2 * ***** BEGIN GPL LICENSE BLOCK *****
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
19 * All rights reserved.
21 * Contributors: 2004/2005/2006 Blender Foundation, full recode
23 * ***** END GPL LICENSE BLOCK *****
26 /** \file blender/render/intern/source/convertblender.c
36 #include "MEM_guardedalloc.h"
39 #include "BLI_blenlib.h"
40 #include "BLI_utildefines.h"
42 #include "BLI_memarena.h"
43 #include "BLI_ghash.h"
44 #include "BLI_linklist.h"
46 # include "BLI_edgehash.h"
49 #include "BLF_translation.h"
51 #include "DNA_armature_types.h"
52 #include "DNA_camera_types.h"
53 #include "DNA_material_types.h"
54 #include "DNA_curve_types.h"
55 #include "DNA_effect_types.h"
56 #include "DNA_group_types.h"
57 #include "DNA_lamp_types.h"
58 #include "DNA_image_types.h"
59 #include "DNA_lattice_types.h"
60 #include "DNA_mesh_types.h"
61 #include "DNA_meshdata_types.h"
62 #include "DNA_meta_types.h"
63 #include "DNA_modifier_types.h"
64 #include "DNA_node_types.h"
65 #include "DNA_object_types.h"
66 #include "DNA_object_force.h"
67 #include "DNA_object_fluidsim.h"
68 #include "DNA_particle_types.h"
69 #include "DNA_scene_types.h"
70 #include "DNA_texture_types.h"
71 #include "DNA_view3d_types.h"
74 #include "BKE_armature.h"
75 #include "BKE_action.h"
76 #include "BKE_curve.h"
77 #include "BKE_customdata.h"
78 #include "BKE_colortools.h"
79 #include "BKE_constraint.h"
80 #include "BKE_displist.h"
81 #include "BKE_deform.h"
82 #include "BKE_DerivedMesh.h"
83 #include "BKE_effect.h"
84 #include "BKE_global.h"
85 #include "BKE_group.h"
88 #include "BKE_image.h"
89 #include "BKE_lattice.h"
90 #include "BKE_library.h"
91 #include "BKE_material.h"
93 #include "BKE_mball.h"
95 #include "BKE_modifier.h"
97 #include "BKE_object.h"
98 #include "BKE_particle.h"
99 #include "BKE_scene.h"
100 #include "BKE_subsurf.h"
101 #include "BKE_texture.h"
103 #include "BKE_world.h"
105 #include "PIL_time.h"
106 #include "IMB_imbuf_types.h"
109 #include "occlusion.h"
110 #include "pointdensity.h"
111 #include "voxeldata.h"
112 #include "render_types.h"
113 #include "rendercore.h"
114 #include "renderdatabase.h"
115 #include "renderpipeline.h"
120 #include "volume_precache.h"
126 #include "RE_render_ext.h"
128 /* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
129 /* or for checking vertex normal flips */
130 #define FLT_EPSILON10 1.19209290e-06F
132 /* could enable at some point but for now there are far too many conversions */
134 # pragma GCC diagnostic ignored "-Wdouble-promotion"
137 /* ------------------------------------------------------------------------- */
139 /* Stuff for stars. This sits here because it uses gl-things. Part of
140 * this code may move down to the converter. */
141 /* ------------------------------------------------------------------------- */
142 /* this is a bad beast, since it is misused by the 3d view drawing as well. */
144 static HaloRen *initstar(Render *re, ObjectRen *obr, const float vec[3], float hasize)
149 projectverto(vec, re->winmat, hoco);
151 har= RE_findOrAddHalo(obr, obr->tothalo++);
153 /* projectvert is done in function zbufvlaggen again, because of parts */
154 copy_v3_v3(har->co, vec);
158 har->pool = re->pool;
163 /* there must be a 'fixed' amount of stars generated between
165 * all stars must by preference lie on the far and solely
166 * differ in clarity/color
169 void RE_make_stars(Render *re, Scene *scenev3d, void (*initfunc)(void),
170 void (*vertexfunc)(float *), void (*termfunc)(void))
172 extern unsigned char hash[512];
173 ObjectRen *obr= NULL;
180 double dblrand, hlfrand;
181 float vec[4], fx, fy, fz;
182 float fac, starmindist, clipend;
183 float mat[4][4], stargrid, maxrand, maxjit, force, alpha;
184 int x, y, z, sx, sy, sz, ex, ey, ez, done = FALSE;
185 unsigned int totstar= 0;
196 stargrid = wrld->stardist; /* distance between stars */
197 maxrand = 2.0; /* amount a star can be shifted (in grid units) */
198 maxjit = (wrld->starcolnoise); /* amount a color is being shifted */
201 force = ( wrld->starsize );
203 /* minimal free space (starting at camera) */
204 starmindist= wrld->starmindist;
206 if (stargrid <= 0.10f) return;
208 if (re) re->flag |= R_HALO;
209 else stargrid *= 1.0f; /* then it draws fewer */
211 if (re) invert_m4_m4(mat, re->viewmat);
214 /* BOUNDING BOX CALCULATION
215 * bbox goes from z = loc_near_var | loc_far_var,
220 camera= re ? RE_GetCamera(re) : scene->camera;
222 if (camera==NULL || camera->type != OB_CAMERA)
226 clipend = cam->clipend;
228 /* convert to grid coordinates */
230 sx = ((mat[3][0] - clipend) / stargrid) - maxrand;
231 sy = ((mat[3][1] - clipend) / stargrid) - maxrand;
232 sz = ((mat[3][2] - clipend) / stargrid) - maxrand;
234 ex = ((mat[3][0] + clipend) / stargrid) + maxrand;
235 ey = ((mat[3][1] + clipend) / stargrid) + maxrand;
236 ez = ((mat[3][2] + clipend) / stargrid) + maxrand;
238 dblrand = maxrand * stargrid;
239 hlfrand = 2.0 * dblrand;
245 if (re) /* add render object for stars */
246 obr= RE_addRenderObject(re, NULL, NULL, 0, 0, 0);
248 rng = BLI_rng_new(0);
250 for (x = sx, fx = sx * stargrid; x <= ex; x++, fx += stargrid) {
251 for (y = sy, fy = sy * stargrid; y <= ey; y++, fy += stargrid) {
252 for (z = sz, fz = sz * stargrid; z <= ez; z++, fz += stargrid) {
254 BLI_rng_seed(rng, (hash[z & 0xff] << 24) + (hash[y & 0xff] << 16) + (hash[x & 0xff] << 8));
255 vec[0] = fx + (hlfrand * BLI_rng_get_double(rng)) - dblrand;
256 vec[1] = fy + (hlfrand * BLI_rng_get_double(rng)) - dblrand;
257 vec[2] = fz + (hlfrand * BLI_rng_get_double(rng)) - dblrand;
261 if (done & 1) vertexfunc(vec);
266 mul_m4_v3(re->viewmat, vec);
268 /* in vec are global coordinates
269 * calculate distance to camera
270 * and using that, define the alpha
274 if (alpha >= clipend) alpha = 0.0;
275 else if (alpha <= starmindist) alpha = 0.0;
276 else if (alpha <= 2.0f * starmindist) {
277 alpha = (alpha - starmindist) / starmindist;
280 alpha -= 2.0f * starmindist;
281 alpha /= (clipend - 2.0f * starmindist);
282 alpha = 1.0f - alpha;
287 fac = force * BLI_rng_get_double(rng);
289 har = initstar(re, obr, vec, fac);
292 har->alfa = sqrt(sqrt(alpha));
294 har->r = har->g = har->b = 1.0;
296 har->r += ((maxjit * BLI_rng_get_double(rng)) ) - maxjit;
297 har->g += ((maxjit * BLI_rng_get_double(rng)) ) - maxjit;
298 har->b += ((maxjit * BLI_rng_get_double(rng)) ) - maxjit;
302 har->type |= HA_ONLYSKY;
308 /* break out of the loop if generating stars takes too long */
309 if (re && !(totstar % 1000000)) {
310 if (re->test_break(re->tbh)) {
319 /* do not call blender_test_break() here, since it is used in UI as well, confusing the callback system */
320 /* main cause is G.is_break of course, a global again... (ton) */
323 if (termfunc) termfunc();
326 re->tothalo += obr->tothalo;
332 /* ------------------------------------------------------------------------- */
333 /* tool functions/defines for ad hoc simplification and possible future
335 /* ------------------------------------------------------------------------- */
337 #define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
340 * NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
342 * ^ ()----p4----p3----()
346 * ()----p1----p2----()
350 /* ------------------------------------------------------------------------- */
352 static void split_v_renderfaces(ObjectRen *obr, int startvlak, int UNUSED(startvert), int UNUSED(usize), int vsize, int uIndex, int UNUSED(cyclu), int cyclv)
354 int vLen = vsize-1+(!!cyclv);
357 for (v=0; v<vLen; v++) {
358 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v);
359 VertRen *vert = RE_vertren_copy(obr, vlr->v2);
365 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + 0);
369 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
377 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
382 vlr->v1 = RE_vertren_copy(obr, vlr->v1);
388 /* ------------------------------------------------------------------------- */
389 /* Stress, tangents and normals */
390 /* ------------------------------------------------------------------------- */
392 static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
394 float len= len_v3v3(v1->co, v2->co)/len_v3v3(v1->orco, v2->orco);
397 acc= accum + 2*v1->index;
401 acc= accum + 2*v2->index;
406 static void calc_edge_stress(Render *UNUSED(re), ObjectRen *obr, Mesh *me)
408 float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
411 if (obr->totvert==0) return;
413 BKE_mesh_texspace_get(me, loc, NULL, size);
415 accum= MEM_callocN(2*sizeof(float)*obr->totvert, "temp accum for stress");
417 /* de-normalize orco */
418 for (a=0; a<obr->totvert; a++) {
419 VertRen *ver= RE_findOrAddVert(obr, a);
421 ver->orco[0]= ver->orco[0]*size[0] +loc[0];
422 ver->orco[1]= ver->orco[1]*size[1] +loc[1];
423 ver->orco[2]= ver->orco[2]*size[2] +loc[2];
427 /* add stress values */
428 accumoffs= accum; /* so we can use vertex index */
429 for (a=0; a<obr->totvlak; a++) {
430 VlakRen *vlr= RE_findOrAddVlak(obr, a);
432 if (vlr->v1->orco && vlr->v4) {
433 calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
434 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
435 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
437 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
438 calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
439 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
444 for (a=0; a<obr->totvert; a++) {
445 VertRen *ver= RE_findOrAddVert(obr, a);
447 /* find stress value */
448 acc= accumoffs + 2*ver->index;
451 stress= RE_vertren_get_stress(obr, ver, 1);
455 ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
456 ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
457 ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
464 /* gets tangent from tface or orco */
465 static void calc_tangent_vector(ObjectRen *obr, VlakRen *vlr, int do_tangent)
467 MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
468 VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
470 float *uv1, *uv2, *uv3, *uv4;
480 uv1= uv[0]; uv2= uv[1]; uv3= uv[2]; uv4= uv[3];
481 map_to_sphere(&uv[0][0], &uv[0][1], v1->orco[0], v1->orco[1], v1->orco[2]);
482 map_to_sphere(&uv[1][0], &uv[1][1], v2->orco[0], v2->orco[1], v2->orco[2]);
483 map_to_sphere(&uv[2][0], &uv[2][1], v3->orco[0], v3->orco[1], v3->orco[2]);
485 map_to_sphere(&uv[3][0], &uv[3][1], v4->orco[0], v4->orco[1], v4->orco[2]);
489 tangent_from_uv(uv1, uv2, uv3, v1->co, v2->co, v3->co, vlr->n, tang);
492 tav= RE_vertren_get_tangent(obr, v1, 1);
493 add_v3_v3(tav, tang);
494 tav= RE_vertren_get_tangent(obr, v2, 1);
495 add_v3_v3(tav, tang);
496 tav= RE_vertren_get_tangent(obr, v3, 1);
497 add_v3_v3(tav, tang);
501 tangent_from_uv(uv1, uv3, uv4, v1->co, v3->co, v4->co, vlr->n, tang);
504 tav= RE_vertren_get_tangent(obr, v1, 1);
505 add_v3_v3(tav, tang);
506 tav= RE_vertren_get_tangent(obr, v3, 1);
507 add_v3_v3(tav, tang);
508 tav= RE_vertren_get_tangent(obr, v4, 1);
509 add_v3_v3(tav, tang);
516 /****************************************************************
517 ************ tangent space generation interface ****************
518 ****************************************************************/
523 } SRenderMeshToTangent;
526 #include "mikktspace.h"
528 static int GetNumFaces(const SMikkTSpaceContext *pContext)
530 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
531 return pMesh->obr->totvlak;
534 static int GetNumVertsOfFace(const SMikkTSpaceContext *pContext, const int face_num)
536 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
537 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
538 return vlr->v4!=NULL ? 4 : 3;
541 static void GetPosition(const SMikkTSpaceContext *pContext, float r_co[3], const int face_num, const int vert_index)
543 //assert(vert_index>=0 && vert_index<4);
544 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
545 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
546 const float *co = (&vlr->v1)[vert_index]->co;
547 copy_v3_v3(r_co, co);
550 static void GetTextureCoordinate(const SMikkTSpaceContext *pContext, float r_uv[2], const int face_num, const int vert_index)
552 //assert(vert_index>=0 && vert_index<4);
553 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
554 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
555 MTFace *tface= RE_vlakren_get_tface(pMesh->obr, vlr, pMesh->obr->actmtface, NULL, 0);
559 coord= tface->uv[vert_index];
560 copy_v2_v2(r_uv, coord);
562 else if ((coord = (&vlr->v1)[vert_index]->orco)) {
563 map_to_sphere(&r_uv[0], &r_uv[1], coord[0], coord[1], coord[2]);
565 else { /* else we get un-initialized value, 0.0 ok default? */
570 static void GetNormal(const SMikkTSpaceContext *pContext, float r_no[3], const int face_num, const int vert_index)
572 //assert(vert_index>=0 && vert_index<4);
573 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
574 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
576 if (vlr->flag & ME_SMOOTH) {
577 const float *n = (&vlr->v1)[vert_index]->n;
581 negate_v3_v3(r_no, vlr->n);
584 static void SetTSpace(const SMikkTSpaceContext *pContext, const float fvTangent[3], const float fSign, const int face_num, const int iVert)
586 //assert(vert_index>=0 && vert_index<4);
587 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
588 VlakRen *vlr = RE_findOrAddVlak(pMesh->obr, face_num);
589 float *ftang = RE_vlakren_get_nmap_tangent(pMesh->obr, vlr, 1);
591 copy_v3_v3(&ftang[iVert*4+0], fvTangent);
592 ftang[iVert*4+3]=fSign;
596 static void calc_vertexnormals(Render *UNUSED(re), ObjectRen *obr, int do_tangent, int do_nmap_tangent)
600 /* clear all vertex normals */
601 for (a=0; a<obr->totvert; a++) {
602 VertRen *ver= RE_findOrAddVert(obr, a);
603 ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
606 /* calculate cos of angles and point-masses, use as weight factor to
607 * add face normal to vertex */
608 for (a=0; a<obr->totvlak; a++) {
609 VlakRen *vlr= RE_findOrAddVlak(obr, a);
610 if (vlr->flag & ME_SMOOTH) {
611 float *n4= (vlr->v4)? vlr->v4->n: NULL;
612 float *c4= (vlr->v4)? vlr->v4->co: NULL;
614 accumulate_vertex_normals(vlr->v1->n, vlr->v2->n, vlr->v3->n, n4,
615 vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co, c4);
618 /* tangents still need to be calculated for flat faces too */
619 /* weighting removed, they are not vertexnormals */
620 calc_tangent_vector(obr, vlr, do_tangent);
625 for (a=0; a<obr->totvlak; a++) {
626 VlakRen *vlr= RE_findOrAddVlak(obr, a);
628 if ((vlr->flag & ME_SMOOTH)==0) {
629 if (is_zero_v3(vlr->v1->n)) copy_v3_v3(vlr->v1->n, vlr->n);
630 if (is_zero_v3(vlr->v2->n)) copy_v3_v3(vlr->v2->n, vlr->n);
631 if (is_zero_v3(vlr->v3->n)) copy_v3_v3(vlr->v3->n, vlr->n);
632 if (vlr->v4 && is_zero_v3(vlr->v4->n)) copy_v3_v3(vlr->v4->n, vlr->n);
636 /* normalize vertex normals */
637 for (a=0; a<obr->totvert; a++) {
638 VertRen *ver= RE_findOrAddVert(obr, a);
639 normalize_v3(ver->n);
641 float *tav= RE_vertren_get_tangent(obr, ver, 0);
644 const float tdn = dot_v3v3(tav, ver->n);
645 tav[0] -= ver->n[0]*tdn;
646 tav[1] -= ver->n[1]*tdn;
647 tav[2] -= ver->n[2]*tdn;
653 /* normal mapping tangent with mikktspace */
654 if (do_nmap_tangent != FALSE) {
655 SRenderMeshToTangent mesh2tangent;
656 SMikkTSpaceContext sContext;
657 SMikkTSpaceInterface sInterface;
658 memset(&mesh2tangent, 0, sizeof(SRenderMeshToTangent));
659 memset(&sContext, 0, sizeof(SMikkTSpaceContext));
660 memset(&sInterface, 0, sizeof(SMikkTSpaceInterface));
662 mesh2tangent.obr = obr;
664 sContext.m_pUserData = &mesh2tangent;
665 sContext.m_pInterface = &sInterface;
666 sInterface.m_getNumFaces = GetNumFaces;
667 sInterface.m_getNumVerticesOfFace = GetNumVertsOfFace;
668 sInterface.m_getPosition = GetPosition;
669 sInterface.m_getTexCoord = GetTextureCoordinate;
670 sInterface.m_getNormal = GetNormal;
671 sInterface.m_setTSpaceBasic = SetTSpace;
673 genTangSpaceDefault(&sContext);
677 /* ------------------------------------------------------------------------- */
679 /* ------------------------------------------------------------------------- */
681 typedef struct ASvert {
686 typedef struct ASface {
687 struct ASface *next, *prev;
692 static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
697 if (v1 == NULL) return;
699 if (asv->faces.first==NULL) {
700 asf= MEM_callocN(sizeof(ASface), "asface");
701 BLI_addtail(&asv->faces, asf);
704 asf= asv->faces.last;
705 for (a=0; a<4; a++) {
706 if (asf->vlr[a]==NULL) {
713 /* new face struct */
715 asf= MEM_callocN(sizeof(ASface), "asface");
716 BLI_addtail(&asv->faces, asf);
722 static int as_testvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
724 /* return 1: vertex needs a copy */
729 if (vlr == NULL) return 0;
731 asf= asv->faces.first;
733 for (a=0; a<4; a++) {
734 if (asf->vlr[a] && asf->vlr[a]!=vlr) {
735 inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
736 if (inp < thresh) return 1;
745 static VertRen *as_findvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
747 /* return when new vertex already was made */
752 asf= asv->faces.first;
754 for (a=0; a<4; a++) {
755 if (asf->vlr[a] && asf->vlr[a]!=vlr) {
756 /* this face already made a copy for this vertex! */
758 inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
771 /* note; autosmooth happens in object space still, after applying autosmooth we rotate */
772 /* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
773 static void autosmooth(Render *UNUSED(re), ObjectRen *obr, float mat[4][4], int degr)
775 ASvert *asv, *asverts;
782 if (obr->totvert==0) return;
783 asverts= MEM_callocN(sizeof(ASvert)*obr->totvert, "all smooth verts");
785 thresh= cosf(DEG2RADF((0.5f + (float)degr)));
787 /* step zero: give faces normals of original mesh, if this is provided */
790 /* step one: construct listbase of all vertices and pointers to faces */
791 for (a=0; a<obr->totvlak; a++) {
792 vlr= RE_findOrAddVlak(obr, a);
793 /* skip wire faces */
794 if (vlr->v2 != vlr->v3) {
795 as_addvert(asverts+vlr->v1->index, vlr->v1, vlr);
796 as_addvert(asverts+vlr->v2->index, vlr->v2, vlr);
797 as_addvert(asverts+vlr->v3->index, vlr->v3, vlr);
799 as_addvert(asverts+vlr->v4->index, vlr->v4, vlr);
803 totvert= obr->totvert;
804 /* we now test all vertices, when faces have a normal too much different: they get a new vertex */
805 for (a=0, asv=asverts; a<totvert; a++, asv++) {
806 if (asv->totface > 1) {
807 ver= RE_findOrAddVert(obr, a);
809 asf= asv->faces.first;
811 for (b=0; b<4; b++) {
813 /* is there a reason to make a new vertex? */
815 if ( as_testvertex(vlr, ver, asv, thresh) ) {
817 /* already made a new vertex within threshold? */
818 v1= as_findvertex(vlr, ver, asv, thresh);
820 /* make a new vertex */
821 v1= RE_vertren_copy(obr, ver);
824 if (vlr->v1==ver) vlr->v1= v1;
825 if (vlr->v2==ver) vlr->v2= v1;
826 if (vlr->v3==ver) vlr->v3= v1;
827 if (vlr->v4==ver) vlr->v4= v1;
836 for (a=0; a<totvert; a++) {
837 BLI_freelistN(&asverts[a].faces);
841 /* rotate vertices and calculate normal of faces */
842 for (a=0; a<obr->totvert; a++) {
843 ver= RE_findOrAddVert(obr, a);
844 mul_m4_v3(mat, ver->co);
846 for (a=0; a<obr->totvlak; a++) {
847 vlr= RE_findOrAddVlak(obr, a);
849 /* skip wire faces */
850 if (vlr->v2 != vlr->v3) {
852 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
854 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
859 /* ------------------------------------------------------------------------- */
860 /* Orco hash and Materials */
861 /* ------------------------------------------------------------------------- */
863 static float *get_object_orco(Render *re, Object *ob)
868 re->orco_hash = BLI_ghash_ptr_new("get_object_orco gh");
870 orco = BLI_ghash_lookup(re->orco_hash, ob);
873 if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
874 orco = BKE_curve_make_orco(re->scene, ob, NULL);
876 else if (ob->type==OB_SURF) {
877 orco = BKE_curve_surf_make_orco(ob);
881 BLI_ghash_insert(re->orco_hash, ob, orco);
887 static void set_object_orco(Render *re, void *ob, float *orco)
890 re->orco_hash = BLI_ghash_ptr_new("set_object_orco gh");
892 BLI_ghash_insert(re->orco_hash, ob, orco);
895 static void free_mesh_orco_hash(Render *re)
898 BLI_ghash_free(re->orco_hash, NULL, MEM_freeN);
899 re->orco_hash = NULL;
903 static void check_material_mapto(Material *ma)
906 ma->mapto_textured = 0;
908 /* cache which inputs are actually textured.
909 * this can avoid a bit of time spent iterating through all the texture slots, map inputs and map tos
910 * every time a property which may or may not be textured is accessed */
912 for (a=0; a<MAX_MTEX; a++) {
913 if (ma->mtex[a] && ma->mtex[a]->tex) {
914 /* currently used only in volume render, so we'll check for those flags */
915 if (ma->mtex[a]->mapto & MAP_DENSITY) ma->mapto_textured |= MAP_DENSITY;
916 if (ma->mtex[a]->mapto & MAP_EMISSION) ma->mapto_textured |= MAP_EMISSION;
917 if (ma->mtex[a]->mapto & MAP_EMISSION_COL) ma->mapto_textured |= MAP_EMISSION_COL;
918 if (ma->mtex[a]->mapto & MAP_SCATTERING) ma->mapto_textured |= MAP_SCATTERING;
919 if (ma->mtex[a]->mapto & MAP_TRANSMISSION_COL) ma->mapto_textured |= MAP_TRANSMISSION_COL;
920 if (ma->mtex[a]->mapto & MAP_REFLECTION) ma->mapto_textured |= MAP_REFLECTION;
921 if (ma->mtex[a]->mapto & MAP_REFLECTION_COL) ma->mapto_textured |= MAP_REFLECTION_COL;
925 static void flag_render_node_material(Render *re, bNodeTree *ntree)
929 for (node = ntree->nodes.first; node; node = node->next) {
931 if (GS(node->id->name)==ID_MA) {
932 Material *ma= (Material *)node->id;
934 if ((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
937 ma->flag |= MA_IS_USED;
939 else if (node->type==NODE_GROUP)
940 flag_render_node_material(re, (bNodeTree *)node->id);
945 static Material *give_render_material(Render *re, Object *ob, short nr)
947 extern Material defmaterial; /* material.c */
950 ma= give_current_material(ob, nr);
954 if (re->r.mode & R_SPEED) ma->texco |= NEED_UV;
956 if (ma->material_type == MA_TYPE_VOLUME) {
957 ma->mode |= MA_TRANSP;
958 ma->mode &= ~MA_SHADBUF;
960 if ((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
963 /* for light groups and SSS */
964 ma->flag |= MA_IS_USED;
966 if (ma->nodetree && ma->use_nodes)
967 flag_render_node_material(re, ma->nodetree);
969 check_material_mapto(ma);
974 /* ------------------------------------------------------------------------- */
976 /* ------------------------------------------------------------------------- */
977 typedef struct ParticleStrandData {
979 float *orco, *uvco, *surfnor;
980 float time, adapt_angle, adapt_pix, size;
982 int first, line, adapt, override_uv;
985 /* future thread problem... */
986 static void static_particle_strand(Render *re, ObjectRen *obr, Material *ma, ParticleStrandData *sd, const float vec[3], const float vec1[3])
988 static VertRen *v1= NULL, *v2= NULL;
990 float nor[3], cross[3], crosslen, w, dx, dy, width;
991 static float anor[3], avec[3];
995 sub_v3_v3v3(nor, vec, vec1);
996 normalize_v3(nor); /* nor needed as tangent */
997 cross_v3_v3v3(cross, vec, nor);
999 /* turn cross in pixelsize */
1000 w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1001 dx= re->winx*cross[0]*re->winmat[0][0];
1002 dy= re->winy*cross[1]*re->winmat[1][1];
1003 w= sqrt(dx*dx + dy*dy)/w;
1007 if (ma->strand_ease!=0.0f) {
1008 if (ma->strand_ease<0.0f)
1009 fac= pow(sd->time, 1.0f+ma->strand_ease);
1011 fac= pow(sd->time, 1.0f/(1.0f-ma->strand_ease));
1015 width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
1017 /* use actual Blender units for strand width and fall back to minimum width */
1018 if (ma->mode & MA_STR_B_UNITS) {
1019 crosslen= len_v3(cross);
1020 w= 2.0f*crosslen*ma->strand_min/w;
1025 /*cross is the radius of the strand so we want it to be half of full width */
1026 mul_v3_fl(cross, 0.5f/crosslen);
1031 mul_v3_fl(cross, width);
1034 if (ma->mode & MA_TANGENT_STR)
1035 flag= R_SMOOTH|R_TANGENT;
1039 /* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
1040 if (ma->strand_sta==1.0f)
1043 /* single face line */
1045 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1047 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1048 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1049 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1050 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1052 copy_v3_v3(vlr->v1->co, vec);
1053 add_v3_v3(vlr->v1->co, cross);
1054 copy_v3_v3(vlr->v1->n, nor);
1055 vlr->v1->orco= sd->orco;
1056 vlr->v1->accum = -1.0f; /* accum abuse for strand texco */
1058 copy_v3_v3(vlr->v2->co, vec);
1059 sub_v3_v3v3(vlr->v2->co, vlr->v2->co, cross);
1060 copy_v3_v3(vlr->v2->n, nor);
1061 vlr->v2->orco= sd->orco;
1062 vlr->v2->accum= vlr->v1->accum;
1064 copy_v3_v3(vlr->v4->co, vec1);
1065 add_v3_v3(vlr->v4->co, cross);
1066 copy_v3_v3(vlr->v4->n, nor);
1067 vlr->v4->orco= sd->orco;
1068 vlr->v4->accum = 1.0f; /* accum abuse for strand texco */
1070 copy_v3_v3(vlr->v3->co, vec1);
1071 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1072 copy_v3_v3(vlr->v3->n, nor);
1073 vlr->v3->orco= sd->orco;
1074 vlr->v3->accum= vlr->v4->accum;
1076 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1082 float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1083 copy_v3_v3(snor, sd->surfnor);
1087 for (i=0; i<sd->totuv; i++) {
1089 mtf=RE_vlakren_get_tface(obr, vlr, i, NULL, 1);
1090 mtf->uv[0][0]=mtf->uv[1][0]=
1091 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1092 mtf->uv[0][1]=mtf->uv[1][1]=
1093 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1095 if (sd->override_uv>=0) {
1097 mtf=RE_vlakren_get_tface(obr, vlr, sd->override_uv, NULL, 0);
1099 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1100 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1102 mtf->uv[0][1]=mtf->uv[1][1]=0.0f;
1103 mtf->uv[2][1]=mtf->uv[3][1]=1.0f;
1107 for (i=0; i<sd->totcol; i++) {
1109 mc=RE_vlakren_get_mcol(obr, vlr, i, NULL, 1);
1110 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1111 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1115 /* first two vertices of a strand */
1116 else if (sd->first) {
1118 copy_v3_v3(anor, nor);
1119 copy_v3_v3(avec, vec);
1123 v1= RE_findOrAddVert(obr, obr->totvert++);
1124 v2= RE_findOrAddVert(obr, obr->totvert++);
1126 copy_v3_v3(v1->co, vec);
1127 add_v3_v3(v1->co, cross);
1128 copy_v3_v3(v1->n, nor);
1130 v1->accum = -1.0f; /* accum abuse for strand texco */
1132 copy_v3_v3(v2->co, vec);
1133 sub_v3_v3v3(v2->co, v2->co, cross);
1134 copy_v3_v3(v2->n, nor);
1136 v2->accum= v1->accum;
1138 /* more vertices & faces to strand */
1140 if (sd->adapt==0 || second) {
1141 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1145 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1146 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1148 v1= vlr->v4; /* cycle */
1149 v2= vlr->v3; /* cycle */
1154 copy_v3_v3(anor, nor);
1155 copy_v3_v3(avec, vec);
1159 else if (sd->adapt) {
1160 float dvec[3], pvec[3];
1161 sub_v3_v3v3(dvec, avec, vec);
1162 project_v3_v3v3(pvec, dvec, vec);
1163 sub_v3_v3v3(dvec, dvec, pvec);
1165 w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1166 dx= re->winx*dvec[0]*re->winmat[0][0]/w;
1167 dy= re->winy*dvec[1]*re->winmat[1][1]/w;
1168 w= sqrt(dx*dx + dy*dy);
1169 if (dot_v3v3(anor, nor)<sd->adapt_angle && w>sd->adapt_pix) {
1170 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1174 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1175 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1177 v1= vlr->v4; /* cycle */
1178 v2= vlr->v3; /* cycle */
1180 copy_v3_v3(anor, nor);
1181 copy_v3_v3(avec, vec);
1184 vlr= RE_findOrAddVlak(obr, obr->totvlak-1);
1188 copy_v3_v3(vlr->v4->co, vec);
1189 add_v3_v3(vlr->v4->co, cross);
1190 copy_v3_v3(vlr->v4->n, nor);
1191 vlr->v4->orco= sd->orco;
1192 vlr->v4->accum= -1.0f + 2.0f * sd->time; /* accum abuse for strand texco */
1194 copy_v3_v3(vlr->v3->co, vec);
1195 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1196 copy_v3_v3(vlr->v3->n, nor);
1197 vlr->v3->orco= sd->orco;
1198 vlr->v3->accum= vlr->v4->accum;
1200 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1206 float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1207 copy_v3_v3(snor, sd->surfnor);
1211 for (i=0; i<sd->totuv; i++) {
1213 mtf=RE_vlakren_get_tface(obr, vlr, i, NULL, 1);
1214 mtf->uv[0][0]=mtf->uv[1][0]=
1215 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1216 mtf->uv[0][1]=mtf->uv[1][1]=
1217 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1219 if (sd->override_uv>=0) {
1221 mtf=RE_vlakren_get_tface(obr, vlr, sd->override_uv, NULL, 0);
1223 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1224 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1226 mtf->uv[0][1]=mtf->uv[1][1]=(vlr->v1->accum+1.0f)/2.0f;
1227 mtf->uv[2][1]=mtf->uv[3][1]=(vlr->v3->accum+1.0f)/2.0f;
1231 for (i=0; i<sd->totcol; i++) {
1233 mc=RE_vlakren_get_mcol(obr, vlr, i, NULL, 1);
1234 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1235 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1241 static void static_particle_wire(ObjectRen *obr, Material *ma, const float vec[3], const float vec1[3], int first, int line)
1247 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1248 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1249 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1253 copy_v3_v3(vlr->v1->co, vec);
1254 copy_v3_v3(vlr->v2->co, vec1);
1256 sub_v3_v3v3(vlr->n, vec, vec1);
1257 normalize_v3(vlr->n);
1258 copy_v3_v3(vlr->v1->n, vlr->n);
1259 copy_v3_v3(vlr->v2->n, vlr->n);
1266 v1= RE_findOrAddVert(obr, obr->totvert++);
1267 copy_v3_v3(v1->co, vec);
1270 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1272 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1276 v1= vlr->v2; /* cycle */
1277 copy_v3_v3(v1->co, vec);
1279 sub_v3_v3v3(vlr->n, vec, vec1);
1280 normalize_v3(vlr->n);
1281 copy_v3_v3(v1->n, vlr->n);
1289 static void particle_curve(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd,
1290 const float loc[3], const float loc1[3], int seed, float *pa_co)
1292 HaloRen *har = NULL;
1294 if (ma->material_type == MA_TYPE_WIRE)
1295 static_particle_wire(obr, ma, loc, loc1, sd->first, sd->line);
1296 else if (ma->material_type == MA_TYPE_HALO) {
1297 har= RE_inithalo_particle(re, obr, dm, ma, loc, loc1, sd->orco, sd->uvco, sd->size, 1.0, seed, pa_co);
1298 if (har) har->lay= obr->ob->lay;
1301 static_particle_strand(re, obr, ma, sd, loc, loc1);
1303 static void particle_billboard(Render *re, ObjectRen *obr, Material *ma, ParticleBillboardData *bb)
1307 float xvec[3], yvec[3], zvec[3], bb_center[3];
1308 /* Number of tiles */
1309 int totsplit = bb->uv_split * bb->uv_split;
1312 float uvx = 0.0f, uvy = 0.0f, uvdx = 1.0f, uvdy = 1.0f, time = 0.0f;
1314 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1315 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1316 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1317 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1318 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1320 psys_make_billboard(bb, xvec, yvec, zvec, bb_center);
1322 add_v3_v3v3(vlr->v1->co, bb_center, xvec);
1323 add_v3_v3(vlr->v1->co, yvec);
1324 mul_m4_v3(re->viewmat, vlr->v1->co);
1326 sub_v3_v3v3(vlr->v2->co, bb_center, xvec);
1327 add_v3_v3(vlr->v2->co, yvec);
1328 mul_m4_v3(re->viewmat, vlr->v2->co);
1330 sub_v3_v3v3(vlr->v3->co, bb_center, xvec);
1331 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, yvec);
1332 mul_m4_v3(re->viewmat, vlr->v3->co);
1334 add_v3_v3v3(vlr->v4->co, bb_center, xvec);
1335 sub_v3_v3(vlr->v4->co, yvec);
1336 mul_m4_v3(re->viewmat, vlr->v4->co);
1338 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1339 copy_v3_v3(vlr->v1->n, vlr->n);
1340 copy_v3_v3(vlr->v2->n, vlr->n);
1341 copy_v3_v3(vlr->v3->n, vlr->n);
1342 copy_v3_v3(vlr->v4->n, vlr->n);
1347 if (bb->uv_split > 1) {
1348 uvdx = uvdy = 1.0f / (float)bb->uv_split;
1350 if (ELEM(bb->anim, PART_BB_ANIM_AGE, PART_BB_ANIM_FRAME)) {
1351 if (bb->anim == PART_BB_ANIM_FRAME)
1352 time = ((int)(bb->time * bb->lifetime) % totsplit)/(float)totsplit;
1356 else if (bb->anim == PART_BB_ANIM_ANGLE) {
1357 if (bb->align == PART_BB_VIEW) {
1358 time = (float)fmod((bb->tilt + 1.0f) / 2.0f, 1.0);
1361 float axis1[3] = {0.0f, 0.0f, 0.0f};
1362 float axis2[3] = {0.0f, 0.0f, 0.0f};
1364 axis1[(bb->align + 1) % 3] = 1.0f;
1365 axis2[(bb->align + 2) % 3] = 1.0f;
1367 if (bb->lock == 0) {
1368 zvec[bb->align] = 0.0f;
1372 time = saacos(dot_v3v3(zvec, axis1)) / (float)M_PI;
1374 if (dot_v3v3(zvec, axis2) < 0.0f)
1375 time = 1.0f - time / 2.0f;
1381 if (bb->split_offset == PART_BB_OFF_LINEAR)
1382 time = (float)fmod(time + (float)bb->num / (float)totsplit, 1.0f);
1383 else if (bb->split_offset==PART_BB_OFF_RANDOM)
1384 time = (float)fmod(time + bb->random, 1.0f);
1386 /* Find the coordinates in tile space (integer), then convert to UV
1387 * space (float). Note that Y is flipped. */
1388 tile = (int)((time + FLT_EPSILON10) * totsplit);
1389 x = tile % bb->uv_split;
1390 y = tile / bb->uv_split;
1391 y = (bb->uv_split - 1) - y;
1397 if (bb->uv[0] >= 0) {
1398 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[0], NULL, 1);
1399 mtf->uv[0][0] = 1.0f;
1400 mtf->uv[0][1] = 1.0f;
1401 mtf->uv[1][0] = 0.0f;
1402 mtf->uv[1][1] = 1.0f;
1403 mtf->uv[2][0] = 0.0f;
1404 mtf->uv[2][1] = 0.0f;
1405 mtf->uv[3][0] = 1.0f;
1406 mtf->uv[3][1] = 0.0f;
1409 /* time-index UVs */
1410 if (bb->uv[1] >= 0) {
1411 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[1], NULL, 1);
1412 mtf->uv[0][0] = mtf->uv[1][0] = mtf->uv[2][0] = mtf->uv[3][0] = bb->time;
1413 mtf->uv[0][1] = mtf->uv[1][1] = mtf->uv[2][1] = mtf->uv[3][1] = (float)bb->num/(float)bb->totnum;
1417 if (bb->uv_split > 1 && bb->uv[2] >= 0) {
1418 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[2], NULL, 1);
1419 mtf->uv[0][0] = uvx + uvdx;
1420 mtf->uv[0][1] = uvy + uvdy;
1421 mtf->uv[1][0] = uvx;
1422 mtf->uv[1][1] = uvy + uvdy;
1423 mtf->uv[2][0] = uvx;
1424 mtf->uv[2][1] = uvy;
1425 mtf->uv[3][0] = uvx + uvdx;
1426 mtf->uv[3][1] = uvy;
1429 static void particle_normal_ren(short ren_as, ParticleSettings *part, Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, ParticleBillboardData *bb, ParticleKey *state, int seed, float hasize, float *pa_co)
1431 float loc[3], loc0[3], loc1[3], vel[3];
1433 copy_v3_v3(loc, state->co);
1435 if (ren_as != PART_DRAW_BB)
1436 mul_m4_v3(re->viewmat, loc);
1439 case PART_DRAW_LINE:
1444 copy_v3_v3(vel, state->vel);
1445 mul_mat3_m4_v3(re->viewmat, vel);
1448 if (part->draw & PART_DRAW_VEL_LENGTH)
1449 mul_v3_fl(vel, len_v3(state->vel));
1451 madd_v3_v3v3fl(loc0, loc, vel, -part->draw_line[0]);
1452 madd_v3_v3v3fl(loc1, loc, vel, part->draw_line[1]);
1454 particle_curve(re, obr, dm, ma, sd, loc0, loc1, seed, pa_co);
1460 copy_v3_v3(bb->vec, loc);
1461 copy_v3_v3(bb->vel, state->vel);
1463 particle_billboard(re, obr, ma, bb);
1469 HaloRen *har = NULL;
1471 har = RE_inithalo_particle(re, obr, dm, ma, loc, NULL, sd->orco, sd->uvco, hasize, 0.0, seed, pa_co);
1473 if (har) har->lay= obr->ob->lay;
1479 static void get_particle_uvco_mcol(short from, DerivedMesh *dm, float *fuv, int num, ParticleStrandData *sd)
1484 if (sd->uvco && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
1485 for (i=0; i<sd->totuv; i++) {
1486 if (num != DMCACHE_NOTFOUND) {
1487 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1488 MTFace *mtface = (MTFace*)CustomData_get_layer_n(&dm->faceData, CD_MTFACE, i);
1491 psys_interpolate_uvs(mtface, mface->v4, fuv, sd->uvco + 2 * i);
1494 sd->uvco[2*i] = 0.0f;
1495 sd->uvco[2*i + 1] = 0.0f;
1501 if (sd->mcol && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
1502 for (i=0; i<sd->totcol; i++) {
1503 if (num != DMCACHE_NOTFOUND) {
1504 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1505 MCol *mc = (MCol*)CustomData_get_layer_n(&dm->faceData, CD_MCOL, i);
1508 psys_interpolate_mcol(mc, mface->v4, fuv, sd->mcol + i);
1511 memset(&sd->mcol[i], 0, sizeof(MCol));
1515 static int render_new_particle_system(Render *re, ObjectRen *obr, ParticleSystem *psys, int timeoffset)
1517 Object *ob= obr->ob;
1519 Material *ma = NULL;
1520 ParticleSystemModifierData *psmd;
1521 ParticleSystem *tpsys = NULL;
1522 ParticleSettings *part, *tpart = NULL;
1523 ParticleData *pars, *pa = NULL, *tpa = NULL;
1524 ParticleKey *states = NULL;
1526 ParticleCacheKey *cache = NULL;
1527 ParticleBillboardData bb;
1528 ParticleSimulationData sim = {NULL};
1529 ParticleStrandData sd;
1530 StrandBuffer *strandbuf = NULL;
1531 StrandVert *svert = NULL;
1532 StrandBound *sbound = NULL;
1533 StrandRen *strand = NULL;
1535 float loc[3], loc1[3], loc0[3], mat[4][4], nmat[3][3], co[3], nor[3], duplimat[4][4];
1536 float strandlen=0.0f, curlen=0.0f;
1537 float hasize, pa_size, r_tilt, r_length;
1538 float pa_time, pa_birthtime, pa_dietime;
1539 float random, simplify[2], pa_co[3];
1540 const float cfra= BKE_scene_frame_get(re->scene);
1541 int i, a, k, max_k=0, totpart, do_simplify = FALSE, do_surfacecache = FALSE, use_duplimat = FALSE;
1542 int totchild=0, step_nbr;
1543 int seed, path_nbr=0, orco1=0, num;
1545 char **uv_name = NULL;
1547 const int *index_mf_to_mpoly = NULL;
1548 const int *index_mp_to_orig = NULL;
1550 /* 1. check that everything is ok & updated */
1555 pars=psys->particles;
1557 if (part==NULL || pars==NULL || !psys_check_enabled(ob, psys))
1560 if (part->ren_as==PART_DRAW_OB || part->ren_as==PART_DRAW_GR || part->ren_as==PART_DRAW_NOT)
1563 /* 2. start initializing things */
1565 /* last possibility to bail out! */
1566 psmd = psys_get_modifier(ob, psys);
1567 if (!(psmd->modifier.mode & eModifierMode_Render))
1570 sim.scene= re->scene;
1575 if (part->phystype==PART_PHYS_KEYED)
1576 psys_count_keyed_targets(&sim);
1578 totchild=psys->totchild;
1580 /* can happen for disconnected/global hair */
1581 if (part->type==PART_HAIR && !psys->childcache)
1584 if (re->r.scemode & R_VIEWPORT_PREVIEW) { /* preview render */
1585 totchild = (int)((float)totchild * (float)part->disp / 100.0f);
1586 step_nbr = part->draw_step;
1589 step_nbr = part->ren_step;
1592 psys->flag |= PSYS_DRAWING;
1594 rng= BLI_rng_new(psys->seed);
1596 totpart=psys->totpart;
1598 memset(&sd, 0, sizeof(ParticleStrandData));
1599 sd.override_uv = -1;
1601 /* 2.1 setup material stff */
1602 ma= give_render_material(re, ob, part->omat);
1604 #if 0 /* XXX old animation system */
1606 calc_ipo(ma->ipo, cfra);
1607 execute_ipo((ID *)ma, ma->ipo);
1609 #endif /* XXX old animation system */
1611 hasize = ma->hasize;
1616 RE_set_customdata_names(obr, &psmd->dm->faceData);
1617 sd.totuv = CustomData_number_of_layers(&psmd->dm->faceData, CD_MTFACE);
1618 sd.totcol = CustomData_number_of_layers(&psmd->dm->faceData, CD_MCOL);
1620 if (ma->texco & TEXCO_UV && sd.totuv) {
1621 sd.uvco = MEM_callocN(sd.totuv * 2 * sizeof(float), "particle_uvs");
1623 if (ma->strand_uvname[0]) {
1624 sd.override_uv = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, ma->strand_uvname);
1625 sd.override_uv -= CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1632 sd.mcol = MEM_callocN(sd.totcol * sizeof(MCol), "particle_mcols");
1634 /* 2.2 setup billboards */
1635 if (part->ren_as == PART_DRAW_BB) {
1636 int first_uv = CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1638 bb.uv[0] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[0]);
1640 bb.uv[0] = CustomData_get_active_layer_index(&psmd->dm->faceData, CD_MTFACE);
1642 bb.uv[1] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[1]);
1644 bb.uv[2] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[2]);
1646 if (first_uv >= 0) {
1647 bb.uv[0] -= first_uv;
1648 bb.uv[1] -= first_uv;
1649 bb.uv[2] -= first_uv;
1652 bb.align = part->bb_align;
1653 bb.anim = part->bb_anim;
1654 bb.lock = part->draw & PART_DRAW_BB_LOCK;
1655 bb.ob = (part->bb_ob ? part->bb_ob : RE_GetCamera(re));
1656 bb.split_offset = part->bb_split_offset;
1657 bb.totnum = totpart+totchild;
1658 bb.uv_split = part->bb_uv_split;
1661 /* 2.5 setup matrices */
1662 mul_m4_m4m4(mat, re->viewmat, ob->obmat);
1663 invert_m4_m4(ob->imat, mat); /* need to be that way, for imat texture */
1664 copy_m3_m4(nmat, ob->imat);
1667 if (psys->flag & PSYS_USE_IMAT) {
1668 /* psys->imat is the original emitter's inverse matrix, ob->obmat is the duplicated object's matrix */
1669 mul_m4_m4m4(duplimat, ob->obmat, psys->imat);
1670 use_duplimat = TRUE;
1673 /* 2.6 setup strand rendering */
1674 if (part->ren_as == PART_DRAW_PATH && psys->pathcache) {
1675 path_nbr=(int)pow(2.0, (double) step_nbr);
1678 if (!ELEM(ma->material_type, MA_TYPE_HALO, MA_TYPE_WIRE)) {
1679 sd.orco = MEM_mallocN(3*sizeof(float)*(totpart+totchild), "particle orcos");
1680 set_object_orco(re, psys, sd.orco);
1684 if (part->draw & PART_DRAW_REN_ADAPT) {
1686 sd.adapt_pix = (float)part->adapt_pix;
1687 sd.adapt_angle = cosf(DEG2RADF((float)part->adapt_angle));
1690 if (part->draw & PART_DRAW_REN_STRAND) {
1691 strandbuf= RE_addStrandBuffer(obr, (totpart+totchild)*(path_nbr+1));
1693 strandbuf->lay= ob->lay;
1694 copy_m4_m4(strandbuf->winmat, re->winmat);
1695 strandbuf->winx= re->winx;
1696 strandbuf->winy= re->winy;
1697 strandbuf->maxdepth= 2;
1698 strandbuf->adaptcos= cosf(DEG2RADF((float)part->adapt_angle));
1699 strandbuf->overrideuv= sd.override_uv;
1700 strandbuf->minwidth= ma->strand_min;
1702 if (ma->strand_widthfade == 0.0f)
1703 strandbuf->widthfade= -1.0f;
1704 else if (ma->strand_widthfade >= 1.0f)
1705 strandbuf->widthfade= 2.0f - ma->strand_widthfade;
1707 strandbuf->widthfade= 1.0f/MAX2(ma->strand_widthfade, 1e-5f);
1709 if (part->flag & PART_HAIR_BSPLINE)
1710 strandbuf->flag |= R_STRAND_BSPLINE;
1711 if (ma->mode & MA_STR_B_UNITS)
1712 strandbuf->flag |= R_STRAND_B_UNITS;
1714 svert= strandbuf->vert;
1716 if (re->r.mode & R_SPEED)
1717 do_surfacecache = TRUE;
1718 else if ((re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT)) && (re->wrld.ao_gather_method == WO_AOGATHER_APPROX))
1719 if (ma->amb != 0.0f)
1720 do_surfacecache = TRUE;
1722 totface= psmd->dm->getNumTessFaces(psmd->dm);
1723 index_mf_to_mpoly = psmd->dm->getTessFaceDataArray(psmd->dm, CD_ORIGINDEX);
1724 index_mp_to_orig = psmd->dm->getPolyDataArray(psmd->dm, CD_ORIGINDEX);
1725 if (index_mf_to_mpoly == NULL) {
1726 index_mp_to_orig = NULL;
1728 for (a=0; a<totface; a++)
1729 strandbuf->totbound = max_ii(strandbuf->totbound, (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a): a);
1731 strandbuf->totbound++;
1732 strandbuf->bound= MEM_callocN(sizeof(StrandBound)*strandbuf->totbound, "StrandBound");
1733 sbound= strandbuf->bound;
1734 sbound->start= sbound->end= 0;
1738 if (sd.orco == NULL) {
1739 sd.orco = MEM_mallocN(3 * sizeof(float), "particle orco");
1744 psys->lattice_deform_data = psys_create_lattice_deform_data(&sim);
1746 /* 3. start creating renderable things */
1747 for (a=0, pa=pars; a<totpart+totchild; a++, pa++, seed++) {
1748 random = BLI_rng_get_float(rng);
1749 /* setup per particle individual stuff */
1751 if (pa->flag & PARS_UNEXIST) continue;
1753 pa_time=(cfra-pa->time)/pa->lifetime;
1754 pa_birthtime = pa->time;
1755 pa_dietime = pa->dietime;
1757 hasize = ma->hasize;
1759 /* XXX 'tpsys' is alwyas NULL, this code won't run! */
1761 if (tpsys && part->phystype == PART_PHYS_NO) {
1762 tpa = tpsys->particles + pa->num;
1763 psys_particle_on_emitter(
1765 tpart->from, tpa->num, pa->num_dmcache, tpa->fuv,
1766 tpa->foffset, co, nor, NULL, NULL, sd.orco, NULL);
1769 psys_particle_on_emitter(
1771 part->from, pa->num, pa->num_dmcache,
1772 pa->fuv, pa->foffset, co, nor, NULL, NULL, sd.orco, NULL);
1775 /* get uvco & mcol */
1776 num= pa->num_dmcache;
1778 if (num == DMCACHE_NOTFOUND)
1779 if (pa->num < psmd->dm->getNumTessFaces(psmd->dm))
1782 get_particle_uvco_mcol(part->from, psmd->dm, pa->fuv, num, &sd);
1786 r_tilt = 2.0f*(PSYS_FRAND(a) - 0.5f);
1787 r_length = PSYS_FRAND(a+1);
1790 cache = psys->pathcache[a];
1791 max_k = (int)cache->steps;
1794 if (totchild && (part->draw&PART_DRAW_PARENT)==0) continue;
1797 ChildParticle *cpa= psys->child+a-totpart;
1800 cache = psys->childcache[a-totpart];
1802 if (cache->steps < 0)
1805 max_k = (int)cache->steps;
1808 pa_time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
1809 pa_size = psys_get_child_size(psys, cpa, cfra, &pa_time);
1811 r_tilt = 2.0f*(PSYS_FRAND(a + 21) - 0.5f);
1812 r_length = PSYS_FRAND(a + 22);
1817 if (part->childtype == PART_CHILD_FACES) {
1818 psys_particle_on_emitter(
1820 PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD,
1821 cpa->fuv, cpa->foffset, co, nor, NULL, NULL, sd.orco, NULL);
1824 ParticleData *par = psys->particles + cpa->parent;
1825 psys_particle_on_emitter(
1827 part->from, par->num, DMCACHE_ISCHILD, par->fuv,
1828 par->foffset, co, nor, NULL, NULL, sd.orco, NULL);
1831 /* get uvco & mcol */
1832 if (part->childtype==PART_CHILD_FACES) {
1833 get_particle_uvco_mcol(PART_FROM_FACE, psmd->dm, cpa->fuv, cpa->num, &sd);
1836 ParticleData *parent = psys->particles + cpa->parent;
1837 num = parent->num_dmcache;
1839 if (num == DMCACHE_NOTFOUND)
1840 if (parent->num < psmd->dm->getNumTessFaces(psmd->dm))
1843 get_particle_uvco_mcol(part->from, psmd->dm, parent->fuv, num, &sd);
1846 do_simplify = psys_render_simplify_params(psys, cpa, simplify);
1849 int orignum = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, cpa->num) : cpa->num;
1851 if (orignum > sbound - strandbuf->bound) {
1852 sbound= strandbuf->bound + orignum;
1853 sbound->start= sbound->end= obr->totstrand;
1858 /* TEXCO_PARTICLE */
1863 /* surface normal shading setup */
1864 if (ma->mode_l & MA_STR_SURFDIFF) {
1865 mul_m3_v3(nmat, nor);
1871 /* strand render setup */
1873 strand= RE_findOrAddStrand(obr, obr->totstrand++);
1874 strand->buffer= strandbuf;
1875 strand->vert= svert;
1876 copy_v3_v3(strand->orco, sd.orco);
1879 float *ssimplify= RE_strandren_get_simplify(obr, strand, 1);
1880 ssimplify[0]= simplify[0];
1881 ssimplify[1]= simplify[1];
1885 float *snor= RE_strandren_get_surfnor(obr, strand, 1);
1886 copy_v3_v3(snor, sd.surfnor);
1889 if (do_surfacecache && num >= 0) {
1890 int *facenum= RE_strandren_get_face(obr, strand, 1);
1895 for (i=0; i<sd.totuv; i++) {
1896 if (i != sd.override_uv) {
1897 float *uv= RE_strandren_get_uv(obr, strand, i, NULL, 1);
1899 uv[0]= sd.uvco[2*i];
1900 uv[1]= sd.uvco[2*i+1];
1905 for (i=0; i<sd.totcol; i++) {
1906 MCol *mc= RE_strandren_get_mcol(obr, strand, i, NULL, 1);
1914 /* strandco computation setup */
1918 for (k=1; k<=path_nbr; k++)
1920 strandlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1924 /* render strands */
1925 for (k=0; k<=path_nbr; k++) {
1929 copy_v3_v3(state.co, (cache+k)->co);
1930 copy_v3_v3(state.vel, (cache+k)->vel);
1936 curlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1937 time= curlen/strandlen;
1939 copy_v3_v3(loc, state.co);
1940 mul_m4_v3(re->viewmat, loc);
1943 copy_v3_v3(svert->co, loc);
1944 svert->strandco= -1.0f + 2.0f*time;
1954 sub_v3_v3v3(loc0, loc1, loc);
1955 add_v3_v3v3(loc0, loc1, loc0);
1957 particle_curve(re, obr, psmd->dm, ma, &sd, loc1, loc0, seed, pa_co);
1964 particle_curve(re, obr, psmd->dm, ma, &sd, loc, loc1, seed, pa_co);
1966 copy_v3_v3(loc1, loc);
1972 /* render normal particles */
1973 if (part->trail_count > 1) {
1974 float length = part->path_end * (1.0f - part->randlength * r_length);
1975 int trail_count = part->trail_count * (1.0f - part->randlength * r_length);
1976 float ct = (part->draw & PART_ABS_PATH_TIME) ? cfra : pa_time;
1977 float dt = length / (trail_count ? (float)trail_count : 1.0f);
1979 /* make sure we have pointcache in memory before getting particle on path */
1980 psys_make_temp_pointcache(ob, psys);
1982 for (i=0; i < trail_count; i++, ct -= dt) {
1983 if (part->draw & PART_ABS_PATH_TIME) {
1984 if (ct < pa_birthtime || ct > pa_dietime)
1987 else if (ct < 0.0f || ct > 1.0f)
1990 state.time = (part->draw & PART_ABS_PATH_TIME) ? -ct : ct;
1991 psys_get_particle_on_path(&sim, a, &state, 1);
1994 mul_m4_v3(psys->parent->obmat, state.co);
1997 mul_m4_v4(duplimat, state.co);
1999 if (part->ren_as == PART_DRAW_BB) {
2001 bb.offset[0] = part->bb_offset[0];
2002 bb.offset[1] = part->bb_offset[1];
2003 bb.size[0] = part->bb_size[0] * pa_size;
2004 if (part->bb_align==PART_BB_VEL) {
2005 float pa_vel = len_v3(state.vel);
2006 float head = part->bb_vel_head*pa_vel;
2007 float tail = part->bb_vel_tail*pa_vel;
2008 bb.size[1] = part->bb_size[1]*pa_size + head + tail;
2009 /* use offset to adjust the particle center. this is relative to size, so need to divide! */
2010 if (bb.size[1] > 0.0f)
2011 bb.offset[1] += (head-tail) / bb.size[1];
2014 bb.size[1] = part->bb_size[1] * pa_size;
2015 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2020 pa_co[0] = (part->draw & PART_ABS_PATH_TIME) ? (ct-pa_birthtime)/(pa_dietime-pa_birthtime) : ct;
2021 pa_co[1] = (float)i/(float)(trail_count-1);
2023 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2028 if (psys_get_particle_state(&sim, a, &state, 0)==0)
2032 mul_m4_v3(psys->parent->obmat, state.co);
2035 mul_m4_v3(duplimat, state.co);
2037 if (part->ren_as == PART_DRAW_BB) {
2039 bb.offset[0] = part->bb_offset[0];
2040 bb.offset[1] = part->bb_offset[1];
2041 bb.size[0] = part->bb_size[0] * pa_size;
2042 if (part->bb_align==PART_BB_VEL) {
2043 float pa_vel = len_v3(state.vel);
2044 float head = part->bb_vel_head*pa_vel;
2045 float tail = part->bb_vel_tail*pa_vel;
2046 bb.size[1] = part->bb_size[1]*pa_size + head + tail;
2047 /* use offset to adjust the particle center. this is relative to size, so need to divide! */
2048 if (bb.size[1] > 0.0f)
2049 bb.offset[1] += (head-tail) / bb.size[1];
2052 bb.size[1] = part->bb_size[1] * pa_size;
2053 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2056 bb.lifetime = pa_dietime-pa_birthtime;
2059 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2066 if (re->test_break(re->tbh))
2070 if (do_surfacecache)
2071 strandbuf->surface= cache_strand_surface(re, obr, psmd->dm, mat, timeoffset);
2074 #if 0 /* XXX old animation system */
2075 if (ma) do_mat_ipo(re->scene, ma);
2076 #endif /* XXX old animation system */
2095 psys->flag &= ~PSYS_DRAWING;
2097 if (psys->lattice_deform_data) {
2098 end_latt_deform(psys->lattice_deform_data);
2099 psys->lattice_deform_data = NULL;
2102 if (path_nbr && (ma->mode_l & MA_TANGENT_STR)==0)
2103 calc_vertexnormals(re, obr, 0, 0);
2108 /* ------------------------------------------------------------------------- */
2110 /* ------------------------------------------------------------------------- */
2112 static void make_render_halos(Render *re, ObjectRen *obr, Mesh *UNUSED(me), int totvert, MVert *mvert, Material *ma, float *orco)
2114 Object *ob= obr->ob;
2116 float xn, yn, zn, nor[3], view[3];
2117 float vec[3], hasize, mat[4][4], imat[3][3];
2118 int a, ok, seed= ma->seed1;
2120 mul_m4_m4m4(mat, re->viewmat, ob->obmat);
2121 copy_m3_m4(imat, ob->imat);
2125 for (a=0; a<totvert; a++, mvert++) {
2131 copy_v3_v3(vec, mvert->co);
2132 mul_m4_v3(mat, vec);
2134 if (ma->mode & MA_HALOPUNO) {
2140 nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2141 nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2142 nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2145 copy_v3_v3(view, vec);
2148 zn = dot_v3v3(nor, view);
2149 if (zn>=0.0f) hasize= 0.0f;
2150 else hasize*= zn*zn*zn*zn;
2153 if (orco) har= RE_inithalo(re, obr, ma, vec, NULL, orco, hasize, 0.0, seed);
2154 else har= RE_inithalo(re, obr, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
2155 if (har) har->lay= ob->lay;
2162 static int verghalo(const void *a1, const void *a2)
2164 const HaloRen *har1= *(const HaloRen**)a1;
2165 const HaloRen *har2= *(const HaloRen**)a2;
2167 if (har1->zs < har2->zs) return 1;
2168 else if (har1->zs > har2->zs) return -1;
2172 static void sort_halos(Render *re, int totsort)
2175 HaloRen *har= NULL, **haso;
2178 if (re->tothalo==0) return;
2180 re->sortedhalos= MEM_callocN(sizeof(HaloRen*)*re->tothalo, "sorthalos");
2181 haso= re->sortedhalos;
2183 for (obr=re->objecttable.first; obr; obr=obr->next) {
2184 for (a=0; a<obr->tothalo; a++) {
2185 if ((a & 255)==0) har= obr->bloha[a>>8];
2192 qsort(re->sortedhalos, totsort, sizeof(HaloRen*), verghalo);
2195 /* ------------------------------------------------------------------------- */
2196 /* Displacement Mapping */
2197 /* ------------------------------------------------------------------------- */
2199 static short test_for_displace(Render *re, Object *ob)
2201 /* return 1 when this object uses displacement textures. */
2205 for (i=1; i<=ob->totcol; i++) {
2206 ma=give_render_material(re, ob, i);
2207 /* ma->mapto is ORed total of all mapto channels */
2208 if (ma && (ma->mapto & MAP_DISPLACE)) return 1;
2213 static void displace_render_vert(Render *re, ObjectRen *obr, ShadeInput *shi, VertRen *vr, int vindex, float *scale, float mat[4][4], float imat[3][3])
2216 short texco= shi->mat->texco;
2217 float sample=0, displace[3];
2221 /* shi->co is current render coord, just make sure at least some vector is here */
2222 copy_v3_v3(shi->co, vr->co);
2223 /* vertex normal is used for textures type 'col' and 'var' */
2224 copy_v3_v3(shi->vn, vr->n);
2227 mul_m4_v3(mat, shi->co);
2230 shi->vn[0] = dot_v3v3(imat[0], vr->n);
2231 shi->vn[1] = dot_v3v3(imat[1], vr->n);
2232 shi->vn[2] = dot_v3v3(imat[2], vr->n);
2235 if (texco & TEXCO_UV) {
2237 shi->actuv= obr->actmtface;
2239 for (i=0; (tface=RE_vlakren_get_tface(obr, shi->vlr, i, &name, 0)); i++) {
2240 ShadeInputUV *suv= &shi->uv[i];
2242 /* shi.uv needs scale correction from tface uv */
2243 suv->uv[0]= 2*tface->uv[vindex][0]-1.0f;
2244 suv->uv[1]= 2*tface->uv[vindex][1]-1.0f;
2251 /* set all rendercoords, 'texco' is an ORed value for all textures needed */
2252 if ((texco & TEXCO_ORCO) && (vr->orco)) {
2253 copy_v3_v3(shi->lo, vr->orco);
2255 if (texco & TEXCO_GLOB) {
2256 copy_v3_v3(shi->gl, shi->co);
2257 mul_m4_v3(re->viewinv, shi->gl);
2259 if (texco & TEXCO_NORM) {
2260 copy_v3_v3(shi->orn, shi->vn);
2262 if (texco & TEXCO_REFL) {
2265 if (texco & TEXCO_STRESS) {
2266 float *s= RE_vertren_get_stress(obr, vr, 0);
2270 if (shi->stress<1.0f) shi->stress-= 1.0f;
2271 else shi->stress= (shi->stress-1.0f)/shi->stress;
2277 shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
2279 do_material_tex(shi, re);
2281 //printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2],
2282 //vr->co[0], vr->co[1], vr->co[2]);
2284 displace[0]= shi->displace[0] * scale[0];
2285 displace[1]= shi->displace[1] * scale[1];
2286 displace[2]= shi->displace[2] * scale[2];
2289 mul_m3_v3(imat, displace);
2291 /* 0.5 could become button once? */
2292 vr->co[0] += displace[0];
2293 vr->co[1] += displace[1];
2294 vr->co[2] += displace[2];
2296 //printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]);
2298 /* we just don't do this vertex again, bad luck for other face using same vertex with
2299 * different material... */
2302 /* Pass sample back so displace_face can decide which way to split the quad */
2303 sample = shi->displace[0]*shi->displace[0];
2304 sample += shi->displace[1]*shi->displace[1];
2305 sample += shi->displace[2]*shi->displace[2];
2308 /* Should be sqrt(sample), but I'm only looking for "bigger". Save the cycles. */
2312 static void displace_render_face(Render *re, ObjectRen *obr, VlakRen *vlr, float *scale, float mat[4][4], float imat[3][3])
2316 /* Warning, This is not that nice, and possibly a bit slow,
2317 * however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
2318 memset(&shi, 0, sizeof(ShadeInput));
2319 /* end warning! - Campbell */
2321 /* set up shadeinput struct for multitex() */
2323 /* memset above means we don't need this */
2324 /*shi.osatex= 0;*/ /* signal not to use dx[] and dy[] texture AA vectors */
2327 shi.vlr= vlr; /* current render face */
2328 shi.mat= vlr->mat; /* current input material */
2331 /* TODO, assign these, displacement with new bumpmap is skipped without - campbell */
2333 /* order is not known ? */
2339 /* Displace the verts, flag is set when done */
2341 displace_render_vert(re, obr, &shi, vlr->v1, 0, scale, mat, imat);
2344 displace_render_vert(re, obr, &shi, vlr->v2, 1, scale, mat, imat);
2347 displace_render_vert(re, obr, &shi, vlr->v3, 2, scale, mat, imat);
2351 displace_render_vert(re, obr, &shi, vlr->v4, 3, scale, mat, imat);
2353 /* closest in displace value. This will help smooth edges. */
2354 if (fabsf(vlr->v1->accum - vlr->v3->accum) > fabsf(vlr->v2->accum - vlr->v4->accum)) vlr->flag |= R_DIVIDE_24;
2355 else vlr->flag &= ~R_DIVIDE_24;
2358 /* Recalculate the face normal - if flipped before, flip now */
2360 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2363 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2367 static void do_displacement(Render *re, ObjectRen *obr, float mat[4][4], float imat[3][3])
2371 // float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
2372 float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
2373 int i; //, texflag=0;
2376 /* Object Size with parenting */
2379 mul_v3_v3v3(temp, obt->size, obt->dscale);
2380 scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
2384 /* Clear all flags */
2385 for (i=0; i<obr->totvert; i++) {
2386 vr= RE_findOrAddVert(obr, i);
2390 for (i=0; i<obr->totvlak; i++) {
2391 vlr=RE_findOrAddVlak(obr, i);
2392 displace_render_face(re, obr, vlr, scale, mat, imat);
2395 /* Recalc vertex normals */
2396 calc_vertexnormals(re, obr, 0, 0);
2399 /* ------------------------------------------------------------------------- */
2401 /* ------------------------------------------------------------------------- */
2403 static void init_render_mball(Render *re, ObjectRen *obr)
2405 Object *ob= obr->ob;
2408 VlakRen *vlr, *vlr1;
2410 float *data, *nors, *orco=NULL, mat[4][4], imat[3][3], xn, yn, zn;
2411 int a, need_orco, vlakindex, *index, negative_scale;
2412 ListBase dispbase= {NULL, NULL};
2414 if (ob!=BKE_mball_basis_find(re->scene, ob))
2417 mul_m4_m4m4(mat, re->viewmat, ob->obmat);
2418 invert_m4_m4(ob->imat, mat);
2419 copy_m3_m4(imat, ob->imat);
2420 negative_scale = is_negative_m4(mat);
2422 ma= give_render_material(re, ob, 1);
2425 if (ma->texco & TEXCO_ORCO) {
2429 BKE_displist_make_mball_forRender(re->scene, ob, &dispbase);
2431 if (dl == NULL) return;
2436 orco= get_object_orco(re, ob);
2439 /* orco hasn't been found in cache - create new one and add to cache */
2440 orco= BKE_mball_make_orco(ob, &dispbase);
2441 set_object_orco(re, ob, orco);
2445 for (a=0; a<dl->nr; a++, data+=3, nors+=3) {
2447 ver= RE_findOrAddVert(obr, obr->totvert++);
2448 copy_v3_v3(ver->co, data);
2449 mul_m4_v3(mat, ver->co);
2451 /* render normals are inverted */
2457 ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2458 ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2459 ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2460 normalize_v3(ver->n);
2461 //if (ob->transflag & OB_NEG_SCALE) negate_v3(ver->n);
2470 for (a=0; a<dl->parts; a++, index+=4) {
2472 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2473 vlr->v1= RE_findOrAddVert(obr, index[0]);
2474 vlr->v2= RE_findOrAddVert(obr, index[1]);
2475 vlr->v3= RE_findOrAddVert(obr, index[2]);
2479 normal_tri_v3(vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co);
2481 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2484 vlr->flag= ME_SMOOTH;
2487 /* mball -too bad- always has triangles, because quads can be non-planar */
2488 if (index[3] && index[3]!=index[2]) {
2489 vlr1= RE_findOrAddVlak(obr, obr->totvlak++);
2490 vlakindex= vlr1->index;
2492 vlr1->index= vlakindex;
2494 vlr1->v3= RE_findOrAddVert(obr, index[3]);
2496 normal_tri_v3(vlr1->n, vlr1->v1->co, vlr1->v2->co, vlr1->v3->co);
2498 normal_tri_v3(vlr1->n, vlr1->v3->co, vlr1->v2->co, vlr1->v1->co);
2502 /* enforce display lists remade */
2503 BKE_displist_free(&dispbase);
2506 /* ------------------------------------------------------------------------- */
2507 /* Surfaces and Curves */
2508 /* ------------------------------------------------------------------------- */
2510 /* returns amount of vertices added for orco */
2511 static int dl_surf_to_renderdata(ObjectRen *obr, DispList *dl, Material **matar, float *orco, float mat[4][4])
2513 VertRen *v1, *v2, *v3, *v4, *ver;
2514 VlakRen *vlr, *vlr1, *vlr2, *vlr3;
2516 int u, v, orcoret= 0;
2517 int p1, p2, p3, p4, a;
2518 int sizeu, nsizeu, sizev, nsizev;
2519 int startvert, startvlak;
2521 startvert= obr->totvert;
2522 nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr;
2525 for (u = 0; u < sizeu; u++) {
2526 v1 = RE_findOrAddVert(obr, obr->totvert++); /* save this for possible V wrapping */
2527 copy_v3_v3(v1->co, data); data += 3;
2529 v1->orco= orco; orco+= 3; orcoret++;
2531 mul_m4_v3(mat, v1->co);
2533 for (v = 1; v < sizev; v++) {
2534 ver= RE_findOrAddVert(obr, obr->totvert++);
2535 copy_v3_v3(ver->co, data); data += 3;
2537 ver->orco= orco; orco+= 3; orcoret++;
2539 mul_m4_v3(mat, ver->co);
2541 /* if V-cyclic, add extra vertices at end of the row */
2542 if (dl->flag & DL_CYCL_U) {
2543 ver= RE_findOrAddVert(obr, obr->totvert++);
2544 copy_v3_v3(ver->co, v1->co);
2546 ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
2551 /* Done before next loop to get corner vert */
2552 if (dl->flag & DL_CYCL_U) nsizev++;
2553 if (dl->flag & DL_CYCL_V) nsizeu++;
2555 /* if U cyclic, add extra row at end of column */
2556 if (dl->flag & DL_CYCL_V) {
2557 for (v = 0; v < nsizev; v++) {
2558 v1= RE_findOrAddVert(obr, startvert + v);
2559 ver= RE_findOrAddVert(obr, obr->totvert++);
2560 copy_v3_v3(ver->co, v1->co);
2562 ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
2570 startvlak= obr->totvlak;
2572 for (u = 0; u < sizeu - 1; u++) {
2573 p1 = startvert + u * sizev; /* walk through face list */
2578 for (v = 0; v < sizev - 1; v++) {
2579 v1= RE_findOrAddVert(obr, p1);
2580 v2= RE_findOrAddVert(obr, p2);
2581 v3= RE_findOrAddVert(obr, p3);
2582 v4= RE_findOrAddVert(obr, p4);
2584 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2585 vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
2587 normal_quad_v3(n1, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2589 copy_v3_v3(vlr->n, n1);
2591 vlr->mat= matar[ dl->col];
2592 vlr->ec= ME_V1V2+ME_V2V3;
2595 add_v3_v3(v1->n, n1);
2596 add_v3_v3(v2->n, n1);
2597 add_v3_v3(v3->n, n1);
2598 add_v3_v3(v4->n, n1);
2600 p1++; p2++; p3++; p4++;
2603 /* fix normals for U resp. V cyclic faces */
2604 sizeu--; sizev--; /* dec size for face array */
2605 if (dl->flag & DL_CYCL_V) {
2607 for (v = 0; v < sizev; v++) {
2609 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, v));
2610 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, v));
2611 add_v3_v3(vlr1->v1->n, vlr->n);
2612 add_v3_v3(vlr1->v2->n, vlr->n);
2613 add_v3_v3(vlr->v3->n, vlr1->n);
2614 add_v3_v3(vlr->v4->n, vlr1->n);
2617 if (dl->flag & DL_CYCL_U) {
2619 for (u = 0; u < sizeu; u++) {
2621 vlr= RE_findOrAddVlak(obr, UVTOINDEX(u, 0));
2622 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(u, sizev-1));
2623 add_v3_v3(vlr1->v2->n, vlr->n);
2624 add_v3_v3(vlr1->v3->n, vlr->n);
2625 add_v3_v3(vlr->v1->n, vlr1->n);
2626 add_v3_v3(vlr->v4->n, vlr1->n);
2630 /* last vertex is an extra case:
2632 * ^ ()----()----()----()
2634 * u | |(0,n)||(0,0)|
2636 * ()====()====[]====()
2640 * ()----()----()----()
2643 * vertex [] is no longer shared, therefore distribute
2644 * normals of the surrounding faces to all of the duplicates of []
2647 if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U)) {
2648 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m, n) */
2649 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, 0)); /* (0, 0) */
2650 add_v3_v3v3(n1, vlr->n, vlr1->n);
2651 vlr2= RE_findOrAddVlak(obr, UVTOINDEX(0, sizev-1)); /* (0, n) */
2652 add_v3_v3(n1, vlr2->n);
2653 vlr3= RE_findOrAddVlak(obr, UVTOINDEX(sizeu-1, 0)); /* (m, 0) */
2654 add_v3_v3(n1, vlr3->n);
2655 copy_v3_v3(vlr->v3->n, n1);
2656 copy_v3_v3(vlr1->v1->n, n1);
2657 copy_v3_v3(vlr2->v2->n, n1);
2658 copy_v3_v3(vlr3->v4->n, n1);
2660 for (a = startvert; a < obr->totvert; a++) {
2661 ver= RE_findOrAddVert(obr, a);
2662 normalize_v3(ver->n);
2669 static void init_render_dm(DerivedMesh *dm, Render *re, ObjectRen *obr,
2670 int timeoffset, float *orco, float mat[4][4])
2672 Object *ob= obr->ob;
2673 int a, end, totvert, vertofs;
2677 MVert *mvert = NULL;
2680 #ifdef WITH_FREESTYLE
2681 const int *index_mf_to_mpoly = NULL;
2682 const int *index_mp_to_orig = NULL;
2683 FreestyleFace *ffa = NULL;
2685 /* Curve *cu= ELEM(ob->type, OB_FONT, OB_CURVE) ? ob->data : NULL; */
2687 mvert= dm->getVertArray(dm);
2688 totvert= dm->getNumVerts(dm);
2690 for (a=0; a<totvert; a++, mvert++) {
2691 ver= RE_findOrAddVert(obr, obr->totvert++);
2692 copy_v3_v3(ver->co, mvert->co);
2693 mul_m4_v3(mat, ver->co);
2702 /* store customdata names, because DerivedMesh is freed */
2703 RE_set_customdata_names(obr, &dm->faceData);
2705 /* still to do for keys: the correct local texture coordinate */
2707 /* faces in order of color blocks */
2708 vertofs= obr->totvert - totvert;
2709 for (mat_iter= 0; (mat_iter < ob->totcol || (mat_iter==0 && ob->totcol==0)); mat_iter++) {
2711 ma= give_render_material(re, ob, mat_iter+1);
2712 end= dm->getNumTessFaces(dm);
2713 mface= dm->getTessFaceArray(dm);
2715 #ifdef WITH_FREESTYLE
2716 if (ob->type == OB_MESH) {
2718 index_mf_to_mpoly= dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
2719 index_mp_to_orig= dm->getPolyDataArray(dm, CD_ORIGINDEX);
2720 ffa= CustomData_get_layer(&me->pdata, CD_FREESTYLE_FACE);
2724 for (a=0; a<end; a++, mface++) {
2725 int v1, v2, v3, v4, flag;
2727 if (mface->mat_nr == mat_iter) {
2734 flag= mface->flag & ME_SMOOTH;
2736 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2737 vlr->v1= RE_findOrAddVert(obr, vertofs+v1);
2738 vlr->v2= RE_findOrAddVert(obr, vertofs+v2);
2739 vlr->v3= RE_findOrAddVert(obr, vertofs+v3);
2740 if (v4) vlr->v4= RE_findOrAddVert(obr, vertofs+v4);
2741 else vlr->v4 = NULL;
2743 /* render normals are inverted in render */
2745 len= normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2747 len= normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2751 vlr->ec= 0; /* mesh edges rendered separately */
2752 #ifdef WITH_FREESTYLE
2754 int index = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a) : a;
2755 vlr->freestyle_face_mark= (ffa[index].flag & FREESTYLE_FACE_MARK) ? 1 : 0;
2758 vlr->freestyle_face_mark= 0;
2762 if (len==0) obr->totvlak--;
2764 CustomDataLayer *layer;
2765 MTFace *mtface, *mtf;
2767 int index, mtfn= 0, mcn= 0;
2770 for (index=0; index<dm->faceData.totlayer; index++) {
2771 layer= &dm->faceData.layers[index];
2774 if (layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
2775 mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
2776 mtface= (MTFace*)layer->data;
2779 else if (layer->type == CD_MCOL && mcn < MAX_MCOL) {
2780 mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
2781 mcol= (MCol*)layer->data;
2782 memcpy(mc, &mcol[a*4], sizeof(MCol)*4);
2791 calc_vertexnormals(re, obr, 0, 0);
2796 static void init_render_surf(Render *re, ObjectRen *obr, int timeoffset)
2798 Object *ob= obr->ob;
2801 ListBase displist= {NULL, NULL};
2804 float *orco=NULL, mat[4][4];
2805 int a, totmat, need_orco=0;
2806 DerivedMesh *dm= NULL;
2810 if (nu == NULL) return;
2812 mul_m4_m4m4(mat, re->viewmat, ob->obmat);
2813 invert_m4_m4(ob->imat, mat);
2815 /* material array */
2816 totmat= ob->totcol+1;
2817 matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2819 for (a=0; a<totmat; a++) {
2820 matar[a]= give_render_material(re, ob, a+1);
2822 if (matar[a] && matar[a]->texco & TEXCO_ORCO)
2826 if (ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
2828 BKE_displist_make_surf(re->scene, ob, &displist, &dm, 1, 0, 1);
2832 orco= BKE_displist_make_orco(re->scene, ob, dm, 1, 1);
2834 set_object_orco(re, ob, orco);
2838 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2843 orco= get_object_orco(re, ob);
2846 /* walk along displaylist and create rendervertices/-faces */
2847 for (dl=displist.first; dl; dl=dl->next) {
2848 /* watch out: u ^= y, v ^= x !! */
2849 if (dl->type==DL_SURF)
2850 orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
2854 BKE_displist_free(&displist);
2859 static void init_render_curve(Render *re, ObjectRen *obr, int timeoffset)
2861 Object *ob= obr->ob;
2866 DerivedMesh *dm = NULL;
2867 ListBase disp={NULL, NULL};
2869 float *data, *fp, *orco=NULL;
2870 float n[3], mat[4][4], nmat[4][4];
2871 int nr, startvert, a, b;