py/rna remove functions now all work in a similar way.
[blender-staging.git] / source / blender / blenkernel / intern / constraint.c
1 /**
2  * $Id$
3  *
4  * ***** BEGIN GPL LICENSE BLOCK *****
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19  *
20  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
21  * All rights reserved.
22  *
23  * The Original Code is: all of this file.
24  *
25  * Contributor(s): 2007, Joshua Leung, major recode
26  *
27  * ***** END GPL LICENSE BLOCK *****
28  */
29
30 #include <stdio.h> 
31 #include <stddef.h>
32 #include <string.h>
33 #include <math.h>
34 #include <float.h>
35
36 #include "MEM_guardedalloc.h"
37
38 #include "BLI_blenlib.h"
39 #include "BLI_listbase.h"
40 #include "BLI_math.h"
41 #include "BLI_editVert.h"
42
43 #include "DNA_armature_types.h"
44 #include "DNA_constraint_types.h"
45 #include "DNA_modifier_types.h"
46 #include "DNA_object_types.h"
47 #include "DNA_action_types.h"
48 #include "DNA_curve_types.h"
49 #include "DNA_mesh_types.h"
50 #include "DNA_meshdata_types.h"
51 #include "DNA_lattice_types.h"
52 #include "DNA_scene_types.h"
53 #include "DNA_text_types.h"
54
55 #include "BKE_utildefines.h"
56 #include "BKE_action.h"
57 #include "BKE_anim.h" /* for the curve calculation part */
58 #include "BKE_armature.h"
59 #include "BKE_blender.h"
60 #include "BKE_constraint.h"
61 #include "BKE_displist.h"
62 #include "BKE_deform.h"
63 #include "BKE_DerivedMesh.h"    /* for geometry targets */
64 #include "BKE_cdderivedmesh.h" /* for geometry targets */
65 #include "BKE_object.h"
66 #include "BKE_ipo.h"
67 #include "BKE_global.h"
68 #include "BKE_library.h"
69 #include "BKE_idprop.h"
70 #include "BKE_shrinkwrap.h"
71 #include "BKE_mesh.h"
72
73 #ifndef DISABLE_PYTHON
74 #include "BPY_extern.h"
75 #endif
76
77 #ifndef M_PI
78 #define M_PI            3.14159265358979323846
79 #endif
80
81
82
83 /* ************************ Constraints - General Utilities *************************** */
84 /* These functions here don't act on any specific constraints, and are therefore should/will
85  * not require any of the special function-pointers afforded by the relevant constraint 
86  * type-info structs.
87  */
88
89 /* -------------- Naming -------------- */
90
91 /* Find the first available, non-duplicate name for a given constraint */
92 void unique_constraint_name (bConstraint *con, ListBase *list)
93 {
94         BLI_uniquename(list, con, "Const", '.', offsetof(bConstraint, name), sizeof(con->name));
95 }
96
97 /* ----------------- Evaluation Loop Preparation --------------- */
98
99 /* package an object/bone for use in constraint evaluation */
100 /* This function MEM_calloc's a bConstraintOb struct, that will need to be freed after evaluation */
101 bConstraintOb *constraints_make_evalob (Scene *scene, Object *ob, void *subdata, short datatype)
102 {
103         bConstraintOb *cob;
104         
105         /* create regardless of whether we have any data! */
106         cob= MEM_callocN(sizeof(bConstraintOb), "bConstraintOb");
107         
108         /* for system time, part of deglobalization, code nicer later with local time (ton) */
109         cob->scene= scene;
110         
111         /* based on type of available data */
112         switch (datatype) {
113                 case CONSTRAINT_OBTYPE_OBJECT:
114                 {
115                         /* disregard subdata... calloc should set other values right */
116                         if (ob) {
117                                 cob->ob = ob;
118                                 cob->type = datatype;
119                                 cob->rotOrder = EULER_ORDER_DEFAULT; // TODO: when objects have rotation order too, use that
120                                 copy_m4_m4(cob->matrix, ob->obmat);
121                         }
122                         else
123                                 unit_m4(cob->matrix);
124                         
125                         copy_m4_m4(cob->startmat, cob->matrix);
126                 }
127                         break;
128                 case CONSTRAINT_OBTYPE_BONE:
129                 {
130                         /* only set if we have valid bone, otherwise default */
131                         if (ob && subdata) {
132                                 cob->ob = ob;
133                                 cob->pchan = (bPoseChannel *)subdata;
134                                 cob->type = datatype;
135                                 
136                                 if (cob->pchan->rotmode > 0) {
137                                         /* should be some type of Euler order */
138                                         cob->rotOrder= cob->pchan->rotmode; 
139                                 }
140                                 else {
141                                         /* Quats, so eulers should just use default order */
142                                         cob->rotOrder= EULER_ORDER_DEFAULT;
143                                 }
144                                 
145                                 /* matrix in world-space */
146                                 mul_m4_m4m4(cob->matrix, cob->pchan->pose_mat, ob->obmat);
147                         }
148                         else
149                                 unit_m4(cob->matrix);
150                                 
151                         copy_m4_m4(cob->startmat, cob->matrix);
152                 }
153                         break;
154                         
155                 default: /* other types not yet handled */
156                         unit_m4(cob->matrix);
157                         unit_m4(cob->startmat);
158                         break;
159         }
160         
161         return cob;
162 }
163
164 /* cleanup after constraint evaluation */
165 void constraints_clear_evalob (bConstraintOb *cob)
166 {
167         float delta[4][4], imat[4][4];
168         
169         /* prevent crashes */
170         if (cob == NULL) 
171                 return;
172         
173         /* calculate delta of constraints evaluation */
174         invert_m4_m4(imat, cob->startmat);
175         mul_m4_m4m4(delta, imat, cob->matrix);
176         
177         /* copy matrices back to source */
178         switch (cob->type) {
179                 case CONSTRAINT_OBTYPE_OBJECT:
180                 {
181                         /* cob->ob might not exist! */
182                         if (cob->ob) {
183                                 /* copy new ob-matrix back to owner */
184                                 copy_m4_m4(cob->ob->obmat, cob->matrix);
185                                 
186                                 /* copy inverse of delta back to owner */
187                                 invert_m4_m4(cob->ob->constinv, delta);
188                         }
189                 }
190                         break;
191                 case CONSTRAINT_OBTYPE_BONE:
192                 {
193                         /* cob->ob or cob->pchan might not exist */
194                         if (cob->ob && cob->pchan) {
195                                 /* copy new pose-matrix back to owner */
196                                 mul_m4_m4m4(cob->pchan->pose_mat, cob->matrix, cob->ob->imat);
197                                 
198                                 /* copy inverse of delta back to owner */
199                                 invert_m4_m4(cob->pchan->constinv, delta);
200                         }
201                 }
202                         break;
203         }
204         
205         /* free tempolary struct */
206         MEM_freeN(cob);
207 }
208
209 /* -------------- Space-Conversion API -------------- */
210
211 /* This function is responsible for the correct transformations/conversions 
212  * of a matrix from one space to another for constraint evaluation.
213  * For now, this is only implemented for Objects and PoseChannels.
214  */
215 void constraint_mat_convertspace (Object *ob, bPoseChannel *pchan, float mat[][4], short from, short to)
216 {
217         float tempmat[4][4];
218         float diff_mat[4][4];
219         float imat[4][4];
220         
221         /* prevent crashes in these unlikely events  */
222         if (ob==NULL || mat==NULL) return;
223         /* optimise trick - check if need to do anything */
224         if (from == to) return;
225         
226         /* are we dealing with pose-channels or objects */
227         if (pchan) {
228                 /* pose channels */
229                 switch (from) {
230                         case CONSTRAINT_SPACE_WORLD: /* ---------- FROM WORLDSPACE ---------- */
231                         {
232                                 /* world to pose */
233                                 invert_m4_m4(imat, ob->obmat);
234                                 copy_m4_m4(tempmat, mat);
235                                 mul_m4_m4m4(mat, tempmat, imat);
236                                 
237                                 /* use pose-space as stepping stone for other spaces... */
238                                 if (ELEM(to, CONSTRAINT_SPACE_LOCAL, CONSTRAINT_SPACE_PARLOCAL)) {
239                                         /* call self with slightly different values */
240                                         constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
241                                 }
242                         }
243                                 break;
244                         case CONSTRAINT_SPACE_POSE:     /* ---------- FROM POSESPACE ---------- */
245                         {
246                                 /* pose to world */
247                                 if (to == CONSTRAINT_SPACE_WORLD) {
248                                         copy_m4_m4(tempmat, mat);
249                                         mul_m4_m4m4(mat, tempmat, ob->obmat);
250                                 }
251                                 /* pose to local */
252                                 else if (to == CONSTRAINT_SPACE_LOCAL) {
253                                         if (pchan->bone) {
254                                                 if (pchan->parent) {
255                                                         float offs_bone[4][4];
256                                                                 
257                                                         /* construct offs_bone the same way it is done in armature.c */
258                                                         copy_m4_m3(offs_bone, pchan->bone->bone_mat);
259                                                         copy_v3_v3(offs_bone[3], pchan->bone->head);
260                                                         offs_bone[3][1]+= pchan->bone->parent->length;
261                                                         
262                                                         if (pchan->bone->flag & BONE_HINGE) {
263                                                                 /* pose_mat = par_pose-space_location * chan_mat */
264                                                                 float tmat[4][4];
265                                                                 
266                                                                 /* the rotation of the parent restposition */
267                                                                 copy_m4_m4(tmat, pchan->bone->parent->arm_mat);
268                                                                 
269                                                                 /* the location of actual parent transform */
270                                                                 copy_v3_v3(tmat[3], offs_bone[3]);
271                                                                 offs_bone[3][0]= offs_bone[3][1]= offs_bone[3][2]= 0.0f;
272                                                                 mul_m4_v3(pchan->parent->pose_mat, tmat[3]);
273                                                                 
274                                                                 mul_m4_m4m4(diff_mat, offs_bone, tmat);
275                                                                 invert_m4_m4(imat, diff_mat);
276                                                         }
277                                                         else {
278                                                                 /* pose_mat = par_pose_mat * bone_mat * chan_mat */
279                                                                 mul_m4_m4m4(diff_mat, offs_bone, pchan->parent->pose_mat);
280                                                                 invert_m4_m4(imat, diff_mat);
281                                                         }
282                                                 }
283                                                 else {
284                                                         /* pose_mat = chan_mat * arm_mat */
285                                                         invert_m4_m4(imat, pchan->bone->arm_mat);
286                                                 }
287                                                 
288                                                 copy_m4_m4(tempmat, mat);
289                                                 mul_m4_m4m4(mat, tempmat, imat);
290                                         }
291                                 }
292                                 /* pose to local with parent */
293                                 else if (to == CONSTRAINT_SPACE_PARLOCAL) {
294                                         if (pchan->bone) {
295                                                 invert_m4_m4(imat, pchan->bone->arm_mat);
296                                                 copy_m4_m4(tempmat, mat);
297                                                 mul_m4_m4m4(mat, tempmat, imat);
298                                         }
299                                 }
300                         }
301                                 break;
302                         case CONSTRAINT_SPACE_LOCAL: /* ------------ FROM LOCALSPACE --------- */
303                         {
304                                 /* local to pose - do inverse procedure that was done for pose to local */
305                                 if (pchan->bone) {
306                                         /* we need the posespace_matrix = local_matrix + (parent_posespace_matrix + restpos) */                                         
307                                         if (pchan->parent) {
308                                                 float offs_bone[4][4];
309                                                 
310                                                 /* construct offs_bone the same way it is done in armature.c */
311                                                 copy_m4_m3(offs_bone, pchan->bone->bone_mat);
312                                                 copy_v3_v3(offs_bone[3], pchan->bone->head);
313                                                 offs_bone[3][1]+= pchan->bone->parent->length;
314                                                 
315                                                 if (pchan->bone->flag & BONE_HINGE) {
316                                                         /* pose_mat = par_pose-space_location * chan_mat */
317                                                         float tmat[4][4];
318                                                         
319                                                         /* the rotation of the parent restposition */
320                                                         copy_m4_m4(tmat, pchan->bone->parent->arm_mat);
321                                                         
322                                                         /* the location of actual parent transform */
323                                                         copy_v3_v3(tmat[3], offs_bone[3]);
324                                                         zero_v3(offs_bone[3]);
325                                                         mul_m4_v3(pchan->parent->pose_mat, tmat[3]);
326                                                         
327                                                         mul_m4_m4m4(diff_mat, offs_bone, tmat);
328                                                         copy_m4_m4(tempmat, mat);
329                                                         mul_m4_m4m4(mat, tempmat, diff_mat);
330                                                 }
331                                                 else {
332                                                         /* pose_mat = par_pose_mat * bone_mat * chan_mat */
333                                                         mul_m4_m4m4(diff_mat, offs_bone, pchan->parent->pose_mat);
334                                                         copy_m4_m4(tempmat, mat);
335                                                         mul_m4_m4m4(mat, tempmat, diff_mat);
336                                                 }
337                                         }
338                                         else {
339                                                 copy_m4_m4(diff_mat, pchan->bone->arm_mat);
340                                                 
341                                                 copy_m4_m4(tempmat, mat);
342                                                 mul_m4_m4m4(mat, tempmat, diff_mat);
343                                         }
344                                 }
345                                 
346                                 /* use pose-space as stepping stone for other spaces */
347                                 if (ELEM(to, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_PARLOCAL)) {
348                                         /* call self with slightly different values */
349                                         constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
350                                 }                               
351                         }
352                                 break;
353                         case CONSTRAINT_SPACE_PARLOCAL: /* -------------- FROM LOCAL WITH PARENT ---------- */
354                         {
355                                 /* local + parent to pose */
356                                 if (pchan->bone) {                                      
357                                         copy_m4_m4(diff_mat, pchan->bone->arm_mat);
358                                         copy_m4_m4(tempmat, mat);
359                                         mul_m4_m4m4(mat, diff_mat, tempmat);
360                                 }
361                                 
362                                 /* use pose-space as stepping stone for other spaces */
363                                 if (ELEM(to, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL)) {
364                                         /* call self with slightly different values */
365                                         constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
366                                 }
367                         }
368                                 break;
369                 }
370         }
371         else {
372                 /* objects */
373                 if (from==CONSTRAINT_SPACE_WORLD && to==CONSTRAINT_SPACE_LOCAL) {
374                         /* check if object has a parent - otherwise this won't work */
375                         if (ob->parent) {
376                                 /* 'subtract' parent's effects from owner */
377                                 mul_m4_m4m4(diff_mat, ob->parentinv, ob->parent->obmat);
378                                 invert_m4_m4(imat, diff_mat);
379                                 copy_m4_m4(tempmat, mat);
380                                 mul_m4_m4m4(mat, tempmat, imat);
381                         }
382                 }
383                 else if (from==CONSTRAINT_SPACE_LOCAL && to==CONSTRAINT_SPACE_WORLD) {
384                         /* check that object has a parent - otherwise this won't work */
385                         if (ob->parent) {
386                                 /* 'add' parent's effect back to owner */
387                                 copy_m4_m4(tempmat, mat);
388                                 mul_m4_m4m4(diff_mat, ob->parentinv, ob->parent->obmat);
389                                 mul_m4_m4m4(mat, tempmat, diff_mat);
390                         }
391                 }
392         }
393 }
394
395 /* ------------ General Target Matrix Tools ---------- */
396
397 /* function that sets the given matrix based on given vertex group in mesh */
398 static void contarget_get_mesh_mat (Scene *scene, Object *ob, char *substring, float mat[][4])
399 {
400         DerivedMesh *dm = NULL;
401         Mesh *me= ob->data;
402         EditMesh *em = BKE_mesh_get_editmesh(me);
403         float vec[3] = {0.0f, 0.0f, 0.0f};
404         float normal[3] = {0.0f, 0.0f, 0.0f}, plane[3];
405         float imat[3][3], tmat[3][3];
406         int dgroup;
407         short freeDM = 0;
408         
409         /* initialize target matrix using target matrix */
410         copy_m4_m4(mat, ob->obmat);
411         
412         /* get index of vertex group */
413         dgroup = defgroup_name_index(ob, substring);
414         if (dgroup < 0) return;
415         
416         /* get DerivedMesh */
417         if (em) {
418                 /* target is in editmode, so get a special derived mesh */
419                 dm = CDDM_from_editmesh(em, ob->data);
420                 freeDM= 1;
421         }
422         else {
423                 /* when not in EditMode, use the 'final' derived mesh 
424                  *      - check if the custom data masks for derivedFinal mean that we can just use that
425                  *        (this is more effficient + sufficient for most cases)
426                  */
427                 if (!(ob->lastDataMask & CD_MASK_MDEFORMVERT)) {
428                         dm = mesh_get_derived_final(scene, ob, CD_MASK_MDEFORMVERT);
429                         freeDM= 1;
430                 }
431                 else 
432                         dm = (DerivedMesh *)ob->derivedFinal;
433         }
434         
435         /* only continue if there's a valid DerivedMesh */
436         if (dm) {
437                 MDeformVert *dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
438                 int numVerts = dm->getNumVerts(dm);
439                 int i, j, count = 0;
440                 float co[3], nor[3];
441                 
442                 /* check that dvert is a valid pointers (just in case) */
443                 if (dvert) {
444                         /* get the average of all verts with that are in the vertex-group */
445                         for (i = 0; i < numVerts; i++) {        
446                                 for (j = 0; j < dvert[i].totweight; j++) {
447                                         /* does this vertex belong to nominated vertex group? */
448                                         if (dvert[i].dw[j].def_nr == dgroup) {
449                                                 dm->getVertCo(dm, i, co);
450                                                 dm->getVertNo(dm, i, nor);
451                                                 add_v3_v3(vec, co);
452                                                 add_v3_v3(normal, nor);
453                                                 count++;
454                                                 break;
455                                         }
456                                         
457                                 }
458                         }
459                         
460                         
461                         /* calculate averages of normal and coordinates */
462                         if (count > 0) {
463                                 mul_v3_fl(vec, 1.0f / count);
464                                 mul_v3_fl(normal, 1.0f / count);
465                         }
466                         
467                         
468                         /* derive the rotation from the average normal: 
469                          *              - code taken from transform_manipulator.c, 
470                          *                      calc_manipulator_stats, V3D_MANIP_NORMAL case
471                          */
472                         /*      we need the transpose of the inverse for a normal... */
473                         copy_m3_m4(imat, ob->obmat);
474                         
475                         invert_m3_m3(tmat, imat);
476                         transpose_m3(tmat);
477                         mul_m3_v3(tmat, normal);
478                         
479                         normalize_v3(normal);
480                         copy_v3_v3(plane, tmat[1]);
481                         
482                         copy_v3_v3(tmat[2], normal);
483                         cross_v3_v3v3(tmat[0], normal, plane);
484                         cross_v3_v3v3(tmat[1], tmat[2], tmat[0]);
485                         
486                         copy_m4_m3(mat, tmat);
487                         normalize_m4(mat);
488                         
489                         
490                         /* apply the average coordinate as the new location */
491                         mul_v3_m4v3(mat[3], ob->obmat, vec);
492                 }
493         }
494         
495         /* free temporary DerivedMesh created (in EditMode case) */
496         if (dm && freeDM)
497                 dm->release(dm);
498         if (em)
499                 BKE_mesh_end_editmesh(me, em);
500 }
501
502 /* function that sets the given matrix based on given vertex group in lattice */
503 static void contarget_get_lattice_mat (Object *ob, char *substring, float mat[][4])
504 {
505         Lattice *lt= (Lattice *)ob->data;
506         
507         DispList *dl = find_displist(&ob->disp, DL_VERTS);
508         float *co = dl?dl->verts:NULL;
509         BPoint *bp = lt->def;
510         
511         MDeformVert *dvert = lt->dvert;
512         int tot_verts= lt->pntsu*lt->pntsv*lt->pntsw;
513         float vec[3]= {0.0f, 0.0f, 0.0f}, tvec[3];
514         int dgroup=0, grouped=0;
515         int i, n;
516         
517         /* initialize target matrix using target matrix */
518         copy_m4_m4(mat, ob->obmat);
519         
520         /* get index of vertex group */
521         dgroup = defgroup_name_index(ob, substring);
522         if (dgroup < 0) return;
523         if (dvert == NULL) return;
524         
525         /* 1. Loop through control-points checking if in nominated vertex-group.
526          * 2. If it is, add it to vec to find the average point.
527          */
528         for (i=0; i < tot_verts; i++, dvert++) {
529                 for (n= 0; n < dvert->totweight; n++) {
530                         /* found match - vert is in vgroup */
531                         if (dvert->dw[n].def_nr == dgroup) {
532                                 /* copy coordinates of point to temporary vector, then add to find average */
533                                 if (co)
534                                         memcpy(tvec, co, 3*sizeof(float));
535                                 else
536                                         memcpy(tvec, bp->vec, 3*sizeof(float));
537                                         
538                                 add_v3_v3(vec, tvec);
539                                 grouped++;
540                                 
541                                 break;
542                         }
543                 }
544                 
545                 /* advance pointer to coordinate data */
546                 if (co) co+= 3;
547                 else bp++;
548         }
549         
550         /* find average location, then multiply by ob->obmat to find world-space location */
551         if (grouped)
552                 mul_v3_fl(vec, 1.0f / grouped);
553         mul_v3_m4v3(tvec, ob->obmat, vec);
554         
555         /* copy new location to matrix */
556         copy_v3_v3(mat[3], tvec);
557 }
558
559 /* generic function to get the appropriate matrix for most target cases */
560 /* The cases where the target can be object data have not been implemented */
561 static void constraint_target_to_mat4 (Scene *scene, Object *ob, char *substring, float mat[][4], short from, short to, float headtail)
562 {
563         /*      Case OBJECT */
564         if (!strlen(substring)) {
565                 copy_m4_m4(mat, ob->obmat);
566                 constraint_mat_convertspace(ob, NULL, mat, from, to);
567         }
568         /*      Case VERTEXGROUP */
569         /* Current method just takes the average location of all the points in the
570          * VertexGroup, and uses that as the location value of the targets. Where 
571          * possible, the orientation will also be calculated, by calculating an
572          * 'average' vertex normal, and deriving the rotaation from that.
573          *
574          * NOTE: EditMode is not currently supported, and will most likely remain that
575          *              way as constraints can only really affect things on object/bone level.
576          */
577         else if (ob->type == OB_MESH) {
578                 contarget_get_mesh_mat(scene, ob, substring, mat);
579                 constraint_mat_convertspace(ob, NULL, mat, from, to);
580         }
581         else if (ob->type == OB_LATTICE) {
582                 contarget_get_lattice_mat(ob, substring, mat);
583                 constraint_mat_convertspace(ob, NULL, mat, from, to);
584         }
585         /*      Case BONE */
586         else {
587                 bPoseChannel *pchan;
588                 
589                 pchan = get_pose_channel(ob->pose, substring);
590                 if (pchan) {
591                         /* Multiply the PoseSpace accumulation/final matrix for this
592                          * PoseChannel by the Armature Object's Matrix to get a worldspace
593                          * matrix.
594                          */
595                         if (headtail < 0.000001) {
596                                 /* skip length interpolation if set to head */
597                                 mul_m4_m4m4(mat, pchan->pose_mat, ob->obmat);
598                         }
599                         else {
600                                 float tempmat[4][4], loc[3];
601                                 
602                                 /* interpolate along length of bone */
603                                 interp_v3_v3v3(loc, pchan->pose_head, pchan->pose_tail, headtail);      
604                                 
605                                 /* use interpolated distance for subtarget */
606                                 copy_m4_m4(tempmat, pchan->pose_mat);   
607                                 copy_v3_v3(tempmat[3], loc);
608                                 
609                                 mul_m4_m4m4(mat, tempmat, ob->obmat);
610                         }
611                 } 
612                 else
613                         copy_m4_m4(mat, ob->obmat);
614                         
615                 /* convert matrix space as required */
616                 constraint_mat_convertspace(ob, pchan, mat, from, to);
617         }
618 }
619
620 /* ************************* Specific Constraints ***************************** */
621 /* Each constraint defines a set of functions, which will be called at the appropriate
622  * times. In addition to this, each constraint should have a type-info struct, where
623  * its functions are attached for use. 
624  */
625  
626 /* Template for type-info data:
627  *      - make a copy of this when creating new constraints, and just change the functions
628  *        pointed to as necessary
629  *      - although the naming of functions doesn't matter, it would help for code
630  *        readability, to follow the same naming convention as is presented here
631  *      - any functions that a constraint doesn't need to define, don't define
632  *        for such cases, just use NULL 
633  *      - these should be defined after all the functions have been defined, so that
634  *        forward-definitions/prototypes don't need to be used!
635  *      - keep this copy #if-def'd so that future constraints can get based off this
636  */
637 #if 0
638 static bConstraintTypeInfo CTI_CONSTRNAME = {
639         CONSTRAINT_TYPE_CONSTRNAME, /* type */
640         sizeof(bConstrNameConstraint), /* size */
641         "ConstrName", /* name */
642         "bConstrNameConstraint", /* struct name */
643         constrname_free, /* free data */
644         constrname_relink, /* relink data */
645         constrname_id_looper, /* id looper */
646         constrname_copy, /* copy data */
647         constrname_new_data, /* new data */
648         constrname_get_tars, /* get constraint targets */
649         constrname_flush_tars, /* flush constraint targets */
650         constrname_get_tarmat, /* get target matrix */
651         constrname_evaluate /* evaluate */
652 };
653 #endif
654
655 /* This function should be used for the get_target_matrix member of all 
656  * constraints that are not picky about what happens to their target matrix.
657  */
658 static void default_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
659 {
660         if (VALID_CONS_TARGET(ct))
661                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
662         else if (ct)
663                 unit_m4(ct->matrix);
664 }
665
666 /* This following macro should be used for all standard single-target *_get_tars functions 
667  * to save typing and reduce maintainance woes.
668  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
669  *  really just to help this code easier to read)
670  */
671 // TODO: cope with getting rotation order...
672 #define SINGLETARGET_GET_TARS(con, datatar, datasubtarget, ct, list) \
673         { \
674                 ct= MEM_callocN(sizeof(bConstraintTarget), "tempConstraintTarget"); \
675                  \
676                 ct->tar= datatar; \
677                 strcpy(ct->subtarget, datasubtarget); \
678                 ct->space= con->tarspace; \
679                 ct->flag= CONSTRAINT_TAR_TEMP; \
680                  \
681                 if (ct->tar) { \
682                         if ((ct->tar->type==OB_ARMATURE) && (ct->subtarget[0])) { \
683                                 bPoseChannel *pchan= get_pose_channel(ct->tar->pose, ct->subtarget); \
684                                 ct->type = CONSTRAINT_OBTYPE_BONE; \
685                                 ct->rotOrder= (pchan) ? (pchan->rotmode) : EULER_ORDER_DEFAULT; \
686                         }\
687                         else if (ELEM(ct->tar->type, OB_MESH, OB_LATTICE) && (ct->subtarget[0])) { \
688                                 ct->type = CONSTRAINT_OBTYPE_VERT; \
689                                 ct->rotOrder = EULER_ORDER_DEFAULT; \
690                         } \
691                         else {\
692                                 ct->type = CONSTRAINT_OBTYPE_OBJECT; \
693                                 ct->rotOrder= ct->tar->rotmode; \
694                         } \
695                 } \
696                  \
697                 BLI_addtail(list, ct); \
698         }
699         
700 /* This following macro should be used for all standard single-target *_get_tars functions 
701  * to save typing and reduce maintainance woes. It does not do the subtarget related operations
702  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
703  *  really just to help this code easier to read)
704  */
705 // TODO: cope with getting rotation order...
706 #define SINGLETARGETNS_GET_TARS(con, datatar, ct, list) \
707         { \
708                 ct= MEM_callocN(sizeof(bConstraintTarget), "tempConstraintTarget"); \
709                  \
710                 ct->tar= datatar; \
711                 ct->space= con->tarspace; \
712                 ct->flag= CONSTRAINT_TAR_TEMP; \
713                  \
714                 if (ct->tar) ct->type = CONSTRAINT_OBTYPE_OBJECT; \
715                  \
716                 BLI_addtail(list, ct); \
717         }
718
719 /* This following macro should be used for all standard single-target *_flush_tars functions
720  * to save typing and reduce maintainance woes.
721  * Note: the pointer to ct will be changed to point to the next in the list (as it gets removed)
722  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
723  *  really just to help this code easier to read)
724  */
725 #define SINGLETARGET_FLUSH_TARS(con, datatar, datasubtarget, ct, list, nocopy) \
726         { \
727                 if (ct) { \
728                         bConstraintTarget *ctn = ct->next; \
729                         if (nocopy == 0) { \
730                                 datatar= ct->tar; \
731                                 strcpy(datasubtarget, ct->subtarget); \
732                                 con->tarspace= (char)ct->space; \
733                         } \
734                          \
735                         BLI_freelinkN(list, ct); \
736                         ct= ctn; \
737                 } \
738         }
739         
740 /* This following macro should be used for all standard single-target *_flush_tars functions
741  * to save typing and reduce maintainance woes. It does not do the subtarget related operations.
742  * Note: the pointer to ct will be changed to point to the next in the list (as it gets removed)
743  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
744  *  really just to help this code easier to read)
745  */
746 #define SINGLETARGETNS_FLUSH_TARS(con, datatar, ct, list, nocopy) \
747         { \
748                 if (ct) { \
749                         bConstraintTarget *ctn = ct->next; \
750                         if (nocopy == 0) { \
751                                 datatar= ct->tar; \
752                                 con->tarspace= (char)ct->space; \
753                         } \
754                          \
755                         BLI_freelinkN(list, ct); \
756                         ct= ctn; \
757                 } \
758         }
759  
760 /* --------- ChildOf Constraint ------------ */
761
762 static void childof_new_data (void *cdata)
763 {
764         bChildOfConstraint *data= (bChildOfConstraint *)cdata;
765         
766         data->flag = (CHILDOF_LOCX | CHILDOF_LOCY | CHILDOF_LOCZ |
767                                         CHILDOF_ROTX |CHILDOF_ROTY | CHILDOF_ROTZ |
768                                         CHILDOF_SIZEX | CHILDOF_SIZEY | CHILDOF_SIZEZ);
769         unit_m4(data->invmat);
770 }
771
772 static void childof_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
773 {
774         bChildOfConstraint *data= con->data;
775         
776         /* target only */
777         func(con, (ID**)&data->tar, userdata);
778 }
779
780 static int childof_get_tars (bConstraint *con, ListBase *list)
781 {
782         if (con && list) {
783                 bChildOfConstraint *data= con->data;
784                 bConstraintTarget *ct;
785                 
786                 /* standard target-getting macro for single-target constraints */
787                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
788                 
789                 return 1;
790         }
791         
792         return 0;
793 }
794
795 static void childof_flush_tars (bConstraint *con, ListBase *list, short nocopy)
796 {
797         if (con && list) {
798                 bChildOfConstraint *data= con->data;
799                 bConstraintTarget *ct= list->first;
800                 
801                 /* the following macro is used for all standard single-target constraints */
802                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
803         }
804 }
805
806 static void childof_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
807 {
808         bChildOfConstraint *data= con->data;
809         bConstraintTarget *ct= targets->first;
810         
811         /* only evaluate if there is a target */
812         if (VALID_CONS_TARGET(ct)) {
813                 float parmat[4][4], invmat[4][4], tempmat[4][4];
814                 float loc[3], eul[3], size[3];
815                 float loco[3], eulo[3], sizo[3];
816                 
817                 /* get offset (parent-inverse) matrix */
818                 copy_m4_m4(invmat, data->invmat);
819                 
820                 /* extract components of both matrices */
821                 copy_v3_v3(loc, ct->matrix[3]);
822                 mat4_to_eulO(eul, ct->rotOrder, ct->matrix);
823                 mat4_to_size(size, ct->matrix);
824                 
825                 copy_v3_v3(loco, invmat[3]);
826                 mat4_to_eulO(eulo, cob->rotOrder, invmat);
827                 mat4_to_size(sizo, invmat);
828                 
829                 /* disable channels not enabled */
830                 if (!(data->flag & CHILDOF_LOCX)) loc[0]= loco[0]= 0.0f;
831                 if (!(data->flag & CHILDOF_LOCY)) loc[1]= loco[1]= 0.0f;
832                 if (!(data->flag & CHILDOF_LOCZ)) loc[2]= loco[2]= 0.0f;
833                 if (!(data->flag & CHILDOF_ROTX)) eul[0]= eulo[0]= 0.0f;
834                 if (!(data->flag & CHILDOF_ROTY)) eul[1]= eulo[1]= 0.0f;
835                 if (!(data->flag & CHILDOF_ROTZ)) eul[2]= eulo[2]= 0.0f;
836                 if (!(data->flag & CHILDOF_SIZEX)) size[0]= sizo[0]= 1.0f;
837                 if (!(data->flag & CHILDOF_SIZEY)) size[1]= sizo[1]= 1.0f;
838                 if (!(data->flag & CHILDOF_SIZEZ)) size[2]= sizo[2]= 1.0f;
839                 
840                 /* make new target mat and offset mat */
841                 loc_eulO_size_to_mat4(ct->matrix, loc, eul, size, ct->rotOrder);
842                 loc_eulO_size_to_mat4(invmat, loco, eulo, sizo, cob->rotOrder);
843                 
844                 /* multiply target (parent matrix) by offset (parent inverse) to get 
845                  * the effect of the parent that will be exherted on the owner
846                  */
847                 mul_m4_m4m4(parmat, invmat, ct->matrix);
848                 
849                 /* now multiply the parent matrix by the owner matrix to get the 
850                  * the effect of this constraint (i.e.  owner is 'parented' to parent)
851                  */
852                 copy_m4_m4(tempmat, cob->matrix);
853                 mul_m4_m4m4(cob->matrix, tempmat, parmat); 
854         }
855 }
856
857 static bConstraintTypeInfo CTI_CHILDOF = {
858         CONSTRAINT_TYPE_CHILDOF, /* type */
859         sizeof(bChildOfConstraint), /* size */
860         "ChildOf", /* name */
861         "bChildOfConstraint", /* struct name */
862         NULL, /* free data */
863         NULL, /* relink data */
864         childof_id_looper, /* id looper */
865         NULL, /* copy data */
866         childof_new_data, /* new data */
867         childof_get_tars, /* get constraint targets */
868         childof_flush_tars, /* flush constraint targets */
869         default_get_tarmat, /* get a target matrix */
870         childof_evaluate /* evaluate */
871 };
872
873 /* -------- TrackTo Constraint ------- */
874
875 static void trackto_new_data (void *cdata)
876 {
877         bTrackToConstraint *data= (bTrackToConstraint *)cdata;
878         
879         data->reserved1 = TRACK_Y;
880         data->reserved2 = UP_Z;
881 }       
882
883 static void trackto_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
884 {
885         bTrackToConstraint *data= con->data;
886         
887         /* target only */
888         func(con, (ID**)&data->tar, userdata);
889 }
890
891 static int trackto_get_tars (bConstraint *con, ListBase *list)
892 {
893         if (con && list) {
894                 bTrackToConstraint *data= con->data;
895                 bConstraintTarget *ct;
896                 
897                 /* standard target-getting macro for single-target constraints */
898                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
899                 
900                 return 1;
901         }
902         
903         return 0;
904 }
905
906 static void trackto_flush_tars (bConstraint *con, ListBase *list, short nocopy)
907 {
908         if (con && list) {
909                 bTrackToConstraint *data= con->data;
910                 bConstraintTarget *ct= list->first;
911                 
912                 /* the following macro is used for all standard single-target constraints */
913                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
914         }
915 }
916
917
918 static int basis_cross (int n, int m)
919 {
920         switch (n-m) {
921                 case 1: 
922                 case -2:
923                         return 1;
924                         
925                 case -1: 
926                 case 2:
927                         return -1;
928                         
929                 default:
930                         return 0;
931         }
932 }
933
934 static void vectomat (float *vec, float *target_up, short axis, short upflag, short flags, float m[][3])
935 {
936         float n[3];
937         float u[3]; /* vector specifying the up axis */
938         float proj[3];
939         float right[3];
940         float neg = -1;
941         int right_index;
942
943         if (normalize_v3_v3(n, vec) == 0.0) { 
944                 n[0] = 0.0;
945                 n[1] = 0.0;
946                 n[2] = 1.0;
947         }
948         if (axis > 2) axis -= 3;
949         else negate_v3(n);
950
951         /* n specifies the transformation of the track axis */
952         if (flags & TARGET_Z_UP) { 
953                 /* target Z axis is the global up axis */
954                 copy_v3_v3(u, target_up);
955         }
956         else { 
957                 /* world Z axis is the global up axis */
958                 u[0] = 0;
959                 u[1] = 0;
960                 u[2] = 1;
961         }
962
963         /* project the up vector onto the plane specified by n */
964         project_v3_v3v3(proj, u, n); /* first u onto n... */
965         sub_v3_v3v3(proj, u, proj); /* then onto the plane */
966         /* proj specifies the transformation of the up axis */
967
968         if (normalize_v3(proj) == 0.0) { /* degenerate projection */
969                 proj[0] = 0.0;
970                 proj[1] = 1.0;
971                 proj[2] = 0.0;
972         }
973
974         /* Normalized cross product of n and proj specifies transformation of the right axis */
975         cross_v3_v3v3(right, proj, n);
976         normalize_v3(right);
977
978         if (axis != upflag) {
979                 right_index = 3 - axis - upflag;
980                 neg = (float)basis_cross(axis, upflag);
981                 
982                 /* account for up direction, track direction */
983                 m[right_index][0] = neg * right[0];
984                 m[right_index][1] = neg * right[1];
985                 m[right_index][2] = neg * right[2];
986                 
987                 copy_v3_v3(m[upflag], proj);
988                 
989                 copy_v3_v3(m[axis], n);
990         }
991         /* identity matrix - don't do anything if the two axes are the same */
992         else {
993                 unit_m3(m);
994         }
995 }
996
997
998 static void trackto_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
999 {
1000         bTrackToConstraint *data= con->data;
1001         bConstraintTarget *ct= targets->first;
1002         
1003         if (VALID_CONS_TARGET(ct)) {
1004                 float size[3], vec[3];
1005                 float totmat[3][3];
1006                 float tmat[4][4];
1007                 
1008                 /* Get size property, since ob->size is only the object's own relative size, not its global one */
1009                 mat4_to_size(size, cob->matrix);
1010                 
1011                 /* Clear the object's rotation */       
1012                 cob->matrix[0][0]=size[0];
1013                 cob->matrix[0][1]=0;
1014                 cob->matrix[0][2]=0;
1015                 cob->matrix[1][0]=0;
1016                 cob->matrix[1][1]=size[1];
1017                 cob->matrix[1][2]=0;
1018                 cob->matrix[2][0]=0;
1019                 cob->matrix[2][1]=0;
1020                 cob->matrix[2][2]=size[2];
1021                 
1022                 /* targetmat[2] instead of ownermat[2] is passed to vectomat
1023                  * for backwards compatability it seems... (Aligorith)
1024                  */
1025                 sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);
1026                 vectomat(vec, ct->matrix[2], 
1027                                 (short)data->reserved1, (short)data->reserved2, 
1028                                 data->flags, totmat);
1029                 
1030                 copy_m4_m4(tmat, cob->matrix);
1031                 mul_m4_m3m4(cob->matrix, totmat, tmat);
1032         }
1033 }
1034
1035 static bConstraintTypeInfo CTI_TRACKTO = {
1036         CONSTRAINT_TYPE_TRACKTO, /* type */
1037         sizeof(bTrackToConstraint), /* size */
1038         "TrackTo", /* name */
1039         "bTrackToConstraint", /* struct name */
1040         NULL, /* free data */
1041         NULL, /* relink data */
1042         trackto_id_looper, /* id looper */
1043         NULL, /* copy data */
1044         trackto_new_data, /* new data */
1045         trackto_get_tars, /* get constraint targets */
1046         trackto_flush_tars, /* flush constraint targets */
1047         default_get_tarmat, /* get target matrix */
1048         trackto_evaluate /* evaluate */
1049 };
1050
1051 /* --------- Inverse-Kinemetics --------- */
1052
1053 static void kinematic_new_data (void *cdata)
1054 {
1055         bKinematicConstraint *data= (bKinematicConstraint *)cdata;
1056         
1057         data->weight= (float)1.0;
1058         data->orientweight= (float)1.0;
1059         data->iterations = 500;
1060         data->dist= (float)1.0;
1061         data->flag= CONSTRAINT_IK_TIP|CONSTRAINT_IK_STRETCH|CONSTRAINT_IK_POS;
1062 }
1063
1064 static void kinematic_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1065 {
1066         bKinematicConstraint *data= con->data;
1067         
1068         /* chain target */
1069         func(con, (ID**)&data->tar, userdata);
1070         
1071         /* poletarget */
1072         func(con, (ID**)&data->poletar, userdata);
1073 }
1074
1075 static int kinematic_get_tars (bConstraint *con, ListBase *list)
1076 {
1077         if (con && list) {
1078                 bKinematicConstraint *data= con->data;
1079                 bConstraintTarget *ct;
1080                 
1081                 /* standard target-getting macro for single-target constraints is used twice here */
1082                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1083                 SINGLETARGET_GET_TARS(con, data->poletar, data->polesubtarget, ct, list)
1084                 
1085                 return 2;
1086         }
1087         
1088         return 0;
1089 }
1090
1091 static void kinematic_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1092 {
1093         if (con && list) {
1094                 bKinematicConstraint *data= con->data;
1095                 bConstraintTarget *ct= list->first;
1096                 
1097                 /* the following macro is used for all standard single-target constraints */
1098                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1099                 SINGLETARGET_FLUSH_TARS(con, data->poletar, data->polesubtarget, ct, list, nocopy)
1100         }
1101 }
1102
1103 static void kinematic_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
1104 {
1105         bKinematicConstraint *data= con->data;
1106         
1107         if (VALID_CONS_TARGET(ct)) 
1108                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
1109         else if (ct) {
1110                 if (data->flag & CONSTRAINT_IK_AUTO) {
1111                         Object *ob= cob->ob;
1112                         
1113                         if (ob == NULL) {
1114                                 unit_m4(ct->matrix);
1115                         }
1116                         else {
1117                                 float vec[3];
1118                                 /* move grabtarget into world space */
1119                                 mul_v3_m4v3(vec, ob->obmat, data->grabtarget);
1120                                 copy_m4_m4(ct->matrix, ob->obmat);
1121                                 copy_v3_v3(ct->matrix[3], vec);
1122                         }
1123                 }
1124                 else
1125                         unit_m4(ct->matrix);
1126         }
1127 }
1128
1129 static bConstraintTypeInfo CTI_KINEMATIC = {
1130         CONSTRAINT_TYPE_KINEMATIC, /* type */
1131         sizeof(bKinematicConstraint), /* size */
1132         "IK", /* name */
1133         "bKinematicConstraint", /* struct name */
1134         NULL, /* free data */
1135         NULL, /* relink data */
1136         kinematic_id_looper, /* id looper */
1137         NULL, /* copy data */
1138         kinematic_new_data, /* new data */
1139         kinematic_get_tars, /* get constraint targets */
1140         kinematic_flush_tars, /* flush constraint targets */
1141         kinematic_get_tarmat, /* get target matrix */
1142         NULL /* evaluate - solved as separate loop */
1143 };
1144
1145 /* -------- Follow-Path Constraint ---------- */
1146
1147 static void followpath_new_data (void *cdata)
1148 {
1149         bFollowPathConstraint *data= (bFollowPathConstraint *)cdata;
1150         
1151         data->trackflag = TRACK_Y;
1152         data->upflag = UP_Z;
1153         data->offset = 0;
1154         data->followflag = 0;
1155 }
1156
1157 static void followpath_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1158 {
1159         bFollowPathConstraint *data= con->data;
1160         
1161         /* target only */
1162         func(con, (ID**)&data->tar, userdata);
1163 }
1164
1165 static int followpath_get_tars (bConstraint *con, ListBase *list)
1166 {
1167         if (con && list) {
1168                 bFollowPathConstraint *data= con->data;
1169                 bConstraintTarget *ct;
1170                 
1171                 /* standard target-getting macro for single-target constraints without subtargets */
1172                 SINGLETARGETNS_GET_TARS(con, data->tar, ct, list)
1173                 
1174                 return 1;
1175         }
1176         
1177         return 0;
1178 }
1179
1180 static void followpath_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1181 {
1182         if (con && list) {
1183                 bFollowPathConstraint *data= con->data;
1184                 bConstraintTarget *ct= list->first;
1185                 
1186                 /* the following macro is used for all standard single-target constraints */
1187                 SINGLETARGETNS_FLUSH_TARS(con, data->tar, ct, list, nocopy)
1188         }
1189 }
1190
1191 static void followpath_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
1192 {
1193         bFollowPathConstraint *data= con->data;
1194         
1195         if (VALID_CONS_TARGET(ct)) {
1196                 Curve *cu= ct->tar->data;
1197                 float q[4], vec[4], dir[3], quat[4], radius, x1;
1198                 float totmat[4][4];
1199                 float curvetime;
1200                 
1201                 unit_m4(totmat);
1202                 unit_m4(ct->matrix);
1203                 
1204                 /* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
1205                  *              currently for paths to work it needs to go through the bevlist/displist system (ton) 
1206                  */
1207                 
1208                 /* only happens on reload file, but violates depsgraph still... fix! */
1209                 if (cu->path==NULL || cu->path->data==NULL)
1210                         makeDispListCurveTypes(cob->scene, ct->tar, 0);
1211                 
1212                 if (cu->path && cu->path->data) {
1213                         if ((data->followflag & FOLLOWPATH_STATIC) == 0) { 
1214                                 /* animated position along curve depending on time */
1215                                 if (cob->scene)
1216                                         curvetime= bsystem_time(cob->scene, ct->tar, cu->ctime, 0.0) - data->offset;
1217                                 else    
1218                                         curvetime= cu->ctime - data->offset;
1219                                 
1220                                 /* ctime is now a proper var setting of Curve which gets set by Animato like any other var that's animated,
1221                                  * but this will only work if it actually is animated... 
1222                                  *
1223                                  * we divide the curvetime calculated in the previous step by the length of the path, to get a time
1224                                  * factor, which then gets clamped to lie within 0.0 - 1.0 range
1225                                  */
1226                                 curvetime /= cu->pathlen;
1227                                 CLAMP(curvetime, 0.0, 1.0);
1228                         }
1229                         else {
1230                                 /* fixed position along curve */
1231                                 curvetime= data->offset_fac;
1232                         }
1233                         
1234                         if ( where_on_path(ct->tar, curvetime, vec, dir, NULL, &radius, NULL) ) {
1235                                 if (data->followflag & FOLLOWPATH_FOLLOW) {
1236                                         vec_to_quat(quat, dir, (short)data->trackflag, (short)data->upflag);
1237                                         
1238                                         normalize_v3(dir);
1239                                         q[0]= (float)cos(0.5*vec[3]);
1240                                         x1= (float)sin(0.5*vec[3]);
1241                                         q[1]= -x1*dir[0];
1242                                         q[2]= -x1*dir[1];
1243                                         q[3]= -x1*dir[2];
1244                                         mul_qt_qtqt(quat, q, quat);
1245                                         
1246                                         quat_to_mat4(totmat, quat);
1247                                 }
1248                                 
1249                                 if (data->followflag & FOLLOWPATH_RADIUS) {
1250                                         float tmat[4][4], rmat[4][4];
1251                                         scale_m4_fl(tmat, radius);
1252                                         mul_m4_m4m4(rmat, totmat, tmat);
1253                                         copy_m4_m4(totmat, rmat);
1254                                 }
1255                                 
1256                                 copy_v3_v3(totmat[3], vec);
1257                                 
1258                                 mul_serie_m4(ct->matrix, ct->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
1259                         }
1260                 }
1261         }
1262         else if (ct)
1263                 unit_m4(ct->matrix);
1264 }
1265
1266 static void followpath_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1267 {
1268         bConstraintTarget *ct= targets->first;
1269         
1270         /* only evaluate if there is a target */
1271         if (VALID_CONS_TARGET(ct)) {
1272                 float obmat[4][4];
1273                 float size[3];
1274                 bFollowPathConstraint *data= con->data;
1275                 
1276                 /* get Object transform (loc/rot/size) to determine transformation from path */
1277                 // TODO: this used to be local at one point, but is probably more useful as-is
1278                 copy_m4_m4(obmat, cob->matrix);
1279                 
1280                 /* get scaling of object before applying constraint */
1281                 mat4_to_size(size, cob->matrix);
1282                 
1283                 /* apply targetmat - containing location on path, and rotation */
1284                 mul_serie_m4(cob->matrix, ct->matrix, obmat, NULL, NULL, NULL, NULL, NULL, NULL);
1285                 
1286                 /* un-apply scaling caused by path */
1287                 if ((data->followflag & FOLLOWPATH_RADIUS)==0) { /* XXX - assume that scale correction means that radius will have some scale error in it - Campbell */
1288                         float obsize[3];
1289                         
1290                         mat4_to_size( obsize,cob->matrix);
1291                         if (obsize[0])
1292                                 mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
1293                         if (obsize[1])
1294                                 mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
1295                         if (obsize[2])
1296                                 mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
1297                 }
1298         }
1299 }
1300
1301 static bConstraintTypeInfo CTI_FOLLOWPATH = {
1302         CONSTRAINT_TYPE_FOLLOWPATH, /* type */
1303         sizeof(bFollowPathConstraint), /* size */
1304         "Follow Path", /* name */
1305         "bFollowPathConstraint", /* struct name */
1306         NULL, /* free data */
1307         NULL, /* relink data */
1308         followpath_id_looper, /* id looper */
1309         NULL, /* copy data */
1310         followpath_new_data, /* new data */
1311         followpath_get_tars, /* get constraint targets */
1312         followpath_flush_tars, /* flush constraint targets */
1313         followpath_get_tarmat, /* get target matrix */
1314         followpath_evaluate /* evaluate */
1315 };
1316
1317 /* --------- Limit Location --------- */
1318
1319
1320 static void loclimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1321 {
1322         bLocLimitConstraint *data = con->data;
1323         
1324         if (data->flag & LIMIT_XMIN) {
1325                 if (cob->matrix[3][0] < data->xmin)
1326                         cob->matrix[3][0] = data->xmin;
1327         }
1328         if (data->flag & LIMIT_XMAX) {
1329                 if (cob->matrix[3][0] > data->xmax)
1330                         cob->matrix[3][0] = data->xmax;
1331         }
1332         if (data->flag & LIMIT_YMIN) {
1333                 if (cob->matrix[3][1] < data->ymin)
1334                         cob->matrix[3][1] = data->ymin;
1335         }
1336         if (data->flag & LIMIT_YMAX) {
1337                 if (cob->matrix[3][1] > data->ymax)
1338                         cob->matrix[3][1] = data->ymax;
1339         }
1340         if (data->flag & LIMIT_ZMIN) {
1341                 if (cob->matrix[3][2] < data->zmin) 
1342                         cob->matrix[3][2] = data->zmin;
1343         }
1344         if (data->flag & LIMIT_ZMAX) {
1345                 if (cob->matrix[3][2] > data->zmax)
1346                         cob->matrix[3][2] = data->zmax;
1347         }
1348 }
1349
1350 static bConstraintTypeInfo CTI_LOCLIMIT = {
1351         CONSTRAINT_TYPE_LOCLIMIT, /* type */
1352         sizeof(bLocLimitConstraint), /* size */
1353         "Limit Location", /* name */
1354         "bLocLimitConstraint", /* struct name */
1355         NULL, /* free data */
1356         NULL, /* relink data */
1357         NULL, /* id looper */
1358         NULL, /* copy data */
1359         NULL, /* new data */
1360         NULL, /* get constraint targets */
1361         NULL, /* flush constraint targets */
1362         NULL, /* get target matrix */
1363         loclimit_evaluate /* evaluate */
1364 };
1365
1366 /* -------- Limit Rotation --------- */
1367
1368 static void rotlimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1369 {
1370         bRotLimitConstraint *data = con->data;
1371         float loc[3];
1372         float eul[3];
1373         float size[3];
1374         
1375         copy_v3_v3(loc, cob->matrix[3]);
1376         mat4_to_size(size, cob->matrix);
1377         
1378         mat4_to_eulO(eul, cob->rotOrder, cob->matrix);
1379         
1380         /* constraint data uses radians internally */
1381         
1382         /* limiting of euler values... */
1383         if (data->flag & LIMIT_XROT) {
1384                 if (eul[0] < data->xmin) 
1385                         eul[0] = data->xmin;
1386                         
1387                 if (eul[0] > data->xmax)
1388                         eul[0] = data->xmax;
1389         }
1390         if (data->flag & LIMIT_YROT) {
1391                 if (eul[1] < data->ymin)
1392                         eul[1] = data->ymin;
1393                         
1394                 if (eul[1] > data->ymax)
1395                         eul[1] = data->ymax;
1396         }
1397         if (data->flag & LIMIT_ZROT) {
1398                 if (eul[2] < data->zmin)
1399                         eul[2] = data->zmin;
1400                         
1401                 if (eul[2] > data->zmax)
1402                         eul[2] = data->zmax;
1403         }
1404                 
1405         loc_eulO_size_to_mat4(cob->matrix, loc, eul, size, cob->rotOrder);
1406 }
1407
1408 static bConstraintTypeInfo CTI_ROTLIMIT = {
1409         CONSTRAINT_TYPE_ROTLIMIT, /* type */
1410         sizeof(bRotLimitConstraint), /* size */
1411         "Limit Rotation", /* name */
1412         "bRotLimitConstraint", /* struct name */
1413         NULL, /* free data */
1414         NULL, /* relink data */
1415         NULL, /* id looper */
1416         NULL, /* copy data */
1417         NULL, /* new data */
1418         NULL, /* get constraint targets */
1419         NULL, /* flush constraint targets */
1420         NULL, /* get target matrix */
1421         rotlimit_evaluate /* evaluate */
1422 };
1423
1424 /* --------- Limit Scaling --------- */
1425
1426
1427 static void sizelimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1428 {
1429         bSizeLimitConstraint *data = con->data;
1430         float obsize[3], size[3];
1431         
1432         mat4_to_size( size,cob->matrix);
1433         mat4_to_size( obsize,cob->matrix);
1434         
1435         if (data->flag & LIMIT_XMIN) {
1436                 if (size[0] < data->xmin) 
1437                         size[0] = data->xmin;   
1438         }
1439         if (data->flag & LIMIT_XMAX) {
1440                 if (size[0] > data->xmax) 
1441                         size[0] = data->xmax;
1442         }
1443         if (data->flag & LIMIT_YMIN) {
1444                 if (size[1] < data->ymin) 
1445                         size[1] = data->ymin;   
1446         }
1447         if (data->flag & LIMIT_YMAX) {
1448                 if (size[1] > data->ymax) 
1449                         size[1] = data->ymax;
1450         }
1451         if (data->flag & LIMIT_ZMIN) {
1452                 if (size[2] < data->zmin) 
1453                         size[2] = data->zmin;   
1454         }
1455         if (data->flag & LIMIT_ZMAX) {
1456                 if (size[2] > data->zmax) 
1457                         size[2] = data->zmax;
1458         }
1459         
1460         if (obsize[0]) 
1461                 mul_v3_fl(cob->matrix[0], size[0]/obsize[0]);
1462         if (obsize[1]) 
1463                 mul_v3_fl(cob->matrix[1], size[1]/obsize[1]);
1464         if (obsize[2]) 
1465                 mul_v3_fl(cob->matrix[2], size[2]/obsize[2]);
1466 }
1467
1468 static bConstraintTypeInfo CTI_SIZELIMIT = {
1469         CONSTRAINT_TYPE_SIZELIMIT, /* type */
1470         sizeof(bSizeLimitConstraint), /* size */
1471         "Limit Scaling", /* name */
1472         "bSizeLimitConstraint", /* struct name */
1473         NULL, /* free data */
1474         NULL, /* relink data */
1475         NULL, /* id looper */
1476         NULL, /* copy data */
1477         NULL, /* new data */
1478         NULL, /* get constraint targets */
1479         NULL, /* flush constraint targets */
1480         NULL, /* get target matrix */
1481         sizelimit_evaluate /* evaluate */
1482 };
1483
1484 /* ----------- Copy Location ------------- */
1485
1486 static void loclike_new_data (void *cdata)
1487 {
1488         bLocateLikeConstraint *data= (bLocateLikeConstraint *)cdata;
1489         
1490         data->flag = LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z;
1491 }
1492
1493 static void loclike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1494 {
1495         bLocateLikeConstraint *data= con->data;
1496         
1497         /* target only */
1498         func(con, (ID**)&data->tar, userdata);
1499 }
1500
1501 static int loclike_get_tars (bConstraint *con, ListBase *list)
1502 {
1503         if (con && list) {
1504                 bLocateLikeConstraint *data= con->data;
1505                 bConstraintTarget *ct;
1506                 
1507                 /* standard target-getting macro for single-target constraints */
1508                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1509                 
1510                 return 1;
1511         }
1512         
1513         return 0;
1514 }
1515
1516 static void loclike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1517 {
1518         if (con && list) {
1519                 bLocateLikeConstraint *data= con->data;
1520                 bConstraintTarget *ct= list->first;
1521                 
1522                 /* the following macro is used for all standard single-target constraints */
1523                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1524         }
1525 }
1526
1527 static void loclike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1528 {
1529         bLocateLikeConstraint *data= con->data;
1530         bConstraintTarget *ct= targets->first;
1531         
1532         if (VALID_CONS_TARGET(ct)) {
1533                 float offset[3] = {0.0f, 0.0f, 0.0f};
1534                 
1535                 if (data->flag & LOCLIKE_OFFSET)
1536                         copy_v3_v3(offset, cob->matrix[3]);
1537                         
1538                 if (data->flag & LOCLIKE_X) {
1539                         cob->matrix[3][0] = ct->matrix[3][0];
1540                         
1541                         if (data->flag & LOCLIKE_X_INVERT) cob->matrix[3][0] *= -1;
1542                         cob->matrix[3][0] += offset[0];
1543                 }
1544                 if (data->flag & LOCLIKE_Y) {
1545                         cob->matrix[3][1] = ct->matrix[3][1];
1546                         
1547                         if (data->flag & LOCLIKE_Y_INVERT) cob->matrix[3][1] *= -1;
1548                         cob->matrix[3][1] += offset[1];
1549                 }
1550                 if (data->flag & LOCLIKE_Z) {
1551                         cob->matrix[3][2] = ct->matrix[3][2];
1552                         
1553                         if (data->flag & LOCLIKE_Z_INVERT) cob->matrix[3][2] *= -1;
1554                         cob->matrix[3][2] += offset[2];
1555                 }
1556         }
1557 }
1558
1559 static bConstraintTypeInfo CTI_LOCLIKE = {
1560         CONSTRAINT_TYPE_LOCLIKE, /* type */
1561         sizeof(bLocateLikeConstraint), /* size */
1562         "Copy Location", /* name */
1563         "bLocateLikeConstraint", /* struct name */
1564         NULL, /* free data */
1565         NULL, /* relink data */
1566         loclike_id_looper, /* id looper */
1567         NULL, /* copy data */
1568         loclike_new_data, /* new data */
1569         loclike_get_tars, /* get constraint targets */
1570         loclike_flush_tars, /* flush constraint targets */
1571         default_get_tarmat, /* get target matrix */
1572         loclike_evaluate /* evaluate */
1573 };
1574
1575 /* ----------- Copy Rotation ------------- */
1576
1577 static void rotlike_new_data (void *cdata)
1578 {
1579         bRotateLikeConstraint *data= (bRotateLikeConstraint *)cdata;
1580         
1581         data->flag = ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z;
1582 }
1583
1584 static void rotlike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1585 {
1586         bChildOfConstraint *data= con->data;
1587         
1588         /* target only */
1589         func(con, (ID**)&data->tar, userdata);
1590 }
1591
1592 static int rotlike_get_tars (bConstraint *con, ListBase *list)
1593 {
1594         if (con && list) {
1595                 bRotateLikeConstraint *data= con->data;
1596                 bConstraintTarget *ct;
1597                 
1598                 /* standard target-getting macro for single-target constraints */
1599                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1600                 
1601                 return 1;
1602         }
1603         
1604         return 0;
1605 }
1606
1607 static void rotlike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1608 {
1609         if (con && list) {
1610                 bRotateLikeConstraint *data= con->data;
1611                 bConstraintTarget *ct= list->first;
1612                 
1613                 /* the following macro is used for all standard single-target constraints */
1614                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1615         }
1616 }
1617
1618 static void rotlike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1619 {
1620         bRotateLikeConstraint *data= con->data;
1621         bConstraintTarget *ct= targets->first;
1622         
1623         if (VALID_CONS_TARGET(ct)) {
1624                 float   loc[3];
1625                 float   eul[3], obeul[3];
1626                 float   size[3];
1627                 
1628                 copy_v3_v3(loc, cob->matrix[3]);
1629                 mat4_to_size(size, cob->matrix);
1630                 
1631                 /* to allow compatible rotations, must get both rotations in the order of the owner... */
1632                 mat4_to_eulO(eul, cob->rotOrder, ct->matrix);
1633                 mat4_to_eulO(obeul, cob->rotOrder, cob->matrix);
1634                 
1635                 if ((data->flag & ROTLIKE_X)==0)
1636                         eul[0] = obeul[0];
1637                 else {
1638                         if (data->flag & ROTLIKE_OFFSET)
1639                                 rotate_eulO(eul, cob->rotOrder, 'X', obeul[0]);
1640                         
1641                         if (data->flag & ROTLIKE_X_INVERT)
1642                                 eul[0] *= -1;
1643                 }
1644                 
1645                 if ((data->flag & ROTLIKE_Y)==0)
1646                         eul[1] = obeul[1];
1647                 else {
1648                         if (data->flag & ROTLIKE_OFFSET)
1649                                 rotate_eulO(eul, cob->rotOrder, 'Y', obeul[1]);
1650                         
1651                         if (data->flag & ROTLIKE_Y_INVERT)
1652                                 eul[1] *= -1;
1653                 }
1654                 
1655                 if ((data->flag & ROTLIKE_Z)==0)
1656                         eul[2] = obeul[2];
1657                 else {
1658                         if (data->flag & ROTLIKE_OFFSET)
1659                                 rotate_eulO(eul, cob->rotOrder, 'Z', obeul[2]);
1660                         
1661                         if (data->flag & ROTLIKE_Z_INVERT)
1662                                 eul[2] *= -1;
1663                 }
1664                 
1665                 compatible_eul(eul, obeul);
1666                 loc_eulO_size_to_mat4(cob->matrix, loc, eul, size, cob->rotOrder);
1667         }
1668 }
1669
1670 static bConstraintTypeInfo CTI_ROTLIKE = {
1671         CONSTRAINT_TYPE_ROTLIKE, /* type */
1672         sizeof(bRotateLikeConstraint), /* size */
1673         "Copy Rotation", /* name */
1674         "bRotateLikeConstraint", /* struct name */
1675         NULL, /* free data */
1676         NULL, /* relink data */
1677         rotlike_id_looper, /* id looper */
1678         NULL, /* copy data */
1679         rotlike_new_data, /* new data */
1680         rotlike_get_tars, /* get constraint targets */
1681         rotlike_flush_tars, /* flush constraint targets */
1682         default_get_tarmat, /* get target matrix */
1683         rotlike_evaluate /* evaluate */
1684 };
1685
1686 /* ---------- Copy Scaling ---------- */
1687
1688 static void sizelike_new_data (void *cdata)
1689 {
1690         bSizeLikeConstraint *data= (bSizeLikeConstraint *)cdata;
1691         
1692         data->flag = SIZELIKE_X|SIZELIKE_Y|SIZELIKE_Z;
1693 }
1694
1695 static void sizelike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1696 {
1697         bSizeLikeConstraint *data= con->data;
1698         
1699         /* target only */
1700         func(con, (ID**)&data->tar, userdata);
1701 }
1702
1703 static int sizelike_get_tars (bConstraint *con, ListBase *list)
1704 {
1705         if (con && list) {
1706                 bSizeLikeConstraint *data= con->data;
1707                 bConstraintTarget *ct;
1708                 
1709                 /* standard target-getting macro for single-target constraints */
1710                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1711                 
1712                 return 1;
1713         }
1714         
1715         return 0;
1716 }
1717
1718 static void sizelike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1719 {
1720         if (con && list) {
1721                 bSizeLikeConstraint *data= con->data;
1722                 bConstraintTarget *ct= list->first;
1723                 
1724                 /* the following macro is used for all standard single-target constraints */
1725                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1726         }
1727 }
1728
1729 static void sizelike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1730 {
1731         bSizeLikeConstraint *data= con->data;
1732         bConstraintTarget *ct= targets->first;
1733         
1734         if (VALID_CONS_TARGET(ct)) {
1735                 float obsize[3], size[3];
1736                 
1737                 mat4_to_size(size, ct->matrix);
1738                 mat4_to_size(obsize, cob->matrix);
1739                 
1740                 if ((data->flag & SIZELIKE_X) && (obsize[0] != 0)) {
1741                         if (data->flag & SIZELIKE_OFFSET) {
1742                                 size[0] += (obsize[0] - 1.0f);
1743                                 mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
1744                         }
1745                         else
1746                                 mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
1747                 }
1748                 if ((data->flag & SIZELIKE_Y) && (obsize[1] != 0)) {
1749                         if (data->flag & SIZELIKE_OFFSET) {
1750                                 size[1] += (obsize[1] - 1.0f);
1751                                 mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
1752                         }
1753                         else
1754                                 mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
1755                 }
1756                 if ((data->flag & SIZELIKE_Z) && (obsize[2] != 0)) {
1757                         if (data->flag & SIZELIKE_OFFSET) {
1758                                 size[2] += (obsize[2] - 1.0f);
1759                                 mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
1760                         }
1761                         else
1762                                 mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
1763                 }
1764         }
1765 }
1766
1767 static bConstraintTypeInfo CTI_SIZELIKE = {
1768         CONSTRAINT_TYPE_SIZELIKE, /* type */
1769         sizeof(bSizeLikeConstraint), /* size */
1770         "Copy Scale", /* name */
1771         "bSizeLikeConstraint", /* struct name */
1772         NULL, /* free data */
1773         NULL, /* relink data */
1774         sizelike_id_looper, /* id looper */
1775         NULL, /* copy data */
1776         sizelike_new_data, /* new data */
1777         sizelike_get_tars, /* get constraint targets */
1778         sizelike_flush_tars, /* flush constraint targets */
1779         default_get_tarmat, /* get target matrix */
1780         sizelike_evaluate /* evaluate */
1781 };
1782
1783 /* ----------- Copy Transforms ------------- */
1784
1785 static void translike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1786 {
1787         bTransLikeConstraint *data= con->data;
1788         
1789         /* target only */
1790         func(con, (ID**)&data->tar, userdata);
1791 }
1792
1793 static int translike_get_tars (bConstraint *con, ListBase *list)
1794 {
1795         if (con && list) {
1796                 bTransLikeConstraint *data= con->data;
1797                 bConstraintTarget *ct;
1798                 
1799                 /* standard target-getting macro for single-target constraints */
1800                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1801                 
1802                 return 1;
1803         }
1804         
1805         return 0;
1806 }
1807
1808 static void translike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1809 {
1810         if (con && list) {
1811                 bTransLikeConstraint *data= con->data;
1812                 bConstraintTarget *ct= list->first;
1813                 
1814                 /* the following macro is used for all standard single-target constraints */
1815                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1816         }
1817 }
1818
1819 static void translike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1820 {
1821         bConstraintTarget *ct= targets->first;
1822         
1823         if (VALID_CONS_TARGET(ct)) {
1824                 /* just copy the entire transform matrix of the target */
1825                 copy_m4_m4(cob->matrix, ct->matrix);
1826         }
1827 }
1828
1829 static bConstraintTypeInfo CTI_TRANSLIKE = {
1830         CONSTRAINT_TYPE_TRANSLIKE, /* type */
1831         sizeof(bTransLikeConstraint), /* size */
1832         "Copy Transforms", /* name */
1833         "bTransLikeConstraint", /* struct name */
1834         NULL, /* free data */
1835         NULL, /* relink data */
1836         translike_id_looper, /* id looper */
1837         NULL, /* copy data */
1838         NULL, /* new data */
1839         translike_get_tars, /* get constraint targets */
1840         translike_flush_tars, /* flush constraint targets */
1841         default_get_tarmat, /* get target matrix */
1842         translike_evaluate /* evaluate */
1843 };
1844
1845 /* ---------- Maintain Volume ---------- */
1846
1847 static void samevolume_new_data (void *cdata)
1848 {
1849         bSameVolumeConstraint *data= (bSameVolumeConstraint *)cdata;
1850
1851         data->flag = SAMEVOL_Y;
1852         data->volume = 1.0f;
1853 }
1854
1855 static void samevolume_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1856 {
1857         bSameVolumeConstraint *data= con->data;
1858
1859         float volume = data->volume;
1860         float fac = 1.0f;
1861         float obsize[3];
1862
1863         mat4_to_size(obsize, cob->matrix);
1864         
1865         /* calculate normalising scale factor for non-essential values */
1866         if (obsize[data->flag] != 0) 
1867                 fac = sqrt(volume / obsize[data->flag]) / obsize[data->flag];
1868         
1869         /* apply scaling factor to the channels not being kept */
1870         switch (data->flag) {
1871                 case SAMEVOL_X:
1872                         mul_v3_fl(cob->matrix[1], fac);
1873                         mul_v3_fl(cob->matrix[2], fac);
1874                         break;
1875                 case SAMEVOL_Y:
1876                         mul_v3_fl(cob->matrix[0], fac);
1877                         mul_v3_fl(cob->matrix[2], fac);
1878                         break;
1879                 case SAMEVOL_Z:
1880                         mul_v3_fl(cob->matrix[0], fac);
1881                         mul_v3_fl(cob->matrix[1], fac);
1882                         break;
1883         }
1884 }
1885
1886 static bConstraintTypeInfo CTI_SAMEVOL = {
1887         CONSTRAINT_TYPE_SAMEVOL, /* type */
1888         sizeof(bSameVolumeConstraint), /* size */
1889         "Maintain Volume", /* name */
1890         "bSameVolumeConstraint", /* struct name */
1891         NULL, /* free data */
1892         NULL, /* relink data */
1893         NULL, /* id looper */
1894         NULL, /* copy data */
1895         samevolume_new_data, /* new data */
1896         NULL, /* get constraint targets */
1897         NULL, /* flush constraint targets */
1898         NULL, /* get target matrix */
1899         samevolume_evaluate /* evaluate */
1900 };
1901
1902 /* ----------- Python Constraint -------------- */
1903
1904 static void pycon_free (bConstraint *con)
1905 {
1906         bPythonConstraint *data= con->data;
1907         
1908         /* id-properties */
1909         IDP_FreeProperty(data->prop);
1910         MEM_freeN(data->prop);
1911         
1912         /* multiple targets */
1913         BLI_freelistN(&data->targets);
1914 }       
1915
1916 static void pycon_relink (bConstraint *con)
1917 {
1918         bPythonConstraint *data= con->data;
1919         
1920         ID_NEW(data->text);
1921 }
1922
1923 static void pycon_copy (bConstraint *con, bConstraint *srccon)
1924 {
1925         bPythonConstraint *pycon = (bPythonConstraint *)con->data;
1926         bPythonConstraint *opycon = (bPythonConstraint *)srccon->data;
1927         
1928         pycon->prop = IDP_CopyProperty(opycon->prop);
1929         BLI_duplicatelist(&pycon->targets, &opycon->targets);
1930 }
1931
1932 static void pycon_new_data (void *cdata)
1933 {
1934         bPythonConstraint *data= (bPythonConstraint *)cdata;
1935         
1936         /* everything should be set correctly by calloc, except for the prop->type constant.*/
1937         data->prop = MEM_callocN(sizeof(IDProperty), "PyConstraintProps");
1938         data->prop->type = IDP_GROUP;
1939 }
1940
1941 static int pycon_get_tars (bConstraint *con, ListBase *list)
1942 {
1943         if (con && list) {
1944                 bPythonConstraint *data= con->data;
1945                 
1946                 list->first = data->targets.first;
1947                 list->last = data->targets.last;
1948                 
1949                 return data->tarnum;
1950         }
1951         
1952         return 0;
1953 }
1954
1955 static void pycon_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1956 {
1957         bPythonConstraint *data= con->data;
1958         bConstraintTarget *ct;
1959         
1960         /* targets */
1961         for (ct= data->targets.first; ct; ct= ct->next)
1962                 func(con, (ID**)&ct->tar, userdata);
1963                 
1964         /* script */
1965         func(con, (ID**)&data->text, userdata);
1966 }
1967
1968 /* Whether this approach is maintained remains to be seen (aligorith) */
1969 static void pycon_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
1970 {
1971 #ifndef DISABLE_PYTHON
1972         bPythonConstraint *data= con->data;
1973 #endif
1974
1975         if (VALID_CONS_TARGET(ct)) {
1976                 /* special exception for curves - depsgraph issues */
1977                 if (ct->tar->type == OB_CURVE) {
1978                         Curve *cu= ct->tar->data;
1979                         
1980                         /* this check is to make sure curve objects get updated on file load correctly.*/
1981                         if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
1982                                 makeDispListCurveTypes(cob->scene, ct->tar, 0);                         
1983                 }
1984                 
1985                 /* firstly calculate the matrix the normal way, then let the py-function override
1986                  * this matrix if it needs to do so
1987                  */
1988                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
1989                 
1990                 /* only execute target calculation if allowed */
1991 #ifndef DISABLE_PYTHON
1992                 if (G.f & G_SCRIPT_AUTOEXEC)
1993                         BPY_pyconstraint_target(data, ct);
1994 #endif
1995         }
1996         else if (ct)
1997                 unit_m4(ct->matrix);
1998 }
1999
2000 static void pycon_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2001 {
2002 #ifdef DISABLE_PYTHON
2003         return;
2004 #else
2005         bPythonConstraint *data= con->data;
2006         
2007         /* only evaluate in python if we're allowed to do so */
2008         if ((G.f & G_SCRIPT_AUTOEXEC)==0)  return;
2009         
2010 /* currently removed, until I this can be re-implemented for multiple targets */
2011 #if 0
2012         /* Firstly, run the 'driver' function which has direct access to the objects involved 
2013          * Technically, this is potentially dangerous as users may abuse this and cause dependency-problems,
2014          * but it also allows certain 'clever' rigging hacks to work.
2015          */
2016         BPY_pyconstraint_driver(data, cob, targets);
2017 #endif
2018         
2019         /* Now, run the actual 'constraint' function, which should only access the matrices */
2020         BPY_pyconstraint_eval(data, cob, targets);
2021 #endif /* DISABLE_PYTHON */
2022 }
2023
2024 static bConstraintTypeInfo CTI_PYTHON = {
2025         CONSTRAINT_TYPE_PYTHON, /* type */
2026         sizeof(bPythonConstraint), /* size */
2027         "Script", /* name */
2028         "bPythonConstraint", /* struct name */
2029         pycon_free, /* free data */
2030         pycon_relink, /* relink data */
2031         pycon_id_looper, /* id looper */
2032         pycon_copy, /* copy data */
2033         pycon_new_data, /* new data */
2034         pycon_get_tars, /* get constraint targets */
2035         NULL, /* flush constraint targets */
2036         pycon_get_tarmat, /* get target matrix */
2037         pycon_evaluate /* evaluate */
2038 };
2039
2040 /* -------- Action Constraint ----------- */
2041
2042 static void actcon_relink (bConstraint *con)
2043 {
2044         bActionConstraint *data= con->data;
2045         ID_NEW(data->act);
2046 }
2047
2048 static void actcon_new_data (void *cdata)
2049 {
2050         bActionConstraint *data= (bActionConstraint *)cdata;
2051         
2052         /* set type to 20 (Loc X), as 0 is Rot X for backwards compatability */
2053         data->type = 20;
2054 }
2055
2056 static void actcon_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2057 {
2058         bActionConstraint *data= con->data;
2059         
2060         /* target */
2061         func(con, (ID**)&data->tar, userdata);
2062         
2063         /* action */
2064         func(con, (ID**)&data->act, userdata);
2065 }
2066
2067 static int actcon_get_tars (bConstraint *con, ListBase *list)
2068 {
2069         if (con && list) {
2070                 bActionConstraint *data= con->data;
2071                 bConstraintTarget *ct;
2072                 
2073                 /* standard target-getting macro for single-target constraints */
2074                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2075                 
2076                 return 1;
2077         }
2078         
2079         return 0;
2080 }
2081
2082 static void actcon_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2083 {
2084         if (con && list) {
2085                 bActionConstraint *data= con->data;
2086                 bConstraintTarget *ct= list->first;
2087                 
2088                 /* the following macro is used for all standard single-target constraints */
2089                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2090         }
2091 }
2092
2093 static void actcon_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
2094 {
2095         extern void chan_calc_mat(bPoseChannel *chan);
2096         bActionConstraint *data = con->data;
2097         
2098         if (VALID_CONS_TARGET(ct)) {
2099                 float tempmat[4][4], vec[3];
2100                 float s, t;
2101                 short axis;
2102                 
2103                 /* initialise return matrix */
2104                 unit_m4(ct->matrix);
2105                 
2106                 /* get the transform matrix of the target */
2107                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, tempmat, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
2108                 
2109                 /* determine where in transform range target is */
2110                 /* data->type is mapped as follows for backwards compatability:
2111                  *      00,01,02        - rotation (it used to be like this)
2112                  *      10,11,12        - scaling
2113                  *      20,21,22        - location
2114                  */
2115                 if (data->type < 10) {
2116                         /* extract rotation (is in whatever space target should be in) */
2117                         mat4_to_eul(vec, tempmat);
2118                         vec[0] *= (float)(180.0/M_PI);
2119                         vec[1] *= (float)(180.0/M_PI);
2120                         vec[2] *= (float)(180.0/M_PI);
2121                         axis= data->type;
2122                 }
2123                 else if (data->type < 20) {
2124                         /* extract scaling (is in whatever space target should be in) */
2125                         mat4_to_size(vec, tempmat);
2126                         axis= data->type - 10;
2127                 }
2128                 else {
2129                         /* extract location */
2130                         copy_v3_v3(vec, tempmat[3]);
2131                         axis= data->type - 20;
2132                 }
2133                 
2134                 /* Target defines the animation */
2135                 s = (vec[axis]-data->min) / (data->max-data->min);
2136                 CLAMP(s, 0, 1);
2137                 t = (s * (data->end-data->start)) + data->start;
2138                 
2139                 if (G.f & G_DEBUG)
2140                         printf("do Action Constraint %s - Ob %s Pchan %s \n", con->name, cob->ob->id.name+2, (cob->pchan)?cob->pchan->name:NULL);
2141                 
2142                 /* Get the appropriate information from the action */
2143                 if (cob->type == CONSTRAINT_OBTYPE_BONE) {
2144                         Object workob;
2145                         bPose *pose;
2146                         bPoseChannel *pchan, *tchan;
2147                         
2148                         /* make a temporary pose and evaluate using that */
2149                         pose = MEM_callocN(sizeof(bPose), "pose");
2150                         
2151                         /* make a copy of the bone of interest in the temp pose before evaluating action, so that it can get set 
2152                          *      - we need to manually copy over a few settings, including rotation order, otherwise this fails
2153                          */
2154                         pchan = cob->pchan;
2155                         
2156                         tchan= verify_pose_channel(pose, pchan->name);
2157                         tchan->rotmode= pchan->rotmode;
2158                         
2159                         /* evaluate action using workob (it will only set the PoseChannel in question) */
2160                         what_does_obaction(cob->scene, cob->ob, &workob, pose, data->act, pchan->name, t);
2161                         
2162                         /* convert animation to matrices for use here */
2163                         chan_calc_mat(tchan);
2164                         copy_m4_m4(ct->matrix, tchan->chan_mat);
2165                         
2166                         /* Clean up */
2167                         free_pose(pose);
2168                 }
2169                 else if (cob->type == CONSTRAINT_OBTYPE_OBJECT) {
2170                         Object workob;
2171                         
2172                         /* evaluate using workob */
2173                         // FIXME: we don't have any consistent standards on limiting effects on object...
2174                         what_does_obaction(cob->scene, cob->ob, &workob, NULL, data->act, NULL, t);
2175                         object_to_mat4(&workob, ct->matrix);
2176                 }
2177                 else {
2178                         /* behaviour undefined... */
2179                         puts("Error: unknown owner type for Action Constraint");
2180                 }
2181         }
2182 }
2183
2184 static void actcon_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2185 {
2186         bConstraintTarget *ct= targets->first;
2187         
2188         if (VALID_CONS_TARGET(ct)) {
2189                 float temp[4][4];
2190                 
2191                 /* Nice and simple... we just need to multiply the matrices, as the get_target_matrix
2192                  * function has already taken care of everything else.
2193                  */
2194                 copy_m4_m4(temp, cob->matrix);
2195                 mul_m4_m4m4(cob->matrix, ct->matrix, temp);
2196         }
2197 }
2198
2199 static bConstraintTypeInfo CTI_ACTION = {
2200         CONSTRAINT_TYPE_ACTION, /* type */
2201         sizeof(bActionConstraint), /* size */
2202         "Action", /* name */
2203         "bActionConstraint", /* struct name */
2204         NULL, /* free data */
2205         actcon_relink, /* relink data */
2206         actcon_id_looper, /* id looper */
2207         NULL, /* copy data */
2208         actcon_new_data, /* new data */
2209         actcon_get_tars, /* get constraint targets */
2210         actcon_flush_tars, /* flush constraint targets */
2211         actcon_get_tarmat, /* get target matrix */
2212         actcon_evaluate /* evaluate */
2213 };
2214
2215 /* --------- Locked Track ---------- */
2216
2217 static void locktrack_new_data (void *cdata)
2218 {
2219         bLockTrackConstraint *data= (bLockTrackConstraint *)cdata;
2220         
2221         data->trackflag = TRACK_Y;
2222         data->lockflag = LOCK_Z;
2223 }       
2224
2225 static void locktrack_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2226 {
2227         bLockTrackConstraint *data= con->data;
2228         
2229         /* target only */
2230         func(con, (ID**)&data->tar, userdata);
2231 }
2232
2233 static int locktrack_get_tars (bConstraint *con, ListBase *list)
2234 {
2235         if (con && list) {
2236                 bLockTrackConstraint *data= con->data;
2237                 bConstraintTarget *ct;
2238                 
2239                 /* the following macro is used for all standard single-target constraints */
2240                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2241                 
2242                 return 1;
2243         }
2244         
2245         return 0;
2246 }
2247
2248 static void locktrack_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2249 {
2250         if (con && list) {
2251                 bLockTrackConstraint *data= con->data;
2252                 bConstraintTarget *ct= list->first;
2253                 
2254                 /* the following macro is used for all standard single-target constraints */
2255                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2256         }
2257 }
2258
2259 static void locktrack_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2260 {
2261         bLockTrackConstraint *data= con->data;
2262         bConstraintTarget *ct= targets->first;
2263         
2264         if (VALID_CONS_TARGET(ct)) {
2265                 float vec[3],vec2[3];
2266                 float totmat[3][3];
2267                 float tmpmat[3][3];
2268                 float invmat[3][3];
2269                 float tmat[4][4];
2270                 float mdet;
2271                 
2272                 /* Vector object -> target */
2273                 sub_v3_v3v3(vec, ct->matrix[3], cob->matrix[3]);
2274                 switch (data->lockflag){
2275                 case LOCK_X: /* LOCK X */
2276                 {
2277                         switch (data->trackflag) {
2278                                 case TRACK_Y: /* LOCK X TRACK Y */
2279                                 {
2280                                         /* Projection of Vector on the plane */
2281                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2282                                         sub_v3_v3v3(totmat[1], vec, vec2);
2283                                         normalize_v3(totmat[1]);
2284                                         
2285                                         /* the x axis is fixed */
2286                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2287                                         
2288                                         /* the z axis gets mapped onto a third orthogonal vector */
2289                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2290                                 }
2291                                         break;
2292                                 case TRACK_Z: /* LOCK X TRACK Z */
2293                                 {
2294                                         /* Projection of Vector on the plane */
2295                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2296                                         sub_v3_v3v3(totmat[2], vec, vec2);
2297                                         normalize_v3(totmat[2]);
2298                                         
2299                                         /* the x axis is fixed */
2300                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2301                                         
2302                                         /* the z axis gets mapped onto a third orthogonal vector */
2303                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2304                                 }
2305                                         break;
2306                                 case TRACK_nY: /* LOCK X TRACK -Y */
2307                                 {
2308                                         /* Projection of Vector on the plane */
2309                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2310                                         sub_v3_v3v3(totmat[1], vec, vec2);
2311                                         normalize_v3(totmat[1]);
2312                                         negate_v3(totmat[1]);
2313                                         
2314                                         /* the x axis is fixed */
2315                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2316                                         
2317                                         /* the z axis gets mapped onto a third orthogonal vector */
2318                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2319                                 }
2320                                         break;
2321                                 case TRACK_nZ: /* LOCK X TRACK -Z */
2322                                 {
2323                                         /* Projection of Vector on the plane */
2324                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2325                                         sub_v3_v3v3(totmat[2], vec, vec2);
2326                                         normalize_v3(totmat[2]);
2327                                         negate_v3(totmat[2]);
2328                                                 
2329                                         /* the x axis is fixed */
2330                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2331                                                 
2332                                         /* the z axis gets mapped onto a third orthogonal vector */
2333                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2334                                 }
2335                                         break;
2336                                 default:
2337                                 {
2338                                         unit_m3(totmat);
2339                                 }
2340                                         break;
2341                         }
2342                 }
2343                         break;
2344                 case LOCK_Y: /* LOCK Y */
2345                 {
2346                         switch (data->trackflag) {
2347                                 case TRACK_X: /* LOCK Y TRACK X */
2348                                 {
2349                                         /* Projection of Vector on the plane */
2350                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2351                                         sub_v3_v3v3(totmat[0], vec, vec2);
2352                                         normalize_v3(totmat[0]);
2353                                         
2354                                         /* the y axis is fixed */
2355                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2356
2357                                         /* the z axis gets mapped onto a third orthogonal vector */
2358                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2359                                 }
2360                                         break;
2361                                 case TRACK_Z: /* LOCK Y TRACK Z */
2362                                 {
2363                                         /* Projection of Vector on the plane */
2364                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2365                                         sub_v3_v3v3(totmat[2], vec, vec2);
2366                                         normalize_v3(totmat[2]);
2367                                         
2368                                         /* the y axis is fixed */
2369                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2370                                         
2371                                         /* the z axis gets mapped onto a third orthogonal vector */
2372                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2373                                 }
2374                                         break;
2375                                 case TRACK_nX: /* LOCK Y TRACK -X */
2376                                 {
2377                                         /* Projection of Vector on the plane */
2378                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2379                                         sub_v3_v3v3(totmat[0], vec, vec2);
2380                                         normalize_v3(totmat[0]);
2381                                         negate_v3(totmat[0]);
2382                                         
2383                                         /* the y axis is fixed */
2384                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2385                                         
2386                                         /* the z axis gets mapped onto a third orthogonal vector */
2387                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2388                                 }
2389                                         break;
2390                                 case TRACK_nZ: /* LOCK Y TRACK -Z */
2391                                 {
2392                                         /* Projection of Vector on the plane */
2393                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2394                                         sub_v3_v3v3(totmat[2], vec, vec2);
2395                                         normalize_v3(totmat[2]);
2396                                         negate_v3(totmat[2]);
2397                                         
2398                                         /* the y axis is fixed */
2399                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2400                                         
2401                                         /* the z axis gets mapped onto a third orthogonal vector */
2402                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2403                                 }
2404                                         break;
2405                                 default:
2406                                 {
2407                                         unit_m3(totmat);
2408                                 }
2409                                         break;
2410                         }
2411                 }
2412                         break;
2413                 case LOCK_Z: /* LOCK Z */
2414                 {
2415                         switch (data->trackflag) {
2416                                 case TRACK_X: /* LOCK Z TRACK X */
2417                                 {
2418                                         /* Projection of Vector on the plane */
2419                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2420                                         sub_v3_v3v3(totmat[0], vec, vec2);
2421                                         normalize_v3(totmat[0]);
2422                                         
2423                                         /* the z axis is fixed */
2424                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2425                                         
2426                                         /* the x axis gets mapped onto a third orthogonal vector */
2427                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2428                                 }
2429                                         break;
2430                                 case TRACK_Y: /* LOCK Z TRACK Y */
2431                                 {
2432                                         /* Projection of Vector on the plane */
2433                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2434                                         sub_v3_v3v3(totmat[1], vec, vec2);
2435                                         normalize_v3(totmat[1]);
2436                                         
2437                                         /* the z axis is fixed */
2438                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2439                                                 
2440                                         /* the x axis gets mapped onto a third orthogonal vector */
2441                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2442                                 }
2443                                         break;
2444                                 case TRACK_nX: /* LOCK Z TRACK -X */
2445                                 {
2446                                         /* Projection of Vector on the plane */
2447                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2448                                         sub_v3_v3v3(totmat[0], vec, vec2);
2449                                         normalize_v3(totmat[0]);
2450                                         negate_v3(totmat[0]);
2451                                         
2452                                         /* the z axis is fixed */
2453                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2454                                         
2455                                         /* the x axis gets mapped onto a third orthogonal vector */
2456                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2457                                 }
2458                                         break;
2459                                 case TRACK_nY: /* LOCK Z TRACK -Y */
2460                                 {
2461                                         /* Projection of Vector on the plane */
2462                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2463                                         sub_v3_v3v3(totmat[1], vec, vec2);
2464                                         normalize_v3(totmat[1]);
2465                                         negate_v3(totmat[1]);
2466                                         
2467                                         /* the z axis is fixed */
2468                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2469                                                 
2470                                         /* the x axis gets mapped onto a third orthogonal vector */
2471                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2472                                 }
2473                                         break;
2474                                 default:
2475                                 {
2476                                         unit_m3(totmat);
2477                                 }
2478                                         break;
2479                         }
2480                 }
2481                         break;
2482                 default:
2483                 {
2484                         unit_m3(totmat);
2485                 }
2486                         break;
2487                 }
2488                 /* Block to keep matrix heading */
2489                 copy_m3_m4(tmpmat, cob->matrix);
2490                 normalize_m3(tmpmat);
2491                 invert_m3_m3(invmat, tmpmat);
2492                 mul_m3_m3m3(tmpmat, totmat, invmat);
2493                 totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2];
2494                 totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2];
2495                 totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2];
2496                 
2497                 copy_m4_m4(tmat, cob->matrix);
2498                 
2499                 mdet = determinant_m3(  totmat[0][0],totmat[0][1],totmat[0][2],
2500                                                 totmat[1][0],totmat[1][1],totmat[1][2],
2501                                                 totmat[2][0],totmat[2][1],totmat[2][2]);
2502                 if (mdet==0) {
2503                         unit_m3(totmat);
2504                 }
2505                 
2506                 /* apply out transformaton to the object */
2507                 mul_m4_m3m4(cob->matrix, totmat, tmat);
2508         }
2509 }
2510
2511 static bConstraintTypeInfo CTI_LOCKTRACK = {
2512         CONSTRAINT_TYPE_LOCKTRACK, /* type */
2513         sizeof(bLockTrackConstraint), /* size */
2514         "Locked Track", /* name */
2515         "bLockTrackConstraint", /* struct name */
2516         NULL, /* free data */
2517         NULL, /* relink data */
2518         locktrack_id_looper, /* id looper */
2519         NULL, /* copy data */
2520         locktrack_new_data, /* new data */
2521         locktrack_get_tars, /* get constraint targets */
2522         locktrack_flush_tars, /* flush constraint targets */
2523         default_get_tarmat, /* get target matrix */
2524         locktrack_evaluate /* evaluate */
2525 };
2526
2527 /* ---------- Limit Distance Constraint ----------- */
2528
2529 static void distlimit_new_data (void *cdata)
2530 {
2531         bDistLimitConstraint *data= (bDistLimitConstraint *)cdata;
2532         
2533         data->dist= 0.0f;
2534 }
2535
2536 static void distlimit_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2537 {
2538         bDistLimitConstraint *data= con->data;
2539         
2540         /* target only */
2541         func(con, (ID**)&data->tar, userdata);
2542 }
2543
2544 static int distlimit_get_tars (bConstraint *con, ListBase *list)
2545 {
2546         if (con && list) {
2547                 bDistLimitConstraint *data= con->data;
2548                 bConstraintTarget *ct;
2549                 
2550                 /* standard target-getting macro for single-target constraints */
2551                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2552                 
2553                 return 1;
2554         }
2555         
2556         return 0;
2557 }
2558
2559 static void distlimit_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2560 {
2561         if (con && list) {
2562                 bDistLimitConstraint *data= con->data;
2563                 bConstraintTarget *ct= list->first;
2564                 
2565                 /* the following macro is used for all standard single-target constraints */
2566                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2567         }
2568 }
2569
2570 static void distlimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2571 {
2572         bDistLimitConstraint *data= con->data;
2573         bConstraintTarget *ct= targets->first;
2574         
2575         /* only evaluate if there is a target */
2576         if (VALID_CONS_TARGET(ct)) {
2577                 float dvec[3], dist=0.0f, sfac=1.0f;
2578                 short clamp_surf= 0;
2579                 
2580                 /* calculate our current distance from the target */
2581                 dist= len_v3v3(cob->matrix[3], ct->matrix[3]);
2582                 
2583                 /* set distance (flag is only set when user demands it) */
2584                 if (data->dist == 0)
2585                         data->dist= dist;
2586                 
2587                 /* check if we're which way to clamp from, and calculate interpolation factor (if needed) */
2588                 if (data->mode == LIMITDIST_OUTSIDE) {
2589                         /* if inside, then move to surface */
2590                         if (dist <= data->dist) {
2591                                 clamp_surf= 1;
2592                                 sfac= data->dist / dist;
2593                         }
2594                         /* if soft-distance is enabled, start fading once owner is dist+softdist from the target */
2595                         else if (data->flag & LIMITDIST_USESOFT) {
2596                                 if (dist <= (data->dist + data->soft)) {
2597                                         
2598                                 }
2599                         }
2600                 }
2601                 else if (data->mode == LIMITDIST_INSIDE) {
2602                         /* if outside, then move to surface */
2603                         if (dist >= data->dist) {
2604                                 clamp_surf= 1;
2605                                 sfac= data->dist / dist;
2606                         }
2607                         /* if soft-distance is enabled, start fading once owner is dist-soft from the target */
2608                         else if (data->flag & LIMITDIST_USESOFT) {
2609                                 // FIXME: there's a problem with "jumping" when this kicks in
2610                                 if (dist >= (data->dist - data->soft)) {
2611                                         sfac = (float)( data->soft*(1.0 - exp(-(dist - data->dist)/data->soft)) + data->dist );
2612                                         sfac /= dist;
2613                                         
2614                                         clamp_surf= 1;
2615                                 }
2616                         }
2617                 }
2618                 else {
2619                         if (IS_EQ(dist, data->dist)==0) {
2620                                 clamp_surf= 1;
2621                                 sfac= data->dist / dist;
2622                         }
2623                 }
2624                 
2625                 /* clamp to 'surface' (i.e. move owner so that dist == data->dist) */
2626                 if (clamp_surf) {
2627                         /* simply interpolate along line formed by target -> owner */
2628                         interp_v3_v3v3(dvec, ct->matrix[3], cob->matrix[3], sfac);
2629                         
2630                         /* copy new vector onto owner */
2631                         copy_v3_v3(cob->matrix[3], dvec);
2632                 }
2633         }
2634 }
2635
2636 static bConstraintTypeInfo CTI_DISTLIMIT = {
2637         CONSTRAINT_TYPE_DISTLIMIT, /* type */
2638         sizeof(bDistLimitConstraint), /* size */
2639         "Limit Distance", /* name */
2640         "bDistLimitConstraint", /* struct name */
2641         NULL, /* free data */
2642         NULL, /* relink data */
2643         distlimit_id_looper, /* id looper */
2644         NULL, /* copy data */
2645         distlimit_new_data, /* new data */
2646         distlimit_get_tars, /* get constraint targets */
2647         distlimit_flush_tars, /* flush constraint targets */
2648         default_get_tarmat, /* get a target matrix */
2649         distlimit_evaluate /* evaluate */
2650 };
2651
2652 /* ---------- Stretch To ------------ */
2653
2654 static void stretchto_new_data (void *cdata)
2655 {
2656         bStretchToConstraint *data= (bStretchToConstraint *)cdata;
2657         
2658         data->volmode = 0;
2659         data->plane = 0;
2660         data->orglength = 0.0; 
2661         data->bulge = 1.0;
2662 }
2663
2664 static void stretchto_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2665 {
2666         bStretchToConstraint *data= con->data;
2667         
2668         /* target only */
2669         func(con, (ID**)&data->tar, userdata);
2670 }
2671
2672 static int stretchto_get_tars (bConstraint *con, ListBase *list)
2673 {
2674         if (con && list) {
2675                 bStretchToConstraint *data= con->data;
2676                 bConstraintTarget *ct;
2677                 
2678                 /* standard target-getting macro for single-target constraints */
2679                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2680                 
2681                 return 1;
2682         }
2683         
2684         return 0;
2685 }
2686
2687 static void stretchto_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2688 {
2689         if (con && list) {
2690                 bStretchToConstraint *data= con->data;
2691                 bConstraintTarget *ct= list->first;
2692                 
2693                 /* the following macro is used for all standard single-target constraints */
2694                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2695         }
2696 }
2697
2698 static void stretchto_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2699 {
2700         bStretchToConstraint *data= con->data;
2701         bConstraintTarget *ct= targets->first;
2702         
2703         /* only evaluate if there is a target */
2704         if (VALID_CONS_TARGET(ct)) {
2705                 float size[3], scale[3], vec[3], xx[3], zz[3], orth[3];
2706                 float totmat[3][3];
2707                 float tmat[4][4];
2708                 float dist;
2709                 
2710                 /* store scaling before destroying obmat */
2711                 mat4_to_size(size, cob->matrix);
2712                 
2713                 /* store X orientation before destroying obmat */
2714                 normalize_v3_v3(xx, cob->matrix[0]);
2715                 
2716                 /* store Z orientation before destroying obmat */
2717                 normalize_v3_v3(zz, cob->matrix[2]);
2718                 
2719                 sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);
2720                 vec[0] /= size[0];
2721                 vec[1] /= size[1];
2722                 vec[2] /= size[2];
2723                 
2724                 dist = normalize_v3(vec);
2725                 //dist = len_v3v3( ob->obmat[3], targetmat[3]);
2726                 
2727                 /* data->orglength==0 occurs on first run, and after 'R' button is clicked */
2728                 if (data->orglength == 0)  
2729                         data->orglength = dist;
2730                 if (data->bulge == 0) 
2731                         data->bulge = 1.0;
2732                 
2733                 scale[1] = dist/data->orglength;
2734                 switch (data->volmode) {
2735                 /* volume preserving scaling */
2736                 case VOLUME_XZ :
2737                         scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist));
2738                         scale[2] = scale[0];
2739                         break;
2740                 case VOLUME_X:
2741                         scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1);
2742                         scale[2] = 1.0;
2743                         break;
2744                 case VOLUME_Z:
2745                         scale[0] = 1.0;
2746                         scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1);
2747                         break;
2748                         /* don't care for volume */
2749                 case NO_VOLUME:
2750                         scale[0] = 1.0;
2751                         scale[2] = 1.0;
2752                         break;
2753                 default: /* should not happen, but in case*/
2754                         return;    
2755                 } /* switch (data->volmode) */
2756
2757                 /* Clear the object's rotation and scale */
2758                 cob->matrix[0][0]=size[0]*scale[0];
2759                 cob->matrix[0][1]=0;
2760                 cob->matrix[0][2]=0;
2761                 cob->matrix[1][0]=0;
2762                 cob->matrix[1][1]=size[1]*scale[1];
2763                 cob->matrix[1][2]=0;
2764                 cob->matrix[2][0]=0;
2765                 cob->matrix[2][1]=0;
2766                 cob->matrix[2][2]=size[2]*scale[2];
2767                 
2768                 sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);
2769                 normalize_v3(vec);
2770                 
2771                 /* new Y aligns  object target connection*/
2772                 negate_v3_v3(totmat[1], vec);
2773                 switch (data->plane) {
2774                 case PLANE_X:
2775                         /* build new Z vector */
2776                         /* othogonal to "new Y" "old X! plane */
2777                         cross_v3_v3v3(orth, vec, xx);
2778                         normalize_v3(orth);
2779                         
2780                         /* new Z*/
2781                         copy_v3_v3(totmat[2], orth);
2782                         
2783                         /* we decided to keep X plane*/
2784                         cross_v3_v3v3(xx, orth, vec);
2785                         normalize_v3_v3(totmat[0], xx);
2786                         break;
2787                 case PLANE_Z:
2788                         /* build new X vector */
2789                         /* othogonal to "new Y" "old Z! plane */
2790                         cross_v3_v3v3(orth, vec, zz);
2791                         normalize_v3(orth);
2792                         
2793                         /* new X */
2794                         negate_v3_v3(totmat[0], orth);
2795                         
2796                         /* we decided to keep Z */
2797                         cross_v3_v3v3(zz, orth, vec);
2798                         normalize_v3_v3(totmat[2], zz);
2799                         break;
2800                 } /* switch (data->plane) */
2801                 
2802                 copy_m4_m4(tmat, cob->matrix);
2803                 mul_m4_m3m4(cob->matrix, totmat, tmat);
2804         }
2805 }
2806
2807 static bConstraintTypeInfo CTI_STRETCHTO = {
2808         CONSTRAINT_TYPE_STRETCHTO, /* type */
2809         sizeof(bStretchToConstraint), /* size */
2810         "Stretch To", /* name */
2811         "bStretchToConstraint", /* struct name */
2812         NULL, /* free data */
2813         NULL, /* relink data */
2814         stretchto_id_looper, /* id looper */
2815         NULL, /* copy data */
2816         stretchto_new_data, /* new data */
2817         stretchto_get_tars, /* get constraint targets */
2818         stretchto_flush_tars, /* flush constraint targets */
2819         default_get_tarmat, /* get target matrix */
2820         stretchto_evaluate /* evaluate */
2821 };
2822
2823 /* ---------- Floor ------------ */
2824
2825 static void minmax_new_data (void *cdata)
2826 {
2827         bMinMaxConstraint *data= (bMinMaxConstraint *)cdata;
2828         
2829         data->minmaxflag = TRACK_Z;
2830         data->offset = 0.0f;
2831         data->cache[0] = data->cache[1] = data->cache[2] = 0.0f;
2832         data->flag = 0;
2833 }
2834
2835 static void minmax_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2836 {
2837         bMinMaxConstraint *data= con->data;
2838         
2839         /* target only */
2840         func(con, (ID**)&data->tar, userdata);
2841 }
2842
2843 static int minmax_get_tars (bConstraint *con, ListBase *list)
2844 {
2845         if (con && list) {
2846                 bMinMaxConstraint *data= con->data;
2847                 bConstraintTarget *ct;
2848                 
2849                 /* standard target-getting macro for single-target constraints */
2850                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2851                 
2852                 return 1;
2853         }
2854         
2855         return 0;
2856 }
2857
2858 static void minmax_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2859 {
2860         if (con && list) {
2861                 bMinMaxConstraint *data= con->data;
2862                 bConstraintTarget *ct= list->first;
2863                 
2864                 /* the following macro is used for all standard single-target constraints */
2865                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2866         }
2867 }
2868
2869 static void minmax_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2870 {
2871         bMinMaxConstraint *data= con->data;
2872         bConstraintTarget *ct= targets->first;
2873         
2874         /* only evaluate if there is a target */
2875         if (VALID_CONS_TARGET(ct)) {
2876                 float obmat[4][4], imat[4][4], tarmat[4][4], tmat[4][4];
2877                 float val1, val2;
2878                 int index;
2879                 
2880                 copy_m4_m4(obmat, cob->matrix);
2881                 copy_m4_m4(tarmat, ct->matrix);
2882                 
2883                 if (data->flag & MINMAX_USEROT) {
2884                         /* take rotation of target into account by doing the transaction in target's localspace */
2885                         invert_m4_m4(imat, tarmat);
2886                         mul_m4_m4m4(tmat, obmat, imat);
2887                         copy_m4_m4(obmat, tmat);
2888             &