6 * ***** BEGIN GPL LICENSE BLOCK *****
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 * The Original Code is Copyright (C) 2007 by Janne Karhu.
23 * All rights reserved.
25 * The Original Code is: all of this file.
27 * Contributor(s): Raul Fernandez Hernandez (Farsthary), Stephen Swhitehorn.
29 * ***** END GPL LICENSE BLOCK *****
32 /** \file blender/blenkernel/intern/particle_system.c
38 #include "BLI_storage.h" /* _LARGEFILE_SOURCE */
44 #include "MEM_guardedalloc.h"
46 #include "DNA_anim_types.h"
47 #include "DNA_boid_types.h"
48 #include "DNA_particle_types.h"
49 #include "DNA_mesh_types.h"
50 #include "DNA_meshdata_types.h"
51 #include "DNA_modifier_types.h"
52 #include "DNA_object_force.h"
53 #include "DNA_object_types.h"
54 #include "DNA_material_types.h"
55 #include "DNA_curve_types.h"
56 #include "DNA_group_types.h"
57 #include "DNA_scene_types.h"
58 #include "DNA_texture_types.h"
59 #include "DNA_ipo_types.h" // XXX old animation system stuff... to be removed!
60 #include "DNA_listBase.h"
63 #include "BLI_jitter.h"
65 #include "BLI_blenlib.h"
66 #include "BLI_kdtree.h"
67 #include "BLI_kdopbvh.h"
68 #include "BLI_listbase.h"
69 #include "BLI_threads.h"
70 #include "BLI_storage.h" /* For _LARGEFILE64_SOURCE; zlib needs this on some systems */
71 #include "BLI_utildefines.h"
72 #include "BLI_edgehash.h"
75 #include "BKE_animsys.h"
76 #include "BKE_boids.h"
77 #include "BKE_cdderivedmesh.h"
78 #include "BKE_collision.h"
79 #include "BKE_displist.h"
80 #include "BKE_effect.h"
81 #include "BKE_particle.h"
82 #include "BKE_global.h"
84 #include "BKE_DerivedMesh.h"
85 #include "BKE_object.h"
86 #include "BKE_material.h"
87 #include "BKE_cloth.h"
88 #include "BKE_depsgraph.h"
89 #include "BKE_lattice.h"
90 #include "BKE_pointcache.h"
92 #include "BKE_modifier.h"
93 #include "BKE_scene.h"
94 #include "BKE_bvhutils.h"
98 #include "RE_shader_ext.h"
100 /* fluid sim particle import */
101 #ifndef DISABLE_ELBEEM
102 #include "DNA_object_fluidsim.h"
103 #include "LBM_fluidsim.h"
109 #define snprintf _snprintf
113 #endif // DISABLE_ELBEEM
115 /************************************************/
116 /* Reacting to system events */
117 /************************************************/
119 static int particles_are_dynamic(ParticleSystem *psys) {
120 if(psys->pointcache->flag & PTCACHE_BAKED)
123 if(psys->part->type == PART_HAIR)
124 return psys->flag & PSYS_HAIR_DYNAMICS;
126 return ELEM3(psys->part->phystype, PART_PHYS_NEWTON, PART_PHYS_BOIDS, PART_PHYS_FLUID);
129 static int psys_get_current_display_percentage(ParticleSystem *psys)
131 ParticleSettings *part=psys->part;
133 if((psys->renderdata && !particles_are_dynamic(psys)) /* non-dynamic particles can be rendered fully */
134 || (part->child_nbr && part->childtype) /* display percentage applies to children */
135 || (psys->pointcache->flag & PTCACHE_BAKING)) /* baking is always done with full amount */
138 return psys->part->disp;
141 static int tot_particles(ParticleSystem *psys, PTCacheID *pid)
143 if(pid && psys->pointcache->flag & PTCACHE_EXTERNAL)
144 return pid->cache->totpoint;
145 else if(psys->part->distr == PART_DISTR_GRID && psys->part->from != PART_FROM_VERT)
146 return psys->part->grid_res * psys->part->grid_res * psys->part->grid_res - psys->totunexist;
148 return psys->part->totpart - psys->totunexist;
151 void psys_reset(ParticleSystem *psys, int mode)
155 if(ELEM(mode, PSYS_RESET_ALL, PSYS_RESET_DEPSGRAPH)) {
156 if(mode == PSYS_RESET_ALL || !(psys->flag & PSYS_EDITED)) {
157 /* don't free if not absolutely necessary */
158 if(psys->totpart != tot_particles(psys, NULL)) {
159 psys_free_particles(psys);
164 psys->flag &= ~(PSYS_HAIR_DONE|PSYS_KEYED);
166 if(psys->edit && psys->free_edit) {
167 psys->free_edit(psys->edit);
169 psys->free_edit = NULL;
173 else if(mode == PSYS_RESET_CACHE_MISS) {
174 /* set all particles to be skipped */
176 pa->flag |= PARS_NO_DISP;
181 MEM_freeN(psys->child);
187 /* reset path cache */
188 psys_free_path_cache(psys, psys->edit);
190 /* reset point cache */
191 BKE_ptcache_invalidate(psys->pointcache);
193 if(psys->fluid_springs) {
194 MEM_freeN(psys->fluid_springs);
195 psys->fluid_springs = NULL;
198 psys->tot_fluidsprings = psys->alloc_fluidsprings = 0;
201 static void realloc_particles(ParticleSimulationData *sim, int new_totpart)
203 ParticleSystem *psys = sim->psys;
204 ParticleSettings *part = psys->part;
205 ParticleData *newpars = NULL;
206 BoidParticle *newboids = NULL;
208 int totpart, totsaved = 0;
211 if(part->distr==PART_DISTR_GRID && part->from != PART_FROM_VERT) {
212 totpart= part->grid_res;
213 totpart*=totpart*totpart;
216 totpart=part->totpart;
221 if(totpart != psys->totpart) {
222 if(psys->edit && psys->free_edit) {
223 psys->free_edit(psys->edit);
225 psys->free_edit = NULL;
229 newpars= MEM_callocN(totpart*sizeof(ParticleData), "particles");
233 if(psys->part->phystype == PART_PHYS_BOIDS) {
234 newboids= MEM_callocN(totpart*sizeof(BoidParticle), "boid particles");
236 if(newboids == NULL) {
237 /* allocation error! */
245 if(psys->particles) {
246 totsaved=MIN2(psys->totpart,totpart);
249 memcpy(newpars,psys->particles,totsaved*sizeof(ParticleData));
251 if(psys->particles->boid)
252 memcpy(newboids, psys->particles->boid, totsaved*sizeof(BoidParticle));
255 if(psys->particles->keys)
256 MEM_freeN(psys->particles->keys);
258 if(psys->particles->boid)
259 MEM_freeN(psys->particles->boid);
261 for(p=0, pa=newpars; p<totsaved; p++, pa++) {
268 for(p=totsaved, pa=psys->particles+totsaved; p<psys->totpart; p++, pa++)
269 if(pa->hair) MEM_freeN(pa->hair);
271 MEM_freeN(psys->particles);
275 psys->particles=newpars;
276 psys->totpart=totpart;
280 pa->boid = newboids++;
285 MEM_freeN(psys->child);
291 static int get_psys_child_number(struct Scene *scene, ParticleSystem *psys)
295 if(!psys->part->childtype)
299 nbr= psys->part->ren_child_nbr;
301 nbr= psys->part->child_nbr;
303 return get_render_child_particle_number(&scene->r, nbr);
306 static int get_psys_tot_child(struct Scene *scene, ParticleSystem *psys)
308 return psys->totpart*get_psys_child_number(scene, psys);
311 static void alloc_child_particles(ParticleSystem *psys, int tot)
314 /* only re-allocate if we have to */
315 if(psys->part->childtype && psys->totchild == tot) {
316 memset(psys->child, 0, tot*sizeof(ChildParticle));
320 MEM_freeN(psys->child);
325 if(psys->part->childtype) {
328 psys->child= MEM_callocN(psys->totchild*sizeof(ChildParticle), "child_particles");
332 /************************************************/
334 /************************************************/
336 void psys_calc_dmcache(Object *ob, DerivedMesh *dm, ParticleSystem *psys)
338 /* use for building derived mesh mapping info:
340 node: the allocated links - total derived mesh element count
341 nodearray: the array of nodes aligned with the base mesh's elements, so
342 each original elements can reference its derived elements
344 Mesh *me= (Mesh*)ob->data;
347 /* CACHE LOCATIONS */
348 if(!dm->deformedOnly) {
349 /* Will use later to speed up subsurf/derivedmesh */
350 LinkNode *node, *nodedmelem, **nodearray;
351 int totdmelem, totelem, i, *origindex;
353 if(psys->part->from == PART_FROM_VERT) {
354 totdmelem= dm->getNumVerts(dm);
355 totelem= me->totvert;
356 origindex= dm->getVertDataArray(dm, CD_ORIGINDEX);
358 else { /* FROM_FACE/FROM_VOLUME */
359 totdmelem= dm->getNumTessFaces(dm);
360 totelem= me->totface;
361 origindex= dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
364 nodedmelem= MEM_callocN(sizeof(LinkNode)*totdmelem, "psys node elems");
365 nodearray= MEM_callocN(sizeof(LinkNode *)*totelem, "psys node array");
367 for(i=0, node=nodedmelem; i<totdmelem; i++, origindex++, node++) {
368 node->link= SET_INT_IN_POINTER(i);
370 if(*origindex != -1) {
371 if(nodearray[*origindex]) {
373 node->next = nodearray[*origindex];
374 nodearray[*origindex]= node;
377 nodearray[*origindex]= node;
381 /* cache the verts/faces! */
384 pa->num_dmcache = -1;
388 if(psys->part->from == PART_FROM_VERT) {
389 if(nodearray[pa->num])
390 pa->num_dmcache= GET_INT_FROM_POINTER(nodearray[pa->num]->link);
392 else { /* FROM_FACE/FROM_VOLUME */
393 /* Note that sometimes the pa->num is over the nodearray size, this is bad, maybe there is a better place to fix this,
394 * but for now passing NULL is OK. every face will be searched for the particle so its slower - Campbell */
395 pa->num_dmcache= psys_particle_dm_face_lookup(ob, dm, pa->num, pa->fuv, pa->num < totelem ? nodearray[pa->num] : NULL);
399 MEM_freeN(nodearray);
400 MEM_freeN(nodedmelem);
403 /* TODO PARTICLE, make the following line unnecessary, each function
404 * should know to use the num or num_dmcache, set the num_dmcache to
405 * an invalid value, just incase */
408 pa->num_dmcache = -1;
412 static void distribute_simple_children(Scene *scene, Object *ob, DerivedMesh *finaldm, ParticleSystem *psys)
414 ChildParticle *cpa = NULL;
416 int child_nbr= get_psys_child_number(scene, psys);
417 int totpart= get_psys_tot_child(scene, psys);
419 alloc_child_particles(psys, totpart);
422 for(i=0; i<child_nbr; i++){
423 for(p=0; p<psys->totpart; p++,cpa++){
427 /* create even spherical distribution inside unit sphere */
429 cpa->fuv[0]=2.0f*BLI_frand()-1.0f;
430 cpa->fuv[1]=2.0f*BLI_frand()-1.0f;
431 cpa->fuv[2]=2.0f*BLI_frand()-1.0f;
432 length=len_v3(cpa->fuv);
438 /* dmcache must be updated for parent particles if children from faces is used */
439 psys_calc_dmcache(ob, finaldm, psys);
441 static void distribute_grid(DerivedMesh *dm, ParticleSystem *psys)
443 ParticleData *pa=NULL;
444 float min[3], max[3], delta[3], d;
445 MVert *mv, *mvert = dm->getVertDataArray(dm,0);
446 int totvert=dm->getNumVerts(dm), from=psys->part->from;
447 int i, j, k, p, res=psys->part->grid_res, size[3], axis;
451 /* find bounding box of dm */
452 copy_v3_v3(min, mv->co);
453 copy_v3_v3(max, mv->co);
456 for(i=1; i<totvert; i++, mv++){
457 min[0]=MIN2(min[0],mv->co[0]);
458 min[1]=MIN2(min[1],mv->co[1]);
459 min[2]=MIN2(min[2],mv->co[2]);
461 max[0]=MAX2(max[0],mv->co[0]);
462 max[1]=MAX2(max[1],mv->co[1]);
463 max[2]=MAX2(max[2],mv->co[2]);
466 VECSUB(delta,max,min);
468 /* determine major axis */
469 axis = (delta[0]>=delta[1]) ? 0 : ((delta[1]>=delta[2]) ? 1 : 2);
471 d = delta[axis]/(float)res;
474 size[(axis+1)%3] = (int)ceil(delta[(axis+1)%3]/d);
475 size[(axis+2)%3] = (int)ceil(delta[(axis+2)%3]/d);
477 /* float errors grrr.. */
478 size[(axis+1)%3] = MIN2(size[(axis+1)%3],res);
479 size[(axis+2)%3] = MIN2(size[(axis+2)%3],res);
481 size[0] = MAX2(size[0], 1);
482 size[1] = MAX2(size[1], 1);
483 size[2] = MAX2(size[2], 1);
485 /* no full offset for flat/thin objects */
486 min[0]+= d < delta[0] ? d/2.f : delta[0]/2.f;
487 min[1]+= d < delta[1] ? d/2.f : delta[1]/2.f;
488 min[2]+= d < delta[2] ? d/2.f : delta[2]/2.f;
490 for(i=0,p=0,pa=psys->particles; i<res; i++){
491 for(j=0; j<res; j++){
492 for(k=0; k<res; k++,p++,pa++){
493 pa->fuv[0] = min[0] + (float)i*d;
494 pa->fuv[1] = min[1] + (float)j*d;
495 pa->fuv[2] = min[2] + (float)k*d;
496 pa->flag |= PARS_UNEXIST;
497 pa->hair_index = 0; /* abused in volume calculation */
502 /* enable particles near verts/edges/faces/inside surface */
503 if(from==PART_FROM_VERT){
512 for(i=0,mv=mvert; i<totvert; i++,mv++){
513 sub_v3_v3v3(vec,mv->co,min);
517 (pa +((int)(vec[0]*(size[0]-1))*res
518 +(int)(vec[1]*(size[1]-1)))*res
519 +(int)(vec[2]*(size[2]-1)))->flag &= ~PARS_UNEXIST;
522 else if(ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)){
523 float co1[3], co2[3];
525 MFace *mface= NULL, *mface_array;
526 float v1[3], v2[3], v3[3], v4[4], lambda;
527 int a, a1, a2, a0mul, a1mul, a2mul, totface;
528 int amax= from==PART_FROM_FACE ? 3 : 1;
530 totface=dm->getNumTessFaces(dm);
531 mface=mface_array=dm->getTessFaceDataArray(dm,CD_MFACE);
533 for(a=0; a<amax; a++){
534 if(a==0){ a0mul=res*res; a1mul=res; a2mul=1; }
535 else if(a==1){ a0mul=res; a1mul=1; a2mul=res*res; }
536 else{ a0mul=1; a1mul=res*res; a2mul=res; }
538 for(a1=0; a1<size[(a+1)%3]; a1++){
539 for(a2=0; a2<size[(a+2)%3]; a2++){
542 pa = psys->particles + a1*a1mul + a2*a2mul;
543 copy_v3_v3(co1, pa->fuv);
544 co1[a] -= d < delta[a] ? d/2.f : delta[a]/2.f;
545 copy_v3_v3(co2, co1);
546 co2[a] += delta[a] + 0.001f*d;
549 /* lets intersect the faces */
550 for(i=0; i<totface; i++,mface++){
551 copy_v3_v3(v1, mvert[mface->v1].co);
552 copy_v3_v3(v2, mvert[mface->v2].co);
553 copy_v3_v3(v3, mvert[mface->v3].co);
555 if(isect_axial_line_tri_v3(a, co1, co2, v2, v3, v1, &lambda)){
556 if(from==PART_FROM_FACE)
557 (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
558 else /* store number of intersections */
559 (pa+(int)(lambda*size[a])*a0mul)->hair_index++;
563 copy_v3_v3(v4, mvert[mface->v4].co);
565 if(isect_axial_line_tri_v3(a, co1, co2, v4, v1, v3, &lambda)){
566 if(from==PART_FROM_FACE)
567 (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
569 (pa+(int)(lambda*size[a])*a0mul)->hair_index++;
574 if(from==PART_FROM_VOLUME){
575 int in=pa->hair_index%2;
576 if(in) pa->hair_index++;
577 for(i=0; i<size[0]; i++){
578 if(in || (pa+i*a0mul)->hair_index%2)
579 (pa+i*a0mul)->flag &= ~PARS_UNEXIST;
580 /* odd intersections == in->out / out->in */
581 /* even intersections -> in stays same */
582 in=(in + (pa+i*a0mul)->hair_index) % 2;
590 if(psys->part->flag & PART_GRID_HEXAGONAL) {
591 for(i=0,p=0,pa=psys->particles; i<res; i++){
592 for(j=0; j<res; j++){
593 for(k=0; k<res; k++,p++,pa++){
606 if(psys->part->flag & PART_GRID_INVERT){
607 for(i=0; i<size[0]; i++){
608 for(j=0; j<size[1]; j++){
609 pa=psys->particles + res*(i*res + j);
610 for(k=0; k<size[2]; k++, pa++){
611 pa->flag ^= PARS_UNEXIST;
617 if(psys->part->grid_rand > 0.f) {
618 float rfac = d * psys->part->grid_rand;
619 for(p=0,pa=psys->particles; p<psys->totpart; p++,pa++){
620 if(pa->flag & PARS_UNEXIST)
623 pa->fuv[0] += rfac * (PSYS_FRAND(p + 31) - 0.5f);
624 pa->fuv[1] += rfac * (PSYS_FRAND(p + 32) - 0.5f);
625 pa->fuv[2] += rfac * (PSYS_FRAND(p + 33) - 0.5f);
630 /* modified copy from rayshade.c */
631 static void hammersley_create(float *out, int n, int seed, float amount)
634 double p, t, offs[2];
637 rng = rng_new(31415926 + n + seed);
638 offs[0]= rng_getDouble(rng) + (double)amount;
639 offs[1]= rng_getDouble(rng) + (double)amount;
642 for (k = 0; k < n; k++) {
644 for (p = 0.5, kk = k; kk; p *= 0.5, kk >>= 1)
645 if (kk & 1) /* kk mod 2 = 1 */
648 out[2*k + 0]= fmod((double)k/(double)n + offs[0], 1.0);
649 out[2*k + 1]= fmod(t + offs[1], 1.0);
653 /* modified copy from effect.c */
654 static void init_mv_jit(float *jit, int num, int seed2, float amount)
657 float *jit2, x, rad1, rad2, rad3;
662 rad1= (float)(1.0f/sqrtf((float)num));
663 rad2= (float)(1.0f/((float)num));
664 rad3= (float)sqrt((float)num)/((float)num);
666 rng = rng_new(31415926 + num + seed2);
669 for(i=0; i<num2; i+=2) {
671 jit[i]= x + amount*rad1*(0.5f - rng_getFloat(rng));
672 jit[i+1]= i/(2.0f*num) + amount*rad1*(0.5f - rng_getFloat(rng));
674 jit[i]-= (float)floor(jit[i]);
675 jit[i+1]-= (float)floor(jit[i+1]);
678 x -= (float)floor(x);
681 jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
683 for (i=0 ; i<4 ; i++) {
684 BLI_jitterate1(jit, jit2, num, rad1);
685 BLI_jitterate1(jit, jit2, num, rad1);
686 BLI_jitterate2(jit, jit2, num, rad2);
692 static void psys_uv_to_w(float u, float v, int quad, float *w)
694 float vert[4][3], co[3];
703 vert[0][0]= 0.0f; vert[0][1]= 0.0f; vert[0][2]= 0.0f;
704 vert[1][0]= 1.0f; vert[1][1]= 0.0f; vert[1][2]= 0.0f;
705 vert[2][0]= 1.0f; vert[2][1]= 1.0f; vert[2][2]= 0.0f;
712 vert[3][0]= 0.0f; vert[3][1]= 1.0f; vert[3][2]= 0.0f;
713 interp_weights_poly_v3( w,vert, 4, co);
716 interp_weights_poly_v3( w,vert, 3, co);
721 /* Find the index in "sum" array before "value" is crossed. */
722 static int distribute_binary_search(float *sum, int n, float value)
724 int mid, low=0, high=n;
732 if(sum[mid] < value && value <= sum[mid+1])
735 if(sum[mid] >= value)
737 else if(sum[mid] < value)
746 /* the max number if calls to rng_* funcs within psys_thread_distribute_particle
747 * be sure to keep up to date if this changes */
748 #define PSYS_RND_DIST_SKIP 2
750 /* note: this function must be thread safe, for from == PART_FROM_CHILD */
751 #define ONLY_WORKING_WITH_PA_VERTS 0
752 static void distribute_threads_exec(ParticleThread *thread, ParticleData *pa, ChildParticle *cpa, int p)
754 ParticleThreadContext *ctx= thread->ctx;
755 Object *ob= ctx->sim.ob;
756 DerivedMesh *dm= ctx->dm;
757 float *v1, *v2, *v3, *v4, nor[3], orco1[3], co1[3], co2[3], nor1[3];
758 float cur_d, min_d, randu, randv;
760 int cfrom= ctx->cfrom;
761 int distr= ctx->distr;
762 int i, intersect, tot;
763 int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
765 if(from == PART_FROM_VERT) {
766 /* TODO_PARTICLE - use original index */
767 pa->num= ctx->index[p];
769 pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
771 #if ONLY_WORKING_WITH_PA_VERTS
773 KDTreeNearest ptn[3];
776 psys_particle_on_dm(ctx->dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0,orco1,0);
777 transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1);
778 maxw = BLI_kdtree_find_n_nearest(ctx->tree,3,orco1,NULL,ptn);
780 for(w=0; w<maxw; w++){
781 pa->verts[w]=ptn->num;
786 else if(from == PART_FROM_FACE || from == PART_FROM_VOLUME) {
789 pa->num = i = ctx->index[p];
790 mface = dm->getTessFaceData(dm,i,CD_MFACE);
794 if(ctx->jitlevel == 1) {
796 psys_uv_to_w(0.5f, 0.5f, mface->v4, pa->fuv);
798 psys_uv_to_w(0.33333f, 0.33333f, mface->v4, pa->fuv);
801 ctx->jitoff[i] = fmod(ctx->jitoff[i],(float)ctx->jitlevel);
802 psys_uv_to_w(ctx->jit[2*(int)ctx->jitoff[i]], ctx->jit[2*(int)ctx->jitoff[i]+1], mface->v4, pa->fuv);
806 case PART_DISTR_RAND:
807 randu= rng_getFloat(thread->rng);
808 randv= rng_getFloat(thread->rng);
811 psys_uv_to_w(randu, randv, mface->v4, pa->fuv);
817 if(from==PART_FROM_VOLUME){
818 MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
820 tot=dm->getNumTessFaces(dm);
822 psys_interpolate_face(mvert,mface,0,0,pa->fuv,co1,nor,0,0,0,0);
825 mul_v3_fl(nor,-100.0);
832 for(i=0,mface=dm->getTessFaceDataArray(dm,CD_MFACE); i<tot; i++,mface++){
833 if(i==pa->num) continue;
835 v1=mvert[mface->v1].co;
836 v2=mvert[mface->v2].co;
837 v3=mvert[mface->v3].co;
839 if(isect_line_tri_v3(co1, co2, v2, v3, v1, &cur_d, 0)){
842 pa->foffset=cur_d*50.0f; /* to the middle of volume */
847 v4=mvert[mface->v4].co;
849 if(isect_line_tri_v3(co1, co2, v4, v1, v3, &cur_d, 0)){
852 pa->foffset=cur_d*50.0f; /* to the middle of volume */
862 pa->foffset*= ctx->jit[p%(2*ctx->jitlevel)];
864 case PART_DISTR_RAND:
865 pa->foffset*=BLI_frand();
870 else if(from == PART_FROM_CHILD) {
873 if(ctx->index[p] < 0) {
875 cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]=0.0f;
876 cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
880 mf= dm->getTessFaceData(dm, ctx->index[p], CD_MFACE);
882 randu= rng_getFloat(thread->rng);
883 randv= rng_getFloat(thread->rng);
886 psys_uv_to_w(randu, randv, mf->v4, cpa->fuv);
888 cpa->num = ctx->index[p];
891 KDTreeNearest ptn[10];
892 int w,maxw;//, do_seams;
893 float maxd /*, mind,dd */, totw= 0.0f;
897 psys_particle_on_dm(dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,NULL,NULL,orco1,NULL);
898 transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1);
899 maxw = BLI_kdtree_find_n_nearest(ctx->tree,4,orco1,NULL,ptn);
901 maxd=ptn[maxw-1].dist;
902 /* mind=ptn[0].dist; */ /* UNUSED */
904 /* the weights here could be done better */
905 for(w=0; w<maxw; w++){
906 parent[w]=ptn[w].index;
907 pweight[w]=(float)pow(2.0,(double)(-6.0f*ptn[w].dist/maxd));
914 for(w=0,i=0; w<maxw && i<4; w++){
916 cpa->pa[i]=parent[w];
917 cpa->w[i]=pweight[w];
927 if(totw>0.0f) for(w=0; w<4; w++)
930 cpa->parent=cpa->pa[0];
934 if(rng_skip_tot > 0) /* should never be below zero */
935 rng_skip(thread->rng, rng_skip_tot);
938 static void *distribute_threads_exec_cb(void *data)
940 ParticleThread *thread= (ParticleThread*)data;
941 ParticleSystem *psys= thread->ctx->sim.psys;
946 if(thread->ctx->from == PART_FROM_CHILD) {
947 totpart= psys->totchild;
950 for(p=0; p<totpart; p++, cpa++) {
951 if(thread->ctx->skip) /* simplification skip */
952 rng_skip(thread->rng, PSYS_RND_DIST_SKIP * thread->ctx->skip[p]);
954 if((p+thread->num) % thread->tot == 0)
955 distribute_threads_exec(thread, NULL, cpa, p);
956 else /* thread skip */
957 rng_skip(thread->rng, PSYS_RND_DIST_SKIP);
961 totpart= psys->totpart;
962 pa= psys->particles + thread->num;
963 for(p=thread->num; p<totpart; p+=thread->tot, pa+=thread->tot)
964 distribute_threads_exec(thread, pa, NULL, p);
970 /* not thread safe, but qsort doesn't take userdata argument */
971 static int *COMPARE_ORIG_INDEX = NULL;
972 static int distribute_compare_orig_index(const void *p1, const void *p2)
974 int index1 = COMPARE_ORIG_INDEX[*(const int*)p1];
975 int index2 = COMPARE_ORIG_INDEX[*(const int*)p2];
979 else if(index1 == index2) {
980 /* this pointer comparison appears to make qsort stable for glibc,
981 * and apparently on solaris too, makes the renders reproducable */
993 static void distribute_invalid(Scene *scene, ParticleSystem *psys, int from)
995 if(from == PART_FROM_CHILD) {
997 int p, totchild = get_psys_tot_child(scene, psys);
999 if(psys->child && totchild) {
1000 for(p=0,cpa=psys->child; p<totchild; p++,cpa++){
1001 cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]= 0.0;
1004 cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
1012 pa->fuv[0]=pa->fuv[1]=pa->fuv[2]= pa->fuv[3]= 0.0;
1019 /* Creates a distribution of coordinates on a DerivedMesh */
1020 /* This is to denote functionality that does not yet work with mesh - only derived mesh */
1021 static int distribute_threads_init_data(ParticleThread *threads, Scene *scene, DerivedMesh *finaldm, int from)
1023 ParticleThreadContext *ctx= threads[0].ctx;
1024 Object *ob= ctx->sim.ob;
1025 ParticleSystem *psys= ctx->sim.psys;
1026 ParticleData *pa=0, *tpars= 0;
1027 ParticleSettings *part;
1028 ParticleSeam *seams= 0;
1030 DerivedMesh *dm= NULL;
1032 int i, seed, p=0, totthread= threads[0].tot;
1034 int totelem=0, totpart, *particle_element=0, children=0, totseam=0;
1035 int jitlevel= 1, distr;
1036 float *element_weight=NULL,*element_sum=NULL,*jitter_offset=NULL, *vweight=NULL;
1037 float cur, maxweight=0.0, tweight, totweight, inv_totweight, co[3], nor[3], orco[3], ornor[3];
1039 if(ELEM3(NULL, ob, psys, psys->part))
1043 totpart=psys->totpart;
1047 if (!finaldm->deformedOnly && !finaldm->getTessFaceDataArray(finaldm, CD_ORIGINDEX)) {
1048 printf("Can't create particles with the current modifier stack, disable destructive modifiers\n");
1049 // XXX error("Can't paint with the current modifier stack, disable destructive modifiers");
1053 /* First handle special cases */
1054 if(from == PART_FROM_CHILD) {
1055 /* Simple children */
1056 if(part->childtype != PART_CHILD_FACES) {
1057 BLI_srandom(31415926 + psys->seed + psys->child_seed);
1058 distribute_simple_children(scene, ob, finaldm, psys);
1063 /* Grid distribution */
1064 if(part->distr==PART_DISTR_GRID && from != PART_FROM_VERT){
1065 BLI_srandom(31415926 + psys->seed);
1066 dm= CDDM_from_mesh((Mesh*)ob->data, ob);
1067 distribute_grid(dm,psys);
1073 /* Create trees and original coordinates if needed */
1074 if(from == PART_FROM_CHILD) {
1075 distr=PART_DISTR_RAND;
1076 BLI_srandom(31415926 + psys->seed + psys->child_seed);
1080 tree=BLI_kdtree_new(totpart);
1082 for(p=0,pa=psys->particles; p<totpart; p++,pa++){
1083 psys_particle_on_dm(dm,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,ornor);
1084 transform_mesh_orco_verts((Mesh*)ob->data, &orco, 1, 1);
1085 BLI_kdtree_insert(tree, p, orco, ornor);
1088 BLI_kdtree_balance(tree);
1090 totpart = get_psys_tot_child(scene, psys);
1091 cfrom = from = PART_FROM_FACE;
1094 distr = part->distr;
1095 BLI_srandom(31415926 + psys->seed);
1097 dm= CDDM_from_mesh((Mesh*)ob->data, ob);
1099 /* we need orco for consistent distributions */
1100 DM_add_vert_layer(dm, CD_ORCO, CD_ASSIGN, get_mesh_orco_verts(ob));
1102 if(from == PART_FROM_VERT) {
1103 MVert *mv= dm->getVertDataArray(dm, CD_MVERT);
1104 float (*orcodata)[3]= dm->getVertDataArray(dm, CD_ORCO);
1105 int totvert = dm->getNumVerts(dm);
1107 tree=BLI_kdtree_new(totvert);
1109 for(p=0; p<totvert; p++) {
1111 VECCOPY(co,orcodata[p])
1112 transform_mesh_orco_verts((Mesh*)ob->data, &co, 1, 1);
1115 VECCOPY(co,mv[p].co)
1116 BLI_kdtree_insert(tree,p,co,NULL);
1119 BLI_kdtree_balance(tree);
1123 /* Get total number of emission elements and allocate needed arrays */
1124 totelem = (from == PART_FROM_VERT) ? dm->getNumVerts(dm) : dm->getNumTessFaces(dm);
1127 distribute_invalid(scene, psys, children ? PART_FROM_CHILD : 0);
1130 fprintf(stderr,"Particle distribution error: Nothing to emit from!\n");
1132 if(dm != finaldm) dm->release(dm);
1136 element_weight = MEM_callocN(sizeof(float)*totelem, "particle_distribution_weights");
1137 particle_element= MEM_callocN(sizeof(int)*totpart, "particle_distribution_indexes");
1138 element_sum = MEM_callocN(sizeof(float)*(totelem+1), "particle_distribution_sum");
1139 jitter_offset = MEM_callocN(sizeof(float)*totelem, "particle_distribution_jitoff");
1141 /* Calculate weights from face areas */
1142 if((part->flag&PART_EDISTR || children) && from != PART_FROM_VERT){
1143 MVert *v1, *v2, *v3, *v4;
1144 float totarea=0.f, co1[3], co2[3], co3[3], co4[3];
1145 float (*orcodata)[3];
1147 orcodata= dm->getVertDataArray(dm, CD_ORCO);
1149 for(i=0; i<totelem; i++){
1150 MFace *mf=dm->getTessFaceData(dm,i,CD_MFACE);
1153 VECCOPY(co1, orcodata[mf->v1]);
1154 VECCOPY(co2, orcodata[mf->v2]);
1155 VECCOPY(co3, orcodata[mf->v3]);
1156 transform_mesh_orco_verts((Mesh*)ob->data, &co1, 1, 1);
1157 transform_mesh_orco_verts((Mesh*)ob->data, &co2, 1, 1);
1158 transform_mesh_orco_verts((Mesh*)ob->data, &co3, 1, 1);
1160 VECCOPY(co4, orcodata[mf->v4]);
1161 transform_mesh_orco_verts((Mesh*)ob->data, &co4, 1, 1);
1165 v1= (MVert*)dm->getVertData(dm,mf->v1,CD_MVERT);
1166 v2= (MVert*)dm->getVertData(dm,mf->v2,CD_MVERT);
1167 v3= (MVert*)dm->getVertData(dm,mf->v3,CD_MVERT);
1168 VECCOPY(co1, v1->co);
1169 VECCOPY(co2, v2->co);
1170 VECCOPY(co3, v3->co);
1172 v4= (MVert*)dm->getVertData(dm,mf->v4,CD_MVERT);
1173 VECCOPY(co4, v4->co);
1177 cur = mf->v4 ? area_quad_v3(co1, co2, co3, co4) : area_tri_v3(co1, co2, co3);
1182 element_weight[i] = cur;
1186 for(i=0; i<totelem; i++)
1187 element_weight[i] /= totarea;
1189 maxweight /= totarea;
1192 float min=1.0f/(float)(MIN2(totelem,totpart));
1193 for(i=0; i<totelem; i++)
1194 element_weight[i]=min;
1198 /* Calculate weights from vgroup */
1199 vweight = psys_cache_vgroup(dm,psys,PSYS_VG_DENSITY);
1202 if(from==PART_FROM_VERT) {
1203 for(i=0;i<totelem; i++)
1204 element_weight[i]*=vweight[i];
1206 else { /* PART_FROM_FACE / PART_FROM_VOLUME */
1207 for(i=0;i<totelem; i++){
1208 MFace *mf=dm->getTessFaceData(dm,i,CD_MFACE);
1209 tweight = vweight[mf->v1] + vweight[mf->v2] + vweight[mf->v3];
1212 tweight += vweight[mf->v4];
1219 element_weight[i]*=tweight;
1225 /* Calculate total weight of all elements */
1227 for(i=0;i<totelem; i++)
1228 totweight += element_weight[i];
1230 inv_totweight = (totweight > 0.f ? 1.f/totweight : 0.f);
1232 /* Calculate cumulative weights */
1233 element_sum[0]= 0.0f;
1234 for(i=0; i<totelem; i++)
1235 element_sum[i+1]= element_sum[i] + element_weight[i] * inv_totweight;
1237 /* Finally assign elements to particles */
1238 if((part->flag&PART_TRAND) || (part->simplify_flag&PART_SIMPLIFY_ENABLE)) {
1241 for(p=0; p<totpart; p++) {
1242 /* In theory element_sum[totelem] should be 1.0, but due to float errors this is not necessarily always true, so scale pos accordingly. */
1243 pos= BLI_frand() * element_sum[totelem];
1244 particle_element[p]= distribute_binary_search(element_sum, totelem, pos);
1245 particle_element[p]= MIN2(totelem-1, particle_element[p]);
1246 jitter_offset[particle_element[p]]= pos;
1252 step= (totpart < 2) ? 0.5 : 1.0/(double)totpart;
1253 pos= 1e-6; /* tiny offset to avoid zero weight face */
1256 for(p=0; p<totpart; p++, pos+=step) {
1257 while((i < totelem) && (pos > element_sum[i+1]))
1260 particle_element[p]= MIN2(totelem-1, i);
1262 /* avoid zero weight face */
1263 if(p == totpart-1 && element_weight[particle_element[p]] == 0.0f)
1264 particle_element[p]= particle_element[p-1];
1266 jitter_offset[particle_element[p]]= pos;
1270 MEM_freeN(element_sum);
1272 /* For hair, sort by origindex (allows optimizations in rendering), */
1273 /* however with virtual parents the children need to be in random order. */
1274 if(part->type == PART_HAIR && !(part->childtype==PART_CHILD_FACES && part->parents!=0.0f)) {
1275 COMPARE_ORIG_INDEX = NULL;
1277 if(from == PART_FROM_VERT) {
1279 COMPARE_ORIG_INDEX= dm->getVertDataArray(dm, CD_ORIGINDEX);
1283 COMPARE_ORIG_INDEX= dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
1286 if(COMPARE_ORIG_INDEX) {
1287 qsort(particle_element, totpart, sizeof(int), distribute_compare_orig_index);
1288 COMPARE_ORIG_INDEX = NULL;
1292 /* Create jittering if needed */
1293 if(distr==PART_DISTR_JIT && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
1294 jitlevel= part->userjit;
1297 jitlevel= totpart/totelem;
1298 if(part->flag & PART_EDISTR) jitlevel*= 2; /* looks better in general, not very scietific */
1299 if(jitlevel<3) jitlevel= 3;
1302 jit= MEM_callocN((2+ jitlevel*2)*sizeof(float), "jit");
1304 /* for small amounts of particles we use regular jitter since it looks
1305 * a bit better, for larger amounts we switch to hammersley sequence
1306 * because it is much faster */
1308 init_mv_jit(jit, jitlevel, psys->seed, part->jitfac);
1310 hammersley_create(jit, jitlevel+1, psys->seed, part->jitfac);
1311 BLI_array_randomize(jit, 2*sizeof(float), jitlevel, psys->seed); /* for custom jit or even distribution */
1314 /* Setup things for threaded distribution */
1317 ctx->totseam= totseam;
1318 ctx->sim.psys= psys;
1319 ctx->index= particle_element;
1321 ctx->jitlevel= jitlevel;
1322 ctx->jitoff= jitter_offset;
1323 ctx->weight= element_weight;
1324 ctx->maxweight= maxweight;
1325 ctx->from= (children)? PART_FROM_CHILD: from;
1332 totpart= psys_render_simplify_distribution(ctx, totpart);
1333 alloc_child_particles(psys, totpart);
1336 if(!children || psys->totchild < 10000)
1339 seed= 31415926 + ctx->sim.psys->seed;
1340 for(i=0; i<totthread; i++) {
1341 threads[i].rng= rng_new(seed);
1342 threads[i].tot= totthread;
1348 static void distribute_particles_on_dm(ParticleSimulationData *sim, int from)
1350 DerivedMesh *finaldm = sim->psmd->dm;
1352 ParticleThread *pthreads;
1353 ParticleThreadContext *ctx;
1356 pthreads= psys_threads_create(sim);
1358 if(!distribute_threads_init_data(pthreads, sim->scene, finaldm, from)) {
1359 psys_threads_free(pthreads);
1363 totthread= pthreads[0].tot;
1365 BLI_init_threads(&threads, distribute_threads_exec_cb, totthread);
1367 for(i=0; i<totthread; i++)
1368 BLI_insert_thread(&threads, &pthreads[i]);
1370 BLI_end_threads(&threads);
1373 distribute_threads_exec_cb(&pthreads[0]);
1375 psys_calc_dmcache(sim->ob, finaldm, sim->psys);
1377 ctx= pthreads[0].ctx;
1378 if(ctx->dm != finaldm)
1379 ctx->dm->release(ctx->dm);
1381 psys_threads_free(pthreads);
1384 /* ready for future use, to emit particles without geometry */
1385 static void distribute_particles_on_shape(ParticleSimulationData *sim, int UNUSED(from))
1387 distribute_invalid(sim->scene, sim->psys, 0);
1389 fprintf(stderr,"Shape emission not yet possible!\n");
1392 static void distribute_particles(ParticleSimulationData *sim, int from)
1399 distribute_particles_on_dm(sim, from);
1404 distribute_particles_on_shape(sim, from);
1407 distribute_invalid(sim->scene, sim->psys, from);
1409 fprintf(stderr,"Particle distribution error!\n");
1413 /* threaded child particle distribution and path caching */
1414 ParticleThread *psys_threads_create(ParticleSimulationData *sim)
1416 ParticleThread *threads;
1417 ParticleThreadContext *ctx;
1420 if(sim->scene->r.mode & R_FIXED_THREADS)
1421 totthread= sim->scene->r.threads;
1423 totthread= BLI_system_thread_count();
1425 threads= MEM_callocN(sizeof(ParticleThread)*totthread, "ParticleThread");
1426 ctx= MEM_callocN(sizeof(ParticleThreadContext), "ParticleThreadContext");
1429 ctx->dm= ctx->sim.psmd->dm;
1430 ctx->ma= give_current_material(sim->ob, sim->psys->part->omat);
1432 memset(threads, 0, sizeof(ParticleThread)*totthread);
1434 for(i=0; i<totthread; i++) {
1435 threads[i].ctx= ctx;
1437 threads[i].tot= totthread;
1443 void psys_threads_free(ParticleThread *threads)
1445 ParticleThreadContext *ctx= threads[0].ctx;
1446 int i, totthread= threads[0].tot;
1450 MEM_freeN(ctx->vg_length);
1452 MEM_freeN(ctx->vg_clump);
1454 MEM_freeN(ctx->vg_kink);
1456 MEM_freeN(ctx->vg_rough1);
1458 MEM_freeN(ctx->vg_rough2);
1460 MEM_freeN(ctx->vg_roughe);
1462 if(ctx->sim.psys->lattice){
1463 end_latt_deform(ctx->sim.psys->lattice);
1464 ctx->sim.psys->lattice= NULL;
1468 if(ctx->jit) MEM_freeN(ctx->jit);
1469 if(ctx->jitoff) MEM_freeN(ctx->jitoff);
1470 if(ctx->weight) MEM_freeN(ctx->weight);
1471 if(ctx->index) MEM_freeN(ctx->index);
1472 if(ctx->skip) MEM_freeN(ctx->skip);
1473 if(ctx->seams) MEM_freeN(ctx->seams);
1474 //if(ctx->vertpart) MEM_freeN(ctx->vertpart);
1475 BLI_kdtree_free(ctx->tree);
1478 for(i=0; i<totthread; i++) {
1480 rng_free(threads[i].rng);
1481 if(threads[i].rng_path)
1482 rng_free(threads[i].rng_path);
1489 /* set particle parameters that don't change during particle's life */
1490 void initialize_particle(ParticleSimulationData *sim, ParticleData *pa, int p)
1492 ParticleSystem *psys = sim->psys;
1493 ParticleSettings *part = psys->part;
1494 ParticleTexture ptex;
1496 pa->flag &= ~PARS_UNEXIST;
1498 if(part->type != PART_FLUID) {
1499 psys_get_texture(sim, pa, &ptex, PAMAP_INIT, 0.f);
1501 if(ptex.exist < PSYS_FRAND(p+125))
1502 pa->flag |= PARS_UNEXIST;
1504 pa->time = (part->type == PART_HAIR) ? 0.f : part->sta + (part->end - part->sta)*ptex.time;
1508 /* we can't reset to -1 anymore since we've figured out correct index in distribute_particles */
1509 /* usage other than straight after distribute has to handle this index by itself - jahka*/
1510 //pa->num_dmcache = DMCACHE_NOTFOUND; /* assume we dont have a derived mesh face */
1512 static void initialize_all_particles(ParticleSimulationData *sim)
1514 ParticleSystem *psys = sim->psys;
1517 psys->totunexist = 0;
1520 if((pa->flag & PARS_UNEXIST)==0)
1521 initialize_particle(sim, pa, p);
1523 if(pa->flag & PARS_UNEXIST)
1527 /* Free unexisting particles. */
1528 if(psys->totpart && psys->totunexist == psys->totpart) {
1529 if(psys->particles->boid)
1530 MEM_freeN(psys->particles->boid);
1532 MEM_freeN(psys->particles);
1533 psys->particles = NULL;
1534 psys->totpart = psys->totunexist = 0;
1537 if(psys->totunexist) {
1538 int newtotpart = psys->totpart - psys->totunexist;
1539 ParticleData *npa, *newpars;
1541 npa = newpars = MEM_callocN(newtotpart * sizeof(ParticleData), "particles");
1543 for(p=0, pa=psys->particles; p<newtotpart; p++, pa++, npa++) {
1544 while(pa->flag & PARS_UNEXIST)
1547 memcpy(npa, pa, sizeof(ParticleData));
1550 if(psys->particles->boid)
1551 MEM_freeN(psys->particles->boid);
1552 MEM_freeN(psys->particles);
1553 psys->particles = newpars;
1554 psys->totpart -= psys->totunexist;
1556 if(psys->particles->boid) {
1557 BoidParticle *newboids = MEM_callocN(psys->totpart * sizeof(BoidParticle), "boid particles");
1560 pa->boid = newboids++;
1565 void psys_get_birth_coordinates(ParticleSimulationData *sim, ParticleData *pa, ParticleKey *state, float dtime, float cfra)
1567 Object *ob = sim->ob;
1568 ParticleSystem *psys = sim->psys;
1569 ParticleSettings *part;
1570 ParticleTexture ptex;
1571 float fac, phasefac, nor[3]={0,0,0},loc[3],vel[3]={0.0,0.0,0.0},rot[4],q2[4];
1572 float r_vel[3],r_ave[3],r_rot[4],vec[3],p_vel[3]={0.0,0.0,0.0};
1573 float x_vec[3]={1.0,0.0,0.0}, utan[3]={0.0,1.0,0.0}, vtan[3]={0.0,0.0,1.0}, rot_vec[3]={0.0,0.0,0.0};
1575 int p = pa - psys->particles;
1578 /* get birth location from object */
1579 if(part->tanfac != 0.f)
1580 psys_particle_on_emitter(sim->psmd, part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,utan,vtan,0,0);
1582 psys_particle_on_emitter(sim->psmd, part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,0,0,0,0);
1584 /* get possible textural influence */
1585 psys_get_texture(sim, pa, &ptex, PAMAP_IVEL, cfra);
1587 /* particles live in global space so */
1588 /* let's convert: */
1590 mul_m4_v3(ob->obmat, loc);
1593 mul_mat3_m4_v3(ob->obmat, nor);
1597 if(part->tanfac!=0.0f){
1598 //float phase=vg_rot?2.0f*(psys_particle_value_from_verts(sim->psmd->dm,part->from,pa,vg_rot)-0.5f):0.0f;
1600 mul_v3_fl(vtan,-(float)cos((float)M_PI*(part->tanphase+phase)));
1601 fac=-(float)sin((float)M_PI*(part->tanphase+phase));
1602 VECADDFAC(vtan,vtan,utan,fac);
1604 mul_mat3_m4_v3(ob->obmat,vtan);
1607 mul_v3_fl(utan,dot_v3v3(vtan,nor));
1608 VECSUB(vtan,vtan,utan);
1615 if(part->randfac != 0.0f){
1616 r_vel[0] = 2.0f * (PSYS_FRAND(p + 10) - 0.5f);
1617 r_vel[1] = 2.0f * (PSYS_FRAND(p + 11) - 0.5f);
1618 r_vel[2] = 2.0f * (PSYS_FRAND(p + 12) - 0.5f);
1620 mul_mat3_m4_v3(ob->obmat, r_vel);
1621 normalize_v3(r_vel);
1624 /* -angular velocity */
1625 if(part->avemode==PART_AVE_RAND){
1626 r_ave[0] = 2.0f * (PSYS_FRAND(p + 13) - 0.5f);
1627 r_ave[1] = 2.0f * (PSYS_FRAND(p + 14) - 0.5f);
1628 r_ave[2] = 2.0f * (PSYS_FRAND(p + 15) - 0.5f);
1630 mul_mat3_m4_v3(ob->obmat,r_ave);
1631 normalize_v3(r_ave);
1635 if(part->randrotfac != 0.0f){
1636 r_rot[0] = 2.0f * (PSYS_FRAND(p + 16) - 0.5f);
1637 r_rot[1] = 2.0f * (PSYS_FRAND(p + 17) - 0.5f);
1638 r_rot[2] = 2.0f * (PSYS_FRAND(p + 18) - 0.5f);
1639 r_rot[3] = 2.0f * (PSYS_FRAND(p + 19) - 0.5f);
1640 normalize_qt(r_rot);
1642 mat4_to_quat(rot,ob->obmat);
1643 mul_qt_qtqt(r_rot,r_rot,rot);
1646 if(part->phystype==PART_PHYS_BOIDS && pa->boid) {
1647 float dvec[3], q[4], mat[3][3];
1649 copy_v3_v3(state->co,loc);
1651 /* boids don't get any initial velocity */
1652 zero_v3(state->vel);
1654 /* boids store direction in ave */
1655 if(fabsf(nor[2])==1.0f) {
1656 sub_v3_v3v3(state->ave, loc, ob->obmat[3]);
1657 normalize_v3(state->ave);
1660 VECCOPY(state->ave, nor);
1663 /* calculate rotation matrix */
1664 project_v3_v3v3(dvec, r_vel, state->ave);
1665 sub_v3_v3v3(mat[0], state->ave, dvec);
1666 normalize_v3(mat[0]);
1667 negate_v3_v3(mat[2], r_vel);
1668 normalize_v3(mat[2]);
1669 cross_v3_v3v3(mat[1], mat[2], mat[0]);
1671 /* apply rotation */
1672 mat3_to_quat_is_ok( q,mat);
1673 copy_qt_qt(state->rot, q);
1676 /* conversion done so now we apply new: */
1677 /* -velocity from: */
1681 sub_v3_v3v3(vel, pa->state.vel, pa->prev_state.vel);
1684 /* *emitter velocity */
1685 if(dtime != 0.f && part->obfac != 0.f){
1686 sub_v3_v3v3(vel, loc, state->co);
1687 mul_v3_fl(vel, part->obfac/dtime);
1690 /* *emitter normal */
1691 if(part->normfac != 0.f)
1692 madd_v3_v3fl(vel, nor, part->normfac);
1694 /* *emitter tangent */
1695 if(sim->psmd && part->tanfac != 0.f)
1696 madd_v3_v3fl(vel, vtan, part->tanfac);
1698 /* *emitter object orientation */
1699 if(part->ob_vel[0] != 0.f) {
1700 normalize_v3_v3(vec, ob->obmat[0]);
1701 madd_v3_v3fl(vel, vec, part->ob_vel[0]);
1703 if(part->ob_vel[1] != 0.f) {
1704 normalize_v3_v3(vec, ob->obmat[1]);
1705 madd_v3_v3fl(vel, vec, part->ob_vel[1]);
1707 if(part->ob_vel[2] != 0.f) {
1708 normalize_v3_v3(vec, ob->obmat[2]);
1709 madd_v3_v3fl(vel, vec, part->ob_vel[2]);
1716 if(part->randfac != 0.f)
1717 madd_v3_v3fl(vel, r_vel, part->randfac);
1720 if(part->partfac != 0.f)
1721 madd_v3_v3fl(vel, p_vel, part->partfac);
1723 mul_v3_v3fl(state->vel, vel, ptex.ivel);
1725 /* -location from emitter */
1726 copy_v3_v3(state->co,loc);
1729 unit_qt(state->rot);
1732 /* create vector into which rotation is aligned */
1733 switch(part->rotmode){
1735 copy_v3_v3(rot_vec, nor);
1738 copy_v3_v3(rot_vec, vel);
1740 case PART_ROT_GLOB_X:
1741 case PART_ROT_GLOB_Y:
1742 case PART_ROT_GLOB_Z:
1743 rot_vec[part->rotmode - PART_ROT_GLOB_X] = 1.0f;
1748 copy_v3_v3(rot_vec, ob->obmat[part->rotmode - PART_ROT_OB_X]);
1752 /* create rotation quat */
1754 vec_to_quat( q2,rot_vec, OB_POSX, OB_POSZ);
1756 /* randomize rotation quat */
1757 if(part->randrotfac!=0.0f)
1758 interp_qt_qtqt(rot, q2, r_rot, part->randrotfac);
1762 /* rotation phase */
1763 phasefac = part->phasefac;
1764 if(part->randphasefac != 0.0f)
1765 phasefac += part->randphasefac * PSYS_FRAND(p + 20);
1766 axis_angle_to_quat( q_phase,x_vec, phasefac*(float)M_PI);
1768 /* combine base rotation & phase */
1769 mul_qt_qtqt(state->rot, rot, q_phase);
1772 /* -angular velocity */
1774 zero_v3(state->ave);
1777 switch(part->avemode){
1779 copy_v3_v3(state->ave, vel);
1782 copy_v3_v3(state->ave, r_ave);
1785 normalize_v3(state->ave);
1786 mul_v3_fl(state->ave, part->avefac);
1790 /* sets particle to the emitter surface with initial velocity & rotation */
1791 void reset_particle(ParticleSimulationData *sim, ParticleData *pa, float dtime, float cfra)
1793 Object *ob = sim->ob;
1794 ParticleSystem *psys = sim->psys;
1795 ParticleSettings *part;
1796 ParticleTexture ptex;
1797 int p = pa - psys->particles;
1800 /* get precise emitter matrix if particle is born */
1801 if(part->type!=PART_HAIR && dtime > 0.f && pa->time < cfra && pa->time >= sim->psys->cfra) {
1802 /* we have to force RECALC_ANIM here since where_is_objec_time only does drivers */
1804 BKE_animsys_evaluate_animdata(&ob->id, ob->adt, pa->time, ADT_RECALC_ANIM);
1808 where_is_object_time(sim->scene, ob, pa->time);
1811 psys_get_birth_coordinates(sim, pa, &pa->state, dtime, cfra);
1813 if(part->phystype==PART_PHYS_BOIDS && pa->boid) {
1814 BoidParticle *bpa = pa->boid;
1816 /* and gravity in r_ve */
1817 bpa->gravity[0] = bpa->gravity[1] = 0.0f;
1818 bpa->gravity[2] = -1.0f;
1819 if((sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY)
1820 && sim->scene->physics_settings.gravity[2]!=0.0f)
1821 bpa->gravity[2] = sim->scene->physics_settings.gravity[2];
1823 bpa->data.health = part->boids->health;
1824 bpa->data.mode = eBoidMode_InAir;
1825 bpa->data.state_id = ((BoidState*)part->boids->states.first)->id;
1826 bpa->data.acc[0]=bpa->data.acc[1]=bpa->data.acc[2]=0.0f;
1830 if(part->type == PART_HAIR){
1831 pa->lifetime = 100.0f;
1834 /* get possible textural influence */
1835 psys_get_texture(sim, pa, &ptex, PAMAP_LIFE, cfra);
1837 pa->lifetime = part->lifetime * ptex.life;
1839 if(part->randlife != 0.0f)
1840 pa->lifetime *= 1.0f - part->randlife * PSYS_FRAND(p + 21);
1843 pa->dietime = pa->time + pa->lifetime;
1845 if(sim->psys->pointcache && sim->psys->pointcache->flag & PTCACHE_BAKED &&
1846 sim->psys->pointcache->mem_cache.first) {
1847 float dietime = psys_get_dietime_from_cache(sim->psys->pointcache, p);
1848 pa->dietime = MIN2(pa->dietime, dietime);
1852 pa->alive = PARS_UNBORN;
1853 else if(pa->dietime <= cfra)
1854 pa->alive = PARS_DEAD;
1856 pa->alive = PARS_ALIVE;
1858 pa->state.time = cfra;
1860 static void reset_all_particles(ParticleSimulationData *sim, float dtime, float cfra, int from)
1863 int p, totpart=sim->psys->totpart;
1865 for(p=from, pa=sim->psys->particles+from; p<totpart; p++, pa++)
1866 reset_particle(sim, pa, dtime, cfra);
1868 /************************************************/
1869 /* Particle targets */
1870 /************************************************/
1871 ParticleSystem *psys_get_target_system(Object *ob, ParticleTarget *pt)
1873 ParticleSystem *psys = NULL;
1875 if(pt->ob == NULL || pt->ob == ob)
1876 psys = BLI_findlink(&ob->particlesystem, pt->psys-1);
1878 psys = BLI_findlink(&pt->ob->particlesystem, pt->psys-1);
1881 pt->flag |= PTARGET_VALID;
1883 pt->flag &= ~PTARGET_VALID;
1887 /************************************************/
1888 /* Keyed particles */
1889 /************************************************/
1890 /* Counts valid keyed targets */
1891 void psys_count_keyed_targets(ParticleSimulationData *sim)
1893 ParticleSystem *psys = sim->psys, *kpsys;
1894 ParticleTarget *pt = psys->targets.first;
1898 for(; pt; pt=pt->next) {
1899 kpsys = psys_get_target_system(sim->ob, pt);
1901 if(kpsys && kpsys->totpart) {
1902 psys->totkeyed += keys_valid;
1903 if(psys->flag & PSYS_KEYED_TIMING && pt->duration != 0.0f)
1904 psys->totkeyed += 1;
1911 psys->totkeyed *= psys->flag & PSYS_KEYED_TIMING ? 1 : psys->part->keyed_loops;
1914 static void set_keyed_keys(ParticleSimulationData *sim)
1916 ParticleSystem *psys = sim->psys;
1917 ParticleSimulationData ksim= {0};
1921 int totpart = psys->totpart, k, totkeys = psys->totkeyed;
1924 ksim.scene= sim->scene;
1926 /* no proper targets so let's clear and bail out */
1927 if(psys->totkeyed==0) {
1928 free_keyed_keys(psys);
1929 psys->flag &= ~PSYS_KEYED;
1933 if(totpart && psys->particles->totkey != totkeys) {
1934 free_keyed_keys(psys);
1936 key = MEM_callocN(totpart*totkeys*sizeof(ParticleKey), "Keyed keys");
1940 pa->totkey = totkeys;
1945 psys->flag &= ~PSYS_KEYED;
1948 pt = psys->targets.first;
1949 for(k=0; k<totkeys; k++) {
1950 ksim.ob = pt->ob ? pt->ob : sim->ob;
1951 ksim.psys = BLI_findlink(&ksim.ob->particlesystem, pt->psys - 1);
1952 keyed_flag = (ksim.psys->flag & PSYS_KEYED);
1953 ksim.psys->flag &= ~PSYS_KEYED;
1957 key->time = -1.0; /* use current time */
1959 psys_get_particle_state(&ksim, p%ksim.psys->totpart, key, 1);
1961 if(psys->flag & PSYS_KEYED_TIMING){
1962 key->time = pa->time + pt->time;
1963 if(pt->duration != 0.0f && k+1 < totkeys) {
1964 copy_particle_key(key+1, key, 1);
1965 (key+1)->time = pa->time + pt->time + pt->duration;
1968 else if(totkeys > 1)
1969 key->time = pa->time + (float)k / (float)(totkeys - 1) * pa->lifetime;
1971 key->time = pa->time;
1974 if(psys->flag & PSYS_KEYED_TIMING && pt->duration!=0.0f)
1977 ksim.psys->flag |= keyed_flag;
1979 pt = (pt->next && pt->next->flag & PTARGET_VALID)? pt->next : psys->targets.first;
1982 psys->flag |= PSYS_KEYED;
1985 /************************************************/
1987 /************************************************/
1988 void psys_make_temp_pointcache(Object *ob, ParticleSystem *psys)
1990 PointCache *cache = psys->pointcache;
1992 if(cache->flag & PTCACHE_DISK_CACHE && cache->mem_cache.first == NULL) {
1994 BKE_ptcache_id_from_particles(&pid, ob, psys);
1995 cache->flag &= ~PTCACHE_DISK_CACHE;
1996 BKE_ptcache_disk_to_mem(&pid);
1997 cache->flag |= PTCACHE_DISK_CACHE;
2000 static void psys_clear_temp_pointcache(ParticleSystem *psys)
2002 if(psys->pointcache->flag & PTCACHE_DISK_CACHE)
2003 BKE_ptcache_free_mem(&psys->pointcache->mem_cache);
2005 void psys_get_pointcache_start_end(Scene *scene, ParticleSystem *psys, int *sfra, int *efra)
2007 ParticleSettings *part = psys->part;
2009 *sfra = MAX2(1, (int)part->sta);
2010 *efra = MIN2((int)(part->end + part->lifetime + 1.0f), scene->r.efra);
2013 /************************************************/
2015 /************************************************/
2016 static void psys_update_particle_bvhtree(ParticleSystem *psys, float cfra)
2022 if(!psys->bvhtree || psys->bvhtree_frame != cfra) {
2023 LOOP_SHOWN_PARTICLES {
2027 BLI_bvhtree_free(psys->bvhtree);
2028 psys->bvhtree = BLI_bvhtree_new(totpart, 0.0, 4, 6);
2030 LOOP_SHOWN_PARTICLES {
2031 if(pa->alive == PARS_ALIVE) {
2032 if(pa->state.time == cfra)
2033 BLI_bvhtree_insert(psys->bvhtree, p, pa->prev_state.co, 1);
2035 BLI_bvhtree_insert(psys->bvhtree, p, pa->state.co, 1);
2038 BLI_bvhtree_balance(psys->bvhtree);
2040 psys->bvhtree_frame = cfra;
2044 void psys_update_particle_tree(ParticleSystem *psys, float cfra)
2050 if(!psys->tree || psys->tree_frame != cfra) {
2051 LOOP_SHOWN_PARTICLES {
2055 BLI_kdtree_free(psys->tree);
2056 psys->tree = BLI_kdtree_new(psys->totpart);
2058 LOOP_SHOWN_PARTICLES {
2059 if(pa->alive == PARS_ALIVE) {
2060 if(pa->state.time == cfra)
2061 BLI_kdtree_insert(psys->tree, p, pa->prev_state.co, NULL);
2063 BLI_kdtree_insert(psys->tree, p, pa->state.co, NULL);
2066 BLI_kdtree_balance(psys->tree);
2068 psys->tree_frame = cfra;
2073 static void psys_update_effectors(ParticleSimulationData *sim)
2075 pdEndEffectors(&sim->psys->effectors);
2076 sim->psys->effectors = pdInitEffectors(sim->scene, sim->ob, sim->psys, sim->psys->part->effector_weights);
2077 precalc_guides(sim, sim->psys->effectors);
2080 static void integrate_particle(ParticleSettings *part, ParticleData *pa, float dtime, float *external_acceleration, void (*force_func)(void *forcedata, ParticleKey *state, float *force, float *impulse), void *forcedata)
2082 ParticleKey states[5];
2083 float force[3],acceleration[3],impulse[3],dx[4][3],dv[4][3],oldpos[3];
2084 float pa_mass= (part->flag & PART_SIZEMASS ? part->mass * pa->size : part->mass);
2086 int integrator = part->integrator;
2088 copy_v3_v3(oldpos, pa->state.co);
2090 /* Verlet integration behaves strangely with moving emitters, so do first step with euler. */
2091 if(pa->prev_state.time < 0.f && integrator == PART_INT_VERLET)
2092 integrator = PART_INT_EULER;
2095 case PART_INT_EULER:
2098 case PART_INT_MIDPOINT:
2104 case PART_INT_VERLET:
2109 copy_particle_key(states, &pa->state, 1);
2113 for(i=0; i<steps; i++){
2117 force_func(forcedata, states+i, force, impulse);
2119 /* force to acceleration*/
2120 mul_v3_v3fl(acceleration, force, 1.0f/pa_mass);
2122 if(external_acceleration)
2123 add_v3_v3(acceleration, external_acceleration);
2125 /* calculate next state */
2126 add_v3_v3(states[i].vel, impulse);
2129 case PART_INT_EULER:
2130 madd_v3_v3v3fl(pa->state.co, states->co, states->vel, dtime);
2131 madd_v3_v3v3fl(pa->state.vel, states->vel, acceleration, dtime);
2133 case PART_INT_MIDPOINT:
2135 madd_v3_v3v3fl(states[1].co, states->co, states->vel, dtime*0.5f);
2136 madd_v3_v3v3fl(states[1].vel, states->vel, acceleration, dtime*0.5f);
2137 states[1].time = dtime*0.5f;
2138 /*fra=sim->psys->cfra+0.5f*dfra;*/
2141 madd_v3_v3v3fl(pa->state.co, states->co, states[1].vel, dtime);
2142 madd_v3_v3v3fl(pa->state.vel, states->vel, acceleration, dtime);
2148 copy_v3_v3(dx[0], states->vel);
2149 mul_v3_fl(dx[0], dtime);
2150 copy_v3_v3(dv[0], acceleration);
2151 mul_v3_fl(dv[0], dtime);
2153 madd_v3_v3v3fl(states[1].co, states->co, dx[0], 0.5f);
2154 madd_v3_v3v3fl(states[1].vel, states->vel, dv[0], 0.5f);
2155 states[1].time = dtime*0.5f;
2156 /*fra=sim->psys->cfra+0.5f*dfra;*/
2159 madd_v3_v3v3fl(dx[1], states->vel, dv[0], 0.5f);
2160 mul_v3_fl(dx[1], dtime);
2161 copy_v3_v3(dv[1], acceleration);
2162 mul_v3_fl(dv[1], dtime);
2164 madd_v3_v3v3fl(states[2].co, states->co, dx[1], 0.5f);
2165 madd_v3_v3v3fl(states[2].vel, states->vel, dv[1], 0.5f);
2166 states[2].time = dtime*0.5f;
2169 madd_v3_v3v3fl(dx[2], states->vel, dv[1], 0.5f);
2170 mul_v3_fl(dx[2], dtime);
2171 copy_v3_v3(dv[2], acceleration);
2172 mul_v3_fl(dv[2], dtime);
2174 add_v3_v3v3(states[3].co, states->co, dx[2]);
2175 add_v3_v3v3(states[3].vel, states->vel, dv[2]);
2176 states[3].time = dtime;
2180 add_v3_v3v3(dx[3], states->vel, dv[2]);
2181 mul_v3_fl(dx[3], dtime);
2182 copy_v3_v3(dv[3], acceleration);
2183 mul_v3_fl(dv[3], dtime);
2185 madd_v3_v3v3fl(pa->state.co, states->co, dx[0], 1.0f/6.0f);
2186 madd_v3_v3fl(pa->state.co, dx[1], 1.0f/3.0f);
2187 madd_v3_v3fl(pa->state.co, dx[2], 1.0f/3.0f);
2188 madd_v3_v3fl(pa->state.co, dx[3], 1.0f/6.0f);
2190 madd_v3_v3v3fl(pa->state.vel, states->vel, dv[0], 1.0f/6.0f);
2191 madd_v3_v3fl(pa->state.vel, dv[1], 1.0f/3.0f);
2192 madd_v3_v3fl(pa->state.vel, dv[2], 1.0f/3.0f);
2193 madd_v3_v3fl(pa->state.vel, dv[3], 1.0f/6.0f);
2196 case PART_INT_VERLET: /* Verlet integration */
2197 madd_v3_v3v3fl(pa->state.vel, pa->prev_state.vel, acceleration, dtime);
2198 madd_v3_v3v3fl(pa->state.co, pa->prev_state.co, pa->state.vel, dtime);
2200 sub_v3_v3v3(pa->state.vel, pa->state.co, oldpos);
2201 mul_v3_fl(pa->state.vel, 1.0f/dtime);
2207 /*********************************************************************************************************
2210 In theory, there could be unlimited implementation of SPH simulators
2212 This code uses in some parts adapted algorithms from the pseudo code as outlined in the Research paper:
2214 Titled: Particle-based Viscoelastic Fluid Simulation.
2215 Authors: Simon Clavet, Philippe Beaudoin and Pierre Poulin
2216 Website: http://www.iro.umontreal.ca/labs/infographie/papers/Clavet-2005-PVFS/
2218 Presented at Siggraph, (2005)
2220 ***********************************************************************************************************/
2221 #define PSYS_FLUID_SPRINGS_INITIAL_SIZE 256
2222 static ParticleSpring *sph_spring_add(ParticleSystem *psys, ParticleSpring *spring)
2224 /* Are more refs required? */
2225 if(psys->alloc_fluidsprings == 0 || psys->fluid_springs == NULL) {
2226 psys->alloc_fluidsprings = PSYS_FLUID_SPRINGS_INITIAL_SIZE;
2227 psys->fluid_springs = (ParticleSpring*)MEM_callocN(psys->alloc_fluidsprings * sizeof(ParticleSpring), "Particle Fluid Springs");
2229 else if(psys->tot_fluidsprings == psys->alloc_fluidsprings) {
2230 /* Double the number of refs allocated */
2231 psys->alloc_fluidsprings *= 2;
2232 psys->fluid_springs = (ParticleSpring*)MEM_reallocN(psys->fluid_springs, psys->alloc_fluidsprings * sizeof(ParticleSpring));
2235 memcpy(psys->fluid_springs + psys->tot_fluidsprings, spring, sizeof(ParticleSpring));
2236 psys->tot_fluidsprings++;
2238 return psys->fluid_springs + psys->tot_fluidsprings - 1;
2240 static void sph_spring_delete(ParticleSystem *psys, int j)
2242 if (j != psys->tot_fluidsprings - 1)
2243 psys->fluid_springs[j] = psys->fluid_springs[psys->tot_fluidsprings - 1];
2245 psys->tot_fluidsprings--;
2247 if (psys->tot_fluidsprings < psys->alloc_fluidsprings/2 && psys->alloc_fluidsprings > PSYS_FLUID_SPRINGS_INITIAL_SIZE){
2248 psys->alloc_fluidsprings /= 2;
2249 psys->fluid_springs = (ParticleSpring*)MEM_reallocN(psys->fluid_springs, psys->alloc_fluidsprings * sizeof(ParticleSpring));
2252 static void sph_springs_modify(ParticleSystem *psys, float dtime){
2253 SPHFluidSettings *fluid = psys->part->fluid;
2254 ParticleData *pa1, *pa2;
2255 ParticleSpring *spring = psys->fluid_springs;
2257 float h, d, Rij[3], rij, Lij;
2260 float yield_ratio = fluid->yield_ratio;
2261 float plasticity = fluid->plasticity_constant;
2262 /* scale things according to dtime */
2263 float timefix = 25.f * dtime;
2265 if((fluid->flag & SPH_VISCOELASTIC_SPRINGS)==0 || fluid->spring_k == 0.f)
2268 /* Loop through the springs */
2269 for(i=0; i<psys->tot_fluidsprings; i++, spring++) {
2270 pa1 = psys->particles + spring->particle_index[0];
2271 pa2 = psys->particles + spring->particle_index[1];
2273 sub_v3_v3v3(Rij, pa2->prev_state.co, pa1->prev_state.co);
2274 rij = normalize_v3(Rij);
2276 /* adjust rest length */
2277 Lij = spring->rest_length;
2278 d = yield_ratio * timefix * Lij;
2280 if (rij > Lij + d) // Stretch
2281 spring->rest_length += plasticity * (rij - Lij - d) * timefix;
2282 else if(rij < Lij - d) // Compress
2283 spring->rest_length -= plasticity * (Lij - d - rij) * timefix;
2287 if(spring->rest_length > h)
2288 spring->delete_flag = 1;
2291 /* Loop through springs backwaqrds - for efficient delete function */
2292 for (i=psys->tot_fluidsprings-1; i >= 0; i--) {
2293 if(psys->fluid_springs[i].delete_flag)
2294 sph_spring_delete(psys, i);
2297 static EdgeHash *sph_springhash_build(ParticleSystem *psys)
2299 EdgeHash *springhash = NULL;
2300 ParticleSpring *spring;
2303 springhash = BLI_edgehash_new();
2305 for(i=0, spring=psys->fluid_springs; i<psys->tot_fluidsprings; i++, spring++)
2306 BLI_edgehash_insert(springhash, spring->particle_index[0], spring->particle_index[1], SET_INT_IN_POINTER(i+1));
2311 typedef struct SPHNeighbor
2313 ParticleSystem *psys;
2316 typedef struct SPHRangeData
2318 SPHNeighbor neighbors[128];
2321 float density, near_density;
2324 ParticleSystem *npsys;
2330 typedef struct SPHData {
2331 ParticleSystem *psys[10];
2337 static void sph_density_accum_cb(void *userdata, int index, float squared_dist)
2339 SPHRangeData *pfr = (SPHRangeData *)userdata;
2340 ParticleData *npa = pfr->npsys->particles + index;
2343 if(npa == pfr->pa || squared_dist < FLT_EPSILON)
2346 /* Ugh! One particle has over 128 neighbors! Really shouldn't happen,
2347 * but even if it does it shouldn't do any terrible harm if all are
2348 * not taken into account - jahka
2350 if(pfr->tot_neighbors >= 128)
2353 pfr->neighbors[pfr->tot_neighbors].index = index;
2354 pfr->neighbors[pfr->tot_neighbors].psys = pfr->npsys;
2355 pfr->tot_neighbors++;
2357 q = (1.f - sqrtf(squared_dist)/pfr->h) * pfr->massfac;
2362 pfr->density += q*q;
2363 pfr->near_density += q*q*q;
2365 static void sph_force_cb(void *sphdata_v, ParticleKey *state, float *force, float *UNUSED(impulse))
2367 SPHData *sphdata = (SPHData *)sphdata_v;
2368 ParticleSystem **psys = sphdata->psys;
2369 ParticleData *pa = sphdata->pa;
2370 SPHFluidSettings *fluid = psys[0]->part->fluid;
2371 ParticleSpring *spring = NULL;
2374 float mass = sphdata->mass;
2375 float *gravity = sphdata->gravity;
2376 EdgeHash *springhash = sphdata->eh;
2378 float q, u, rij, dv[3];
2379 float pressure, near_pressure;
2381 float visc = fluid->viscosity_omega;
2382 float stiff_visc = fluid->viscosity_beta * (fluid->flag & SPH_FAC_VISCOSITY ? fluid->viscosity_omega : 1.f);
2384 float inv_mass = 1.0f/mass;
2385 float spring_constant = fluid->spring_k;
2387 float h = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.f*pa->size : 1.f); /* 4.0 seems to be a pretty good value */
2388 float rest_density = fluid->rest_density * (fluid->flag & SPH_FAC_DENSITY ? 4.77f : 1.f); /* 4.77 is an experimentally determined density factor */
2389 float rest_length = fluid->rest_length * (fluid->flag & SPH_FAC_REST_LENGTH ? 2.588f * pa->size : 1.f);
2391 float stiffness = fluid->stiffness_k;
2392 float stiffness_near_fac = fluid->stiffness_knear * (fluid->flag & SPH_FAC_REPULSION ? fluid->stiffness_k : 1.f);
2399 int i, spring_index, index = pa - psys[0]->particles;
2401 pfr.tot_neighbors = 0;
2402 pfr.density = pfr.near_density = 0.f;
2406 for(i=0; i<10 && psys[i]; i++) {
2407 pfr.npsys = psys[i];
2408 pfr.massfac = psys[i]->part->mass*inv_mass;
2409 pfr.use_size = psys[i]->part->flag & PART_SIZEMASS;
2411 BLI_bvhtree_range_query(psys[i]->bvhtree, state->co, h, sph_density_accum_cb, &pfr);
2414 pressure = stiffness * (pfr.density - rest_density);
2415 near_pressure = stiffness_near_fac * pfr.near_density;
2417 pfn = pfr.neighbors;
2418 for(i=0; i<pfr.tot_neighbors; i++, pfn++) {
2419 npa = pfn->psys->particles + pfn->index;
2421 madd_v3_v3v3fl(co, npa->prev_state.co, npa->prev_state.vel, state->time);
2423 sub_v3_v3v3(vec, co, state->co);
2424 rij = normalize_v3(vec);
2426 q = (1.f - rij/h) * pfn->psys->part->mass * inv_mass;
2428 if(pfn->psys->part->flag & PART_SIZEMASS)
2431 copy_v3_v3(vel, npa->prev_state.vel);
2433 /* Double Density Relaxation */
2434 madd_v3_v3fl(force, vec, -(pressure + near_pressure*q)*q);
2437 if(visc > 0.f || stiff_visc > 0.f) {
2438 sub_v3_v3v3(dv, vel, state->vel);
2439 u = dot_v3v3(vec, dv);
2441 if(u < 0.f && visc > 0.f)
2442 madd_v3_v3fl(force, vec, 0.5f * q * visc * u );
2444 if(u > 0.f && stiff_visc > 0.f)
2445 madd_v3_v3fl(force, vec, 0.5f * q * stiff_visc * u );
2448 if(spring_constant > 0.f) {
2449 /* Viscoelastic spring force */
2450 if (pfn->psys == psys[0] && fluid->flag & SPH_VISCOELASTIC_SPRINGS && springhash) {
2451 spring_index = GET_INT_FROM_POINTER(BLI_edgehash_lookup(springhash, index, pfn->index));
2454 spring = psys[0]->fluid_springs + spring_index - 1;
2456 madd_v3_v3fl(force, vec, -10.f * spring_constant * (1.f - rij/h) * (spring->rest_length - rij));
2458 else if(fluid->spring_frames == 0 || (pa->prev_state.time-pa->time) <= fluid->spring_frames){
2459 ParticleSpring temp_spring;
2460 temp_spring.particle_index[0] = index;
2461 temp_spring.particle_index[1] = pfn->index;
2462 temp_spring.rest_length = (fluid->flag & SPH_CURRENT_REST_LENGTH) ? rij : rest_length;
2463 temp_spring.delete_flag = 0;
2465 sph_spring_add(psys[0], &temp_spring);
2468 else {/* PART_SPRING_HOOKES - Hooke's spring force */
2469 madd_v3_v3fl(force, vec, -10.f * spring_constant * (1.f - rij/h) * (rest_length - rij));
2474 /* Artificial buoyancy force in negative gravity direction */
2475 if (fluid->buoyancy > 0.f && gravity)
2476 madd_v3_v3fl(force, gravity, fluid->buoyancy * (pfr.density-rest_density));
2479 static void sph_integrate(ParticleSimulationData *sim, ParticleData *pa, float dfra, float *gravity, EdgeHash *springhash){
2483 ParticleSettings *part = sim->psys->part;
2484 // float timestep = psys_get_timestep(sim); // UNUSED
2485 float pa_mass = part->mass * (part->flag & PART_SIZEMASS ? pa->size : 1.f);
2486 float dtime = dfra*psys_get_timestep(sim);
2487 // int steps = 1; // UNUSED
2488 float effector_acceleration[3];
2491 sphdata.psys[0] = sim->psys;
2492 for(i=1, pt=sim->psys->targets.first; i<10; i++, pt=(pt?pt->next:NULL))
2493 sphdata.psys[i] = pt ? psys_get_target_system(sim->ob, pt) : NULL;
2496 sphdata.gravity = gravity;
2497 sphdata.mass = pa_mass;
2498 sphdata.eh = springhash;
2500 /* restore previous state and treat gravity & effectors as external acceleration*/
2501 sub_v3_v3v3(effector_acceleration, pa->state.vel, pa->prev_state.vel);
2502 mul_v3_fl(effector_acceleration, 1.f/dtime);
2504 copy_particle_key(&pa->state, &pa->prev_state, 0);
2506 integrate_particle(part, pa, dtime, effector_acceleration, sph_force_cb, &sphdata);
2509 /************************************************/
2511 /************************************************/
2512 typedef struct EfData
2514 ParticleTexture ptex;
2515 ParticleSimulationData *sim;
2518 static void basic_force_cb(void *efdata_v, ParticleKey *state, float *force, float *impulse)
2520 EfData *efdata = (EfData *)efdata_v;
2521 ParticleSimulationData *sim = efdata->sim;
2522 ParticleSettings *part = sim->psys->part;
2523 ParticleData *pa = efdata->pa;
2524 EffectedPoint epoint;
2527 pd_point_from_particle(efdata->sim, efdata->pa, state, &epoint);
2528 if(part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR)
2529 pdDoEffectors(sim->psys->effectors, sim->colliders, part->effector_weights, &epoint, force, impulse);
2531 mul_v3_fl(force, efdata->ptex.field);
2532 mul_v3_fl(impulse, efdata->ptex.field);
2534 /* calculate air-particle interaction */
2535 if(part->dragfac != 0.0f)
2536 madd_v3_v3fl(force, state->vel, -part->dragfac * pa->size * pa->size * len_v3(state->vel));
2538 /* brownian force */
2539 if(part->brownfac != 0.0f){
2540 force[0] += (BLI_frand()-0.5f) * part->brownfac;
2541 force[1] += (BLI_frand()-0.5f) * part->brownfac;
2542 force[2] += (BLI_frand()-0.5f) * part->brownfac;
2545 /* gathers all forces that effect particles and calculates a new state for the particle */
2546 static void basic_integrate(ParticleSimulationData *sim, int p, float dfra, float cfra)
2548 ParticleSettings *part = sim->psys->part;
2549 ParticleData *pa = sim->psys->particles + p;
2551 float dtime=dfra*psys_get_timestep(sim), time;
2552 float *gravity = NULL, gr[3];
2555 psys_get_texture(sim, pa, &efdata.ptex, PAMAP_PHYSICS, cfra);
2560 /* add global acceleration (gravitation) */
2561 if(psys_uses_gravity(sim)
2562 /* normal gravity is too strong for hair so it's disabled by default */
2563 && (part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR)) {
2565 madd_v3_v3fl(gr, sim->scene->physics_settings.gravity, part->effector_weights->global_gravity * efdata.ptex.gravity);
2569 /* maintain angular velocity */
2570 copy_v3_v3(pa->state.ave, pa->prev_state.ave);
2572 integrate_particle(part, pa, dtime, gravity, basic_force_cb, &efdata);
2574 /* damp affects final velocity */
2575 if(part->dampfac != 0.f)
2576 mul_v3_fl(pa->state.vel, 1.f - part->dampfac * efdata.ptex.damp * 25.f * dtime);
2578 //VECCOPY(pa->state.ave, states->ave);
2580 /* finally we do guides */
2581 time=(cfra-pa->time)/pa->lifetime;
2582 CLAMP(time, 0.0f, 1.0f);
2584 VECCOPY(tkey.co,pa->state.co);
2585 VECCOPY(tkey.vel,pa->state.vel);
2586 tkey.time=pa->state.time;
2588 if(part->type != PART_HAIR) {
2589 if(do_guides(sim->psys->effectors, &tkey, p, time)) {
2590 VECCOPY(pa->state.co,tkey.co);
2591 /* guides don't produce valid velocity */
2592 VECSUB(pa->state.vel,tkey.co,pa->prev_state.co);
2593 mul_v3_fl(pa->state.vel,1.0f/dtime);
2594 pa->state.time=tkey.time;
2598 static void basic_rotate(ParticleSettings *part, ParticleData *pa, float dfra, float timestep)
2600 float rotfac, rot1[4], rot2[4]={1.0,0.0,0.0,0.0}, dtime=dfra*timestep;
2602 if((part->flag & PART_ROT_DYN)==0){
2603 if(part->avemode==PART_AVE_SPIN){
2605 float len1 = len_v3(pa->prev_state.vel);
2606 float len2 = len_v3(pa->state.vel);
2608 if(len1==0.0f || len2==0.0f)
2609 pa->state.ave[0]=pa->state.ave[1]=pa->state.ave[2]=0.0f;
2611 cross_v3_v3v3(pa->state.ave,pa->prev_state.vel,pa->state.vel);
2612 normalize_v3(pa->state.ave);
2613 angle=dot_v3v3(pa->prev_state.vel,pa->state.vel)/(len1*len2);
2614 mul_v3_fl(pa->state.ave,saacos(angle)/dtime);
2617 axis_angle_to_quat(rot2,pa->state.vel,dtime*part->avefac);
2621 rotfac=len_v3(pa->state.ave);
2622 if(rotfac == 0.0f){ /* unit_qt(in VecRotToQuat) doesn't give unit quat [1,0,0,0]?? */
2624 rot1[1]=rot1[2]=rot1[3]=0;
2627 axis_angle_to_quat(rot1,pa->state.ave,rotfac*dtime);
2629 mul_qt_qtqt(pa->state.rot,rot1,pa->prev_state.rot);
2630 mul_qt_qtqt(pa->state.rot,rot2,pa->state.rot);
2632 /* keep rotation quat in good health */
2633 normalize_qt(pa->state.rot);
2636 /************************************************/
2638 /************************************************/
2639 #define COLLISION_MAX_COLLISIONS 10
2640 #define COLLISION_MIN_RADIUS 0.001f
2641 #define COLLISION_MIN_DISTANCE 0.0001f
2642 #define COLLISION_ZERO 0.00001f
2643 typedef float (*NRDistanceFunc)(float *p, float radius, ParticleCollisionElement *pce, float *nor);
2644 static float nr_signed_distance_to_plane(float *p, float radius, ParticleCollisionElement *pce, float *nor)
2646 float p0[3], e1[3], e2[3], d;
2648 sub_v3_v3v3(e1, pce->x1, pce->x0);
2649 sub_v3_v3v3(e2, pce->x2, pce->x0);
2650 sub_v3_v3v3(p0, p, pce->x0);
2652 cross_v3_v3v3(nor, e1, e2);
2655 d = dot_v3v3(p0, nor);
2657 if(pce->inv_nor == -1) {
2664 if(pce->inv_nor == 1) {
2665 mul_v3_fl(nor, -1.f);
2671 static float nr_distance_to_edge(float *p, float radius, ParticleCollisionElement *pce, float *UNUSED(nor))
2673 float v0[3], v1[3], v2[3], c[3];
2675 sub_v3_v3v3(v0, pce->x1, pce->x0);
2676 sub_v3_v3v3(v1, p, pce->x0);
2677 sub_v3_v3v3(v2, p, pce->x1);
2679 cross_v3_v3v3(c, v1, v2);
2681 return fabsf(len_v3(c)/len_v3(v0)) - radius;
2683 static float nr_distance_to_vert(float *p, float radius, ParticleCollisionElement *pce, float *UNUSED(nor))
2685 return len_v3v3(p, pce->x0) - radius;
2687 static void collision_interpolate_element(ParticleCollisionElement *pce, float t, float fac, ParticleCollision *col)
2689 /* t is the current time for newton rhapson */
2690 /* fac is the starting factor for current collision iteration */
2691 /* the col->fac's are factors for the particle subframe step start and end during collision modifier step */
2692 float f = fac + t*(1.f-fac);
2693 float mul = col->fac1 + f * (col->fac2-col->fac1);
2695 madd_v3_v3v3fl(pce->x0, pce->x[0], pce->v[0], mul);
2698 madd_v3_v3v3fl(pce->x1, pce->x[1], pce->v[1], mul);
2701 madd_v3_v3v3fl(pce->x2, pce->x[2], pce->v[2], mul);
2705 static void collision_point_velocity(ParticleCollisionElement *pce)
2709 copy_v3_v3(pce->vel, pce->v[0]);
2712 sub_v3_v3v3(v, pce->v[1], pce->v[0]);
2713 madd_v3_v3fl(pce->vel, v, pce->uv[0]);
2716 sub_v3_v3v3(v, pce->v[2], pce->v[0]);
2717 madd_v3_v3fl(pce->vel, v, pce->uv[1]);
2721 static float collision_point_distance_with_normal(float p[3], ParticleCollisionElement *pce, float fac, ParticleCollision *col, float *nor)
2724 collision_interpolate_element(pce, 0.f, fac, col);
2729 sub_v3_v3v3(nor, p, pce->x0);
2730 return normalize_v3(nor);
2734 float u, e[3], vec[3];
2735 sub_v3_v3v3(e, pce->x1, pce->x0);
2736 sub_v3_v3v3(vec, p, pce->x0);
2737 u = dot_v3v3(vec, e) / dot_v3v3(e, e);
2739 madd_v3_v3v3fl(nor, vec, e, -u);
2740 return normalize_v3(nor);
2743 return nr_signed_distance_to_plane(p, 0.f, pce, nor);
2747 static void collision_point_on_surface(float p[3], ParticleCollisionElement *pce, float fac, ParticleCollision *col, float *co)
2749 collision_interpolate_element(pce, 0.f, fac, col);
2754 sub_v3_v3v3(co, p, pce->x0);
2756 madd_v3_v3v3fl(co, pce->x0, co, col->radius);
2761 float u, e[3], vec[3], nor[3];
2762 sub_v3_v3v3(e, pce->x1, pce->x0);
2763 sub_v3_v3v3(vec, p, pce->x0);
2764 u = dot_v3v3(vec, e) / dot_v3v3(e, e);
2766 madd_v3_v3v3fl(nor, vec, e, -u);
2769 madd_v3_v3v3fl(co, pce->x0, e, pce->uv[0]);
2770 madd_v3_v3fl(co, nor, col->radius);
2775 float p0[3], e1[3], e2[3], nor[3];
2777 sub_v3_v3v3(e1, pce->x1, pce->x0);
2778 sub_v3_v3v3(e2, pce->x2, pce->x0);
2779 sub_v3_v3v3(p0, p, pce->x0);
2781 cross_v3_v3v3(nor, e1, e2);
2784 if(pce->inv_nor == 1)
2785 mul_v3_fl(nor, -1.f);
2787 madd_v3_v3v3fl(co, pce->x0, nor, col->radius);
2788 madd_v3_v3fl(co, e1, pce->uv[0]);
2789 madd_v3_v3fl(co, e2, pce->uv[1]);
2794 /* find first root in range [0-1] starting from 0 */
2795 static float collision_newton_rhapson(ParticleCollision *col, float radius, ParticleCollisionElement *pce, NRDistanceFunc distance_func)
2797 float t0, t1, d0, d1, dd, n[3];
2802 /* start from the beginning */
2804 collision_interpolate_element(pce, t0, col->f, col);
2805 d0 = distance_func(col->co1, radius, pce, n);
2809 for(iter=0; iter<10; iter++) {//, itersum++) {
2810 /* get current location */
2811 collision_interpolate_element(pce, t1, col->f, col);
2812 interp_v3_v3v3(pce->p, col->co1, col->co2, t1);
2814 d1 = distance_func(pce->p, radius, pce, n);
2816 /* no movement, so no collision */
2821 /* particle already inside face, so report collision */
2822 if(iter == 0 && d0 < 0.f && d0 > -radius) {
2823 copy_v3_v3(pce->p, col->co1);
2824 copy_v3_v3(pce->nor, n);
2829 dd = (t1-t0)/(d1-d0);
2836 /* particle movin away from plane could also mean a strangely rotating face, so check from end */
2837 if(iter == 0 && t1 < 0.f) {
2839 collision_interpolate_element(pce, t0, col->f, col);
2840 d0 = distance_func(col->co2, radius, pce, n);
2846 else if(iter == 1 && (t1 < -COLLISION_ZERO || t1 > 1.f))
2849 if(d1 <= COLLISION_ZERO && d1 >= -COLLISION_ZERO) {
2850 if(t1 >= -COLLISION_ZERO && t1 <= 1.f) {
2851 if(distance_func == nr_signed_distance_to_plane)
2852 copy_v3_v3(pce->nor, n);
2854 CLAMP(t1, 0.f, 1.f);
2864 static int collision_sphere_to_tri(ParticleCollision *col, float radius, ParticleCollisionElement *pce, float *t)
2866 ParticleCollisionElement *result = &col->pce;
2872 ct = collision_newton_rhapson(col, radius, pce, nr_signed_distance_to_plane);
2874 if(ct >= 0.f && ct < *t && (result->inside==0 || pce->inside==1) ) {
2875 float e1[3], e2[3], p0[3];
2876 float e1e1, e1e2, e1p0, e2e2, e2p0, inv;
2878 sub_v3_v3v3(e1, pce->x1, pce->x0);
2879 sub_v3_v3v3(e2, pce->x2, pce->x0);
2880 /* XXX: add radius correction here? */
2881 sub_v3_v3v3(p0, pce->p, pce->x0);
2883 e1e1 = dot_v3v3(e1, e1);
2884 e1e2 = dot_v3v3(e1, e2);
2885 e1p0 = dot_v3v3(e1, p0);
2886 e2e2 = dot_v3v3(e2, e2);
2887 e2p0 = dot_v3v3(e2, p0);
2889 inv = 1.f/(e1e1 * e2e2 - e1e2 * e1e2);
2890 u = (e2e2 * e1p0 - e1e2 * e2p0) * inv;
2891 v = (e1e1 * e2p0 - e1e2 * e1p0) * inv;
2893 if(u>=0.f && u<=1.f && v>=0.f && u+v<=1.f) {
2896 /* normal already calculated in pce */
2907 static int collision_sphere_to_edges(ParticleCollision *col, float radius, ParticleCollisionElement *pce, float *t)
2909 ParticleCollisionElement edge[3], *cur = NULL, *hit = NULL;
2910 ParticleCollisionElement *result = &col->pce;
2915 for(i=0; i<3; i++) {
2916 /* in case of a quad, no need to check "edge" that goes through face twice */
2917 if((pce->x[3] && i==2))
2921 cur->x[0] = pce->x[i]; cur->x[1] = pce->x[(i+1)%3];
2922 cur->v[0] = pce->v[i]; cur->v[1] = pce->v[(i+1)%3];
2926 ct = collision_newton_rhapson(col, radius, cur, nr_distance_to_edge);
2928 if(ct >= 0.f && ct < *t) {
2929 float u, e[3], vec[3];
2931 sub_v3_v3v3(e, cur->x1, cur->x0);
2932 sub_v3_v3v3(vec, cur->p, cur->x0);
2933 u = dot_v3v3(vec, e) / dot_v3v3(e, e);
2935 if(u < 0.f || u > 1.f)
2940 madd_v3_v3v3fl(result->nor, vec, e, -u);
2941 normalize_v3(result->nor);