/* * \$Id: matrix.c 20249 2009-05-18 04:27:48Z campbellbarton \$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * Contributor(s): Michel Selten & Joseph Gilbert * * ***** END GPL LICENSE BLOCK ***** */ #include "Mathutils.h" #include "BKE_utildefines.h" #include "BLI_arithb.h" #include "BLI_blenlib.h" /*-------------------------DOC STRINGS ---------------------------*/ char Matrix_Zero_doc[] = "() - set all values in the matrix to 0"; char Matrix_Identity_doc[] = "() - set the square matrix to it's identity matrix"; char Matrix_Transpose_doc[] = "() - set the matrix to it's transpose"; char Matrix_Determinant_doc[] = "() - return the determinant of the matrix"; char Matrix_Invert_doc[] = "() - set the matrix to it's inverse if an inverse is possible"; char Matrix_TranslationPart_doc[] = "() - return a vector encompassing the translation of the matrix"; char Matrix_RotationPart_doc[] = "() - return a vector encompassing the rotation of the matrix"; char Matrix_scalePart_doc[] = "() - convert matrix to a 3D vector"; char Matrix_Resize4x4_doc[] = "() - resize the matrix to a 4x4 square matrix"; char Matrix_toEuler_doc[] = "(eul_compat) - convert matrix to a euler angle rotation, optional euler argument that the new euler will be made compatible with."; char Matrix_toQuat_doc[] = "() - convert matrix to a quaternion rotation"; char Matrix_copy_doc[] = "() - return a copy of the matrix"; /*-----------------------METHOD DEFINITIONS ----------------------*/ struct PyMethodDef Matrix_methods[] = { {"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, Matrix_Zero_doc}, {"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, Matrix_Identity_doc}, {"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, Matrix_Transpose_doc}, {"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, Matrix_Determinant_doc}, {"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, Matrix_Invert_doc}, {"translationPart", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, Matrix_TranslationPart_doc}, {"rotationPart", (PyCFunction) Matrix_RotationPart, METH_NOARGS, Matrix_RotationPart_doc}, {"scalePart", (PyCFunction) Matrix_scalePart, METH_NOARGS, Matrix_scalePart_doc}, {"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, Matrix_Resize4x4_doc}, {"toEuler", (PyCFunction) Matrix_toEuler, METH_VARARGS, Matrix_toEuler_doc}, {"toQuat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc}, {"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc}, {"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc}, {NULL, NULL, 0, NULL} }; /*-----------------------------METHODS----------------------------*/ /*---------------------------Matrix.toQuat() ---------------------*/ PyObject *Matrix_toQuat(MatrixObject * self) { float quat[4]; /*must be 3-4 cols, 3-4 rows, square matrix*/ if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) { PyErr_SetString(PyExc_AttributeError, "Matrix.toQuat(): inappropriate matrix size - expects 3x3 or 4x4 matrix"); return NULL; } if(self->colSize == 3){ Mat3ToQuat((float (*)[3])*self->matrix, quat); }else{ Mat4ToQuat((float (*)[4])*self->matrix, quat); } return newQuaternionObject(quat, Py_NEW); } /*---------------------------Matrix.toEuler() --------------------*/ PyObject *Matrix_toEuler(MatrixObject * self, PyObject *args) { float eul[3], eul_compatf[3]; EulerObject *eul_compat = NULL; int x; if(!PyArg_ParseTuple(args, "|O!:toEuler", &euler_Type, &eul_compat)) return NULL; if(eul_compat) { for(x = 0; x < 3; x++) { eul_compatf[x] = eul_compat->eul[x] * ((float)Py_PI / 180); } } /*must be 3-4 cols, 3-4 rows, square matrix*/ if(self->colSize ==3 && self->rowSize ==3) { if(eul_compat) Mat3ToCompatibleEul((float (*)[3])*self->matrix, eul, eul_compatf); else Mat3ToEul((float (*)[3])*self->matrix, eul); }else if (self->colSize ==4 && self->rowSize ==4) { float tempmat3[3][3]; Mat3CpyMat4(tempmat3, (float (*)[4])*self->matrix); Mat3ToEul(tempmat3, eul); if(eul_compat) Mat3ToCompatibleEul(tempmat3, eul, eul_compatf); else Mat3ToEul(tempmat3, eul); }else { PyErr_SetString(PyExc_AttributeError, "Matrix.toEuler(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n"); return NULL; } /*have to convert to degrees*/ for(x = 0; x < 3; x++) { eul[x] *= (float) (180 / Py_PI); } return newEulerObject(eul, Py_NEW); } /*---------------------------Matrix.resize4x4() ------------------*/ PyObject *Matrix_Resize4x4(MatrixObject * self) { int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows, index; if(self->data.blend_data){ PyErr_SetString(PyExc_TypeError, "cannot resize wrapped data - only python matrices"); return NULL; } self->data.py_data = PyMem_Realloc(self->data.py_data, (sizeof(float) * 16)); if(self->data.py_data == NULL) { PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space"); return NULL; } self->contigPtr = self->data.py_data; /*force*/ self->matrix = PyMem_Realloc(self->matrix, (sizeof(float *) * 4)); if(self->matrix == NULL) { PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space"); return NULL; } /*set row pointers*/ for(x = 0; x < 4; x++) { self->matrix[x] = self->contigPtr + (x * 4); } /*move data to new spot in array + clean*/ for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){ for(x = 0; x < 4; x++){ index = (4 * (self->rowSize + (blank_rows - 1))) + x; if (index == 10 || index == 15){ self->contigPtr[index] = 1.0f; }else{ self->contigPtr[index] = 0.0f; } } } for(x = 1; x <= self->rowSize; x++){ first_row_elem = (self->colSize * (self->rowSize - x)); curr_pos = (first_row_elem + (self->colSize -1)); new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem); for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){ self->contigPtr[new_pos + blank_columns] = 0.0f; } for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){ self->contigPtr[new_pos] = self->contigPtr[curr_pos]; new_pos--; } } self->rowSize = 4; self->colSize = 4; Py_INCREF(self); return (PyObject *)self; } /*---------------------------Matrix.translationPart() ------------*/ PyObject *Matrix_TranslationPart(MatrixObject * self) { float vec[4]; if(self->colSize < 3 || self->rowSize < 4){ PyErr_SetString(PyExc_AttributeError, "Matrix.translationPart: inappropriate matrix size"); return NULL; } vec[0] = self->matrix[3][0]; vec[1] = self->matrix[3][1]; vec[2] = self->matrix[3][2]; return newVectorObject(vec, 3, Py_NEW); } /*---------------------------Matrix.rotationPart() ---------------*/ PyObject *Matrix_RotationPart(MatrixObject * self) { float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(self->colSize < 3 || self->rowSize < 3){ PyErr_SetString(PyExc_AttributeError, "Matrix.rotationPart: inappropriate matrix size\n"); return NULL; } mat[0] = self->matrix[0][0]; mat[1] = self->matrix[0][1]; mat[2] = self->matrix[0][2]; mat[3] = self->matrix[1][0]; mat[4] = self->matrix[1][1]; mat[5] = self->matrix[1][2]; mat[6] = self->matrix[2][0]; mat[7] = self->matrix[2][1]; mat[8] = self->matrix[2][2]; return newMatrixObject(mat, 3, 3, Py_NEW); } /*---------------------------Matrix.scalePart() --------------------*/ PyObject *Matrix_scalePart(MatrixObject * self) { float scale[3], rot[3]; float mat[3][3], imat[3][3], tmat[3][3]; /*must be 3-4 cols, 3-4 rows, square matrix*/ if(self->colSize == 4 && self->rowSize == 4) Mat3CpyMat4(mat, (float (*)[4])*self->matrix); else if(self->colSize == 3 && self->rowSize == 3) Mat3CpyMat3(mat, (float (*)[3])*self->matrix); else { PyErr_SetString(PyExc_AttributeError, "Matrix.scalePart(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n"); return NULL; } /* functionality copied from editobject.c apply_obmat */ Mat3ToEul(mat, rot); EulToMat3(rot, tmat); Mat3Inv(imat, tmat); Mat3MulMat3(tmat, imat, mat); scale[0]= tmat[0][0]; scale[1]= tmat[1][1]; scale[2]= tmat[2][2]; return newVectorObject(scale, 3, Py_NEW); } /*---------------------------Matrix.invert() ---------------------*/ PyObject *Matrix_Invert(MatrixObject * self) { int x, y, z = 0; float det = 0.0f; PyObject *f = NULL; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(self->rowSize != self->colSize){ PyErr_SetString(PyExc_AttributeError, "Matrix.invert(ed): only square matrices are supported"); return NULL; } /*calculate the determinant*/ f = Matrix_Determinant(self); det = (float)PyFloat_AS_DOUBLE(f); /*Increfs, so we need to decref*/ Py_DECREF(f); if(det != 0) { /*calculate the classical adjoint*/ if(self->rowSize == 2) { mat[0] = self->matrix[1][1]; mat[1] = -self->matrix[0][1]; mat[2] = -self->matrix[1][0]; mat[3] = self->matrix[0][0]; } else if(self->rowSize == 3) { Mat3Adj((float (*)[3]) mat,(float (*)[3]) *self->matrix); } else if(self->rowSize == 4) { Mat4Adj((float (*)[4]) mat, (float (*)[4]) *self->matrix); } /*divide by determinate*/ for(x = 0; x < (self->rowSize * self->colSize); x++) { mat[x] /= det; } /*set values*/ for(x = 0; x < self->rowSize; x++) { for(y = 0; y < self->colSize; y++) { self->matrix[x][y] = mat[z]; z++; } } /*transpose Matrix_Transpose(self);*/ } else { PyErr_SetString(PyExc_ValueError, "matrix does not have an inverse"); return NULL; } Py_INCREF(self); return (PyObject *)self; } /*---------------------------Matrix.determinant() ----------------*/ PyObject *Matrix_Determinant(MatrixObject * self) { float det = 0.0f; if(self->rowSize != self->colSize){ PyErr_SetString(PyExc_AttributeError, "Matrix.determinant: only square matrices are supported"); return NULL; } if(self->rowSize == 2) { det = Det2x2(self->matrix[0][0], self->matrix[0][1], self->matrix[1][0], self->matrix[1][1]); } else if(self->rowSize == 3) { det = Det3x3(self->matrix[0][0], self->matrix[0][1], self->matrix[0][2], self->matrix[1][0], self->matrix[1][1], self->matrix[1][2], self->matrix[2][0], self->matrix[2][1], self->matrix[2][2]); } else { det = Det4x4((float (*)[4]) *self->matrix); } return PyFloat_FromDouble( (double) det ); } /*---------------------------Matrix.transpose() ------------------*/ PyObject *Matrix_Transpose(MatrixObject * self) { float t = 0.0f; if(self->rowSize != self->colSize){ PyErr_SetString(PyExc_AttributeError, "Matrix.transpose(d): only square matrices are supported"); return NULL; } if(self->rowSize == 2) { t = self->matrix[1][0]; self->matrix[1][0] = self->matrix[0][1]; self->matrix[0][1] = t; } else if(self->rowSize == 3) { Mat3Transp((float (*)[3])*self->matrix); } else { Mat4Transp((float (*)[4])*self->matrix); } Py_INCREF(self); return (PyObject *)self; } /*---------------------------Matrix.zero() -----------------------*/ PyObject *Matrix_Zero(MatrixObject * self) { int row, col; for(row = 0; row < self->rowSize; row++) { for(col = 0; col < self->colSize; col++) { self->matrix[row][col] = 0.0f; } } Py_INCREF(self); return (PyObject *)self; } /*---------------------------Matrix.identity(() ------------------*/ PyObject *Matrix_Identity(MatrixObject * self) { if(self->rowSize != self->colSize){ PyErr_SetString(PyExc_AttributeError, "Matrix.identity: only square matrices are supported\n"); return NULL; } if(self->rowSize == 2) { self->matrix[0][0] = 1.0f; self->matrix[0][1] = 0.0f; self->matrix[1][0] = 0.0f; self->matrix[1][1] = 1.0f; } else if(self->rowSize == 3) { Mat3One((float (*)[3]) *self->matrix); } else { Mat4One((float (*)[4]) *self->matrix); } Py_INCREF(self); return (PyObject *)self; } /*---------------------------Matrix.inverted() ------------------*/ PyObject *Matrix_copy(MatrixObject * self) { return (PyObject*)(MatrixObject*)newMatrixObject((float (*))*self->matrix, self->rowSize, self->colSize, Py_NEW); } /*----------------------------dealloc()(internal) ----------------*/ /*free the py_object*/ static void Matrix_dealloc(MatrixObject * self) { Py_XDECREF(self->coerced_object); PyMem_Free(self->matrix); /*only free py_data*/ if(self->data.py_data){ PyMem_Free(self->data.py_data); } PyObject_DEL(self); } /*----------------------------getattr()(internal) ----------------*/ /*object.attribute access (get)*/ static PyObject *Matrix_getattr(MatrixObject * self, char *name) { if(STREQ(name, "rowSize")) { return PyLong_FromLong((long) self->rowSize); } else if(STREQ(name, "colSize")) { return PyLong_FromLong((long) self->colSize); } if(STREQ(name, "wrapped")){ if(self->wrapped == Py_WRAP) Py_RETURN_TRUE; else Py_RETURN_FALSE; } #if 0 //XXX return Py_FindMethod(Matrix_methods, (PyObject *) self, name); #else PyErr_SetString(PyExc_AttributeError, "blender 2.5 is not finished yet"); return NULL; #endif } /*----------------------------setattr()(internal) ----------------*/ /*object.attribute access (set)*/ static int Matrix_setattr(MatrixObject * self, char *name, PyObject * v) { /* This is not supported. */ return (-1); } /*----------------------------print object (internal)-------------*/ /*print the object to screen*/ static PyObject *Matrix_repr(MatrixObject * self) { int x, y; char buffer[48], str[1024]; BLI_strncpy(str,"",1024); for(x = 0; x < self->rowSize; x++){ sprintf(buffer, "["); strcat(str,buffer); for(y = 0; y < (self->colSize - 1); y++) { sprintf(buffer, "%.6f, ", self->matrix[x][y]); strcat(str,buffer); } if(x < (self->rowSize-1)){ sprintf(buffer, "%.6f](matrix [row %d])\n", self->matrix[x][y], x); strcat(str,buffer); }else{ sprintf(buffer, "%.6f](matrix [row %d])", self->matrix[x][y], x); strcat(str,buffer); } } return PyUnicode_FromString(str); } /*------------------------tp_richcmpr*/ /*returns -1 execption, 0 false, 1 true*/ static PyObject* Matrix_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type) { MatrixObject *matA = NULL, *matB = NULL; int result = 0; if (!MatrixObject_Check(objectA) || !MatrixObject_Check(objectB)){ if (comparison_type == Py_NE){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } matA = (MatrixObject*)objectA; matB = (MatrixObject*)objectB; if (matA->colSize != matB->colSize || matA->rowSize != matB->rowSize){ if (comparison_type == Py_NE){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } switch (comparison_type){ case Py_EQ: /*contigPtr is basically a really long vector*/ result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr, (matA->rowSize * matA->colSize), 1); break; case Py_NE: result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr, (matA->rowSize * matA->colSize), 1); if (result == 0){ result = 1; }else{ result = 0; } break; default: printf("The result of the comparison could not be evaluated"); break; } if (result == 1){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } /*------------------------tp_doc*/ static char MatrixObject_doc[] = "This is a wrapper for matrix objects."; /*---------------------SEQUENCE PROTOCOLS------------------------ ----------------------------len(object)------------------------ sequence length*/ static int Matrix_len(MatrixObject * self) { return (self->rowSize); } /*----------------------------object[]--------------------------- sequence accessor (get) the wrapped vector gives direct access to the matrix data*/ static PyObject *Matrix_item(MatrixObject * self, int i) { if(i < 0 || i >= self->rowSize) { PyErr_SetString(PyExc_IndexError, "matrix[attribute]: array index out of range"); return NULL; } return newVectorObject(self->matrix[i], self->colSize, Py_WRAP); } /*----------------------------object[]------------------------- sequence accessor (set)*/ static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob) { int y, x, size = 0; float vec[4]; PyObject *m, *f; if(i >= self->rowSize || i < 0){ PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad row\n"); return -1; } if(PySequence_Check(ob)){ size = PySequence_Length(ob); if(size != self->colSize){ PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad sequence size\n"); return -1; } for (x = 0; x < size; x++) { m = PySequence_GetItem(ob, x); if (m == NULL) { /*Failed to read sequence*/ PyErr_SetString(PyExc_RuntimeError, "matrix[attribute] = x: unable to read sequence\n"); return -1; } f = PyNumber_Float(m); if(f == NULL) { /*parsed item not a number*/ Py_DECREF(m); PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: sequence argument not a number\n"); return -1; } vec[x] = (float)PyFloat_AS_DOUBLE(f); Py_DECREF(m); Py_DECREF(f); } /*parsed well - now set in matrix*/ for(y = 0; y < size; y++){ self->matrix[i][y] = vec[y]; } return 0; }else{ PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: expects a sequence of column size\n"); return -1; } } /*----------------------------object[z:y]------------------------ sequence slice (get)*/ static PyObject *Matrix_slice(MatrixObject * self, int begin, int end) { PyObject *list = NULL; int count; CLAMP(begin, 0, self->rowSize); CLAMP(end, 0, self->rowSize); begin = MIN2(begin,end); list = PyList_New(end - begin); for(count = begin; count < end; count++) { PyList_SetItem(list, count - begin, newVectorObject(self->matrix[count], self->colSize, Py_WRAP)); } return list; } /*----------------------------object[z:y]------------------------ sequence slice (set)*/ static int Matrix_ass_slice(MatrixObject * self, int begin, int end, PyObject * seq) { int i, x, y, size, sub_size = 0; float mat[16], f; PyObject *subseq; PyObject *m; CLAMP(begin, 0, self->rowSize); CLAMP(end, 0, self->rowSize); begin = MIN2(begin,end); if(PySequence_Check(seq)){ size = PySequence_Length(seq); if(size != (end - begin)){ PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n"); return -1; } /*parse sub items*/ for (i = 0; i < size; i++) { /*parse each sub sequence*/ subseq = PySequence_GetItem(seq, i); if (subseq == NULL) { /*Failed to read sequence*/ PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence"); return -1; } if(PySequence_Check(subseq)){ /*subsequence is also a sequence*/ sub_size = PySequence_Length(subseq); if(sub_size != self->colSize){ Py_DECREF(subseq); PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n"); return -1; } for (y = 0; y < sub_size; y++) { m = PySequence_GetItem(subseq, y); if (m == NULL) { /*Failed to read sequence*/ Py_DECREF(subseq); PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence\n"); return -1; } f = PyFloat_AsDouble(m); /* faster to assume a float and raise an error after */ if(f == -1 && PyErr_Occurred()) { /*parsed item not a number*/ Py_DECREF(m); Py_DECREF(subseq); PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: sequence argument not a number\n"); return -1; } mat[(i * self->colSize) + y] = f; Py_DECREF(m); } }else{ Py_DECREF(subseq); PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n"); return -1; } Py_DECREF(subseq); } /*parsed well - now set in matrix*/ for(x = 0; x < (size * sub_size); x++){ self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x]; } return 0; }else{ PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n"); return -1; } } /*------------------------NUMERIC PROTOCOLS---------------------- ------------------------obj + obj------------------------------*/ static PyObject *Matrix_add(PyObject * m1, PyObject * m2) { int x, y; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; MatrixObject *mat1 = NULL, *mat2 = NULL; mat1 = (MatrixObject*)m1; mat2 = (MatrixObject*)m2; if(mat1->coerced_object || mat2->coerced_object){ PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation...."); return NULL; } if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){ PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation"); return NULL; } for(x = 0; x < mat1->rowSize; x++) { for(y = 0; y < mat1->colSize; y++) { mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y]; } } return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW); } /*------------------------obj - obj------------------------------ subtraction*/ static PyObject *Matrix_sub(PyObject * m1, PyObject * m2) { int x, y; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; MatrixObject *mat1 = NULL, *mat2 = NULL; mat1 = (MatrixObject*)m1; mat2 = (MatrixObject*)m2; if(mat1->coerced_object || mat2->coerced_object){ PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation...."); return NULL; } if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){ PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation"); return NULL; } for(x = 0; x < mat1->rowSize; x++) { for(y = 0; y < mat1->colSize; y++) { mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y]; } } return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW); } /*------------------------obj * obj------------------------------ mulplication*/ static PyObject *Matrix_mul(PyObject * m1, PyObject * m2) { int x, y, z; float scalar; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; double dot = 0.0f; MatrixObject *mat1 = NULL, *mat2 = NULL; PyObject *f = NULL; mat1 = (MatrixObject*)m1; mat2 = (MatrixObject*)m2; if(mat1->coerced_object){ if (PyFloat_Check(mat1->coerced_object) || PyLong_Check(mat1->coerced_object)){ /*FLOAT/INT * MATRIX*/ f = PyNumber_Float(mat1->coerced_object); if(f == NULL) { /*parsed item not a number*/ PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation"); return NULL; } scalar = (float)PyFloat_AS_DOUBLE(f); Py_DECREF(f); for(x = 0; x < mat2->rowSize; x++) { for(y = 0; y < mat2->colSize; y++) { mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y]; } } return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW); } }else{ if(mat2->coerced_object){ /* MATRIX * VECTOR operation is now being done by vector */ /*if(VectorObject_Check(mat2->coerced_object)){ vec = (VectorObject*)mat2->coerced_object; return column_vector_multiplication(mat1, vec); }else */ if (PyFloat_Check(mat2->coerced_object) || PyLong_Check(mat2->coerced_object)){ /*MATRIX * FLOAT/INT*/ f = PyNumber_Float(mat2->coerced_object); if(f == NULL) { /*parsed item not a number*/ PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation\n"); return NULL; } scalar = (float)PyFloat_AS_DOUBLE(f); Py_DECREF(f); for(x = 0; x < mat1->rowSize; x++) { for(y = 0; y < mat1->colSize; y++) { mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y]; } } return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW); } }else{ /*MATRIX * MATRIX*/ if(mat1->colSize != mat2->rowSize){ PyErr_SetString(PyExc_AttributeError,"Matrix multiplication: matrix A rowsize must equal matrix B colsize"); return NULL; } for(x = 0; x < mat1->rowSize; x++) { for(y = 0; y < mat2->colSize; y++) { for(z = 0; z < mat1->colSize; z++) { dot += (mat1->matrix[x][z] * mat2->matrix[z][y]); } mat[((x * mat1->rowSize) + y)] = (float)dot; dot = 0.0f; } } return newMatrixObject(mat, mat1->rowSize, mat2->colSize, Py_NEW); } } PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation\n"); return NULL; } static PyObject* Matrix_inv(MatrixObject *self) { return Matrix_Invert(self); } /*------------------------coerce(obj, obj)----------------------- coercion of unknown types to type MatrixObject for numeric protocols. Coercion() is called whenever a math operation has 2 operands that it doesn't understand how to evaluate. 2+Matrix for example. We want to evaluate some of these operations like: (vector * 2), however, for math to proceed, the unknown operand must be cast to a type that python math will understand. (e.g. in the case above case, 2 must be cast to a vector and then call vector.multiply(vector, scalar_cast_as_vector)*/ static int Matrix_coerce(PyObject ** m1, PyObject ** m2) { if(VectorObject_Check(*m2) || PyFloat_Check(*m2) || PyLong_Check(*m2)) { PyObject *coerced = (PyObject *)(*m2); Py_INCREF(coerced); *m2 = newMatrixObject(NULL,3,3,Py_NEW); ((MatrixObject*)*m2)->coerced_object = coerced; Py_INCREF (*m1); return 0; } PyErr_SetString(PyExc_TypeError, "matrix.coerce(): unknown operand - can't coerce for numeric protocols"); return -1; } /*-----------------PROTOCOL DECLARATIONS--------------------------*/ static PySequenceMethods Matrix_SeqMethods = { (inquiry) Matrix_len, /* sq_length */ (binaryfunc) 0, /* sq_concat */ (ssizeargfunc) 0, /* sq_repeat */ (ssizeargfunc) Matrix_item, /* sq_item */ (ssizessizeargfunc) Matrix_slice, /* sq_slice */ (ssizeobjargproc) Matrix_ass_item, /* sq_ass_item */ (ssizessizeobjargproc) Matrix_ass_slice, /* sq_ass_slice */ }; static PyNumberMethods Matrix_NumMethods = { (binaryfunc) Matrix_add, /* __add__ */ (binaryfunc) Matrix_sub, /* __sub__ */ (binaryfunc) Matrix_mul, /* __mul__ */ (binaryfunc) 0, /* __div__ */ (binaryfunc) 0, /* __mod__ */ (binaryfunc) 0, /* __divmod__ */ (ternaryfunc) 0, /* __pow__ */ (unaryfunc) 0, /* __neg__ */ (unaryfunc) 0, /* __pos__ */ (unaryfunc) 0, /* __abs__ */ (inquiry) 0, /* __nonzero__ */ (unaryfunc) Matrix_inv, /* __invert__ */ (binaryfunc) 0, /* __lshift__ */ (binaryfunc) 0, /* __rshift__ */ (binaryfunc) 0, /* __and__ */ (binaryfunc) 0, /* __xor__ */ (binaryfunc) 0, /* __or__ */ #if 0 // XXX 2.5 (coercion) Matrix_coerce, /* __coerce__ */ #else 0, #endif (unaryfunc) 0, /* __int__ */ (unaryfunc) 0, /* __long__ */ (unaryfunc) 0, /* __float__ */ (unaryfunc) 0, /* __oct__ */ (unaryfunc) 0, /* __hex__ */ }; /*------------------PY_OBECT DEFINITION--------------------------*/ PyTypeObject matrix_Type = { #if (PY_VERSION_HEX >= 0x02060000) PyVarObject_HEAD_INIT(NULL, 0) #else /* python 2.5 and below */ PyObject_HEAD_INIT( NULL ) /* required py macro */ 0, /* ob_size */ #endif "matrix", /*tp_name*/ sizeof(MatrixObject), /*tp_basicsize*/ 0, /*tp_itemsize*/ (destructor)Matrix_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ (getattrfunc)Matrix_getattr, /*tp_getattr*/ (setattrfunc) Matrix_setattr, /*tp_setattr*/ 0, /*tp_compare*/ (reprfunc) Matrix_repr, /*tp_repr*/ &Matrix_NumMethods, /*tp_as_number*/ &Matrix_SeqMethods, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT, /*tp_flags*/ MatrixObject_doc, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ (richcmpfunc)Matrix_richcmpr, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ 0, /*tp_methods*/ 0, /*tp_members*/ 0, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ 0, /*tp_init*/ 0, /*tp_alloc*/ 0, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0 /*tp_del*/ }; /*------------------------newMatrixObject (internal)------------- creates a new matrix object self->matrix self->contiguous_ptr (reference to data.xxx) [0]------------->[0] [1] [2] [1]------------->[3] [4] [5] .... self->matrix[1][1] = self->contiguous_ptr[4] = self->data.xxx_data[4]*/ /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER (i.e. it was allocated elsewhere by MEM_mallocN()) pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON (i.e. it must be created here with PyMEM_malloc())*/ PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type) { MatrixObject *self; int x, row, col; /*matrix objects can be any 2-4row x 2-4col matrix*/ if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){ PyErr_SetString(PyExc_RuntimeError, "matrix(): row and column sizes must be between 2 and 4"); return NULL; } self = PyObject_NEW(MatrixObject, &matrix_Type); self->data.blend_data = NULL; self->data.py_data = NULL; self->rowSize = rowSize; self->colSize = colSize; self->coerced_object = NULL; if(type == Py_WRAP){ self->data.blend_data = mat; self->contigPtr = self->data.blend_data; /*create pointer array*/ self->matrix = PyMem_Malloc(rowSize * sizeof(float *)); if(self->matrix == NULL) { /*allocation failure*/ PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space"); return NULL; } /*pointer array points to contigous memory*/ for(x = 0; x < rowSize; x++) { self->matrix[x] = self->contigPtr + (x * colSize); } self->wrapped = Py_WRAP; }else if (type == Py_NEW){ self->data.py_data = PyMem_Malloc(rowSize * colSize * sizeof(float)); if(self->data.py_data == NULL) { /*allocation failure*/ PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space\n"); return NULL; } self->contigPtr = self->data.py_data; /*create pointer array*/ self->matrix = PyMem_Malloc(rowSize * sizeof(float *)); if(self->matrix == NULL) { /*allocation failure*/ PyMem_Free(self->data.py_data); PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space"); return NULL; } /*pointer array points to contigous memory*/ for(x = 0; x < rowSize; x++) { self->matrix[x] = self->contigPtr + (x * colSize); } /*parse*/ if(mat) { /*if a float array passed*/ for(row = 0; row < rowSize; row++) { for(col = 0; col < colSize; col++) { self->matrix[row][col] = mat[(row * colSize) + col]; } } } else if (rowSize == colSize ) { /*or if no arguments are passed return identity matrix for square matrices */ Matrix_Identity(self); Py_DECREF(self); } self->wrapped = Py_NEW; }else{ /*bad type*/ return NULL; } return (PyObject *) self; }