3 * ***** BEGIN GPL LICENSE BLOCK *****
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
20 * All rights reserved.
22 * The Original Code is: all of this file.
24 * Contributor(s): none yet.
26 * ***** END GPL LICENSE BLOCK *****
30 #include "BSP_CSGMesh.h"
31 #include "MT_assert.h"
32 #include "CTR_TaggedSetOps.h"
33 #include "MT_Plane3.h"
34 #include "BSP_CSGException.h"
36 // for insert_iterator
58 return new BSP_CSGMesh();
66 BSP_CSGMesh *mesh = New();
67 if (mesh == NULL) return NULL;
69 mesh->m_bbox_max = m_bbox_max;
70 mesh->m_bbox_min = m_bbox_min;
72 if (m_edges != NULL) {
73 mesh->m_edges = new vector<BSP_MEdge>(*m_edges);
74 if (mesh->m_edges == NULL) {
79 if (m_verts != NULL) {
80 mesh->m_verts = new vector<BSP_MVertex>(*m_verts);
81 if (mesh->m_verts == NULL) {
82 if (m_edges != NULL) free(mesh->m_edges);
87 if (m_faces != NULL) {
88 mesh->m_faces = new vector<BSP_MFace>(*m_faces);
89 if (mesh->m_faces == NULL) {
103 vector<BSP_MFace> & faces = FaceSet();
105 vector<BSP_MFace>::const_iterator faces_end = faces.end();
106 vector<BSP_MFace>::iterator faces_it = faces.begin();
108 for (; faces_it != faces_end; ++faces_it) {
116 vector<BSP_MVertex> *verts
118 if (verts == NULL) return false;
120 // create polygon and edge arrays and reserve some space.
121 m_faces = new vector<BSP_MFace>;
122 if (!m_faces) return false;
124 m_faces->reserve(verts->size()/2);
126 // previous verts get deleted here.
137 MT_assert(verts != NULL);
138 MT_assert(num_verts >=3);
140 if (verts == NULL || num_verts <3) return;
142 // make a polyscone from these vertex indices.
144 const BSP_FaceInd fi = m_faces->size();
145 m_faces->push_back(BSP_MFace());
146 BSP_MFace & face = m_faces->back();
148 insert_iterator<vector<BSP_VertexInd> > insert_point(face.m_verts,face.m_verts.end());
149 copy (verts,verts + num_verts,insert_point);
151 // compute and store the plane equation for this face.
153 MT_Plane3 face_plane = FacePlane(fi);
154 face.m_plane = face_plane;
157 // assumes that the face already has a plane equation
161 const BSP_MFace &face
163 m_faces->push_back(face);
172 if (m_faces == NULL) return false;
174 if (m_edges != NULL) {
178 m_edges = new vector<BSP_MEdge>;
180 if (m_edges == NULL) {
185 //iterate through the face set and add edges for all polygon
188 vector<BSP_MFace>::const_iterator f_it_end = FaceSet().end();
189 vector<BSP_MFace>::iterator f_it_begin = FaceSet().begin();
190 vector<BSP_MFace>::iterator f_it = FaceSet().begin();
192 vector<BSP_EdgeInd> dummy;
194 for (;f_it != f_it_end; ++f_it) {
196 BSP_MFace & face = *f_it;
198 int vertex_num = face.m_verts.size();
199 BSP_VertexInd prev_vi(face.m_verts[vertex_num-1]);
201 for (int vert = 0; vert < vertex_num; ++vert) {
203 BSP_FaceInd fi(size_t (f_it - f_it_begin));
204 InsertEdge(prev_vi,face.m_verts[vert],fi,dummy);
205 prev_vi = face.m_verts[vert];
217 if ( m_edges != NULL ) {
222 // Run through the vertices
223 // and clear their edge arrays.
227 vector<BSP_MVertex>::const_iterator vertex_end = VertexSet().end();
228 vector<BSP_MVertex>::iterator vertex_it = VertexSet().begin();
230 for (; vertex_it != vertex_end; ++vertex_it) {
231 vertex_it->m_edges.clear();
240 const BSP_VertexInd & v1,
241 const BSP_VertexInd & v2
244 vector<BSP_MVertex> &verts = VertexSet();
245 vector<BSP_MEdge> &edges = EdgeSet();
251 vector<BSP_EdgeInd> &v1_edges = verts[v1].m_edges;
252 vector<BSP_EdgeInd>::const_iterator v1_end = v1_edges.end();
253 vector<BSP_EdgeInd>::const_iterator v1_begin = v1_edges.begin();
255 for (; v1_begin != v1_end; ++v1_begin) {
256 if (edges[*v1_begin] == e) return *v1_begin;
259 return BSP_EdgeInd::Empty();
265 const BSP_VertexInd & v1,
266 const BSP_VertexInd & v2,
267 const BSP_FaceInd & f,
268 vector<BSP_EdgeInd> &new_edges
271 MT_assert(!v1.IsEmpty());
272 MT_assert(!v2.IsEmpty());
273 MT_assert(!f.IsEmpty());
275 if (v1.IsEmpty() || v2.IsEmpty() || f.IsEmpty()) {
276 BSP_CSGException e(e_mesh_error);
280 vector<BSP_MVertex> &verts = VertexSet();
281 vector<BSP_MEdge> &edges = EdgeSet();
287 // This edge does not exist -- make a new one
290 temp_e.m_verts[0] = v1;
291 temp_e.m_verts[1] = v2;
294 // set the face index from the edge back to this polygon.
295 temp_e.m_faces.push_back(f);
297 m_edges->push_back(temp_e);
299 // add the edge index to it's vertices
300 verts[v1].AddEdge(e);
301 verts[v2].AddEdge(e);
303 new_edges.push_back(e);
307 // edge already exists
308 // insure that there is no polygon already
309 // attached to the other side of this edge
310 // swap the empty face pointer in edge with f
312 BSP_MEdge &edge = edges[e];
314 // set the face index from the edge back to this polygon.
315 edge.m_faces.push_back(f);
323 vector<BSP_MVertex> &
347 if ( m_verts != NULL ) delete m_verts;
348 if ( m_faces != NULL ) delete m_faces;
349 if ( m_edges != NULL ) delete m_edges;
352 // local geometry queries.
353 /////////////////////////
361 const BSP_FaceInd & f,
362 vector<BSP_VertexInd> &output
364 vector<BSP_MFace> & face_set = FaceSet();
367 face_set[f].m_verts.begin(),
368 face_set[f].m_verts.end()
376 const BSP_FaceInd & fi,
377 vector<BSP_EdgeInd> &output
379 // take intersection of the edges emminating from all the vertices
382 vector<BSP_MFace> &faces = FaceSet();
383 vector<BSP_MEdge> &edges = EdgeSet();
385 const BSP_MFace & f = faces[fi];
387 // collect vertex edges;
389 vector<BSP_VertexInd>::const_iterator face_verts_it = f.m_verts.begin();
390 vector<BSP_VertexInd>::const_iterator face_verts_end = f.m_verts.end();
392 vector< vector<BSP_EdgeInd> > vertex_edges(f.m_verts.size());
396 for (;face_verts_it != face_verts_end; ++face_verts_it, ++vector_slot) {
397 VertexEdges(*face_verts_it,vertex_edges[vector_slot]);
400 int prev = vector_slot - 1;
402 // intersect pairs of edge sets
404 for (int i = 0; i < vector_slot;i++) {
405 CTR_TaggedSetOps<BSP_EdgeInd,BSP_MEdge>::IntersectPair(vertex_edges[prev],vertex_edges[i],edges,output);
409 // should always have 3 or more unique edges per face.
410 MT_assert(output.size() >=3);
412 if (output.size() < 3) {
413 BSP_CSGException e(e_mesh_error);
424 const BSP_EdgeInd & e,
425 vector<BSP_VertexInd> &output
427 const vector<BSP_MEdge> &edges = EdgeSet();
428 output.push_back(edges[e].m_verts[0]);
429 output.push_back(edges[e].m_verts[1]);
435 const BSP_EdgeInd & e,
436 vector<BSP_FaceInd> &output
439 vector<BSP_MEdge> & edge_set = EdgeSet();
442 edge_set[e].m_faces.begin(),
443 edge_set[e].m_faces.end()
454 const BSP_VertexInd &v,
455 vector<BSP_EdgeInd> &output
458 vector<BSP_MVertex> & vertex_set = VertexSet();
461 vertex_set[v].m_edges.begin(),
462 vertex_set[v].m_edges.end()
469 const BSP_VertexInd &vi,
470 vector<BSP_FaceInd> &output
473 vector<BSP_MEdge> &edges = EdgeSet();
474 vector<BSP_MFace> &faces = FaceSet();
475 vector<BSP_MVertex> &verts = VertexSet();
477 const vector<BSP_EdgeInd> &v_edges = verts[vi].m_edges;
478 vector<BSP_EdgeInd>::const_iterator e_it = v_edges.begin();
480 for (; e_it != v_edges.end(); ++e_it) {
482 BSP_MEdge &e = edges[*e_it];
484 // iterate through the faces of this edge - push unselected
485 // edges to ouput and then select the edge
487 vector<BSP_FaceInd>::const_iterator e_faces_end = e.m_faces.end();
488 vector<BSP_FaceInd>::iterator e_faces_it = e.m_faces.begin();
490 for (;e_faces_it != e_faces_end; ++e_faces_it) {
492 if (!faces[*e_faces_it].SelectTag()) {
493 output.push_back(*e_faces_it);
494 faces[*e_faces_it].SetSelectTag(true);
499 // deselect selected faces.
500 vector<BSP_FaceInd>::iterator f_it = output.begin();
502 for (; f_it != output.end(); ++f_it) {
503 faces[*f_it].SetSelectTag(false);
517 // check area is greater than zero.
519 vector<BSP_MVertex> & verts = VertexSet();
521 vector<BSP_VertexInd> f_verts;
522 FaceVertices(f,f_verts);
524 MT_assert(f_verts.size() >= 3);
526 BSP_VertexInd root = f_verts[0];
530 for (int i=2; i < f_verts.size(); i++) {
531 MT_Vector3 a = verts[root].m_pos;
532 MT_Vector3 b = verts[f_verts[i-1]].m_pos;
533 MT_Vector3 c = verts[f_verts[i]].m_pos;
538 area += (l1.cross(l2)).length()/2;
541 MT_assert(!MT_fuzzyZero(area));
546 MT_Plane3 plane = FacePlane(f);
548 const BSP_MFace & face = FaceSet()[f];
549 vector<BSP_VertexInd>::const_iterator f_verts_it = face.m_verts.begin();
550 vector<BSP_VertexInd>::const_iterator f_verts_end = face.m_verts.end();
552 for (;f_verts_it != f_verts_end; ++f_verts_it) {
553 MT_Scalar dist = plane.signedDistance(
554 VertexSet()[*f_verts_it].m_pos
557 MT_assert(fabs(dist) < BSP_SPLIT_EPSILON);
562 // Check connectivity
564 vector<BSP_EdgeInd> f_edges;
565 FaceEdges(f,f_edges);
567 MT_assert(f_edges.size() == FaceSet()[f].m_verts.size());
570 for (i = 0; i < f_edges.size(); ++i) {
573 for (unsigned int j = 0; j < EdgeSet()[f_edges[i]].m_faces.size(); j++) {
575 if (EdgeSet()[f_edges[i]].m_faces[j] == f) matches++;
578 MT_assert(matches == 1);
587 const BSP_FaceInd & fi
590 const BSP_MFace & f0 = FaceSet()[fi];
592 // Have to be a bit careful here coz the poly may have
593 // a lot of parallel edges. Should walk round the polygon
594 // and check length of cross product.
596 const MT_Vector3 & p1 = VertexSet()[f0.m_verts[0]].m_pos;
597 const MT_Vector3 & p2 = VertexSet()[f0.m_verts[1]].m_pos;
599 int face_size = f0.m_verts.size();
602 for (int i = 2 ; i <face_size; i++) {
603 const MT_Vector3 & pi = VertexSet()[f0.m_verts[i]].m_pos;
605 MT_Vector3 l1 = p2-p1;
606 MT_Vector3 l2 = pi-p2;
608 MT_Scalar length = n.length();
610 if (!MT_fuzzyZero(length)) {
615 return MT_Plane3(n,p1);
623 int fsize = FaceSet().size();
625 for (i = 0; i < fsize; i++) {
627 FaceSet()[i].m_plane = FacePlane(i);
637 // Each polygon of n sides can be partitioned into n-3 triangles.
638 // So we just go through and sum this function of polygon size.
640 vector<BSP_MFace> & face_set = FaceSet();
642 vector<BSP_MFace>::const_iterator face_it = face_set.begin();
643 vector<BSP_MFace>::const_iterator face_end = face_set.end();
647 for (;face_it != face_end; face_it++) {
649 // Should be careful about degenerate faces here.
650 sum += face_it->m_verts.size() - 2;