Fix for [#21875] Copy rotation only on y axies
[blender-staging.git] / source / blender / blenkernel / intern / constraint.c
1 /**
2  * $Id$
3  *
4  * ***** BEGIN GPL LICENSE BLOCK *****
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19  *
20  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
21  * All rights reserved.
22  *
23  * The Original Code is: all of this file.
24  *
25  * Contributor(s): 2007, Joshua Leung, major recode
26  *
27  * ***** END GPL LICENSE BLOCK *****
28  */
29
30 #include <stdio.h> 
31 #include <stddef.h>
32 #include <string.h>
33 #include <math.h>
34 #include <float.h>
35
36 #include "MEM_guardedalloc.h"
37
38 #include "BLI_blenlib.h"
39 #include "BLI_listbase.h"
40 #include "BLI_math.h"
41 #include "BLI_editVert.h"
42
43 #include "DNA_armature_types.h"
44 #include "DNA_constraint_types.h"
45 #include "DNA_modifier_types.h"
46 #include "DNA_object_types.h"
47 #include "DNA_action_types.h"
48 #include "DNA_curve_types.h"
49 #include "DNA_mesh_types.h"
50 #include "DNA_meshdata_types.h"
51 #include "DNA_lattice_types.h"
52 #include "DNA_scene_types.h"
53 #include "DNA_text_types.h"
54
55 #include "BKE_utildefines.h"
56 #include "BKE_action.h"
57 #include "BKE_anim.h" /* for the curve calculation part */
58 #include "BKE_armature.h"
59 #include "BKE_blender.h"
60 #include "BKE_constraint.h"
61 #include "BKE_displist.h"
62 #include "BKE_deform.h"
63 #include "BKE_DerivedMesh.h"    /* for geometry targets */
64 #include "BKE_cdderivedmesh.h" /* for geometry targets */
65 #include "BKE_object.h"
66 #include "BKE_ipo.h"
67 #include "BKE_global.h"
68 #include "BKE_library.h"
69 #include "BKE_idprop.h"
70 #include "BKE_shrinkwrap.h"
71 #include "BKE_mesh.h"
72
73 #ifndef DISABLE_PYTHON
74 #include "BPY_extern.h"
75 #endif
76
77 #ifndef M_PI
78 #define M_PI            3.14159265358979323846
79 #endif
80
81
82
83 /* ************************ Constraints - General Utilities *************************** */
84 /* These functions here don't act on any specific constraints, and are therefore should/will
85  * not require any of the special function-pointers afforded by the relevant constraint 
86  * type-info structs.
87  */
88
89 /* -------------- Naming -------------- */
90
91 /* Find the first available, non-duplicate name for a given constraint */
92 void unique_constraint_name (bConstraint *con, ListBase *list)
93 {
94         BLI_uniquename(list, con, "Const", '.', offsetof(bConstraint, name), sizeof(con->name));
95 }
96
97 /* ----------------- Evaluation Loop Preparation --------------- */
98
99 /* package an object/bone for use in constraint evaluation */
100 /* This function MEM_calloc's a bConstraintOb struct, that will need to be freed after evaluation */
101 bConstraintOb *constraints_make_evalob (Scene *scene, Object *ob, void *subdata, short datatype)
102 {
103         bConstraintOb *cob;
104         
105         /* create regardless of whether we have any data! */
106         cob= MEM_callocN(sizeof(bConstraintOb), "bConstraintOb");
107         
108         /* for system time, part of deglobalization, code nicer later with local time (ton) */
109         cob->scene= scene;
110         
111         /* based on type of available data */
112         switch (datatype) {
113                 case CONSTRAINT_OBTYPE_OBJECT:
114                 {
115                         /* disregard subdata... calloc should set other values right */
116                         if (ob) {
117                                 cob->ob = ob;
118                                 cob->type = datatype;
119                                 cob->rotOrder = EULER_ORDER_DEFAULT; // TODO: when objects have rotation order too, use that
120                                 copy_m4_m4(cob->matrix, ob->obmat);
121                         }
122                         else
123                                 unit_m4(cob->matrix);
124                         
125                         copy_m4_m4(cob->startmat, cob->matrix);
126                 }
127                         break;
128                 case CONSTRAINT_OBTYPE_BONE:
129                 {
130                         /* only set if we have valid bone, otherwise default */
131                         if (ob && subdata) {
132                                 cob->ob = ob;
133                                 cob->pchan = (bPoseChannel *)subdata;
134                                 cob->type = datatype;
135                                 
136                                 if (cob->pchan->rotmode > 0) {
137                                         /* should be some type of Euler order */
138                                         cob->rotOrder= cob->pchan->rotmode; 
139                                 }
140                                 else {
141                                         /* Quats, so eulers should just use default order */
142                                         cob->rotOrder= EULER_ORDER_DEFAULT;
143                                 }
144                                 
145                                 /* matrix in world-space */
146                                 mul_m4_m4m4(cob->matrix, cob->pchan->pose_mat, ob->obmat);
147                         }
148                         else
149                                 unit_m4(cob->matrix);
150                                 
151                         copy_m4_m4(cob->startmat, cob->matrix);
152                 }
153                         break;
154                         
155                 default: /* other types not yet handled */
156                         unit_m4(cob->matrix);
157                         unit_m4(cob->startmat);
158                         break;
159         }
160         
161         return cob;
162 }
163
164 /* cleanup after constraint evaluation */
165 void constraints_clear_evalob (bConstraintOb *cob)
166 {
167         float delta[4][4], imat[4][4];
168         
169         /* prevent crashes */
170         if (cob == NULL) 
171                 return;
172         
173         /* calculate delta of constraints evaluation */
174         invert_m4_m4(imat, cob->startmat);
175         mul_m4_m4m4(delta, imat, cob->matrix);
176         
177         /* copy matrices back to source */
178         switch (cob->type) {
179                 case CONSTRAINT_OBTYPE_OBJECT:
180                 {
181                         /* cob->ob might not exist! */
182                         if (cob->ob) {
183                                 /* copy new ob-matrix back to owner */
184                                 copy_m4_m4(cob->ob->obmat, cob->matrix);
185                                 
186                                 /* copy inverse of delta back to owner */
187                                 invert_m4_m4(cob->ob->constinv, delta);
188                         }
189                 }
190                         break;
191                 case CONSTRAINT_OBTYPE_BONE:
192                 {
193                         /* cob->ob or cob->pchan might not exist */
194                         if (cob->ob && cob->pchan) {
195                                 /* copy new pose-matrix back to owner */
196                                 mul_m4_m4m4(cob->pchan->pose_mat, cob->matrix, cob->ob->imat);
197                                 
198                                 /* copy inverse of delta back to owner */
199                                 invert_m4_m4(cob->pchan->constinv, delta);
200                         }
201                 }
202                         break;
203         }
204         
205         /* free tempolary struct */
206         MEM_freeN(cob);
207 }
208
209 /* -------------- Space-Conversion API -------------- */
210
211 /* This function is responsible for the correct transformations/conversions 
212  * of a matrix from one space to another for constraint evaluation.
213  * For now, this is only implemented for Objects and PoseChannels.
214  */
215 void constraint_mat_convertspace (Object *ob, bPoseChannel *pchan, float mat[][4], short from, short to)
216 {
217         float tempmat[4][4];
218         float diff_mat[4][4];
219         float imat[4][4];
220         
221         /* prevent crashes in these unlikely events  */
222         if (ob==NULL || mat==NULL) return;
223         /* optimise trick - check if need to do anything */
224         if (from == to) return;
225         
226         /* are we dealing with pose-channels or objects */
227         if (pchan) {
228                 /* pose channels */
229                 switch (from) {
230                         case CONSTRAINT_SPACE_WORLD: /* ---------- FROM WORLDSPACE ---------- */
231                         {
232                                 /* world to pose */
233                                 invert_m4_m4(imat, ob->obmat);
234                                 copy_m4_m4(tempmat, mat);
235                                 mul_m4_m4m4(mat, tempmat, imat);
236                                 
237                                 /* use pose-space as stepping stone for other spaces... */
238                                 if (ELEM(to, CONSTRAINT_SPACE_LOCAL, CONSTRAINT_SPACE_PARLOCAL)) {
239                                         /* call self with slightly different values */
240                                         constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
241                                 }
242                         }
243                                 break;
244                         case CONSTRAINT_SPACE_POSE:     /* ---------- FROM POSESPACE ---------- */
245                         {
246                                 /* pose to world */
247                                 if (to == CONSTRAINT_SPACE_WORLD) {
248                                         copy_m4_m4(tempmat, mat);
249                                         mul_m4_m4m4(mat, tempmat, ob->obmat);
250                                 }
251                                 /* pose to local */
252                                 else if (to == CONSTRAINT_SPACE_LOCAL) {
253                                         if (pchan->bone) {
254                                                 if (pchan->parent) {
255                                                         float offs_bone[4][4];
256                                                                 
257                                                         /* construct offs_bone the same way it is done in armature.c */
258                                                         copy_m4_m3(offs_bone, pchan->bone->bone_mat);
259                                                         copy_v3_v3(offs_bone[3], pchan->bone->head);
260                                                         offs_bone[3][1]+= pchan->bone->parent->length;
261                                                         
262                                                         if (pchan->bone->flag & BONE_HINGE) {
263                                                                 /* pose_mat = par_pose-space_location * chan_mat */
264                                                                 float tmat[4][4];
265                                                                 
266                                                                 /* the rotation of the parent restposition */
267                                                                 copy_m4_m4(tmat, pchan->bone->parent->arm_mat);
268                                                                 
269                                                                 /* the location of actual parent transform */
270                                                                 copy_v3_v3(tmat[3], offs_bone[3]);
271                                                                 offs_bone[3][0]= offs_bone[3][1]= offs_bone[3][2]= 0.0f;
272                                                                 mul_m4_v3(pchan->parent->pose_mat, tmat[3]);
273                                                                 
274                                                                 mul_m4_m4m4(diff_mat, offs_bone, tmat);
275                                                                 invert_m4_m4(imat, diff_mat);
276                                                         }
277                                                         else {
278                                                                 /* pose_mat = par_pose_mat * bone_mat * chan_mat */
279                                                                 mul_m4_m4m4(diff_mat, offs_bone, pchan->parent->pose_mat);
280                                                                 invert_m4_m4(imat, diff_mat);
281                                                         }
282                                                 }
283                                                 else {
284                                                         /* pose_mat = chan_mat * arm_mat */
285                                                         invert_m4_m4(imat, pchan->bone->arm_mat);
286                                                 }
287                                                 
288                                                 copy_m4_m4(tempmat, mat);
289                                                 mul_m4_m4m4(mat, tempmat, imat);
290                                         }
291                                 }
292                                 /* pose to local with parent */
293                                 else if (to == CONSTRAINT_SPACE_PARLOCAL) {
294                                         if (pchan->bone) {
295                                                 invert_m4_m4(imat, pchan->bone->arm_mat);
296                                                 copy_m4_m4(tempmat, mat);
297                                                 mul_m4_m4m4(mat, tempmat, imat);
298                                         }
299                                 }
300                         }
301                                 break;
302                         case CONSTRAINT_SPACE_LOCAL: /* ------------ FROM LOCALSPACE --------- */
303                         {
304                                 /* local to pose - do inverse procedure that was done for pose to local */
305                                 if (pchan->bone) {
306                                         /* we need the posespace_matrix = local_matrix + (parent_posespace_matrix + restpos) */                                         
307                                         if (pchan->parent) {
308                                                 float offs_bone[4][4];
309                                                 
310                                                 /* construct offs_bone the same way it is done in armature.c */
311                                                 copy_m4_m3(offs_bone, pchan->bone->bone_mat);
312                                                 copy_v3_v3(offs_bone[3], pchan->bone->head);
313                                                 offs_bone[3][1]+= pchan->bone->parent->length;
314                                                 
315                                                 if (pchan->bone->flag & BONE_HINGE) {
316                                                         /* pose_mat = par_pose-space_location * chan_mat */
317                                                         float tmat[4][4];
318                                                         
319                                                         /* the rotation of the parent restposition */
320                                                         copy_m4_m4(tmat, pchan->bone->parent->arm_mat);
321                                                         
322                                                         /* the location of actual parent transform */
323                                                         copy_v3_v3(tmat[3], offs_bone[3]);
324                                                         zero_v3(offs_bone[3]);
325                                                         mul_m4_v3(pchan->parent->pose_mat, tmat[3]);
326                                                         
327                                                         mul_m4_m4m4(diff_mat, offs_bone, tmat);
328                                                         copy_m4_m4(tempmat, mat);
329                                                         mul_m4_m4m4(mat, tempmat, diff_mat);
330                                                 }
331                                                 else {
332                                                         /* pose_mat = par_pose_mat * bone_mat * chan_mat */
333                                                         mul_m4_m4m4(diff_mat, offs_bone, pchan->parent->pose_mat);
334                                                         copy_m4_m4(tempmat, mat);
335                                                         mul_m4_m4m4(mat, tempmat, diff_mat);
336                                                 }
337                                         }
338                                         else {
339                                                 copy_m4_m4(diff_mat, pchan->bone->arm_mat);
340                                                 
341                                                 copy_m4_m4(tempmat, mat);
342                                                 mul_m4_m4m4(mat, tempmat, diff_mat);
343                                         }
344                                 }
345                                 
346                                 /* use pose-space as stepping stone for other spaces */
347                                 if (ELEM(to, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_PARLOCAL)) {
348                                         /* call self with slightly different values */
349                                         constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
350                                 }                               
351                         }
352                                 break;
353                         case CONSTRAINT_SPACE_PARLOCAL: /* -------------- FROM LOCAL WITH PARENT ---------- */
354                         {
355                                 /* local + parent to pose */
356                                 if (pchan->bone) {                                      
357                                         copy_m4_m4(diff_mat, pchan->bone->arm_mat);
358                                         copy_m4_m4(tempmat, mat);
359                                         mul_m4_m4m4(mat, diff_mat, tempmat);
360                                 }
361                                 
362                                 /* use pose-space as stepping stone for other spaces */
363                                 if (ELEM(to, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL)) {
364                                         /* call self with slightly different values */
365                                         constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
366                                 }
367                         }
368                                 break;
369                 }
370         }
371         else {
372                 /* objects */
373                 if (from==CONSTRAINT_SPACE_WORLD && to==CONSTRAINT_SPACE_LOCAL) {
374                         /* check if object has a parent - otherwise this won't work */
375                         if (ob->parent) {
376                                 /* 'subtract' parent's effects from owner */
377                                 mul_m4_m4m4(diff_mat, ob->parentinv, ob->parent->obmat);
378                                 invert_m4_m4(imat, diff_mat);
379                                 copy_m4_m4(tempmat, mat);
380                                 mul_m4_m4m4(mat, tempmat, imat);
381                         }
382                 }
383                 else if (from==CONSTRAINT_SPACE_LOCAL && to==CONSTRAINT_SPACE_WORLD) {
384                         /* check that object has a parent - otherwise this won't work */
385                         if (ob->parent) {
386                                 /* 'add' parent's effect back to owner */
387                                 copy_m4_m4(tempmat, mat);
388                                 mul_m4_m4m4(diff_mat, ob->parentinv, ob->parent->obmat);
389                                 mul_m4_m4m4(mat, tempmat, diff_mat);
390                         }
391                 }
392         }
393 }
394
395 /* ------------ General Target Matrix Tools ---------- */
396
397 /* function that sets the given matrix based on given vertex group in mesh */
398 static void contarget_get_mesh_mat (Scene *scene, Object *ob, char *substring, float mat[][4])
399 {
400         DerivedMesh *dm = NULL;
401         Mesh *me= ob->data;
402         EditMesh *em = BKE_mesh_get_editmesh(me);
403         float vec[3] = {0.0f, 0.0f, 0.0f};
404         float normal[3] = {0.0f, 0.0f, 0.0f}, plane[3];
405         float imat[3][3], tmat[3][3];
406         int dgroup;
407         short freeDM = 0;
408         
409         /* initialize target matrix using target matrix */
410         copy_m4_m4(mat, ob->obmat);
411         
412         /* get index of vertex group */
413         dgroup = defgroup_name_index(ob, substring);
414         if (dgroup < 0) return;
415         
416         /* get DerivedMesh */
417         if (em) {
418                 /* target is in editmode, so get a special derived mesh */
419                 dm = CDDM_from_editmesh(em, ob->data);
420                 freeDM= 1;
421         }
422         else {
423                 /* when not in EditMode, use the 'final' derived mesh 
424                  *      - check if the custom data masks for derivedFinal mean that we can just use that
425                  *        (this is more effficient + sufficient for most cases)
426                  */
427                 if (!(ob->lastDataMask & CD_MASK_MDEFORMVERT)) {
428                         dm = mesh_get_derived_final(scene, ob, CD_MASK_MDEFORMVERT);
429                         freeDM= 1;
430                 }
431                 else 
432                         dm = (DerivedMesh *)ob->derivedFinal;
433         }
434         
435         /* only continue if there's a valid DerivedMesh */
436         if (dm) {
437                 MDeformVert *dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
438                 int numVerts = dm->getNumVerts(dm);
439                 int i, j, count = 0;
440                 float co[3], nor[3];
441                 
442                 /* check that dvert is a valid pointers (just in case) */
443                 if (dvert) {
444                         /* get the average of all verts with that are in the vertex-group */
445                         for (i = 0; i < numVerts; i++) {        
446                                 for (j = 0; j < dvert[i].totweight; j++) {
447                                         /* does this vertex belong to nominated vertex group? */
448                                         if (dvert[i].dw[j].def_nr == dgroup) {
449                                                 dm->getVertCo(dm, i, co);
450                                                 dm->getVertNo(dm, i, nor);
451                                                 add_v3_v3(vec, co);
452                                                 add_v3_v3(normal, nor);
453                                                 count++;
454                                                 break;
455                                         }
456                                         
457                                 }
458                         }
459                         
460                         
461                         /* calculate averages of normal and coordinates */
462                         if (count > 0) {
463                                 mul_v3_fl(vec, 1.0f / count);
464                                 mul_v3_fl(normal, 1.0f / count);
465                         }
466                         
467                         
468                         /* derive the rotation from the average normal: 
469                          *              - code taken from transform_manipulator.c, 
470                          *                      calc_manipulator_stats, V3D_MANIP_NORMAL case
471                          */
472                         /*      we need the transpose of the inverse for a normal... */
473                         copy_m3_m4(imat, ob->obmat);
474                         
475                         invert_m3_m3(tmat, imat);
476                         transpose_m3(tmat);
477                         mul_m3_v3(tmat, normal);
478                         
479                         normalize_v3(normal);
480                         copy_v3_v3(plane, tmat[1]);
481                         
482                         copy_v3_v3(tmat[2], normal);
483                         cross_v3_v3v3(tmat[0], normal, plane);
484                         cross_v3_v3v3(tmat[1], tmat[2], tmat[0]);
485                         
486                         copy_m4_m3(mat, tmat);
487                         normalize_m4(mat);
488                         
489                         
490                         /* apply the average coordinate as the new location */
491                         mul_v3_m4v3(mat[3], ob->obmat, vec);
492                 }
493         }
494         
495         /* free temporary DerivedMesh created (in EditMode case) */
496         if (dm && freeDM)
497                 dm->release(dm);
498         if (em)
499                 BKE_mesh_end_editmesh(me, em);
500 }
501
502 /* function that sets the given matrix based on given vertex group in lattice */
503 static void contarget_get_lattice_mat (Object *ob, char *substring, float mat[][4])
504 {
505         Lattice *lt= (Lattice *)ob->data;
506         
507         DispList *dl = find_displist(&ob->disp, DL_VERTS);
508         float *co = dl?dl->verts:NULL;
509         BPoint *bp = lt->def;
510         
511         MDeformVert *dvert = lt->dvert;
512         int tot_verts= lt->pntsu*lt->pntsv*lt->pntsw;
513         float vec[3]= {0.0f, 0.0f, 0.0f}, tvec[3];
514         int dgroup=0, grouped=0;
515         int i, n;
516         
517         /* initialize target matrix using target matrix */
518         copy_m4_m4(mat, ob->obmat);
519         
520         /* get index of vertex group */
521         dgroup = defgroup_name_index(ob, substring);
522         if (dgroup < 0) return;
523         if (dvert == NULL) return;
524         
525         /* 1. Loop through control-points checking if in nominated vertex-group.
526          * 2. If it is, add it to vec to find the average point.
527          */
528         for (i=0; i < tot_verts; i++, dvert++) {
529                 for (n= 0; n < dvert->totweight; n++) {
530                         /* found match - vert is in vgroup */
531                         if (dvert->dw[n].def_nr == dgroup) {
532                                 /* copy coordinates of point to temporary vector, then add to find average */
533                                 if (co)
534                                         memcpy(tvec, co, 3*sizeof(float));
535                                 else
536                                         memcpy(tvec, bp->vec, 3*sizeof(float));
537                                         
538                                 add_v3_v3(vec, tvec);
539                                 grouped++;
540                                 
541                                 break;
542                         }
543                 }
544                 
545                 /* advance pointer to coordinate data */
546                 if (co) co+= 3;
547                 else bp++;
548         }
549         
550         /* find average location, then multiply by ob->obmat to find world-space location */
551         if (grouped)
552                 mul_v3_fl(vec, 1.0f / grouped);
553         mul_v3_m4v3(tvec, ob->obmat, vec);
554         
555         /* copy new location to matrix */
556         copy_v3_v3(mat[3], tvec);
557 }
558
559 /* generic function to get the appropriate matrix for most target cases */
560 /* The cases where the target can be object data have not been implemented */
561 static void constraint_target_to_mat4 (Scene *scene, Object *ob, char *substring, float mat[][4], short from, short to, float headtail)
562 {
563         /*      Case OBJECT */
564         if (!strlen(substring)) {
565                 copy_m4_m4(mat, ob->obmat);
566                 constraint_mat_convertspace(ob, NULL, mat, from, to);
567         }
568         /*      Case VERTEXGROUP */
569         /* Current method just takes the average location of all the points in the
570          * VertexGroup, and uses that as the location value of the targets. Where 
571          * possible, the orientation will also be calculated, by calculating an
572          * 'average' vertex normal, and deriving the rotaation from that.
573          *
574          * NOTE: EditMode is not currently supported, and will most likely remain that
575          *              way as constraints can only really affect things on object/bone level.
576          */
577         else if (ob->type == OB_MESH) {
578                 contarget_get_mesh_mat(scene, ob, substring, mat);
579                 constraint_mat_convertspace(ob, NULL, mat, from, to);
580         }
581         else if (ob->type == OB_LATTICE) {
582                 contarget_get_lattice_mat(ob, substring, mat);
583                 constraint_mat_convertspace(ob, NULL, mat, from, to);
584         }
585         /*      Case BONE */
586         else {
587                 bPoseChannel *pchan;
588                 
589                 pchan = get_pose_channel(ob->pose, substring);
590                 if (pchan) {
591                         /* Multiply the PoseSpace accumulation/final matrix for this
592                          * PoseChannel by the Armature Object's Matrix to get a worldspace
593                          * matrix.
594                          */
595                         if (headtail < 0.000001) {
596                                 /* skip length interpolation if set to head */
597                                 mul_m4_m4m4(mat, pchan->pose_mat, ob->obmat);
598                         }
599                         else {
600                                 float tempmat[4][4], loc[3];
601                                 
602                                 /* interpolate along length of bone */
603                                 interp_v3_v3v3(loc, pchan->pose_head, pchan->pose_tail, headtail);      
604                                 
605                                 /* use interpolated distance for subtarget */
606                                 copy_m4_m4(tempmat, pchan->pose_mat);   
607                                 copy_v3_v3(tempmat[3], loc);
608                                 
609                                 mul_m4_m4m4(mat, tempmat, ob->obmat);
610                         }
611                 } 
612                 else
613                         copy_m4_m4(mat, ob->obmat);
614                         
615                 /* convert matrix space as required */
616                 constraint_mat_convertspace(ob, pchan, mat, from, to);
617         }
618 }
619
620 /* ************************* Specific Constraints ***************************** */
621 /* Each constraint defines a set of functions, which will be called at the appropriate
622  * times. In addition to this, each constraint should have a type-info struct, where
623  * its functions are attached for use. 
624  */
625  
626 /* Template for type-info data:
627  *      - make a copy of this when creating new constraints, and just change the functions
628  *        pointed to as necessary
629  *      - although the naming of functions doesn't matter, it would help for code
630  *        readability, to follow the same naming convention as is presented here
631  *      - any functions that a constraint doesn't need to define, don't define
632  *        for such cases, just use NULL 
633  *      - these should be defined after all the functions have been defined, so that
634  *        forward-definitions/prototypes don't need to be used!
635  *      - keep this copy #if-def'd so that future constraints can get based off this
636  */
637 #if 0
638 static bConstraintTypeInfo CTI_CONSTRNAME = {
639         CONSTRAINT_TYPE_CONSTRNAME, /* type */
640         sizeof(bConstrNameConstraint), /* size */
641         "ConstrName", /* name */
642         "bConstrNameConstraint", /* struct name */
643         constrname_free, /* free data */
644         constrname_relink, /* relink data */
645         constrname_id_looper, /* id looper */
646         constrname_copy, /* copy data */
647         constrname_new_data, /* new data */
648         constrname_get_tars, /* get constraint targets */
649         constrname_flush_tars, /* flush constraint targets */
650         constrname_get_tarmat, /* get target matrix */
651         constrname_evaluate /* evaluate */
652 };
653 #endif
654
655 /* This function should be used for the get_target_matrix member of all 
656  * constraints that are not picky about what happens to their target matrix.
657  */
658 static void default_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
659 {
660         if (VALID_CONS_TARGET(ct))
661                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
662         else if (ct)
663                 unit_m4(ct->matrix);
664 }
665
666 /* This following macro should be used for all standard single-target *_get_tars functions 
667  * to save typing and reduce maintainance woes.
668  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
669  *  really just to help this code easier to read)
670  */
671 // TODO: cope with getting rotation order...
672 #define SINGLETARGET_GET_TARS(con, datatar, datasubtarget, ct, list) \
673         { \
674                 ct= MEM_callocN(sizeof(bConstraintTarget), "tempConstraintTarget"); \
675                  \
676                 ct->tar= datatar; \
677                 strcpy(ct->subtarget, datasubtarget); \
678                 ct->space= con->tarspace; \
679                 ct->flag= CONSTRAINT_TAR_TEMP; \
680                  \
681                 if (ct->tar) { \
682                         if ((ct->tar->type==OB_ARMATURE) && (ct->subtarget[0])) { \
683                                 bPoseChannel *pchan= get_pose_channel(ct->tar->pose, ct->subtarget); \
684                                 ct->type = CONSTRAINT_OBTYPE_BONE; \
685                                 ct->rotOrder= (pchan) ? (pchan->rotmode) : EULER_ORDER_DEFAULT; \
686                         }\
687                         else if (ELEM(ct->tar->type, OB_MESH, OB_LATTICE) && (ct->subtarget[0])) { \
688                                 ct->type = CONSTRAINT_OBTYPE_VERT; \
689                                 ct->rotOrder = EULER_ORDER_DEFAULT; \
690                         } \
691                         else {\
692                                 ct->type = CONSTRAINT_OBTYPE_OBJECT; \
693                                 ct->rotOrder= ct->tar->rotmode; \
694                         } \
695                 } \
696                  \
697                 BLI_addtail(list, ct); \
698         }
699         
700 /* This following macro should be used for all standard single-target *_get_tars functions 
701  * to save typing and reduce maintainance woes. It does not do the subtarget related operations
702  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
703  *  really just to help this code easier to read)
704  */
705 // TODO: cope with getting rotation order...
706 #define SINGLETARGETNS_GET_TARS(con, datatar, ct, list) \
707         { \
708                 ct= MEM_callocN(sizeof(bConstraintTarget), "tempConstraintTarget"); \
709                  \
710                 ct->tar= datatar; \
711                 ct->space= con->tarspace; \
712                 ct->flag= CONSTRAINT_TAR_TEMP; \
713                  \
714                 if (ct->tar) ct->type = CONSTRAINT_OBTYPE_OBJECT; \
715                  \
716                 BLI_addtail(list, ct); \
717         }
718
719 /* This following macro should be used for all standard single-target *_flush_tars functions
720  * to save typing and reduce maintainance woes.
721  * Note: the pointer to ct will be changed to point to the next in the list (as it gets removed)
722  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
723  *  really just to help this code easier to read)
724  */
725 #define SINGLETARGET_FLUSH_TARS(con, datatar, datasubtarget, ct, list, nocopy) \
726         { \
727                 if (ct) { \
728                         bConstraintTarget *ctn = ct->next; \
729                         if (nocopy == 0) { \
730                                 datatar= ct->tar; \
731                                 strcpy(datasubtarget, ct->subtarget); \
732                                 con->tarspace= (char)ct->space; \
733                         } \
734                          \
735                         BLI_freelinkN(list, ct); \
736                         ct= ctn; \
737                 } \
738         }
739         
740 /* This following macro should be used for all standard single-target *_flush_tars functions
741  * to save typing and reduce maintainance woes. It does not do the subtarget related operations.
742  * Note: the pointer to ct will be changed to point to the next in the list (as it gets removed)
743  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
744  *  really just to help this code easier to read)
745  */
746 #define SINGLETARGETNS_FLUSH_TARS(con, datatar, ct, list, nocopy) \
747         { \
748                 if (ct) { \
749                         bConstraintTarget *ctn = ct->next; \
750                         if (nocopy == 0) { \
751                                 datatar= ct->tar; \
752                                 con->tarspace= (char)ct->space; \
753                         } \
754                          \
755                         BLI_freelinkN(list, ct); \
756                         ct= ctn; \
757                 } \
758         }
759  
760 /* --------- ChildOf Constraint ------------ */
761
762 static void childof_new_data (void *cdata)
763 {
764         bChildOfConstraint *data= (bChildOfConstraint *)cdata;
765         
766         data->flag = (CHILDOF_LOCX | CHILDOF_LOCY | CHILDOF_LOCZ |
767                                         CHILDOF_ROTX |CHILDOF_ROTY | CHILDOF_ROTZ |
768                                         CHILDOF_SIZEX | CHILDOF_SIZEY | CHILDOF_SIZEZ);
769         unit_m4(data->invmat);
770 }
771
772 static void childof_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
773 {
774         bChildOfConstraint *data= con->data;
775         
776         /* target only */
777         func(con, (ID**)&data->tar, userdata);
778 }
779
780 static int childof_get_tars (bConstraint *con, ListBase *list)
781 {
782         if (con && list) {
783                 bChildOfConstraint *data= con->data;
784                 bConstraintTarget *ct;
785                 
786                 /* standard target-getting macro for single-target constraints */
787                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
788                 
789                 return 1;
790         }
791         
792         return 0;
793 }
794
795 static void childof_flush_tars (bConstraint *con, ListBase *list, short nocopy)
796 {
797         if (con && list) {
798                 bChildOfConstraint *data= con->data;
799                 bConstraintTarget *ct= list->first;
800                 
801                 /* the following macro is used for all standard single-target constraints */
802                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
803         }
804 }
805
806 static void childof_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
807 {
808         bChildOfConstraint *data= con->data;
809         bConstraintTarget *ct= targets->first;
810         
811         /* only evaluate if there is a target */
812         if (VALID_CONS_TARGET(ct)) {
813                 float parmat[4][4], invmat[4][4], tempmat[4][4];
814                 float loc[3], eul[3], size[3];
815                 float loco[3], eulo[3], sizo[3];
816                 
817                 /* get offset (parent-inverse) matrix */
818                 copy_m4_m4(invmat, data->invmat);
819                 
820                 /* extract components of both matrices */
821                 copy_v3_v3(loc, ct->matrix[3]);
822                 mat4_to_eulO(eul, ct->rotOrder, ct->matrix);
823                 mat4_to_size(size, ct->matrix);
824                 
825                 copy_v3_v3(loco, invmat[3]);
826                 mat4_to_eulO(eulo, cob->rotOrder, invmat);
827                 mat4_to_size(sizo, invmat);
828                 
829                 /* disable channels not enabled */
830                 if (!(data->flag & CHILDOF_LOCX)) loc[0]= loco[0]= 0.0f;
831                 if (!(data->flag & CHILDOF_LOCY)) loc[1]= loco[1]= 0.0f;
832                 if (!(data->flag & CHILDOF_LOCZ)) loc[2]= loco[2]= 0.0f;
833                 if (!(data->flag & CHILDOF_ROTX)) eul[0]= eulo[0]= 0.0f;
834                 if (!(data->flag & CHILDOF_ROTY)) eul[1]= eulo[1]= 0.0f;
835                 if (!(data->flag & CHILDOF_ROTZ)) eul[2]= eulo[2]= 0.0f;
836                 if (!(data->flag & CHILDOF_SIZEX)) size[0]= sizo[0]= 1.0f;
837                 if (!(data->flag & CHILDOF_SIZEY)) size[1]= sizo[1]= 1.0f;
838                 if (!(data->flag & CHILDOF_SIZEZ)) size[2]= sizo[2]= 1.0f;
839                 
840                 /* make new target mat and offset mat */
841                 loc_eulO_size_to_mat4(ct->matrix, loc, eul, size, ct->rotOrder);
842                 loc_eulO_size_to_mat4(invmat, loco, eulo, sizo, cob->rotOrder);
843                 
844                 /* multiply target (parent matrix) by offset (parent inverse) to get 
845                  * the effect of the parent that will be exherted on the owner
846                  */
847                 mul_m4_m4m4(parmat, invmat, ct->matrix);
848                 
849                 /* now multiply the parent matrix by the owner matrix to get the 
850                  * the effect of this constraint (i.e.  owner is 'parented' to parent)
851                  */
852                 copy_m4_m4(tempmat, cob->matrix);
853                 mul_m4_m4m4(cob->matrix, tempmat, parmat);
854
855                 /* without this, changes to scale and rotation can change location
856                  * of a parentless bone or a disconnected bone. Even though its set
857                  * to zero above. */
858                 if (!(data->flag & CHILDOF_LOCX)) cob->matrix[3][0]= tempmat[3][0];
859                 if (!(data->flag & CHILDOF_LOCY)) cob->matrix[3][1]= tempmat[3][1];
860                 if (!(data->flag & CHILDOF_LOCZ)) cob->matrix[3][2]= tempmat[3][2];     
861         }
862 }
863
864 static bConstraintTypeInfo CTI_CHILDOF = {
865         CONSTRAINT_TYPE_CHILDOF, /* type */
866         sizeof(bChildOfConstraint), /* size */
867         "ChildOf", /* name */
868         "bChildOfConstraint", /* struct name */
869         NULL, /* free data */
870         NULL, /* relink data */
871         childof_id_looper, /* id looper */
872         NULL, /* copy data */
873         childof_new_data, /* new data */
874         childof_get_tars, /* get constraint targets */
875         childof_flush_tars, /* flush constraint targets */
876         default_get_tarmat, /* get a target matrix */
877         childof_evaluate /* evaluate */
878 };
879
880 /* -------- TrackTo Constraint ------- */
881
882 static void trackto_new_data (void *cdata)
883 {
884         bTrackToConstraint *data= (bTrackToConstraint *)cdata;
885         
886         data->reserved1 = TRACK_Y;
887         data->reserved2 = UP_Z;
888 }       
889
890 static void trackto_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
891 {
892         bTrackToConstraint *data= con->data;
893         
894         /* target only */
895         func(con, (ID**)&data->tar, userdata);
896 }
897
898 static int trackto_get_tars (bConstraint *con, ListBase *list)
899 {
900         if (con && list) {
901                 bTrackToConstraint *data= con->data;
902                 bConstraintTarget *ct;
903                 
904                 /* standard target-getting macro for single-target constraints */
905                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
906                 
907                 return 1;
908         }
909         
910         return 0;
911 }
912
913 static void trackto_flush_tars (bConstraint *con, ListBase *list, short nocopy)
914 {
915         if (con && list) {
916                 bTrackToConstraint *data= con->data;
917                 bConstraintTarget *ct= list->first;
918                 
919                 /* the following macro is used for all standard single-target constraints */
920                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
921         }
922 }
923
924
925 static int basis_cross (int n, int m)
926 {
927         switch (n-m) {
928                 case 1: 
929                 case -2:
930                         return 1;
931                         
932                 case -1: 
933                 case 2:
934                         return -1;
935                         
936                 default:
937                         return 0;
938         }
939 }
940
941 static void vectomat (float *vec, float *target_up, short axis, short upflag, short flags, float m[][3])
942 {
943         float n[3];
944         float u[3]; /* vector specifying the up axis */
945         float proj[3];
946         float right[3];
947         float neg = -1;
948         int right_index;
949
950         if (normalize_v3_v3(n, vec) == 0.0) { 
951                 n[0] = 0.0;
952                 n[1] = 0.0;
953                 n[2] = 1.0;
954         }
955         if (axis > 2) axis -= 3;
956         else negate_v3(n);
957
958         /* n specifies the transformation of the track axis */
959         if (flags & TARGET_Z_UP) { 
960                 /* target Z axis is the global up axis */
961                 copy_v3_v3(u, target_up);
962         }
963         else { 
964                 /* world Z axis is the global up axis */
965                 u[0] = 0;
966                 u[1] = 0;
967                 u[2] = 1;
968         }
969
970         /* project the up vector onto the plane specified by n */
971         project_v3_v3v3(proj, u, n); /* first u onto n... */
972         sub_v3_v3v3(proj, u, proj); /* then onto the plane */
973         /* proj specifies the transformation of the up axis */
974
975         if (normalize_v3(proj) == 0.0) { /* degenerate projection */
976                 proj[0] = 0.0;
977                 proj[1] = 1.0;
978                 proj[2] = 0.0;
979         }
980
981         /* Normalized cross product of n and proj specifies transformation of the right axis */
982         cross_v3_v3v3(right, proj, n);
983         normalize_v3(right);
984
985         if (axis != upflag) {
986                 right_index = 3 - axis - upflag;
987                 neg = (float)basis_cross(axis, upflag);
988                 
989                 /* account for up direction, track direction */
990                 m[right_index][0] = neg * right[0];
991                 m[right_index][1] = neg * right[1];
992                 m[right_index][2] = neg * right[2];
993                 
994                 copy_v3_v3(m[upflag], proj);
995                 
996                 copy_v3_v3(m[axis], n);
997         }
998         /* identity matrix - don't do anything if the two axes are the same */
999         else {
1000                 unit_m3(m);
1001         }
1002 }
1003
1004
1005 static void trackto_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1006 {
1007         bTrackToConstraint *data= con->data;
1008         bConstraintTarget *ct= targets->first;
1009         
1010         if (VALID_CONS_TARGET(ct)) {
1011                 float size[3], vec[3];
1012                 float totmat[3][3];
1013                 float tmat[4][4];
1014                 
1015                 /* Get size property, since ob->size is only the object's own relative size, not its global one */
1016                 mat4_to_size(size, cob->matrix);
1017                 
1018                 /* Clear the object's rotation */       
1019                 cob->matrix[0][0]=size[0];
1020                 cob->matrix[0][1]=0;
1021                 cob->matrix[0][2]=0;
1022                 cob->matrix[1][0]=0;
1023                 cob->matrix[1][1]=size[1];
1024                 cob->matrix[1][2]=0;
1025                 cob->matrix[2][0]=0;
1026                 cob->matrix[2][1]=0;
1027                 cob->matrix[2][2]=size[2];
1028                 
1029                 /* targetmat[2] instead of ownermat[2] is passed to vectomat
1030                  * for backwards compatability it seems... (Aligorith)
1031                  */
1032                 sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);
1033                 vectomat(vec, ct->matrix[2], 
1034                                 (short)data->reserved1, (short)data->reserved2, 
1035                                 data->flags, totmat);
1036                 
1037                 copy_m4_m4(tmat, cob->matrix);
1038                 mul_m4_m3m4(cob->matrix, totmat, tmat);
1039         }
1040 }
1041
1042 static bConstraintTypeInfo CTI_TRACKTO = {
1043         CONSTRAINT_TYPE_TRACKTO, /* type */
1044         sizeof(bTrackToConstraint), /* size */
1045         "TrackTo", /* name */
1046         "bTrackToConstraint", /* struct name */
1047         NULL, /* free data */
1048         NULL, /* relink data */
1049         trackto_id_looper, /* id looper */
1050         NULL, /* copy data */
1051         trackto_new_data, /* new data */
1052         trackto_get_tars, /* get constraint targets */
1053         trackto_flush_tars, /* flush constraint targets */
1054         default_get_tarmat, /* get target matrix */
1055         trackto_evaluate /* evaluate */
1056 };
1057
1058 /* --------- Inverse-Kinemetics --------- */
1059
1060 static void kinematic_new_data (void *cdata)
1061 {
1062         bKinematicConstraint *data= (bKinematicConstraint *)cdata;
1063         
1064         data->weight= (float)1.0;
1065         data->orientweight= (float)1.0;
1066         data->iterations = 500;
1067         data->dist= (float)1.0;
1068         data->flag= CONSTRAINT_IK_TIP|CONSTRAINT_IK_STRETCH|CONSTRAINT_IK_POS;
1069 }
1070
1071 static void kinematic_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1072 {
1073         bKinematicConstraint *data= con->data;
1074         
1075         /* chain target */
1076         func(con, (ID**)&data->tar, userdata);
1077         
1078         /* poletarget */
1079         func(con, (ID**)&data->poletar, userdata);
1080 }
1081
1082 static int kinematic_get_tars (bConstraint *con, ListBase *list)
1083 {
1084         if (con && list) {
1085                 bKinematicConstraint *data= con->data;
1086                 bConstraintTarget *ct;
1087                 
1088                 /* standard target-getting macro for single-target constraints is used twice here */
1089                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1090                 SINGLETARGET_GET_TARS(con, data->poletar, data->polesubtarget, ct, list)
1091                 
1092                 return 2;
1093         }
1094         
1095         return 0;
1096 }
1097
1098 static void kinematic_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1099 {
1100         if (con && list) {
1101                 bKinematicConstraint *data= con->data;
1102                 bConstraintTarget *ct= list->first;
1103                 
1104                 /* the following macro is used for all standard single-target constraints */
1105                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1106                 SINGLETARGET_FLUSH_TARS(con, data->poletar, data->polesubtarget, ct, list, nocopy)
1107         }
1108 }
1109
1110 static void kinematic_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
1111 {
1112         bKinematicConstraint *data= con->data;
1113         
1114         if (VALID_CONS_TARGET(ct)) 
1115                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
1116         else if (ct) {
1117                 if (data->flag & CONSTRAINT_IK_AUTO) {
1118                         Object *ob= cob->ob;
1119                         
1120                         if (ob == NULL) {
1121                                 unit_m4(ct->matrix);
1122                         }
1123                         else {
1124                                 float vec[3];
1125                                 /* move grabtarget into world space */
1126                                 mul_v3_m4v3(vec, ob->obmat, data->grabtarget);
1127                                 copy_m4_m4(ct->matrix, ob->obmat);
1128                                 copy_v3_v3(ct->matrix[3], vec);
1129                         }
1130                 }
1131                 else
1132                         unit_m4(ct->matrix);
1133         }
1134 }
1135
1136 static bConstraintTypeInfo CTI_KINEMATIC = {
1137         CONSTRAINT_TYPE_KINEMATIC, /* type */
1138         sizeof(bKinematicConstraint), /* size */
1139         "IK", /* name */
1140         "bKinematicConstraint", /* struct name */
1141         NULL, /* free data */
1142         NULL, /* relink data */
1143         kinematic_id_looper, /* id looper */
1144         NULL, /* copy data */
1145         kinematic_new_data, /* new data */
1146         kinematic_get_tars, /* get constraint targets */
1147         kinematic_flush_tars, /* flush constraint targets */
1148         kinematic_get_tarmat, /* get target matrix */
1149         NULL /* evaluate - solved as separate loop */
1150 };
1151
1152 /* -------- Follow-Path Constraint ---------- */
1153
1154 static void followpath_new_data (void *cdata)
1155 {
1156         bFollowPathConstraint *data= (bFollowPathConstraint *)cdata;
1157         
1158         data->trackflag = TRACK_Y;
1159         data->upflag = UP_Z;
1160         data->offset = 0;
1161         data->followflag = 0;
1162 }
1163
1164 static void followpath_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1165 {
1166         bFollowPathConstraint *data= con->data;
1167         
1168         /* target only */
1169         func(con, (ID**)&data->tar, userdata);
1170 }
1171
1172 static int followpath_get_tars (bConstraint *con, ListBase *list)
1173 {
1174         if (con && list) {
1175                 bFollowPathConstraint *data= con->data;
1176                 bConstraintTarget *ct;
1177                 
1178                 /* standard target-getting macro for single-target constraints without subtargets */
1179                 SINGLETARGETNS_GET_TARS(con, data->tar, ct, list)
1180                 
1181                 return 1;
1182         }
1183         
1184         return 0;
1185 }
1186
1187 static void followpath_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1188 {
1189         if (con && list) {
1190                 bFollowPathConstraint *data= con->data;
1191                 bConstraintTarget *ct= list->first;
1192                 
1193                 /* the following macro is used for all standard single-target constraints */
1194                 SINGLETARGETNS_FLUSH_TARS(con, data->tar, ct, list, nocopy)
1195         }
1196 }
1197
1198 static void followpath_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
1199 {
1200         bFollowPathConstraint *data= con->data;
1201         
1202         if (VALID_CONS_TARGET(ct)) {
1203                 Curve *cu= ct->tar->data;
1204                 float q[4], vec[4], dir[3], quat[4], radius, x1;
1205                 float totmat[4][4];
1206                 float curvetime;
1207                 
1208                 unit_m4(totmat);
1209                 unit_m4(ct->matrix);
1210                 
1211                 /* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
1212                  *              currently for paths to work it needs to go through the bevlist/displist system (ton) 
1213                  */
1214                 
1215                 /* only happens on reload file, but violates depsgraph still... fix! */
1216                 if (cu->path==NULL || cu->path->data==NULL)
1217                         makeDispListCurveTypes(cob->scene, ct->tar, 0);
1218                 
1219                 if (cu->path && cu->path->data) {
1220                         if ((data->followflag & FOLLOWPATH_STATIC) == 0) { 
1221                                 /* animated position along curve depending on time */
1222                                 if (cob->scene)
1223                                         curvetime= bsystem_time(cob->scene, ct->tar, cu->ctime, 0.0) - data->offset;
1224                                 else    
1225                                         curvetime= cu->ctime - data->offset;
1226                                 
1227                                 /* ctime is now a proper var setting of Curve which gets set by Animato like any other var that's animated,
1228                                  * but this will only work if it actually is animated... 
1229                                  *
1230                                  * we divide the curvetime calculated in the previous step by the length of the path, to get a time
1231                                  * factor, which then gets clamped to lie within 0.0 - 1.0 range
1232                                  */
1233                                 curvetime /= cu->pathlen;
1234                                 CLAMP(curvetime, 0.0, 1.0);
1235                         }
1236                         else {
1237                                 /* fixed position along curve */
1238                                 curvetime= data->offset_fac;
1239                         }
1240                         
1241                         if ( where_on_path(ct->tar, curvetime, vec, dir, NULL, &radius, NULL) ) {
1242                                 if (data->followflag & FOLLOWPATH_FOLLOW) {
1243                                         vec_to_quat(quat, dir, (short)data->trackflag, (short)data->upflag);
1244                                         
1245                                         normalize_v3(dir);
1246                                         q[0]= (float)cos(0.5*vec[3]);
1247                                         x1= (float)sin(0.5*vec[3]);
1248                                         q[1]= -x1*dir[0];
1249                                         q[2]= -x1*dir[1];
1250                                         q[3]= -x1*dir[2];
1251                                         mul_qt_qtqt(quat, q, quat);
1252                                         
1253                                         quat_to_mat4(totmat, quat);
1254                                 }
1255                                 
1256                                 if (data->followflag & FOLLOWPATH_RADIUS) {
1257                                         float tmat[4][4], rmat[4][4];
1258                                         scale_m4_fl(tmat, radius);
1259                                         mul_m4_m4m4(rmat, totmat, tmat);
1260                                         copy_m4_m4(totmat, rmat);
1261                                 }
1262                                 
1263                                 copy_v3_v3(totmat[3], vec);
1264                                 
1265                                 mul_serie_m4(ct->matrix, ct->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
1266                         }
1267                 }
1268         }
1269         else if (ct)
1270                 unit_m4(ct->matrix);
1271 }
1272
1273 static void followpath_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1274 {
1275         bConstraintTarget *ct= targets->first;
1276         
1277         /* only evaluate if there is a target */
1278         if (VALID_CONS_TARGET(ct)) {
1279                 float obmat[4][4];
1280                 float size[3];
1281                 bFollowPathConstraint *data= con->data;
1282                 
1283                 /* get Object transform (loc/rot/size) to determine transformation from path */
1284                 // TODO: this used to be local at one point, but is probably more useful as-is
1285                 copy_m4_m4(obmat, cob->matrix);
1286                 
1287                 /* get scaling of object before applying constraint */
1288                 mat4_to_size(size, cob->matrix);
1289                 
1290                 /* apply targetmat - containing location on path, and rotation */
1291                 mul_serie_m4(cob->matrix, ct->matrix, obmat, NULL, NULL, NULL, NULL, NULL, NULL);
1292                 
1293                 /* un-apply scaling caused by path */
1294                 if ((data->followflag & FOLLOWPATH_RADIUS)==0) { /* XXX - assume that scale correction means that radius will have some scale error in it - Campbell */
1295                         float obsize[3];
1296                         
1297                         mat4_to_size( obsize,cob->matrix);
1298                         if (obsize[0])
1299                                 mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
1300                         if (obsize[1])
1301                                 mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
1302                         if (obsize[2])
1303                                 mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
1304                 }
1305         }
1306 }
1307
1308 static bConstraintTypeInfo CTI_FOLLOWPATH = {
1309         CONSTRAINT_TYPE_FOLLOWPATH, /* type */
1310         sizeof(bFollowPathConstraint), /* size */
1311         "Follow Path", /* name */
1312         "bFollowPathConstraint", /* struct name */
1313         NULL, /* free data */
1314         NULL, /* relink data */
1315         followpath_id_looper, /* id looper */
1316         NULL, /* copy data */
1317         followpath_new_data, /* new data */
1318         followpath_get_tars, /* get constraint targets */
1319         followpath_flush_tars, /* flush constraint targets */
1320         followpath_get_tarmat, /* get target matrix */
1321         followpath_evaluate /* evaluate */
1322 };
1323
1324 /* --------- Limit Location --------- */
1325
1326
1327 static void loclimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1328 {
1329         bLocLimitConstraint *data = con->data;
1330         
1331         if (data->flag & LIMIT_XMIN) {
1332                 if (cob->matrix[3][0] < data->xmin)
1333                         cob->matrix[3][0] = data->xmin;
1334         }
1335         if (data->flag & LIMIT_XMAX) {
1336                 if (cob->matrix[3][0] > data->xmax)
1337                         cob->matrix[3][0] = data->xmax;
1338         }
1339         if (data->flag & LIMIT_YMIN) {
1340                 if (cob->matrix[3][1] < data->ymin)
1341                         cob->matrix[3][1] = data->ymin;
1342         }
1343         if (data->flag & LIMIT_YMAX) {
1344                 if (cob->matrix[3][1] > data->ymax)
1345                         cob->matrix[3][1] = data->ymax;
1346         }
1347         if (data->flag & LIMIT_ZMIN) {
1348                 if (cob->matrix[3][2] < data->zmin) 
1349                         cob->matrix[3][2] = data->zmin;
1350         }
1351         if (data->flag & LIMIT_ZMAX) {
1352                 if (cob->matrix[3][2] > data->zmax)
1353                         cob->matrix[3][2] = data->zmax;
1354         }
1355 }
1356
1357 static bConstraintTypeInfo CTI_LOCLIMIT = {
1358         CONSTRAINT_TYPE_LOCLIMIT, /* type */
1359         sizeof(bLocLimitConstraint), /* size */
1360         "Limit Location", /* name */
1361         "bLocLimitConstraint", /* struct name */
1362         NULL, /* free data */
1363         NULL, /* relink data */
1364         NULL, /* id looper */
1365         NULL, /* copy data */
1366         NULL, /* new data */
1367         NULL, /* get constraint targets */
1368         NULL, /* flush constraint targets */
1369         NULL, /* get target matrix */
1370         loclimit_evaluate /* evaluate */
1371 };
1372
1373 /* -------- Limit Rotation --------- */
1374
1375 static void rotlimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1376 {
1377         bRotLimitConstraint *data = con->data;
1378         float loc[3];
1379         float eul[3];
1380         float size[3];
1381         
1382         copy_v3_v3(loc, cob->matrix[3]);
1383         mat4_to_size(size, cob->matrix);
1384         
1385         mat4_to_eulO(eul, cob->rotOrder, cob->matrix);
1386         
1387         /* constraint data uses radians internally */
1388         
1389         /* limiting of euler values... */
1390         if (data->flag & LIMIT_XROT) {
1391                 if (eul[0] < data->xmin) 
1392                         eul[0] = data->xmin;
1393                         
1394                 if (eul[0] > data->xmax)
1395                         eul[0] = data->xmax;
1396         }
1397         if (data->flag & LIMIT_YROT) {
1398                 if (eul[1] < data->ymin)
1399                         eul[1] = data->ymin;
1400                         
1401                 if (eul[1] > data->ymax)
1402                         eul[1] = data->ymax;
1403         }
1404         if (data->flag & LIMIT_ZROT) {
1405                 if (eul[2] < data->zmin)
1406                         eul[2] = data->zmin;
1407                         
1408                 if (eul[2] > data->zmax)
1409                         eul[2] = data->zmax;
1410         }
1411                 
1412         loc_eulO_size_to_mat4(cob->matrix, loc, eul, size, cob->rotOrder);
1413 }
1414
1415 static bConstraintTypeInfo CTI_ROTLIMIT = {
1416         CONSTRAINT_TYPE_ROTLIMIT, /* type */
1417         sizeof(bRotLimitConstraint), /* size */
1418         "Limit Rotation", /* name */
1419         "bRotLimitConstraint", /* struct name */
1420         NULL, /* free data */
1421         NULL, /* relink data */
1422         NULL, /* id looper */
1423         NULL, /* copy data */
1424         NULL, /* new data */
1425         NULL, /* get constraint targets */
1426         NULL, /* flush constraint targets */
1427         NULL, /* get target matrix */
1428         rotlimit_evaluate /* evaluate */
1429 };
1430
1431 /* --------- Limit Scaling --------- */
1432
1433
1434 static void sizelimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1435 {
1436         bSizeLimitConstraint *data = con->data;
1437         float obsize[3], size[3];
1438         
1439         mat4_to_size( size,cob->matrix);
1440         mat4_to_size( obsize,cob->matrix);
1441         
1442         if (data->flag & LIMIT_XMIN) {
1443                 if (size[0] < data->xmin) 
1444                         size[0] = data->xmin;   
1445         }
1446         if (data->flag & LIMIT_XMAX) {
1447                 if (size[0] > data->xmax) 
1448                         size[0] = data->xmax;
1449         }
1450         if (data->flag & LIMIT_YMIN) {
1451                 if (size[1] < data->ymin) 
1452                         size[1] = data->ymin;   
1453         }
1454         if (data->flag & LIMIT_YMAX) {
1455                 if (size[1] > data->ymax) 
1456                         size[1] = data->ymax;
1457         }
1458         if (data->flag & LIMIT_ZMIN) {
1459                 if (size[2] < data->zmin) 
1460                         size[2] = data->zmin;   
1461         }
1462         if (data->flag & LIMIT_ZMAX) {
1463                 if (size[2] > data->zmax) 
1464                         size[2] = data->zmax;
1465         }
1466         
1467         if (obsize[0]) 
1468                 mul_v3_fl(cob->matrix[0], size[0]/obsize[0]);
1469         if (obsize[1]) 
1470                 mul_v3_fl(cob->matrix[1], size[1]/obsize[1]);
1471         if (obsize[2]) 
1472                 mul_v3_fl(cob->matrix[2], size[2]/obsize[2]);
1473 }
1474
1475 static bConstraintTypeInfo CTI_SIZELIMIT = {
1476         CONSTRAINT_TYPE_SIZELIMIT, /* type */
1477         sizeof(bSizeLimitConstraint), /* size */
1478         "Limit Scaling", /* name */
1479         "bSizeLimitConstraint", /* struct name */
1480         NULL, /* free data */
1481         NULL, /* relink data */
1482         NULL, /* id looper */
1483         NULL, /* copy data */
1484         NULL, /* new data */
1485         NULL, /* get constraint targets */
1486         NULL, /* flush constraint targets */
1487         NULL, /* get target matrix */
1488         sizelimit_evaluate /* evaluate */
1489 };
1490
1491 /* ----------- Copy Location ------------- */
1492
1493 static void loclike_new_data (void *cdata)
1494 {
1495         bLocateLikeConstraint *data= (bLocateLikeConstraint *)cdata;
1496         
1497         data->flag = LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z;
1498 }
1499
1500 static void loclike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1501 {
1502         bLocateLikeConstraint *data= con->data;
1503         
1504         /* target only */
1505         func(con, (ID**)&data->tar, userdata);
1506 }
1507
1508 static int loclike_get_tars (bConstraint *con, ListBase *list)
1509 {
1510         if (con && list) {
1511                 bLocateLikeConstraint *data= con->data;
1512                 bConstraintTarget *ct;
1513                 
1514                 /* standard target-getting macro for single-target constraints */
1515                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1516                 
1517                 return 1;
1518         }
1519         
1520         return 0;
1521 }
1522
1523 static void loclike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1524 {
1525         if (con && list) {
1526                 bLocateLikeConstraint *data= con->data;
1527                 bConstraintTarget *ct= list->first;
1528                 
1529                 /* the following macro is used for all standard single-target constraints */
1530                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1531         }
1532 }
1533
1534 static void loclike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1535 {
1536         bLocateLikeConstraint *data= con->data;
1537         bConstraintTarget *ct= targets->first;
1538         
1539         if (VALID_CONS_TARGET(ct)) {
1540                 float offset[3] = {0.0f, 0.0f, 0.0f};
1541                 
1542                 if (data->flag & LOCLIKE_OFFSET)
1543                         copy_v3_v3(offset, cob->matrix[3]);
1544                         
1545                 if (data->flag & LOCLIKE_X) {
1546                         cob->matrix[3][0] = ct->matrix[3][0];
1547                         
1548                         if (data->flag & LOCLIKE_X_INVERT) cob->matrix[3][0] *= -1;
1549                         cob->matrix[3][0] += offset[0];
1550                 }
1551                 if (data->flag & LOCLIKE_Y) {
1552                         cob->matrix[3][1] = ct->matrix[3][1];
1553                         
1554                         if (data->flag & LOCLIKE_Y_INVERT) cob->matrix[3][1] *= -1;
1555                         cob->matrix[3][1] += offset[1];
1556                 }
1557                 if (data->flag & LOCLIKE_Z) {
1558                         cob->matrix[3][2] = ct->matrix[3][2];
1559                         
1560                         if (data->flag & LOCLIKE_Z_INVERT) cob->matrix[3][2] *= -1;
1561                         cob->matrix[3][2] += offset[2];
1562                 }
1563         }
1564 }
1565
1566 static bConstraintTypeInfo CTI_LOCLIKE = {
1567         CONSTRAINT_TYPE_LOCLIKE, /* type */
1568         sizeof(bLocateLikeConstraint), /* size */
1569         "Copy Location", /* name */
1570         "bLocateLikeConstraint", /* struct name */
1571         NULL, /* free data */
1572         NULL, /* relink data */
1573         loclike_id_looper, /* id looper */
1574         NULL, /* copy data */
1575         loclike_new_data, /* new data */
1576         loclike_get_tars, /* get constraint targets */
1577         loclike_flush_tars, /* flush constraint targets */
1578         default_get_tarmat, /* get target matrix */
1579         loclike_evaluate /* evaluate */
1580 };
1581
1582 /* ----------- Copy Rotation ------------- */
1583
1584 static void rotlike_new_data (void *cdata)
1585 {
1586         bRotateLikeConstraint *data= (bRotateLikeConstraint *)cdata;
1587         
1588         data->flag = ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z;
1589 }
1590
1591 static void rotlike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1592 {
1593         bChildOfConstraint *data= con->data;
1594         
1595         /* target only */
1596         func(con, (ID**)&data->tar, userdata);
1597 }
1598
1599 static int rotlike_get_tars (bConstraint *con, ListBase *list)
1600 {
1601         if (con && list) {
1602                 bRotateLikeConstraint *data= con->data;
1603                 bConstraintTarget *ct;
1604                 
1605                 /* standard target-getting macro for single-target constraints */
1606                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1607                 
1608                 return 1;
1609         }
1610         
1611         return 0;
1612 }
1613
1614 static void rotlike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1615 {
1616         if (con && list) {
1617                 bRotateLikeConstraint *data= con->data;
1618                 bConstraintTarget *ct= list->first;
1619                 
1620                 /* the following macro is used for all standard single-target constraints */
1621                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1622         }
1623 }
1624
1625 static void rotlike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1626 {
1627         bRotateLikeConstraint *data= con->data;
1628         bConstraintTarget *ct= targets->first;
1629         
1630         if (VALID_CONS_TARGET(ct)) {
1631                 float   loc[3];
1632                 float   eul[3], obeul[3];
1633                 float   size[3];
1634                 
1635                 copy_v3_v3(loc, cob->matrix[3]);
1636                 mat4_to_size(size, cob->matrix);
1637                 
1638                 /* to allow compatible rotations, must get both rotations in the order of the owner... */
1639                 mat4_to_eulO(obeul, cob->rotOrder, cob->matrix);
1640                 /* we must get compatible eulers from the beginning because some of them can be modified below (see bug #21875) */
1641                 mat4_to_compatible_eulO(eul, obeul, cob->rotOrder, ct->matrix);
1642                 
1643                 if ((data->flag & ROTLIKE_X)==0)
1644                         eul[0] = obeul[0];
1645                 else {
1646                         if (data->flag & ROTLIKE_OFFSET)
1647                                 rotate_eulO(eul, cob->rotOrder, 'X', obeul[0]);
1648                         
1649                         if (data->flag & ROTLIKE_X_INVERT)
1650                                 eul[0] *= -1;
1651                 }
1652                 
1653                 if ((data->flag & ROTLIKE_Y)==0)
1654                         eul[1] = obeul[1];
1655                 else {
1656                         if (data->flag & ROTLIKE_OFFSET)
1657                                 rotate_eulO(eul, cob->rotOrder, 'Y', obeul[1]);
1658                         
1659                         if (data->flag & ROTLIKE_Y_INVERT)
1660                                 eul[1] *= -1;
1661                 }
1662                 
1663                 if ((data->flag & ROTLIKE_Z)==0)
1664                         eul[2] = obeul[2];
1665                 else {
1666                         if (data->flag & ROTLIKE_OFFSET)
1667                                 rotate_eulO(eul, cob->rotOrder, 'Z', obeul[2]);
1668                         
1669                         if (data->flag & ROTLIKE_Z_INVERT)
1670                                 eul[2] *= -1;
1671                 }
1672                 
1673                 /* good to make eulers compatible again, since we don't know how much they were changed above */
1674                 compatible_eul(eul, obeul);
1675                 loc_eulO_size_to_mat4(cob->matrix, loc, eul, size, cob->rotOrder);
1676         }
1677 }
1678
1679 static bConstraintTypeInfo CTI_ROTLIKE = {
1680         CONSTRAINT_TYPE_ROTLIKE, /* type */
1681         sizeof(bRotateLikeConstraint), /* size */
1682         "Copy Rotation", /* name */
1683         "bRotateLikeConstraint", /* struct name */
1684         NULL, /* free data */
1685         NULL, /* relink data */
1686         rotlike_id_looper, /* id looper */
1687         NULL, /* copy data */
1688         rotlike_new_data, /* new data */
1689         rotlike_get_tars, /* get constraint targets */
1690         rotlike_flush_tars, /* flush constraint targets */
1691         default_get_tarmat, /* get target matrix */
1692         rotlike_evaluate /* evaluate */
1693 };
1694
1695 /* ---------- Copy Scaling ---------- */
1696
1697 static void sizelike_new_data (void *cdata)
1698 {
1699         bSizeLikeConstraint *data= (bSizeLikeConstraint *)cdata;
1700         
1701         data->flag = SIZELIKE_X|SIZELIKE_Y|SIZELIKE_Z;
1702 }
1703
1704 static void sizelike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1705 {
1706         bSizeLikeConstraint *data= con->data;
1707         
1708         /* target only */
1709         func(con, (ID**)&data->tar, userdata);
1710 }
1711
1712 static int sizelike_get_tars (bConstraint *con, ListBase *list)
1713 {
1714         if (con && list) {
1715                 bSizeLikeConstraint *data= con->data;
1716                 bConstraintTarget *ct;
1717                 
1718                 /* standard target-getting macro for single-target constraints */
1719                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1720                 
1721                 return 1;
1722         }
1723         
1724         return 0;
1725 }
1726
1727 static void sizelike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1728 {
1729         if (con && list) {
1730                 bSizeLikeConstraint *data= con->data;
1731                 bConstraintTarget *ct= list->first;
1732                 
1733                 /* the following macro is used for all standard single-target constraints */
1734                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1735         }
1736 }
1737
1738 static void sizelike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1739 {
1740         bSizeLikeConstraint *data= con->data;
1741         bConstraintTarget *ct= targets->first;
1742         
1743         if (VALID_CONS_TARGET(ct)) {
1744                 float obsize[3], size[3];
1745                 
1746                 mat4_to_size(size, ct->matrix);
1747                 mat4_to_size(obsize, cob->matrix);
1748                 
1749                 if ((data->flag & SIZELIKE_X) && (obsize[0] != 0)) {
1750                         if (data->flag & SIZELIKE_OFFSET) {
1751                                 size[0] += (obsize[0] - 1.0f);
1752                                 mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
1753                         }
1754                         else
1755                                 mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
1756                 }
1757                 if ((data->flag & SIZELIKE_Y) && (obsize[1] != 0)) {
1758                         if (data->flag & SIZELIKE_OFFSET) {
1759                                 size[1] += (obsize[1] - 1.0f);
1760                                 mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
1761                         }
1762                         else
1763                                 mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
1764                 }
1765                 if ((data->flag & SIZELIKE_Z) && (obsize[2] != 0)) {
1766                         if (data->flag & SIZELIKE_OFFSET) {
1767                                 size[2] += (obsize[2] - 1.0f);
1768                                 mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
1769                         }
1770                         else
1771                                 mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
1772                 }
1773         }
1774 }
1775
1776 static bConstraintTypeInfo CTI_SIZELIKE = {
1777         CONSTRAINT_TYPE_SIZELIKE, /* type */
1778         sizeof(bSizeLikeConstraint), /* size */
1779         "Copy Scale", /* name */
1780         "bSizeLikeConstraint", /* struct name */
1781         NULL, /* free data */
1782         NULL, /* relink data */
1783         sizelike_id_looper, /* id looper */
1784         NULL, /* copy data */
1785         sizelike_new_data, /* new data */
1786         sizelike_get_tars, /* get constraint targets */
1787         sizelike_flush_tars, /* flush constraint targets */
1788         default_get_tarmat, /* get target matrix */
1789         sizelike_evaluate /* evaluate */
1790 };
1791
1792 /* ----------- Copy Transforms ------------- */
1793
1794 static void translike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1795 {
1796         bTransLikeConstraint *data= con->data;
1797         
1798         /* target only */
1799         func(con, (ID**)&data->tar, userdata);
1800 }
1801
1802 static int translike_get_tars (bConstraint *con, ListBase *list)
1803 {
1804         if (con && list) {
1805                 bTransLikeConstraint *data= con->data;
1806                 bConstraintTarget *ct;
1807                 
1808                 /* standard target-getting macro for single-target constraints */
1809                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1810                 
1811                 return 1;
1812         }
1813         
1814         return 0;
1815 }
1816
1817 static void translike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1818 {
1819         if (con && list) {
1820                 bTransLikeConstraint *data= con->data;
1821                 bConstraintTarget *ct= list->first;
1822                 
1823                 /* the following macro is used for all standard single-target constraints */
1824                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1825         }
1826 }
1827
1828 static void translike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1829 {
1830         bConstraintTarget *ct= targets->first;
1831         
1832         if (VALID_CONS_TARGET(ct)) {
1833                 /* just copy the entire transform matrix of the target */
1834                 copy_m4_m4(cob->matrix, ct->matrix);
1835         }
1836 }
1837
1838 static bConstraintTypeInfo CTI_TRANSLIKE = {
1839         CONSTRAINT_TYPE_TRANSLIKE, /* type */
1840         sizeof(bTransLikeConstraint), /* size */
1841         "Copy Transforms", /* name */
1842         "bTransLikeConstraint", /* struct name */
1843         NULL, /* free data */
1844         NULL, /* relink data */
1845         translike_id_looper, /* id looper */
1846         NULL, /* copy data */
1847         NULL, /* new data */
1848         translike_get_tars, /* get constraint targets */
1849         translike_flush_tars, /* flush constraint targets */
1850         default_get_tarmat, /* get target matrix */
1851         translike_evaluate /* evaluate */
1852 };
1853
1854 /* ---------- Maintain Volume ---------- */
1855
1856 static void samevolume_new_data (void *cdata)
1857 {
1858         bSameVolumeConstraint *data= (bSameVolumeConstraint *)cdata;
1859
1860         data->flag = SAMEVOL_Y;
1861         data->volume = 1.0f;
1862 }
1863
1864 static void samevolume_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1865 {
1866         bSameVolumeConstraint *data= con->data;
1867
1868         float volume = data->volume;
1869         float fac = 1.0f;
1870         float obsize[3];
1871
1872         mat4_to_size(obsize, cob->matrix);
1873         
1874         /* calculate normalising scale factor for non-essential values */
1875         if (obsize[data->flag] != 0) 
1876                 fac = sqrt(volume / obsize[data->flag]) / obsize[data->flag];
1877         
1878         /* apply scaling factor to the channels not being kept */
1879         switch (data->flag) {
1880                 case SAMEVOL_X:
1881                         mul_v3_fl(cob->matrix[1], fac);
1882                         mul_v3_fl(cob->matrix[2], fac);
1883                         break;
1884                 case SAMEVOL_Y:
1885                         mul_v3_fl(cob->matrix[0], fac);
1886                         mul_v3_fl(cob->matrix[2], fac);
1887                         break;
1888                 case SAMEVOL_Z:
1889                         mul_v3_fl(cob->matrix[0], fac);
1890                         mul_v3_fl(cob->matrix[1], fac);
1891                         break;
1892         }
1893 }
1894
1895 static bConstraintTypeInfo CTI_SAMEVOL = {
1896         CONSTRAINT_TYPE_SAMEVOL, /* type */
1897         sizeof(bSameVolumeConstraint), /* size */
1898         "Maintain Volume", /* name */
1899         "bSameVolumeConstraint", /* struct name */
1900         NULL, /* free data */
1901         NULL, /* relink data */
1902         NULL, /* id looper */
1903         NULL, /* copy data */
1904         samevolume_new_data, /* new data */
1905         NULL, /* get constraint targets */
1906         NULL, /* flush constraint targets */
1907         NULL, /* get target matrix */
1908         samevolume_evaluate /* evaluate */
1909 };
1910
1911 /* ----------- Python Constraint -------------- */
1912
1913 static void pycon_free (bConstraint *con)
1914 {
1915         bPythonConstraint *data= con->data;
1916         
1917         /* id-properties */
1918         IDP_FreeProperty(data->prop);
1919         MEM_freeN(data->prop);
1920         
1921         /* multiple targets */
1922         BLI_freelistN(&data->targets);
1923 }       
1924
1925 static void pycon_relink (bConstraint *con)
1926 {
1927         bPythonConstraint *data= con->data;
1928         
1929         ID_NEW(data->text);
1930 }
1931
1932 static void pycon_copy (bConstraint *con, bConstraint *srccon)
1933 {
1934         bPythonConstraint *pycon = (bPythonConstraint *)con->data;
1935         bPythonConstraint *opycon = (bPythonConstraint *)srccon->data;
1936         
1937         pycon->prop = IDP_CopyProperty(opycon->prop);
1938         BLI_duplicatelist(&pycon->targets, &opycon->targets);
1939 }
1940
1941 static void pycon_new_data (void *cdata)
1942 {
1943         bPythonConstraint *data= (bPythonConstraint *)cdata;
1944         
1945         /* everything should be set correctly by calloc, except for the prop->type constant.*/
1946         data->prop = MEM_callocN(sizeof(IDProperty), "PyConstraintProps");
1947         data->prop->type = IDP_GROUP;
1948 }
1949
1950 static int pycon_get_tars (bConstraint *con, ListBase *list)
1951 {
1952         if (con && list) {
1953                 bPythonConstraint *data= con->data;
1954                 
1955                 list->first = data->targets.first;
1956                 list->last = data->targets.last;
1957                 
1958                 return data->tarnum;
1959         }
1960         
1961         return 0;
1962 }
1963
1964 static void pycon_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1965 {
1966         bPythonConstraint *data= con->data;
1967         bConstraintTarget *ct;
1968         
1969         /* targets */
1970         for (ct= data->targets.first; ct; ct= ct->next)
1971                 func(con, (ID**)&ct->tar, userdata);
1972                 
1973         /* script */
1974         func(con, (ID**)&data->text, userdata);
1975 }
1976
1977 /* Whether this approach is maintained remains to be seen (aligorith) */
1978 static void pycon_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
1979 {
1980 #ifndef DISABLE_PYTHON
1981         bPythonConstraint *data= con->data;
1982 #endif
1983
1984         if (VALID_CONS_TARGET(ct)) {
1985                 /* special exception for curves - depsgraph issues */
1986                 if (ct->tar->type == OB_CURVE) {
1987                         Curve *cu= ct->tar->data;
1988                         
1989                         /* this check is to make sure curve objects get updated on file load correctly.*/
1990                         if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
1991                                 makeDispListCurveTypes(cob->scene, ct->tar, 0);                         
1992                 }
1993                 
1994                 /* firstly calculate the matrix the normal way, then let the py-function override
1995                  * this matrix if it needs to do so
1996                  */
1997                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
1998                 
1999                 /* only execute target calculation if allowed */
2000 #ifndef DISABLE_PYTHON
2001                 if (G.f & G_SCRIPT_AUTOEXEC)
2002                         BPY_pyconstraint_target(data, ct);
2003 #endif
2004         }
2005         else if (ct)
2006                 unit_m4(ct->matrix);
2007 }
2008
2009 static void pycon_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2010 {
2011 #ifdef DISABLE_PYTHON
2012         return;
2013 #else
2014         bPythonConstraint *data= con->data;
2015         
2016         /* only evaluate in python if we're allowed to do so */
2017         if ((G.f & G_SCRIPT_AUTOEXEC)==0)  return;
2018         
2019 /* currently removed, until I this can be re-implemented for multiple targets */
2020 #if 0
2021         /* Firstly, run the 'driver' function which has direct access to the objects involved 
2022          * Technically, this is potentially dangerous as users may abuse this and cause dependency-problems,
2023          * but it also allows certain 'clever' rigging hacks to work.
2024          */
2025         BPY_pyconstraint_driver(data, cob, targets);
2026 #endif
2027         
2028         /* Now, run the actual 'constraint' function, which should only access the matrices */
2029         BPY_pyconstraint_eval(data, cob, targets);
2030 #endif /* DISABLE_PYTHON */
2031 }
2032
2033 static bConstraintTypeInfo CTI_PYTHON = {
2034         CONSTRAINT_TYPE_PYTHON, /* type */
2035         sizeof(bPythonConstraint), /* size */
2036         "Script", /* name */
2037         "bPythonConstraint", /* struct name */
2038         pycon_free, /* free data */
2039         pycon_relink, /* relink data */
2040         pycon_id_looper, /* id looper */
2041         pycon_copy, /* copy data */
2042         pycon_new_data, /* new data */
2043         pycon_get_tars, /* get constraint targets */
2044         NULL, /* flush constraint targets */
2045         pycon_get_tarmat, /* get target matrix */
2046         pycon_evaluate /* evaluate */
2047 };
2048
2049 /* -------- Action Constraint ----------- */
2050
2051 static void actcon_relink (bConstraint *con)
2052 {
2053         bActionConstraint *data= con->data;
2054         ID_NEW(data->act);
2055 }
2056
2057 static void actcon_new_data (void *cdata)
2058 {
2059         bActionConstraint *data= (bActionConstraint *)cdata;
2060         
2061         /* set type to 20 (Loc X), as 0 is Rot X for backwards compatability */
2062         data->type = 20;
2063 }
2064
2065 static void actcon_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2066 {
2067         bActionConstraint *data= con->data;
2068         
2069         /* target */
2070         func(con, (ID**)&data->tar, userdata);
2071         
2072         /* action */
2073         func(con, (ID**)&data->act, userdata);
2074 }
2075
2076 static int actcon_get_tars (bConstraint *con, ListBase *list)
2077 {
2078         if (con && list) {
2079                 bActionConstraint *data= con->data;
2080                 bConstraintTarget *ct;
2081                 
2082                 /* standard target-getting macro for single-target constraints */
2083                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2084                 
2085                 return 1;
2086         }
2087         
2088         return 0;
2089 }
2090
2091 static void actcon_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2092 {
2093         if (con && list) {
2094                 bActionConstraint *data= con->data;
2095                 bConstraintTarget *ct= list->first;
2096                 
2097                 /* the following macro is used for all standard single-target constraints */
2098                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2099         }
2100 }
2101
2102 static void actcon_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
2103 {
2104         extern void chan_calc_mat(bPoseChannel *chan);
2105         bActionConstraint *data = con->data;
2106         
2107         if (VALID_CONS_TARGET(ct)) {
2108                 float tempmat[4][4], vec[3];
2109                 float s, t;
2110                 short axis;
2111                 
2112                 /* initialise return matrix */
2113                 unit_m4(ct->matrix);
2114                 
2115                 /* get the transform matrix of the target */
2116                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, tempmat, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
2117                 
2118                 /* determine where in transform range target is */
2119                 /* data->type is mapped as follows for backwards compatability:
2120                  *      00,01,02        - rotation (it used to be like this)
2121                  *      10,11,12        - scaling
2122                  *      20,21,22        - location
2123                  */
2124                 if (data->type < 10) {
2125                         /* extract rotation (is in whatever space target should be in) */
2126                         mat4_to_eul(vec, tempmat);
2127                         vec[0] *= (float)(180.0/M_PI);
2128                         vec[1] *= (float)(180.0/M_PI);
2129                         vec[2] *= (float)(180.0/M_PI);
2130                         axis= data->type;
2131                 }
2132                 else if (data->type < 20) {
2133                         /* extract scaling (is in whatever space target should be in) */
2134                         mat4_to_size(vec, tempmat);
2135                         axis= data->type - 10;
2136                 }
2137                 else {
2138                         /* extract location */
2139                         copy_v3_v3(vec, tempmat[3]);
2140                         axis= data->type - 20;
2141                 }
2142                 
2143                 /* Target defines the animation */
2144                 s = (vec[axis]-data->min) / (data->max-data->min);
2145                 CLAMP(s, 0, 1);
2146                 t = (s * (data->end-data->start)) + data->start;
2147                 
2148                 if (G.f & G_DEBUG)
2149                         printf("do Action Constraint %s - Ob %s Pchan %s \n", con->name, cob->ob->id.name+2, (cob->pchan)?cob->pchan->name:NULL);
2150                 
2151                 /* Get the appropriate information from the action */
2152                 if (cob->type == CONSTRAINT_OBTYPE_BONE) {
2153                         Object workob;
2154                         bPose *pose;
2155                         bPoseChannel *pchan, *tchan;
2156                         
2157                         /* make a temporary pose and evaluate using that */
2158                         pose = MEM_callocN(sizeof(bPose), "pose");
2159                         
2160                         /* make a copy of the bone of interest in the temp pose before evaluating action, so that it can get set 
2161                          *      - we need to manually copy over a few settings, including rotation order, otherwise this fails
2162                          */
2163                         pchan = cob->pchan;
2164                         
2165                         tchan= verify_pose_channel(pose, pchan->name);
2166                         tchan->rotmode= pchan->rotmode;
2167                         
2168                         /* evaluate action using workob (it will only set the PoseChannel in question) */
2169                         what_does_obaction(cob->scene, cob->ob, &workob, pose, data->act, pchan->name, t);
2170                         
2171                         /* convert animation to matrices for use here */
2172                         chan_calc_mat(tchan);
2173                         copy_m4_m4(ct->matrix, tchan->chan_mat);
2174                         
2175                         /* Clean up */
2176                         free_pose(pose);
2177                 }
2178                 else if (cob->type == CONSTRAINT_OBTYPE_OBJECT) {
2179                         Object workob;
2180                         
2181                         /* evaluate using workob */
2182                         // FIXME: we don't have any consistent standards on limiting effects on object...
2183                         what_does_obaction(cob->scene, cob->ob, &workob, NULL, data->act, NULL, t);
2184                         object_to_mat4(&workob, ct->matrix);
2185                 }
2186                 else {
2187                         /* behaviour undefined... */
2188                         puts("Error: unknown owner type for Action Constraint");
2189                 }
2190         }
2191 }
2192
2193 static void actcon_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2194 {
2195         bConstraintTarget *ct= targets->first;
2196         
2197         if (VALID_CONS_TARGET(ct)) {
2198                 float temp[4][4];
2199                 
2200                 /* Nice and simple... we just need to multiply the matrices, as the get_target_matrix
2201                  * function has already taken care of everything else.
2202                  */
2203                 copy_m4_m4(temp, cob->matrix);
2204                 mul_m4_m4m4(cob->matrix, ct->matrix, temp);
2205         }
2206 }
2207
2208 static bConstraintTypeInfo CTI_ACTION = {
2209         CONSTRAINT_TYPE_ACTION, /* type */
2210         sizeof(bActionConstraint), /* size */
2211         "Action", /* name */
2212         "bActionConstraint", /* struct name */
2213         NULL, /* free data */
2214         actcon_relink, /* relink data */
2215         actcon_id_looper, /* id looper */
2216         NULL, /* copy data */
2217         actcon_new_data, /* new data */
2218         actcon_get_tars, /* get constraint targets */
2219         actcon_flush_tars, /* flush constraint targets */
2220         actcon_get_tarmat, /* get target matrix */
2221         actcon_evaluate /* evaluate */
2222 };
2223
2224 /* --------- Locked Track ---------- */
2225
2226 static void locktrack_new_data (void *cdata)
2227 {
2228         bLockTrackConstraint *data= (bLockTrackConstraint *)cdata;
2229         
2230         data->trackflag = TRACK_Y;
2231         data->lockflag = LOCK_Z;
2232 }       
2233
2234 static void locktrack_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2235 {
2236         bLockTrackConstraint *data= con->data;
2237         
2238         /* target only */
2239         func(con, (ID**)&data->tar, userdata);
2240 }
2241
2242 static int locktrack_get_tars (bConstraint *con, ListBase *list)
2243 {
2244         if (con && list) {
2245                 bLockTrackConstraint *data= con->data;
2246                 bConstraintTarget *ct;
2247                 
2248                 /* the following macro is used for all standard single-target constraints */
2249                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2250                 
2251                 return 1;
2252         }
2253         
2254         return 0;
2255 }
2256
2257 static void locktrack_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2258 {
2259         if (con && list) {
2260                 bLockTrackConstraint *data= con->data;
2261                 bConstraintTarget *ct= list->first;
2262                 
2263                 /* the following macro is used for all standard single-target constraints */
2264                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2265         }
2266 }
2267
2268 static void locktrack_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2269 {
2270         bLockTrackConstraint *data= con->data;
2271         bConstraintTarget *ct= targets->first;
2272         
2273         if (VALID_CONS_TARGET(ct)) {
2274                 float vec[3],vec2[3];
2275                 float totmat[3][3];
2276                 float tmpmat[3][3];
2277                 float invmat[3][3];
2278                 float tmat[4][4];
2279                 float mdet;
2280                 
2281                 /* Vector object -> target */
2282                 sub_v3_v3v3(vec, ct->matrix[3], cob->matrix[3]);
2283                 switch (data->lockflag){
2284                 case LOCK_X: /* LOCK X */
2285                 {
2286                         switch (data->trackflag) {
2287                                 case TRACK_Y: /* LOCK X TRACK Y */
2288                                 {
2289                                         /* Projection of Vector on the plane */
2290                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2291                                         sub_v3_v3v3(totmat[1], vec, vec2);
2292                                         normalize_v3(totmat[1]);
2293                                         
2294                                         /* the x axis is fixed */
2295                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2296                                         
2297                                         /* the z axis gets mapped onto a third orthogonal vector */
2298                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2299                                 }
2300                                         break;
2301                                 case TRACK_Z: /* LOCK X TRACK Z */
2302                                 {
2303                                         /* Projection of Vector on the plane */
2304                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2305                                         sub_v3_v3v3(totmat[2], vec, vec2);
2306                                         normalize_v3(totmat[2]);
2307                                         
2308                                         /* the x axis is fixed */
2309                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2310                                         
2311                                         /* the z axis gets mapped onto a third orthogonal vector */
2312                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2313                                 }
2314                                         break;
2315                                 case TRACK_nY: /* LOCK X TRACK -Y */
2316                                 {
2317                                         /* Projection of Vector on the plane */
2318                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2319                                         sub_v3_v3v3(totmat[1], vec, vec2);
2320                                         normalize_v3(totmat[1]);
2321                                         negate_v3(totmat[1]);
2322                                         
2323                                         /* the x axis is fixed */
2324                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2325                                         
2326                                         /* the z axis gets mapped onto a third orthogonal vector */
2327                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2328                                 }
2329                                         break;
2330                                 case TRACK_nZ: /* LOCK X TRACK -Z */
2331                                 {
2332                                         /* Projection of Vector on the plane */
2333                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2334                                         sub_v3_v3v3(totmat[2], vec, vec2);
2335                                         normalize_v3(totmat[2]);
2336                                         negate_v3(totmat[2]);
2337                                                 
2338                                         /* the x axis is fixed */
2339                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2340                                                 
2341                                         /* the z axis gets mapped onto a third orthogonal vector */
2342                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2343                                 }
2344                                         break;
2345                                 default:
2346                                 {
2347                                         unit_m3(totmat);
2348                                 }
2349                                         break;
2350                         }
2351                 }
2352                         break;
2353                 case LOCK_Y: /* LOCK Y */
2354                 {
2355                         switch (data->trackflag) {
2356                                 case TRACK_X: /* LOCK Y TRACK X */
2357                                 {
2358                                         /* Projection of Vector on the plane */
2359                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2360                                         sub_v3_v3v3(totmat[0], vec, vec2);
2361                                         normalize_v3(totmat[0]);
2362                                         
2363                                         /* the y axis is fixed */
2364                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2365
2366                                         /* the z axis gets mapped onto a third orthogonal vector */
2367                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2368                                 }
2369                                         break;
2370                                 case TRACK_Z: /* LOCK Y TRACK Z */
2371                                 {
2372                                         /* Projection of Vector on the plane */
2373                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2374                                         sub_v3_v3v3(totmat[2], vec, vec2);
2375                                         normalize_v3(totmat[2]);
2376                                         
2377                                         /* the y axis is fixed */
2378                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2379                                         
2380                                         /* the z axis gets mapped onto a third orthogonal vector */
2381                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2382                                 }
2383                                         break;
2384                                 case TRACK_nX: /* LOCK Y TRACK -X */
2385                                 {
2386                                         /* Projection of Vector on the plane */
2387                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2388                                         sub_v3_v3v3(totmat[0], vec, vec2);
2389                                         normalize_v3(totmat[0]);
2390                                         negate_v3(totmat[0]);
2391                                         
2392                                         /* the y axis is fixed */
2393                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2394                                         
2395                                         /* the z axis gets mapped onto a third orthogonal vector */
2396                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2397                                 }
2398                                         break;
2399                                 case TRACK_nZ: /* LOCK Y TRACK -Z */
2400                                 {
2401                                         /* Projection of Vector on the plane */
2402                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2403                                         sub_v3_v3v3(totmat[2], vec, vec2);
2404                                         normalize_v3(totmat[2]);
2405                                         negate_v3(totmat[2]);
2406                                         
2407                                         /* the y axis is fixed */
2408                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2409                                         
2410                                         /* the z axis gets mapped onto a third orthogonal vector */
2411                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2412                                 }
2413                                         break;
2414                                 default:
2415                                 {
2416                                         unit_m3(totmat);
2417                                 }
2418                                         break;
2419                         }
2420                 }
2421                         break;
2422                 case LOCK_Z: /* LOCK Z */
2423                 {
2424                         switch (data->trackflag) {
2425                                 case TRACK_X: /* LOCK Z TRACK X */
2426                                 {
2427                                         /* Projection of Vector on the plane */
2428                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2429                                         sub_v3_v3v3(totmat[0], vec, vec2);
2430                                         normalize_v3(totmat[0]);
2431                                         
2432                                         /* the z axis is fixed */
2433                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2434                                         
2435                                         /* the x axis gets mapped onto a third orthogonal vector */
2436                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2437                                 }
2438                                         break;
2439                                 case TRACK_Y: /* LOCK Z TRACK Y */
2440                                 {
2441                                         /* Projection of Vector on the plane */
2442                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2443                                         sub_v3_v3v3(totmat[1], vec, vec2);
2444                                         normalize_v3(totmat[1]);
2445                                         
2446                                         /* the z axis is fixed */
2447                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2448                                                 
2449                                         /* the x axis gets mapped onto a third orthogonal vector */
2450                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2451                                 }
2452                                         break;
2453                                 case TRACK_nX: /* LOCK Z TRACK -X */
2454                                 {
2455                                         /* Projection of Vector on the plane */
2456                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2457                                         sub_v3_v3v3(totmat[0], vec, vec2);
2458                                         normalize_v3(totmat[0]);
2459                                         negate_v3(totmat[0]);
2460                                         
2461                                         /* the z axis is fixed */
2462                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2463                                         
2464                                         /* the x axis gets mapped onto a third orthogonal vector */
2465                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2466                                 }
2467                                         break;
2468                                 case TRACK_nY: /* LOCK Z TRACK -Y */
2469                                 {
2470                                         /* Projection of Vector on the plane */
2471                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2472                                         sub_v3_v3v3(totmat[1], vec, vec2);
2473                                         normalize_v3(totmat[1]);
2474                                         negate_v3(totmat[1]);
2475                                         
2476                                         /* the z axis is fixed */
2477                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2478                                                 
2479                                         /* the x axis gets mapped onto a third orthogonal vector */
2480                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2481                                 }
2482                                         break;
2483                                 default:
2484                                 {
2485                                         unit_m3(totmat);
2486                                 }
2487                                         break;
2488                         }
2489                 }
2490                         break;
2491                 default:
2492                 {
2493                         unit_m3(totmat);
2494                 }
2495                         break;
2496                 }
2497                 /* Block to keep matrix heading */
2498                 copy_m3_m4(tmpmat, cob->matrix);
2499                 normalize_m3(tmpmat);
2500                 invert_m3_m3(invmat, tmpmat);
2501                 mul_m3_m3m3(tmpmat, totmat, invmat);
2502                 totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2];
2503                 totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2];
2504                 totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2];
2505                 
2506                 copy_m4_m4(tmat, cob->matrix);
2507                 
2508                 mdet = determinant_m3(  totmat[0][0],totmat[0][1],totmat[0][2],
2509                                                 totmat[1][0],totmat[1][1],totmat[1][2],
2510                                                 totmat[2][0],totmat[2][1],totmat[2][2]);
2511                 if (mdet==0) {
2512                         unit_m3(totmat);
2513                 }
2514                 
2515                 /* apply out transformaton to the object */
2516                 mul_m4_m3m4(cob->matrix, totmat, tmat);
2517         }
2518 }
2519
2520 static bConstraintTypeInfo CTI_LOCKTRACK = {
2521         CONSTRAINT_TYPE_LOCKTRACK, /* type */
2522         sizeof(bLockTrackConstraint), /* size */
2523         "Locked Track", /* name */
2524         "bLockTrackConstraint", /* struct name */
2525         NULL, /* free data */
2526         NULL, /* relink data */
2527         locktrack_id_looper, /* id looper */
2528         NULL, /* copy data */
2529         locktrack_new_data, /* new data */
2530         locktrack_get_tars, /* get constraint targets */
2531         locktrack_flush_tars, /* flush constraint targets */
2532         default_get_tarmat, /* get target matrix */
2533         locktrack_evaluate /* evaluate */
2534 };
2535
2536 /* ---------- Limit Distance Constraint ----------- */
2537
2538 static void distlimit_new_data (void *cdata)
2539 {
2540         bDistLimitConstraint *data= (bDistLimitConstraint *)cdata;
2541         
2542         data->dist= 0.0f;
2543 }
2544
2545 static void distlimit_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2546 {
2547         bDistLimitConstraint *data= con->data;
2548         
2549         /* target only */
2550         func(con, (ID**)&data->tar, userdata);
2551 }
2552
2553 static int distlimit_get_tars (bConstraint *con, ListBase *list)
2554 {
2555         if (con && list) {
2556                 bDistLimitConstraint *data= con->data;
2557                 bConstraintTarget *ct;
2558                 
2559                 /* standard target-getting macro for single-target constraints */
2560                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2561                 
2562                 return 1;
2563         }
2564         
2565         return 0;
2566 }
2567
2568 static void distlimit_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2569 {
2570         if (con && list) {
2571                 bDistLimitConstraint *data= con->data;
2572                 bConstraintTarget *ct= list->first;
2573                 
2574                 /* the following macro is used for all standard single-target constraints */
2575                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2576         }
2577 }
2578
2579 static void distlimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2580 {
2581         bDistLimitConstraint *data= con->data;
2582         bConstraintTarget *ct= targets->first;
2583         
2584         /* only evaluate if there is a target */
2585         if (VALID_CONS_TARGET(ct)) {
2586                 float dvec[3], dist=0.0f, sfac=1.0f;
2587                 short clamp_surf= 0;
2588                 
2589                 /* calculate our current distance from the target */
2590                 dist= len_v3v3(cob->matrix[3], ct->matrix[3]);
2591                 
2592                 /* set distance (flag is only set when user demands it) */
2593                 if (data->dist == 0)
2594                         data->dist= dist;
2595                 
2596                 /* check if we're which way to clamp from, and calculate interpolation factor (if needed) */
2597                 if (data->mode == LIMITDIST_OUTSIDE) {
2598                         /* if inside, then move to surface */
2599                         if (dist <= data->dist) {
2600                                 clamp_surf= 1;
2601                                 sfac= data->dist / dist;
2602                         }
2603                         /* if soft-distance is enabled, start fading once owner is dist+softdist from the target */
2604                         else if (data->flag & LIMITDIST_USESOFT) {
2605                                 if (dist <= (data->dist + data->soft)) {
2606                                         
2607                                 }
2608                         }
2609                 }
2610                 else if (data->mode == LIMITDIST_INSIDE) {
2611                         /* if outside, then move to surface */
2612                         if (dist >= data->dist) {
2613                                 clamp_surf= 1;
2614                                 sfac= data->dist / dist;
2615                         }
2616                         /* if soft-distance is enabled, start fading once owner is dist-soft from the target */
2617                         else if (data->flag & LIMITDIST_USESOFT) {
2618                                 // FIXME: there's a problem with "jumping" when this kicks in
2619                                 if (dist >= (data->dist - data->soft)) {
2620                                         sfac = (float)( data->soft*(1.0 - exp(-(dist - data->dist)/data->soft)) + data->dist );
2621                                         sfac /= dist;
2622                                         
2623                                         clamp_surf= 1;
2624                                 }
2625                         }
2626                 }
2627                 else {
2628                         if (IS_EQ(dist, data->dist)==0) {
2629                                 clamp_surf= 1;
2630                                 sfac= data->dist / dist;
2631                         }
2632                 }
2633                 
2634                 /* clamp to 'surface' (i.e. move owner so that dist == data->dist) */
2635                 if (clamp_surf) {
2636                         /* simply interpolate along line formed by target -> owner */
2637                         interp_v3_v3v3(dvec, ct->matrix[3], cob->matrix[3], sfac);
2638                         
2639                         /* copy new vector onto owner */
2640                         copy_v3_v3(cob->matrix[3], dvec);
2641                 }
2642         }
2643 }
2644
2645 static bConstraintTypeInfo CTI_DISTLIMIT = {
2646         CONSTRAINT_TYPE_DISTLIMIT, /* type */
2647         sizeof(bDistLimitConstraint), /* size */
2648         "Limit Distance", /* name */
2649         "bDistLimitConstraint", /* struct name */
2650         NULL, /* free data */
2651         NULL, /* relink data */
2652         distlimit_id_looper, /* id looper */
2653         NULL, /* copy data */
2654         distlimit_new_data, /* new data */
2655         distlimit_get_tars, /* get constraint targets */
2656         distlimit_flush_tars, /* flush constraint targets */
2657         default_get_tarmat, /* get a target matrix */
2658         distlimit_evaluate /* evaluate */
2659 };
2660
2661 /* ---------- Stretch To ------------ */
2662
2663 static void stretchto_new_data (void *cdata)
2664 {
2665         bStretchToConstraint *data= (bStretchToConstraint *)cdata;
2666         
2667         data->volmode = 0;
2668         data->plane = 0;
2669         data->orglength = 0.0; 
2670         data->bulge = 1.0;
2671 }
2672
2673 static void stretchto_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2674 {
2675         bStretchToConstraint *data= con->data;
2676         
2677         /* target only */
2678         func(con, (ID**)&data->tar, userdata);
2679 }
2680
2681 static int stretchto_get_tars (bConstraint *con, ListBase *list)
2682 {
2683         if (con && list) {
2684                 bStretchToConstraint *data= con->data;
2685                 bConstraintTarget *ct;
2686                 
2687                 /* standard target-getting macro for single-target constraints */
2688                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2689                 
2690                 return 1;
2691         }
2692         
2693         return 0;
2694 }
2695
2696 static void stretchto_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2697 {
2698         if (con && list) {
2699                 bStretchToConstraint *data= con->data;
2700                 bConstraintTarget *ct= list->first;
2701                 
2702                 /* the following macro is used for all standard single-target constraints */
2703                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2704         }
2705 }
2706
2707 static void stretchto_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2708 {
2709         bStretchToConstraint *data= con->data;
2710         bConstraintTarget *ct= targets->first;
2711         
2712         /* only evaluate if there is a target */
2713         if (VALID_CONS_TARGET(ct)) {
2714                 float size[3], scale[3], vec[3], xx[3], zz[3], orth[3];
2715                 float totmat[3][3];
2716                 float tmat[4][4];
2717                 float dist;
2718                 
2719                 /* store scaling before destroying obmat */
2720                 mat4_to_size(size, cob->matrix);
2721                 
2722                 /* store X orientation before destroying obmat */
2723                 normalize_v3_v3(xx, cob->matrix[0]);
2724                 
2725                 /* store Z orientation before destroying obmat */
2726                 normalize_v3_v3(zz, cob->matrix[2]);
2727                 
2728                 sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);
2729                 vec[0] /= size[0];
2730                 vec[1] /= size[1];
2731                 vec[2] /= size[2];
2732                 
2733                 dist = normalize_v3(vec);
2734                 //dist = len_v3v3( ob->obmat[3], targetmat[3]);
2735                 
2736                 /* data->orglength==0 occurs on first run, and after 'R' button is clicked */
2737                 if (data->orglength == 0)  
2738                         data->orglength = dist;
2739                 if (data->bulge == 0) 
2740                         data->bulge = 1.0;
2741                 
2742                 scale[1] = dist/data->orglength;
2743                 switch (data->volmode) {
2744                 /* volume preserving scaling */
2745                 case VOLUME_XZ :
2746                         scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist));
2747                         scale[2] = scale[0];
2748                         break;
2749                 case VOLUME_X:
2750                         scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1);
2751                         scale[2] = 1.0;
2752                         break;
2753                 case VOLUME_Z:
2754                         scale[0] = 1.0;
2755                         scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1);
2756                         break;
2757                         /* don't care for volume */
2758                 case NO_VOLUME:
2759                         scale[0] = 1.0;
2760                         scale[2] = 1.0;
2761                         break;
2762                 default: /* should not happen, but in case*/
2763                         return;    
2764                 } /* switch (data->volmode) */
2765
2766                 /* Clear the object's rotation and scale */
2767                 cob->matrix[0][0]=size[0]*scale[0];
2768                 cob->matrix[0][1]=0;
2769                 cob->matrix[0][2]=0;
2770                 cob->matrix[1][0]=0;
2771                 cob->matrix[1][1]=size[1]*scale[1];
2772                 cob->matrix[1][2]=0;
2773                 cob->matrix[2][0]=0;
2774                 cob->matrix[2][1]=0;
2775                 cob->matrix[2][2]=size[2]*scale[2];
2776                 
2777                 sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);
2778                 normalize_v3(vec);
2779                 
2780                 /* new Y aligns  object target connection*/
2781                 negate_v3_v3(totmat[1], vec);
2782                 switch (data->plane) {
2783                 case PLANE_X:
2784                         /* build new Z vector */
2785                         /* othogonal to "new Y" "old X! plane */
2786                         cross_v3_v3v3(orth, vec, xx);
2787                         normalize_v3(orth);
2788                         
2789                         /* new Z*/
2790                         copy_v3_v3(totmat[2], orth);
2791                         
2792                         /* we decided to keep X plane*/
2793                         cross_v3_v3v3(xx, orth, vec);
2794                         normalize_v3_v3(totmat[0], xx);
2795                         break;
2796                 case PLANE_Z:
2797                         /* build new X vector */
2798                         /* othogonal to "new Y" "old Z! plane */
2799                         cross_v3_v3v3(orth, vec, zz);
2800                         normalize_v3(orth);
2801                         
2802                         /* new X */
2803                         negate_v3_v3(totmat[0], orth);
2804                         
2805                         /* we decided to keep Z */
2806                         cross_v3_v3v3(zz, orth, vec);
2807                         normalize_v3_v3(totmat[2], zz);
2808                         break;
2809                 } /* switch (data->plane) */
2810                 
2811                 copy_m4_m4(tmat, cob->matrix);
2812                 mul_m4_m3m4(cob->matrix, totmat, tmat);
2813         }
2814 }
2815
2816 static bConstraintTypeInfo CTI_STRETCHTO = {
2817         CONSTRAINT_TYPE_STRETCHTO, /* type */
2818         sizeof(bStretchToConstraint), /* size */
2819         "Stretch To", /* name */
2820         "bStretchToConstraint", /* struct name */
2821         NULL, /* free data */
2822         NULL, /* relink data */
2823         stretchto_id_looper, /* id looper */
2824         NULL, /* copy data */
2825         stretchto_new_data, /* new data */
2826         stretchto_get_tars, /* get constraint targets */
2827         stretchto_flush_tars, /* flush constraint targets */
2828         default_get_tarmat, /* get target matrix */
2829         stretchto_evaluate /* evaluate */
2830 };
2831
2832 /* ---------- Floor ------------ */
2833
2834 static void minmax_new_data (void *cdata)
2835 {
2836         bMinMaxConstraint *data= (bMinMaxConstraint *)cdata;
2837         
2838         data->minmaxflag = TRACK_Z;
2839         data->offset = 0.0f;
2840         data->cache[0] = data->cache[1] = data->cache[2] = 0.0f;
2841         data->flag = 0;
2842 }
2843
2844 static void minmax_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2845 {
2846         bMinMaxConstraint *data= con->data;
2847         
2848         /* target only */
2849         func(con, (ID**)&data->tar, userdata);
2850 }
2851
2852 static int minmax_get_tars (bConstraint *con, ListBase *list)
2853 {
2854         if (con && list) {
2855                 bMinMaxConstraint *data= con->data;
2856                 bConstraintTarget *ct;
2857                 
2858                 /* standard target-getting macro for single-target constraints */
2859                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2860                 
2861                 return 1;
2862         }
2863         
2864         return 0;
2865 }
2866
2867 static void minmax_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2868 {
2869         if (con && list) {
2870                 bMinMaxConstraint *data= con->data;
2871                 bConstraintTarget *ct= list->first;
2872                 
2873                 /* the following macro is used for all standard single-target constraints */
2874                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2875         }
2876 }
2877
2878 static void minmax_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2879 {
2880         bMinMaxConstraint *data= con->data;
2881         bConstraintTarget *ct= targets->first;
2882         
2883         /* only evaluate if there is a target */
2884         if (VALID_CONS_TARGET(ct)) {
2885                 float obmat[4][4], imat[4][4], tarmat[4][4], tmat[4][4];
2886                 float val1, val2;
2887            &nb