - 1.0f;
1331 multitex_ext_safe(tex, uv, &texres);
1333 if (texres.tin > pPoint[*vert].alpha) {
1334 copy_v3_v3(pPoint[*vert].color, &texres.tr);
1335 pPoint[*vert].alpha = texres.tin;
1340 else if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) {
1341 ImgSeqFormatData *f_data = (ImgSeqFormatData*)sData->format_data;
1342 int samples = (surface->flags & MOD_DPAINT_ANTIALIAS) ? 5 : 1;
1344 #pragma omp parallel for schedule(static)
1345 for (i=0; i<sData->total_points; i++) {
1346 float uv[9] = {0.0f};
1347 float uv_final[3] = {0.0f};
1349 TexResult texres = {0};
1351 /* collect all uvs */
1352 for (j=0; j<3; j++) {
1353 int v=(f_data->uv_p[i].quad && j>0) ? j+1 : j;
1354 copy_v2_v2(&uv[j*3], tface[f_data->uv_p[i].face_index].uv[v]);
1357 /* interpolate final uv pos */
1358 interp_v3_v3v3v3( uv_final, &uv[0], &uv[3], &uv[6],
1359 f_data->barycentricWeights[i*samples].v);
1360 /* remap to -1.0 to 1.0 */
1361 uv_final[0] = uv_final[0]*2.0f - 1.0f;
1362 uv_final[1] = uv_final[1]*2.0f - 1.0f;
1364 multitex_ext_safe(tex, uv_final, &texres);
1367 copy_v3_v3(pPoint[i].color, &texres.tr);
1368 pPoint[i].alpha = texres.tin;
1372 /* vertex color layer */
1373 else if (surface->init_color_type == MOD_DPAINT_INITIAL_VERTEXCOLOR) {
1374 MCol *col = CustomData_get_layer_named(&dm->faceData, CD_MCOL, surface->init_layername);
1377 /* for vertex surface, just copy colors from mcol */
1378 if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
1379 MFace *mface = dm->getFaceArray(dm);
1380 int numOfFaces = dm->getNumFaces(dm);
1382 #pragma omp parallel for schedule(static)
1383 for (i=0; i<numOfFaces; i++) {
1384 int numOfVert = (mface[i].v4) ? 4 : 3;
1386 for (j=0; j<numOfVert; j++) {
1387 unsigned int *vert = ((&mface[i].v1)+j);
1389 pPoint[*vert].color[0] = 1.0f/255.f*(float)col[i*4+j].b;
1390 pPoint[*vert].color[1] = 1.0f/255.f*(float)col[i*4+j].g;
1391 pPoint[*vert].color[2] = 1.0f/255.f*(float)col[i*4+j].r;
1392 pPoint[*vert].alpha = 1.0f/255.f*(float)col[i*4+j].a;
1396 else if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) {
1397 ImgSeqFormatData *f_data = (ImgSeqFormatData*)sData->format_data;
1398 int samples = (surface->flags & MOD_DPAINT_ANTIALIAS) ? 5 : 1;
1400 #pragma omp parallel for schedule(static)
1401 for (i=0; i<sData->total_points; i++) {
1402 int face_ind = f_data->uv_p[i].face_index;
1403 float colors[3][4] = {{0.0f,0.0f,0.0f,0.0f}};
1404 float final_color[4];
1406 /* collect color values */
1407 for (j=0; j<3; j++) {
1408 int v=(f_data->uv_p[i].quad && j>0) ? j+1 : j;
1409 colors[j][0] = 1.0f/255.f*(float)col[face_ind*4+v].b;
1410 colors[j][1] = 1.0f/255.f*(float)col[face_ind*4+v].g;
1411 colors[j][2] = 1.0f/255.f*(float)col[face_ind*4+v].r;
1412 colors[j][3] = 1.0f/255.f*(float)col[face_ind*4+v].a;
1415 /* interpolate final color */
1416 interp_v4_v4v4v4( final_color, colors[0], colors[1], colors[2],
1417 f_data->barycentricWeights[i*samples].v);
1419 copy_v3_v3(pPoint[i].color, final_color);
1420 pPoint[i].alpha = final_color[3];
1426 /* clears surface data back to zero */
1427 void dynamicPaint_clearSurface(DynamicPaintSurface *surface)
1429 PaintSurfaceData *sData = surface->data;
1430 if (sData && sData->type_data) {
1431 unsigned int data_size;
1433 if (surface->type == MOD_DPAINT_SURFACE_T_PAINT)
1434 data_size = sizeof(PaintPoint);
1435 else if (surface->type == MOD_DPAINT_SURFACE_T_WAVE)
1436 data_size = sizeof(PaintWavePoint);
1438 data_size = sizeof(float);
1440 memset(sData->type_data, 0, data_size * sData->total_points);
1442 /* set initial color */
1443 if (surface->type == MOD_DPAINT_SURFACE_T_PAINT)
1444 dynamicPaint_setInitialColor(surface);
1447 sData->bData->clear = 1;
1451 /* completely (re)initializes surface (only for point cache types)*/
1452 int dynamicPaint_resetSurface(DynamicPaintSurface *surface)
1454 int numOfPoints = dynamicPaint_surfaceNumOfPoints(surface);
1455 /* dont touch image sequence types. they get handled only on bake */
1456 if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) return 1;
1458 if (surface->data) dynamicPaint_freeSurfaceData(surface);
1459 if (numOfPoints < 1) return 0;
1461 /* allocate memory */
1462 surface->data = MEM_callocN(sizeof(PaintSurfaceData), "PaintSurfaceData");
1463 if (!surface->data) return 0;
1465 /* allocate data depending on surface type and format */
1466 surface->data->total_points = numOfPoints;
1467 dynamicPaint_allocateSurfaceType(surface);
1468 dynamicPaint_initAdjacencyData(surface, 0);
1470 /* set initial color */
1471 if (surface->type == MOD_DPAINT_SURFACE_T_PAINT)
1472 dynamicPaint_setInitialColor(surface);
1477 /* make sure allocated surface size matches current requirements */
1478 static void dynamicPaint_checkSurfaceData(DynamicPaintSurface *surface)
1480 if (!surface->data || ((dynamicPaint_surfaceNumOfPoints(surface) != surface->data->total_points))) {
1481 dynamicPaint_resetSurface(surface);
1486 /***************************** Modifier processing ******************************/
1489 /* apply displacing vertex surface to the derived mesh */
1490 static void dynamicPaint_applySurfaceDisplace(DynamicPaintSurface *surface, DerivedMesh *result, int update_normals)
1492 PaintSurfaceData *sData = surface->data;
1494 if (!sData || surface->format != MOD_DPAINT_SURFACE_F_VERTEX) return;
1496 /* displace paint */
1497 if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE) {
1498 MVert *mvert = result->getVertArray(result);
1500 float* value = (float*)sData->type_data;
1502 #pragma omp parallel for schedule(static)
1503 for (i=0; i<sData->total_points; i++) {
1504 float normal[3], val=value[i]*surface->disp_factor;
1505 normal_short_to_float_v3(normal, mvert[i].no);
1506 normalize_v3(normal);
1508 mvert[i].co[0] -= normal[0]*val;
1509 mvert[i].co[1] -= normal[1]*val;
1510 mvert[i].co[2] -= normal[2]*val;
1516 CDDM_calc_normals(result);
1520 * Apply canvas data to the object derived mesh
1522 static struct DerivedMesh *dynamicPaint_Modifier_apply(DynamicPaintModifierData *pmd,
1526 DerivedMesh *result = CDDM_copy(dm);
1528 if(pmd->canvas && !(pmd->canvas->flags & MOD_DPAINT_BAKING)) {
1530 DynamicPaintSurface *surface = pmd->canvas->surfaces.first;
1531 pmd->canvas->flags &= ~MOD_DPAINT_PREVIEW_READY;
1533 /* loop through surfaces */
1534 for (; surface; surface=surface->next) {
1535 PaintSurfaceData *sData = surface->data;
1537 if (surface && surface->format != MOD_DPAINT_SURFACE_F_IMAGESEQ && sData) {
1538 if (!(surface->flags & (MOD_DPAINT_ACTIVE))) continue;
1540 /* process vertex surface previews */
1541 if (surface->format == MOD_DPAINT_SURFACE_F_VERTEX) {
1543 /* vertex color paint */
1544 if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
1546 MFace *mface = result->getFaceArray(result);
1547 int numOfFaces = result->getNumFaces(result);
1549 PaintPoint* pPoint = (PaintPoint*)sData->type_data;
1552 /* paint is stored on dry and wet layers, so mix final color first */
1553 float *fcolor = MEM_callocN(sizeof(float)*sData->total_points*4, "Temp paint color");
1555 #pragma omp parallel for schedule(static)
1556 for (i=0; i<sData->total_points; i++) {
1557 /* blend dry and wet layer */
1558 blendColors(pPoint[i].color, pPoint[i].alpha, pPoint[i].e_color, pPoint[i].e_alpha, &fcolor[i*4]);
1561 /* viewport preview */
1562 if (surface->flags & MOD_DPAINT_PREVIEW) {
1563 /* Save preview results to weight layer, to be
1564 * able to share same drawing methods */
1565 col = result->getFaceDataArray(result, CD_WEIGHT_MCOL);
1566 if (!col) col = CustomData_add_layer(&result->faceData, CD_WEIGHT_MCOL, CD_CALLOC, NULL, numOfFaces);
1569 #pragma omp parallel for schedule(static)
1570 for (i=0; i<numOfFaces; i++) {
1572 Material *material = give_current_material(ob, mface[i].mat_nr+1);
1574 for (; j<((mface[i].v4)?4:3); j++) {
1575 int index = (j==0)?mface[i].v1: (j==1)?mface[i].v2: (j==2)?mface[i].v3: mface[i].v4;
1577 if (surface->preview_id == MOD_DPAINT_SURFACE_PREV_PAINT) {
1581 /* Apply material color as base vertex color for preview */
1588 else { /* default grey */
1593 /* mix surface color */
1594 interp_v3_v3v3(c, c, &fcolor[index], fcolor[index+3]);
1596 col[i*4+j].r = FTOCHAR(c[2]);
1597 col[i*4+j].g = FTOCHAR(c[1]);
1598 col[i*4+j].b = FTOCHAR(c[0]);
1602 col[i*4+j].r = FTOCHAR(pPoint[index].wetness);
1603 col[i*4+j].g = FTOCHAR(pPoint[index].wetness);
1604 col[i*4+j].b = FTOCHAR(pPoint[index].wetness);
1608 pmd->canvas->flags |= MOD_DPAINT_PREVIEW_READY;
1613 /* save layer data to output layer */
1616 col = CustomData_get_layer_named(&result->faceData, CD_MCOL, surface->output_name);
1618 #pragma omp parallel for schedule(static)
1619 for (i=0; i<numOfFaces; i++) {
1621 for (; j<((mface[i].v4)?4:3); j++) {
1622 int index = (j==0)?mface[i].v1: (j==1)?mface[i].v2: (j==2)?mface[i].v3: mface[i].v4;
1625 col[i*4+j].a = FTOCHAR(fcolor[index+3]);
1626 col[i*4+j].r = FTOCHAR(fcolor[index+2]);
1627 col[i*4+j].g = FTOCHAR(fcolor[index+1]);
1628 col[i*4+j].b = FTOCHAR(fcolor[index]);
1636 col = CustomData_get_layer_named(&result->faceData, CD_MCOL, surface->output_name2);
1638 #pragma omp parallel for schedule(static)
1639 for (i=0; i<numOfFaces; i++) {
1642 for (; j<((mface[i].v4)?4:3); j++) {
1643 int index = (j==0)?mface[i].v1: (j==1)?mface[i].v2: (j==2)?mface[i].v3: mface[i].v4;
1645 col[i*4+j].r = FTOCHAR(pPoint[index].wetness);
1646 col[i*4+j].g = FTOCHAR(pPoint[index].wetness);
1647 col[i*4+j].b = FTOCHAR(pPoint[index].wetness);
1652 /* vertex group paint */
1653 else if (surface->type == MOD_DPAINT_SURFACE_T_WEIGHT) {
1654 int defgrp_index = defgroup_name_index(ob, surface->output_name);
1655 MDeformVert *dvert = result->getVertDataArray(result, CD_MDEFORMVERT);
1656 float *weight = (float*)sData->type_data;
1657 /* viewport preview */
1658 if (surface->flags & MOD_DPAINT_PREVIEW) {
1659 /* Save preview results to weight layer, to be
1660 * able to share same drawing methods */
1661 MFace *mface = result->getFaceArray(result);
1662 int numOfFaces = result->getNumFaces(result);
1664 MCol *col = result->getFaceDataArray(result, CD_WEIGHT_MCOL);
1665 if (!col) col = CustomData_add_layer(&result->faceData, CD_WEIGHT_MCOL, CD_CALLOC, NULL, numOfFaces);
1668 #pragma omp parallel for schedule(static)
1669 for (i=0; i<numOfFaces; i++) {
1670 float temp_color[3];
1672 for (; j<((mface[i].v4)?4:3); j++) {
1673 int index = (j==0)?mface[i].v1: (j==1)?mface[i].v2: (j==2)?mface[i].v3: mface[i].v4;
1675 weight_to_rgb(weight[index], temp_color, temp_color+1, temp_color+2);
1676 col[i*4+j].r = FTOCHAR(temp_color[2]);
1677 col[i*4+j].g = FTOCHAR(temp_color[1]);
1678 col[i*4+j].b = FTOCHAR(temp_color[0]);
1682 pmd->canvas->flags |= MOD_DPAINT_PREVIEW_READY;
1686 /* apply weights into a vertex group, if doesnt exists add a new layer */
1687 if (defgrp_index >= 0 && !dvert && strlen(surface->output_name)>0)
1688 dvert = CustomData_add_layer_named(&result->vertData, CD_MDEFORMVERT, CD_CALLOC,
1689 NULL, sData->total_points, surface->output_name);
1690 if (defgrp_index >= 0 && dvert) {
1692 for(i=0; i<sData->total_points; i++) {
1693 MDeformVert *dv= &dvert[i];
1694 MDeformWeight *def_weight = defvert_find_index(dv, defgrp_index);
1696 /* skip if weight value is 0 and no existing weight is found */
1697 if (!def_weight && !weight[i])
1700 /* if not found, add a weight for it */
1702 MDeformWeight *newdw = MEM_callocN(sizeof(MDeformWeight)*(dv->totweight+1),
1705 memcpy(newdw, dv->dw, sizeof(MDeformWeight)*dv->totweight);
1709 dv->dw[dv->totweight].def_nr=defgrp_index;
1710 def_weight = &dv->dw[dv->totweight];
1714 /* set weight value */
1715 def_weight->weight = weight[i];
1719 /* wave simulation */
1720 else if (surface->type == MOD_DPAINT_SURFACE_T_WAVE) {
1721 MVert *mvert = result->getVertArray(result);
1723 PaintWavePoint* wPoint = (PaintWavePoint*)sData->type_data;
1725 #pragma omp parallel for schedule(static)
1726 for (i=0; i<sData->total_points; i++) {
1728 normal_short_to_float_v3(normal, mvert[i].no);
1729 normalize_v3(normal);
1731 mvert[i].co[0] += normal[0]*wPoint[i].height;
1732 mvert[i].co[1] += normal[1]*wPoint[i].height;
1733 mvert[i].co[2] += normal[2]*wPoint[i].height;
1735 CDDM_calc_normals(result);
1739 dynamicPaint_applySurfaceDisplace(surface, result, 1);
1744 /* make a copy of dm to use as brush data */
1746 if (pmd->brush->dm) pmd->brush->dm->release(pmd->brush->dm);
1747 pmd->brush->dm = CDDM_copy(result);
1753 /* update cache frame range */
1754 void dynamicPaint_cacheUpdateFrames(DynamicPaintSurface *surface)
1756 if (surface->pointcache) {
1757 surface->pointcache->startframe = surface->start_frame;
1758 surface->pointcache->endframe = surface->end_frame;
1762 void canvas_copyDerivedMesh(DynamicPaintCanvasSettings *canvas, DerivedMesh *dm)
1764 if (canvas->dm) canvas->dm->release(canvas->dm);
1765 canvas->dm = CDDM_copy(dm);
1769 * Updates derived mesh copy and processes dynamic paint step / caches.
1771 static void dynamicPaint_frameUpdate(DynamicPaintModifierData *pmd, Scene *scene, Object *ob, DerivedMesh *dm)
1774 DynamicPaintCanvasSettings *canvas = pmd->canvas;
1775 DynamicPaintSurface *surface = canvas->surfaces.first;
1777 /* update derived mesh copy */
1778 canvas_copyDerivedMesh(canvas, dm);
1780 /* in case image sequence baking, stop here */
1781 if (canvas->flags & MOD_DPAINT_BAKING) return;
1783 /* loop through surfaces */
1784 for (; surface; surface=surface->next) {
1785 int current_frame = (int)scene->r.cfra;
1787 /* free bake data if not required anymore */
1788 surface_freeUnusedData(surface);
1790 /* image sequences are handled by bake operator */
1791 if (surface->format == MOD_DPAINT_SURFACE_F_IMAGESEQ) continue;
1792 if (!(surface->flags & MOD_DPAINT_ACTIVE)) continue;
1794 /* make sure surface is valid */
1795 dynamicPaint_checkSurfaceData(surface);
1797 /* limit frame range */
1798 CLAMP(current_frame, surface->start_frame, surface->end_frame);
1800 if (current_frame != surface->current_frame || (int)scene->r.cfra == surface->start_frame) {
1801 PointCache *cache = surface->pointcache;
1803 surface->current_frame = current_frame;
1805 /* read point cache */
1806 BKE_ptcache_id_from_dynamicpaint(&pid, ob, surface);
1807 pid.cache->startframe = surface->start_frame;
1808 pid.cache->endframe = surface->end_frame;
1809 BKE_ptcache_id_time(&pid, scene, (float)scene->r.cfra, NULL, NULL, NULL);
1811 /* reset non-baked cache at first frame */
1812 if((int)scene->r.cfra == surface->start_frame && !(cache->flag & PTCACHE_BAKED))
1814 cache->flag |= PTCACHE_REDO_NEEDED;
1815 BKE_ptcache_id_reset(scene, &pid, PTCACHE_RESET_OUTDATED);
1816 cache->flag &= ~PTCACHE_REDO_NEEDED;
1819 /* try to read from cache */
1820 if(BKE_ptcache_read(&pid, (float)scene->r.cfra)) {
1821 BKE_ptcache_validate(cache, (int)scene->r.cfra);
1823 /* if read failed and we're on surface range do recalculate */
1824 else if ((int)scene->r.cfra == current_frame
1825 && !(cache->flag & PTCACHE_BAKED)) {
1826 /* calculate surface frame */
1827 canvas->flags |= MOD_DPAINT_BAKING;
1828 dynamicPaint_calculateFrame(surface, scene, ob, current_frame);
1829 canvas->flags &= ~MOD_DPAINT_BAKING;
1831 /* restore canvas derivedmesh if required */
1832 if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE &&
1833 surface->flags & MOD_DPAINT_DISP_INCREMENTAL && surface->next)
1834 canvas_copyDerivedMesh(canvas, dm);
1836 BKE_ptcache_validate(cache, surface->current_frame);
1837 BKE_ptcache_write(&pid, surface->current_frame);
1844 /* Modifier call. Processes dynamic paint modifier step. */
1845 struct DerivedMesh *dynamicPaint_Modifier_do(DynamicPaintModifierData *pmd, Scene *scene, Object *ob, DerivedMesh *dm)
1847 /* Update canvas data for a new frame */
1848 dynamicPaint_frameUpdate(pmd, scene, ob, dm);
1850 /* Return output mesh */
1851 return dynamicPaint_Modifier_apply(pmd, ob, dm);
1855 /***************************** Image Sequence / UV Image Surface Calls ******************************/
1858 * Tries to find the neighbouring pixel in given (uv space) direction.
1859 * Result is used by effect system to move paint on the surface.
1861 * px,py : origin pixel x and y
1862 * n_index : lookup direction index (use neighX,neighY to get final index)
1864 static int dynamicPaint_findNeighbourPixel(PaintUVPoint *tempPoints, DerivedMesh *dm, char *uvname, int w, int h, int px, int py, int n_index)
1866 /* Note: Current method only uses polygon edges to detect neighbouring pixels.
1867 * -> It doesn't always lead to the optimum pixel but is accurate enough
1868 * and faster/simplier than including possible face tip point links)
1872 PaintUVPoint *tPoint = NULL;
1873 PaintUVPoint *cPoint = NULL;
1875 /* shift position by given n_index */
1876 x = px + neighX[n_index];
1877 y = py + neighY[n_index];
1879 if (x<0 || x>=w) return -1;
1880 if (y<0 || y>=h) return -1;
1882 tPoint = &tempPoints[x+w*y]; /* UV neighbour */
1883 cPoint = &tempPoints[px+w*py]; /* Origin point */
1886 * Check if shifted point is on same face -> it's a correct neighbour
1887 * (and if it isn't marked as an "edge pixel")
1889 if ((tPoint->face_index == cPoint->face_index) && (tPoint->neighbour_pixel == -1))
1893 * Even if shifted point is on another face
1894 * -> use this point.
1896 * !! Replace with "is uv faces linked" check !!
1897 * This should work fine as long as uv island
1898 * margin is > 1 pixel.
1900 if ((tPoint->face_index != -1) && (tPoint->neighbour_pixel == -1)) {
1905 * If we get here, the actual neighbouring pixel
1906 * is located on a non-linked uv face, and we have to find
1907 * it's "real" position.
1909 * Simple neighbouring face finding algorithm:
1910 * - find closest uv edge to shifted pixel and get
1911 * the another face that shares that edge
1912 * - find corresponding position of that new face edge
1915 * TODO: Implement something more accurate / optimized?
1918 int numOfFaces = dm->getNumFaces(dm);
1919 MFace *mface = dm->getFaceArray(dm);
1920 MTFace *tface = CustomData_get_layer_named(&dm->faceData, CD_MTFACE, uvname);
1922 /* Get closest edge to that subpixel on UV map */
1924 float pixel[2], dist, t_dist;
1925 int i, uindex[3], edge1_index, edge2_index,
1926 e1_index, e2_index, target_face;
1927 float closest_point[2], lambda, dir_vec[2];
1928 int target_uv1, target_uv2, final_pixel[2], final_index;
1930 float *s_uv1, *s_uv2, *t_uv1, *t_uv2;
1932 pixel[0] = ((float)(px + neighX[n_index]) + 0.5f) / (float)w;
1933 pixel[1] = ((float)(py + neighY[n_index]) + 0.5f) / (float)h;
1935 /* Get uv indexes for current face part */
1937 uindex[0] = 0; uindex[1] = 2; uindex[2] = 3;
1940 uindex[0] = 0; uindex[1] = 1; uindex[2] = 2;
1944 * Find closest edge to that pixel
1946 /* Dist to first edge */
1947 e1_index = cPoint->v1; e2_index = cPoint->v2; edge1_index = uindex[0]; edge2_index = uindex[1];
1948 dist = dist_to_line_segment_v2(pixel, tface[cPoint->face_index].uv[edge1_index], tface[cPoint->face_index].uv[edge2_index]);
1950 /* Dist to second edge */
1951 t_dist = dist_to_line_segment_v2(pixel, tface[cPoint->face_index].uv[uindex[1]], tface[cPoint->face_index].uv[uindex[2]]);
1952 if (t_dist < dist) {e1_index = cPoint->v2; e2_index = cPoint->v3; edge1_index = uindex[1]; edge2_index = uindex[2]; dist = t_dist;}
1954 /* Dist to third edge */
1955 t_dist = dist_to_line_segment_v2(pixel, tface[cPoint->face_index].uv[uindex[2]], tface[cPoint->face_index].uv[uindex[0]]);
1956 if (t_dist < dist) {e1_index = cPoint->v3; e2_index = cPoint->v1; edge1_index = uindex[2]; edge2_index = uindex[0]; dist = t_dist;}
1960 * Now find another face that is linked to that edge
1964 for (i=0; i<numOfFaces; i++) {
1966 * Check if both edge vertices share this face
1968 int v4 = (mface[i].v4) ? mface[i].v4 : -1;
1970 if ((e1_index == mface[i].v1 || e1_index == mface[i].v2 || e1_index == mface[i].v3 || e1_index == v4) &&
1971 (e2_index == mface[i].v1 || e2_index == mface[i].v2 || e2_index == mface[i].v3 || e2_index == v4)) {
1972 if (i == cPoint->face_index) continue;
1979 if (e1_index == mface[i].v1) target_uv1 = 0;
1980 else if (e1_index == mface[i].v2) target_uv1 = 1;
1981 else if (e1_index == mface[i].v3) target_uv1 = 2;
1982 else target_uv1 = 3;
1984 if (e2_index == mface[i].v1) target_uv2 = 0;
1985 else if (e2_index == mface[i].v2) target_uv2 = 1;
1986 else if (e2_index == mface[i].v3) target_uv2 = 2;
1987 else target_uv2 = 3;
1993 /* If none found return -1 */
1994 if (target_face == -1) return -1;
1997 * If target face is connected in UV space as well, just use original index
1999 s_uv1 = (float *)tface[cPoint->face_index].uv[edge1_index];
2000 s_uv2 = (float *)tface[cPoint->face_index].uv[edge2_index];
2001 t_uv1 = (float *)tface[target_face].uv[target_uv1];
2002 t_uv2 = (float *)tface[target_face].uv[target_uv2];
2004 //printf("connected UV : %f,%f & %f,%f - %f,%f & %f,%f\n", s_uv1[0], s_uv1[1], s_uv2[0], s_uv2[1], t_uv1[0], t_uv1[1], t_uv2[0], t_uv2[1]);
2006 if (((s_uv1[0] == t_uv1[0] && s_uv1[1] == t_uv1[1]) &&
2007 (s_uv2[0] == t_uv2[0] && s_uv2[1] == t_uv2[1]) ) ||
2008 ((s_uv2[0] == t_uv1[0] && s_uv2[1] == t_uv1[1]) &&
2009 (s_uv1[0] == t_uv2[0] && s_uv1[1] == t_uv2[1]) )) return ((px+neighX[n_index]) + w*(py+neighY[n_index]));
2012 * Find a point that is relatively at same edge position
2013 * on this other face UV
2015 lambda = closest_to_line_v2(closest_point, pixel, tface[cPoint->face_index].uv[edge1_index], tface[cPoint->face_index].uv[edge2_index]);
2016 if (lambda < 0.0f) lambda = 0.0f;
2017 if (lambda > 1.0f) lambda = 1.0f;
2019 sub_v2_v2v2(dir_vec, tface[target_face].uv[target_uv2], tface[target_face].uv[target_uv1]);
2021 mul_v2_fl(dir_vec, lambda);
2023 copy_v2_v2(pixel, tface[target_face].uv[target_uv1]);
2024 add_v2_v2(pixel, dir_vec);
2025 pixel[0] = (pixel[0] * (float)w) - 0.5f;
2026 pixel[1] = (pixel[1] * (float)h) - 0.5f;
2028 final_pixel[0] = (int)floor(pixel[0]);
2029 final_pixel[1] = (int)floor(pixel[1]);
2031 /* If current pixel uv is outside of texture */
2032 if (final_pixel[0] < 0 || final_pixel[0] >= w) return -1;
2033 if (final_pixel[1] < 0 || final_pixel[1] >= h) return -1;
2035 final_index = final_pixel[0] + w * final_pixel[1];
2037 /* If we ended up to our origin point ( mesh has smaller than pixel sized faces) */
2038 if (final_index == (px+w*py)) return -1;
2039 /* If found pixel still lies on wrong face ( mesh has smaller than pixel sized faces) */
2040 if (tempPoints[final_index].face_index != target_face) return -1;
2043 * If final point is an "edge pixel", use it's "real" neighbour instead
2045 if (tempPoints[final_index].neighbour_pixel != -1) final_index = cPoint->neighbour_pixel;
2053 * Create a surface for uv image sequence format
2055 int dynamicPaint_createUVSurface(DynamicPaintSurface *surface)
2057 /* Antialias jitter point relative coords */
2058 float jitter5sample[10] = {0.0f, 0.0f,
2067 int active_points = 0;
2070 PaintSurfaceData *sData;
2071 DynamicPaintCanvasSettings *canvas = surface->canvas;
2072 DerivedMesh *dm = canvas->dm;
2074 PaintUVPoint *tempPoints = NULL;
2075 Vec3f *tempWeights = NULL;
2076 MFace *mface = NULL;
2077 MTFace *tface = NULL;
2078 Bounds2D *faceBB = NULL;
2082 if (!dm) return setError(canvas, "Canvas mesh not updated.");
2083 if (surface->format != MOD_DPAINT_SURFACE_F_IMAGESEQ) return setError(canvas, "Can't bake non-\"image sequence\" formats.");
2085 numOfFaces = dm->getNumFaces(dm);
2086 mface = dm->getFaceArray(dm);
2089 CustomData_validate_layer_name(&dm->faceData, CD_MTFACE, surface->uvlayer_name, uvname);
2090 tface = CustomData_get_layer_named(&dm->faceData, CD_MTFACE, uvname);
2092 /* Check for validity */
2093 if (!tface) return setError(canvas, "No UV data on canvas.");
2094 if (surface->image_resolution < 16 || surface->image_resolution > 8192) return setError(canvas, "Invalid resolution.");
2096 w = h = surface->image_resolution;
2099 * Start generating the surface
2101 printf("DynamicPaint: Preparing UV surface of %ix%i pixels and %i faces.\n", w, h, numOfFaces);
2103 /* Init data struct */
2104 if (surface->data) dynamicPaint_freeSurfaceData(surface);
2105 sData = surface->data = MEM_callocN(sizeof(PaintSurfaceData), "PaintSurfaceData");
2106 if (!surface->data) return setError(canvas, "Not enough free memory.");
2108 aa_samples = (surface->flags & MOD_DPAINT_ANTIALIAS) ? 5 : 1;
2109 tempPoints = (struct PaintUVPoint *) MEM_callocN(w*h*sizeof(struct PaintUVPoint), "Temp PaintUVPoint");
2110 if (!tempPoints) error=1;
2112 final_index = (int *) MEM_callocN(w*h*sizeof(int), "Temp UV Final Indexes");
2113 if (!final_index) error=1;
2115 tempWeights = (struct Vec3f *) MEM_mallocN(w*h*aa_samples*sizeof(struct Vec3f), "Temp bWeights");
2116 if (!tempWeights) error=1;
2119 * Generate a temporary bounding box array for UV faces to optimize
2120 * the pixel-inside-a-face search.
2123 faceBB = (struct Bounds2D *) MEM_mallocN(numOfFaces*sizeof(struct Bounds2D), "MPCanvasFaceBB");
2124 if (!faceBB) error=1;
2128 for (ty=0; ty<numOfFaces; ty++) {
2129 int numOfVert = (mface[ty].v4) ? 4 : 3;
2132 copy_v2_v2(faceBB[ty].min, tface[ty].uv[0]);
2133 copy_v2_v2(faceBB[ty].max, tface[ty].uv[0]);
2135 for (i = 1; i<numOfVert; i++) {
2136 if (tface[ty].uv[i][0] < faceBB[ty].min[0]) faceBB[ty].min[0] = tface[ty].uv[i][0];
2137 if (tface[ty].uv[i][1] < faceBB[ty].min[1]) faceBB[ty].min[1] = tface[ty].uv[i][1];
2138 if (tface[ty].uv[i][0] > faceBB[ty].max[0]) faceBB[ty].max[0] = tface[ty].uv[i][0];
2139 if (tface[ty].uv[i][1] > faceBB[ty].max[1]) faceBB[ty].max[1] = tface[ty].uv[i][1];
2145 * Loop through every pixel and check
2146 * if pixel is uv-mapped on a canvas face.
2149 #pragma omp parallel for schedule(static)
2150 for (ty = 0; ty < h; ty++)
2153 for (tx = 0; tx < w; tx++)
2156 int index = tx+w*ty;
2157 PaintUVPoint *tPoint = (&tempPoints[index]);
2159 short isInside = 0; /* if point is inside a uv face */
2161 float d1[2], d2[2], d3[2], point[5][2];
2162 float dot00,dot01,dot02,dot11,dot12, invDenom, u,v;
2164 /* Init per pixel settings */
2165 tPoint->face_index = -1;
2166 tPoint->neighbour_pixel = -1;
2167 tPoint->pixel_index = index;
2169 /* Actual pixel center, used when collision is found */
2170 point[0][0] = ((float)tx + 0.5f) / w;
2171 point[0][1] = ((float)ty + 0.5f) / h;
2174 * A pixel middle sample isn't enough to find very narrow polygons
2175 * So using 4 samples of each corner too
2177 point[1][0] = ((float)tx) / w;
2178 point[1][1] = ((float)ty) / h;
2180 point[2][0] = ((float)tx+1) / w;
2181 point[2][1] = ((float)ty) / h;
2183 point[3][0] = ((float)tx) / w;
2184 point[3][1] = ((float)ty+1) / h;
2186 point[4][0] = ((float)tx+1) / w;
2187 point[4][1] = ((float)ty+1) / h;
2190 /* Loop through samples, starting from middle point */
2191 for (sample=0; sample<5; sample++) {
2193 /* Loop through every face in the mesh */
2194 for (i=0; i<numOfFaces; i++) {
2197 if (faceBB[i].min[0] > (point[sample][0])) continue;
2198 if (faceBB[i].min[1] > (point[sample][1])) continue;
2199 if (faceBB[i].max[0] < (point[sample][0])) continue;
2200 if (faceBB[i].max[1] < (point[sample][1])) continue;
2202 /* Calculate point inside a triangle check
2204 sub_v2_v2v2(d1, tface[i].uv[2], tface[i].uv[0]); // uv2 - uv0
2205 sub_v2_v2v2(d2, tface[i].uv[1], tface[i].uv[0]); // uv1 - uv0
2206 sub_v2_v2v2(d3, point[sample], tface[i].uv[0]); // point - uv0
2208 dot00 = d1[0]*d1[0] + d1[1]*d1[1];
2209 dot01 = d1[0]*d2[0] + d1[1]*d2[1];
2210 dot02 = d1[0]*d3[0] + d1[1]*d3[1];
2211 dot11 = d2[0]*d2[0] + d2[1]*d2[1];
2212 dot12 = d2[0]*d3[0] + d2[1]*d3[1];
2214 invDenom = 1 / (dot00 * dot11 - dot01 * dot01);
2215 u = (dot11 * dot02 - dot01 * dot12) * invDenom;
2216 v = (dot00 * dot12 - dot01 * dot02) * invDenom;
2218 if ((u > 0) && (v > 0) && (u + v < 1)) {isInside=1;} /* is inside a triangle */
2220 /* If collision wasn't found but the face is a quad
2221 * do another check for the second half */
2222 if ((!isInside) && mface[i].v4)
2225 /* change d2 to test the other half */
2226 sub_v2_v2v2(d2, tface[i].uv[3], tface[i].uv[0]); // uv3 - uv0
2229 dot00 = d1[0]*d1[0] + d1[1]*d1[1];
2230 dot01 = d1[0]*d2[0] + d1[1]*d2[1];
2231 dot02 = d1[0]*d3[0] + d1[1]*d3[1];
2232 dot11 = d2[0]*d2[0] + d2[1]*d2[1];
2233 dot12 = d2[0]*d3[0] + d2[1]*d3[1];
2235 invDenom = 1 / (dot00 * dot11 - dot01 * dot01);
2236 u = (dot11 * dot02 - dot01 * dot12) * invDenom;
2237 v = (dot00 * dot12 - dot01 * dot02) * invDenom;
2239 if ((u > 0) && (v > 0) && (u + v < 1)) {isInside=2;} /* is inside the second half of the quad */
2244 * If point was inside the face
2246 if (isInside != 0) {
2248 float uv1co[2], uv2co[2], uv3co[2], uv[2];
2251 /* Get triagnle uvs */
2253 copy_v2_v2(uv1co, tface[i].uv[0]);
2254 copy_v2_v2(uv2co, tface[i].uv[1]);
2255 copy_v2_v2(uv3co, tface[i].uv[2]);
2258 copy_v2_v2(uv1co, tface[i].uv[0]);
2259 copy_v2_v2(uv2co, tface[i].uv[2]);
2260 copy_v2_v2(uv3co, tface[i].uv[3]);
2263 /* Add b-weights per anti-aliasing sample */
2264 for (j=0; j<aa_samples; j++) {
2265 uv[0] = point[0][0] + jitter5sample[j*2] / w;
2266 uv[1] = point[0][1] + jitter5sample[j*2+1] / h;
2268 barycentric_weights_v2(uv1co, uv2co, uv3co, uv, tempWeights[index*aa_samples+j].v);
2271 /* Set surface point face values */
2272 tPoint->face_index = i; /* face index */
2273 tPoint->quad = (isInside == 2) ? 1 : 0; /* quad or tri part*/
2275 /* save vertex indexes */
2276 tPoint->v1 = (isInside == 2) ? mface[i].v1 : mface[i].v1;
2277 tPoint->v2 = (isInside == 2) ? mface[i].v3 : mface[i].v2;
2278 tPoint->v3 = (isInside == 2) ? mface[i].v4 : mface[i].v3;
2280 sample = 5; /* make sure we exit sample loop as well */
2289 * Now loop through every pixel that was left without index
2290 * and find if they have neighbouring pixels that have an index.
2291 * If so use that polygon as pixel surface.
2292 * (To avoid seams on uv island edges)
2294 #pragma omp parallel for schedule(static)
2295 for (ty = 0; ty < h; ty++)
2298 for (tx = 0; tx < w; tx++)
2300 int index = tx+w*ty;
2301 PaintUVPoint *tPoint = (&tempPoints[index]);
2303 /* If point isnt't on canvas mesh */
2304 if (tPoint->face_index == -1) {
2305 int u_min, u_max, v_min, v_max;
2310 u_min = (tx > 0) ? -1 : 0;
2311 u_max = (tx < (w-1)) ? 1 : 0;
2312 v_min = (ty > 0) ? -1 : 0;
2313 v_max = (ty < (h-1)) ? 1 : 0;
2315 point[0] = ((float)tx + 0.5f) / w;
2316 point[1] = ((float)ty + 0.5f) / h;
2318 /* search through defined area for neighbour */
2319 for (u=u_min; u<=u_max; u++)
2320 for (v=v_min; v<=v_max; v++) {
2321 /* if not this pixel itself */
2323 ind = (tx+u)+w*(ty+v);
2325 /* if neighbour has index */
2326 if (tempPoints[ind].face_index != -1) {
2328 float uv1co[2], uv2co[2], uv3co[2], uv[2];
2329 int i = tempPoints[ind].face_index, j;
2331 /* Now calculate pixel data for this pixel as it was on polygon surface */
2332 if (!tempPoints[ind].quad) {
2333 copy_v2_v2(uv1co, tface[i].uv[0]);
2334 copy_v2_v2(uv2co, tface[i].uv[1]);
2335 copy_v2_v2(uv3co, tface[i].uv[2]);
2338 copy_v2_v2(uv1co, tface[i].uv[0]);
2339 copy_v2_v2(uv2co, tface[i].uv[2]);
2340 copy_v2_v2(uv3co, tface[i].uv[3]);
2343 /* Add b-weights per anti-aliasing sample */
2344 for (j=0; j<aa_samples; j++) {
2346 uv[0] = point[0] + jitter5sample[j*2] / w;
2347 uv[1] = point[1] + jitter5sample[j*2+1] / h;
2348 barycentric_weights_v2(uv1co, uv2co, uv3co, uv, tempWeights[index*aa_samples+j].v);
2352 tPoint->neighbour_pixel = ind; // face index
2353 tPoint->quad = tempPoints[ind].quad; // quad or tri
2355 /* save vertex indexes */
2356 tPoint->v1 = (tPoint->quad) ? mface[i].v1 : mface[i].v1;
2357 tPoint->v2 = (tPoint->quad) ? mface[i].v3 : mface[i].v2;
2358 tPoint->v3 = (tPoint->quad) ? mface[i].v4 : mface[i].v3;
2360 u = u_max + 1; /* make sure we exit outer loop as well */
2370 * When base loop is over convert found neighbour indexes to real ones
2371 * Also count the final number of active surface points
2373 for (ty = 0; ty < h; ty++)
2376 for (tx = 0; tx < w; tx++)
2378 int index = tx+w*ty;
2379 PaintUVPoint *tPoint = (&tempPoints[index]);
2381 if (tPoint->face_index == -1 && tPoint->neighbour_pixel != -1) tPoint->face_index = tempPoints[tPoint->neighbour_pixel].face_index;
2382 if (tPoint->face_index != -1) active_points++;
2386 /* If any effect enabled, create surface effect / wet layer
2387 * neighbour lists. Processes possibly moving data. */
2388 if (surface_usesAdjData(surface)) {
2392 /* Create a temporary array of final indexes (before unassigned
2393 * pixels have been dropped) */
2394 for (i=0; i<w*h; i++) {
2395 if (tempPoints[i].face_index != -1) {
2396 final_index[i] = cursor;
2400 /* allocate memory */
2401 sData->total_points = w*h;
2402 dynamicPaint_initAdjacencyData(surface, 0);
2404 if (sData->adj_data) {
2405 PaintAdjData *ed = sData->adj_data;
2406 unsigned int n_pos = 0;
2407 //#pragma omp parallel for schedule(static)
2408 for (ty = 0; ty < h; ty++)
2411 for (tx = 0; tx < w; tx++)
2413 int i, index = tx+w*ty;
2415 if (tempPoints[index].face_index != -1) {
2416 ed->n_index[final_index[index]] = n_pos;
2417 ed->n_num[final_index[index]] = 0;
2419 for (i=0; i<8; i++) {
2421 /* Try to find a neighbouring pixel in defined direction
2422 * If not found, -1 is returned */
2423 int n_target = dynamicPaint_findNeighbourPixel(tempPoints, dm, uvname, w, h, tx, ty, i);
2425 if (n_target != -1) {
2426 ed->n_target[n_pos] = final_index[n_target];
2427 ed->n_num[final_index[index]]++;
2437 /* Create final surface data without inactive points */
2439 ImgSeqFormatData *f_data = MEM_callocN(sizeof(struct ImgSeqFormatData), "ImgSeqFormatData");
2441 f_data->uv_p = MEM_callocN(active_points*sizeof(struct PaintUVPoint), "PaintUVPoint");
2442 f_data->barycentricWeights = MEM_callocN(active_points*aa_samples*sizeof(struct Vec3f), "PaintUVPoint");
2444 if (!f_data->uv_p || !f_data->barycentricWeights) error=1;
2448 sData->total_points = active_points;
2450 /* in case of allocation error, free everything */
2453 if (f_data->uv_p) MEM_freeN(f_data->uv_p);
2454 if (f_data->barycentricWeights) MEM_freeN(f_data->barycentricWeights);
2459 int index, cursor = 0;
2460 sData->total_points = active_points;
2461 sData->format_data = f_data;
2463 for(index = 0; index < (w*h); index++) {
2464 if (tempPoints[index].face_index != -1) {
2465 memcpy(&f_data->uv_p[cursor], &tempPoints[index], sizeof(PaintUVPoint));
2466 memcpy(&f_data->barycentricWeights[cursor*aa_samples], &tempWeights[index*aa_samples], sizeof(Vec3f)*aa_samples);
2473 if (error==1) setError(canvas, "Not enough free memory.");
2475 if (faceBB) MEM_freeN(faceBB);
2476 if (tempPoints) MEM_freeN(tempPoints);
2477 if (tempWeights) MEM_freeN(tempWeights);
2478 if (final_index) MEM_freeN(final_index);
2480 /* Init surface type data */
2482 dynamicPaint_allocateSurfaceType(surface);
2485 /* -----------------------------------------------------------------
2486 * For debug, output pixel statuses to the color map
2487 * -----------------------------------------------------------------*/
2488 #pragma omp parallel for schedule(static)
2489 for (index = 0; index < sData->total_points; index++)
2491 ImgSeqFormatData *f_data = (ImgSeqFormatData*)sData->format_data;
2492 PaintUVPoint *uvPoint = &((PaintUVPoint*)f_data->uv_p)[index];
2493 PaintPoint *pPoint = &((PaintPoint*)sData->type_data)[index];
2496 /* Every pixel that is assigned as "edge pixel" gets blue color */
2497 if (uvPoint->neighbour_pixel != -1) pPoint->color[2] = 1.0f;
2498 /* and every pixel that finally got an polygon gets red color */
2499 if (uvPoint->face_index != -1) pPoint->color[0] = 1.0f;
2500 /* green color shows pixel face index hash */
2501 if (uvPoint->face_index != -1) pPoint->color[1] = (float)(uvPoint->face_index % 255)/256.0f;
2505 dynamicPaint_setInitialColor(surface);
2508 return (error == 0);
2512 * Outputs an image file from uv surface data.
2514 void dynamicPaint_outputSurfaceImage(DynamicPaintSurface *surface, char* filename, short output_layer)
2518 PaintSurfaceData *sData = surface->data;
2519 ImgSeqFormatData *f_data = (ImgSeqFormatData*)sData->format_data;
2520 /* OpenEXR or PNG */
2521 int format = (surface->image_fileformat & MOD_DPAINT_IMGFORMAT_OPENEXR) ? R_OPENEXR : R_PNG;
2522 char output_file[FILE_MAX];
2524 if (!sData || !sData->type_data) {setError(surface->canvas, "Image save failed: Invalid surface.");return;}
2525 /* if selected format is openexr, but current build doesnt support one */
2526 #ifndef WITH_OPENEXR
2527 if (format == R_OPENEXR) format = R_PNG;
2529 BLI_strncpy(output_file, filename, sizeof(output_file));
2530 BKE_add_image_extension(output_file, format);
2532 /* Validate output file path */
2533 BLI_path_abs(output_file, G.main->name);
2534 BLI_make_existing_file(output_file);
2536 /* Init image buffer */
2537 ibuf = IMB_allocImBuf(surface->image_resolution, surface->image_resolution, 32, IB_rectfloat);
2538 if (ibuf == NULL) {setError(surface->canvas, "Image save failed: Not enough free memory.");return;}
2540 #pragma omp parallel for schedule(static)
2541 for (index = 0; index < sData->total_points; index++)
2543 int pos=f_data->uv_p[index].pixel_index*4; /* image buffer position */
2545 /* Set values of preferred type */
2546 if (output_layer == 1) {
2548 if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
2549 PaintPoint *point = &((PaintPoint*)sData->type_data)[index];
2550 float value = (point->wetness > 1.0f) ? 1.0f : point->wetness;
2552 ibuf->rect_float[pos]=value;
2553 ibuf->rect_float[pos+1]=value;
2554 ibuf->rect_float[pos+2]=value;
2555 ibuf->rect_float[pos+3]=1.0f;
2558 else if (output_layer == 0) {
2560 if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
2561 PaintPoint *point = &((PaintPoint*)sData->type_data)[index];
2563 ibuf->rect_float[pos] = point->color[0];
2564 ibuf->rect_float[pos+1] = point->color[1];
2565 ibuf->rect_float[pos+2] = point->color[2];
2567 if (point->e_alpha) mixColors(&ibuf->rect_float[pos], point->alpha, point->e_color, point->e_alpha);
2569 /* use highest alpha */
2570 ibuf->rect_float[pos+3] = (point->e_alpha > point->alpha) ? point->e_alpha : point->alpha;
2572 /* Multiply color by alpha if enabled */
2573 if (surface->flags & MOD_DPAINT_MULALPHA) {
2574 ibuf->rect_float[pos] *= ibuf->rect_float[pos+3];
2575 ibuf->rect_float[pos+1] *= ibuf->rect_float[pos+3];
2576 ibuf->rect_float[pos+2] *= ibuf->rect_float[pos+3];
2580 else if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE) {
2581 float depth = ((float*)sData->type_data)[index];
2582 if (surface->depth_clamp)
2583 depth /= surface->depth_clamp;
2585 if (surface->disp_type == MOD_DPAINT_DISP_DISPLACE) {
2586 depth = (0.5f - depth/2.0f);
2589 CLAMP(depth, 0.0f, 1.0f);
2591 ibuf->rect_float[pos]=depth;
2592 ibuf->rect_float[pos+1]=depth;
2593 ibuf->rect_float[pos+2]=depth;
2594 ibuf->rect_float[pos+3]=1.0f;
2597 else if (surface->type == MOD_DPAINT_SURFACE_T_WAVE) {
2598 PaintWavePoint *wPoint = &((PaintWavePoint*)sData->type_data)[index];
2599 float depth = wPoint->height;
2600 if (surface->depth_clamp)
2601 depth /= surface->depth_clamp;
2602 depth = (0.5f + depth/2.0f);
2603 CLAMP(depth, 0.0f, 1.0f);
2605 ibuf->rect_float[pos]=depth;
2606 ibuf->rect_float[pos+1]=depth;
2607 ibuf->rect_float[pos+2]=depth;
2608 ibuf->rect_float[pos+3]=1.0f;
2613 /* Set output format, png in case exr isnt supported */
2614 ibuf->ftype= PNG|95;
2616 if (format == R_OPENEXR) { /* OpenEXR 32-bit float */
2617 ibuf->ftype = OPENEXR | OPENEXR_COMPRESS;
2622 IMB_saveiff(ibuf, output_file, IB_rectfloat);
2623 IMB_freeImBuf(ibuf);
2627 /***************************** Material / Texture Sampling ******************************/
2629 /* stores a copy of required materials to allow doing adjustments
2630 * without interfering the render/preview */
2631 typedef struct BrushMaterials {
2637 /* Initialize materials for brush object:
2638 * Calculates inverse matrices for linked objects, updates
2639 * volume caches etc. */
2640 static void dynamicPaint_updateBrushMaterials(Object *brushOb, Material *ui_mat, Scene *scene, BrushMaterials *bMats)
2642 /* Calculate inverse transformation matrix
2643 * for this object */
2644 invert_m4_m4(brushOb->imat, brushOb->obmat);
2645 copy_m4_m4(brushOb->imat_ren, brushOb->imat);
2647 /* Now process every material linked to this brush object */
2648 if ((ui_mat == NULL) && brushOb->mat && brushOb->totcol) {
2649 int i, tot=(*give_totcolp(brushOb));
2651 /* allocate material pointer array */
2653 bMats->ob_mats = MEM_callocN(sizeof(Material*)*(tot), "BrushMaterials");
2654 for (i=0; i<tot; i++) {
2655 bMats->ob_mats[i] = RE_init_sample_material(give_current_material(brushOb,(i+1)), scene);
2661 bMats->mat = RE_init_sample_material(ui_mat, scene);
2665 /* free all data allocated by dynamicPaint_updateBrushMaterials() */
2666 static void dynamicPaint_freeBrushMaterials(BrushMaterials *bMats)
2668 /* Now process every material linked to this brush object */
2669 if (bMats->ob_mats) {
2671 for (i=0; i<bMats->tot; i++) {
2672 RE_free_sample_material(bMats->ob_mats[i]);
2674 MEM_freeN(bMats->ob_mats);
2676 else if (bMats->mat) {
2677 RE_free_sample_material(bMats->mat);
2682 * Get material diffuse color and alpha (including linked textures) in given coordinates
2684 void dynamicPaint_doMaterialTex(BrushMaterials *bMats, float color[3], float *alpha, Object *brushOb, const float volume_co[3], const float surface_co[3], int faceIndex, short isQuad, DerivedMesh *orcoDm)
2686 Material *mat = bMats->mat;
2687 MFace *mface = orcoDm->getFaceArray(orcoDm);
2689 /* If no material defined, use the one assigned to the mesh face */
2691 if (bMats->ob_mats) {
2692 int mat_nr = mface[faceIndex].mat_nr;
2693 if (mat_nr >= (*give_totcolp(brushOb))) return;
2694 mat = bMats->ob_mats[mat_nr];
2695 if (mat == NULL) return; /* No material assigned */
2700 RE_sample_material_color(mat, color, alpha, volume_co, surface_co, faceIndex, isQuad, orcoDm, brushOb);
2704 /***************************** Ray / Nearest Point Utils ******************************/
2707 /* A modified callback to bvh tree raycast. The tree must bust have been built using bvhtree_from_mesh_faces.
2708 * userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree.