/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * This is a new part of Blender. * * Contributor(s): Joseph Gilbert, Campbell Barton * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/python/mathutils/mathutils_geometry.c * \ingroup pymathutils */ #include #include "mathutils_geometry.h" /* Used for PolyFill */ #ifndef MATH_STANDALONE /* define when building outside blender */ # include "MEM_guardedalloc.h" # include "BLI_blenlib.h" # include "BLI_boxpack2d.h" # include "BKE_displist.h" # include "BKE_curve.h" #endif #include "BLI_math.h" #include "BLI_utildefines.h" /*-------------------------DOC STRINGS ---------------------------*/ PyDoc_STRVAR(M_Geometry_doc, "The Blender geometry module" ); /* ---------------------------------INTERSECTION FUNCTIONS-------------------- */ PyDoc_STRVAR(M_Geometry_intersect_ray_tri_doc, ".. function:: intersect_ray_tri(v1, v2, v3, ray, orig, clip=True)\n" "\n" " Returns the intersection between a ray and a triangle, if possible, returns None otherwise.\n" "\n" " :arg v1: Point1\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Point2\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: Point3\n" " :type v3: :class:`mathutils.Vector`\n" " :arg ray: Direction of the projection\n" " :type ray: :class:`mathutils.Vector`\n" " :arg orig: Origin\n" " :type orig: :class:`mathutils.Vector`\n" " :arg clip: When False, don't restrict the intersection to the area of the triangle, use the infinite plane defined by the triangle.\n" " :type clip: boolean\n" " :return: The point of intersection or None if no intersection is found\n" " :rtype: :class:`mathutils.Vector` or None\n" ); static PyObject *M_Geometry_intersect_ray_tri(PyObject *UNUSED(self), PyObject *args) { VectorObject *ray, *ray_off, *vec1, *vec2, *vec3; float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3]; float det, inv_det, u, v, t; int clip = 1; if (!PyArg_ParseTuple(args, "O!O!O!O!O!|i:intersect_ray_tri", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &ray, &vector_Type, &ray_off, &clip)) { return NULL; } if (vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || ray->size != 3 || ray_off->size != 3) { PyErr_SetString(PyExc_ValueError, "only 3D vectors for all parameters"); return NULL; } if (BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1 || BaseMath_ReadCallback(vec3) == -1 || BaseMath_ReadCallback(ray) == -1 || BaseMath_ReadCallback(ray_off) == -1) { return NULL; } copy_v3_v3(v1, vec1->vec); copy_v3_v3(v2, vec2->vec); copy_v3_v3(v3, vec3->vec); copy_v3_v3(dir, ray->vec); normalize_v3(dir); copy_v3_v3(orig, ray_off->vec); /* find vectors for two edges sharing v1 */ sub_v3_v3v3(e1, v2, v1); sub_v3_v3v3(e2, v3, v1); /* begin calculating determinant - also used to calculated U parameter */ cross_v3_v3v3(pvec, dir, e2); /* if determinant is near zero, ray lies in plane of triangle */ det = dot_v3v3(e1, pvec); if (det > -0.000001f && det < 0.000001f) { Py_RETURN_NONE; } inv_det = 1.0f / det; /* calculate distance from v1 to ray origin */ sub_v3_v3v3(tvec, orig, v1); /* calculate U parameter and test bounds */ u = dot_v3v3(tvec, pvec) * inv_det; if (clip && (u < 0.0f || u > 1.0f)) { Py_RETURN_NONE; } /* prepare to test the V parameter */ cross_v3_v3v3(qvec, tvec, e1); /* calculate V parameter and test bounds */ v = dot_v3v3(dir, qvec) * inv_det; if (clip && (v < 0.0f || u + v > 1.0f)) { Py_RETURN_NONE; } /* calculate t, ray intersects triangle */ t = dot_v3v3(e2, qvec) * inv_det; mul_v3_fl(dir, t); add_v3_v3v3(pvec, orig, dir); return Vector_CreatePyObject(pvec, 3, Py_NEW, NULL); } /* Line-Line intersection using algorithm from mathworld.wolfram.com */ PyDoc_STRVAR(M_Geometry_intersect_line_line_doc, ".. function:: intersect_line_line(v1, v2, v3, v4)\n" "\n" " Returns a tuple with the points on each line respectively closest to the other.\n" "\n" " :arg v1: First point of the first line\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Second point of the first line\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: First point of the second line\n" " :type v3: :class:`mathutils.Vector`\n" " :arg v4: Second point of the second line\n" " :type v4: :class:`mathutils.Vector`\n" " :rtype: tuple of :class:`mathutils.Vector`'s\n" ); static PyObject *M_Geometry_intersect_line_line(PyObject *UNUSED(self), PyObject *args) { PyObject *tuple; VectorObject *vec1, *vec2, *vec3, *vec4; float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3]; if (!PyArg_ParseTuple(args, "O!O!O!O!:intersect_line_line", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4)) { return NULL; } if (vec1->size != vec2->size || vec1->size != vec3->size || vec3->size != vec2->size) { PyErr_SetString(PyExc_ValueError, "vectors must be of the same size"); return NULL; } if (BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1 || BaseMath_ReadCallback(vec3) == -1 || BaseMath_ReadCallback(vec4) == -1) { return NULL; } if (vec1->size == 3 || vec1->size == 2) { int result; if (vec1->size == 3) { copy_v3_v3(v1, vec1->vec); copy_v3_v3(v2, vec2->vec); copy_v3_v3(v3, vec3->vec); copy_v3_v3(v4, vec4->vec); } else { v1[0] = vec1->vec[0]; v1[1] = vec1->vec[1]; v1[2] = 0.0f; v2[0] = vec2->vec[0]; v2[1] = vec2->vec[1]; v2[2] = 0.0f; v3[0] = vec3->vec[0]; v3[1] = vec3->vec[1]; v3[2] = 0.0f; v4[0] = vec4->vec[0]; v4[1] = vec4->vec[1]; v4[2] = 0.0f; } result = isect_line_line_v3(v1, v2, v3, v4, i1, i2); if (result == 0) { /* colinear */ Py_RETURN_NONE; } else { tuple = PyTuple_New(2); PyTuple_SET_ITEM(tuple, 0, Vector_CreatePyObject(i1, vec1->size, Py_NEW, NULL)); PyTuple_SET_ITEM(tuple, 1, Vector_CreatePyObject(i2, vec1->size, Py_NEW, NULL)); return tuple; } } else { PyErr_SetString(PyExc_ValueError, "2D/3D vectors only"); return NULL; } } /* Line-Line intersection using algorithm from mathworld.wolfram.com */ PyDoc_STRVAR(M_Geometry_intersect_sphere_sphere_2d_doc, ".. function:: intersect_sphere_sphere_2d(p_a, radius_a, p_b, radius_b)\n" "\n" " Returns 2 points on between intersecting circles.\n" "\n" " :arg p_a: Center of the first circle\n" " :type p_a: :class:`mathutils.Vector`\n" " :arg radius_a: Radius of the first circle\n" " :type radius_a: float\n" " :arg p_b: Center of the second circle\n" " :type p_b: :class:`mathutils.Vector`\n" " :arg radius_b: Radius of the second circle\n" " :type radius_b: float\n" " :rtype: tuple of :class:`mathutils.Vector`'s or None when there is no intersection\n" ); static PyObject *M_Geometry_intersect_sphere_sphere_2d(PyObject *UNUSED(self), PyObject *args) { PyObject *ret; VectorObject *vec_a, *vec_b; float *v_a, *v_b; float rad_a, rad_b; float v_ab[2]; float dist; if (!PyArg_ParseTuple(args, "O!fO!f:intersect_sphere_sphere_2d", &vector_Type, &vec_a, &rad_a, &vector_Type, &vec_b, &rad_b)) { return NULL; } if (BaseMath_ReadCallback(vec_a) == -1 || BaseMath_ReadCallback(vec_b) == -1) { return NULL; } ret = PyTuple_New(2); v_a = vec_a->vec; v_b = vec_b->vec; sub_v2_v2v2(v_ab, v_b, v_a); dist = len_v2(v_ab); if (/* out of range */ (dist > rad_a + rad_b) || /* fully-contained in the other */ (dist < abs(rad_a - rad_b)) || /* co-incident */ (dist < FLT_EPSILON)) { /* out of range */ PyTuple_SET_ITEM(ret, 0, Py_None); Py_INCREF(Py_None); PyTuple_SET_ITEM(ret, 1, Py_None); Py_INCREF(Py_None); } else { const float dist_delta = ((rad_a * rad_a) - (rad_b * rad_b) + (dist * dist)) / (2.0f * dist); const float h = powf(fabsf((rad_a * rad_a) - (dist_delta * dist_delta)), 0.5f); float i_cent[2]; float i1[2], i2[2]; i_cent[0] = v_a[0] + ((v_ab[0] * dist_delta) / dist); i_cent[1] = v_a[1] + ((v_ab[1] * dist_delta) / dist); i1[0] = i_cent[0] + h * v_ab[1] / dist; i1[1] = i_cent[1] - h * v_ab[0] / dist; i2[0] = i_cent[0] - h * v_ab[1] / dist; i2[1] = i_cent[1] + h * v_ab[0] / dist; PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(i1, 2, Py_NEW, NULL)); PyTuple_SET_ITEM(ret, 1, Vector_CreatePyObject(i2, 2, Py_NEW, NULL)); } return ret; } PyDoc_STRVAR(M_Geometry_normal_doc, ".. function:: normal(v1, v2, v3, v4=None)\n" "\n" " Returns the normal of the 3D tri or quad.\n" "\n" " :arg v1: Point1\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Point2\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: Point3\n" " :type v3: :class:`mathutils.Vector`\n" " :arg v4: Point4 (optional)\n" " :type v4: :class:`mathutils.Vector`\n" " :rtype: :class:`mathutils.Vector`\n" ); static PyObject *M_Geometry_normal(PyObject *UNUSED(self), PyObject *args) { VectorObject *vec1, *vec2, *vec3, *vec4; float n[3]; if (PyTuple_GET_SIZE(args) == 3) { if (!PyArg_ParseTuple(args, "O!O!O!:normal", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3)) { return NULL; } if (vec1->size != vec2->size || vec1->size != vec3->size) { PyErr_SetString(PyExc_ValueError, "vectors must be of the same size"); return NULL; } if (vec1->size < 3) { PyErr_SetString(PyExc_ValueError, "2D vectors unsupported"); return NULL; } if (BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1 || BaseMath_ReadCallback(vec3) == -1) { return NULL; } normal_tri_v3(n, vec1->vec, vec2->vec, vec3->vec); } else { if (!PyArg_ParseTuple(args, "O!O!O!O!:normal", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4)) { return NULL; } if (vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) { PyErr_SetString(PyExc_ValueError, "vectors must be of the same size"); return NULL; } if (vec1->size < 3) { PyErr_SetString(PyExc_ValueError, "2D vectors unsupported"); return NULL; } if (BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1 || BaseMath_ReadCallback(vec3) == -1 || BaseMath_ReadCallback(vec4) == -1) { return NULL; } normal_quad_v3(n, vec1->vec, vec2->vec, vec3->vec, vec4->vec); } return Vector_CreatePyObject(n, 3, Py_NEW, NULL); } /* --------------------------------- AREA FUNCTIONS-------------------- */ PyDoc_STRVAR(M_Geometry_area_tri_doc, ".. function:: area_tri(v1, v2, v3)\n" "\n" " Returns the area size of the 2D or 3D triangle defined.\n" "\n" " :arg v1: Point1\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Point2\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: Point3\n" " :type v3: :class:`mathutils.Vector`\n" " :rtype: float\n" ); static PyObject *M_Geometry_area_tri(PyObject *UNUSED(self), PyObject *args) { VectorObject *vec1, *vec2, *vec3; if (!PyArg_ParseTuple(args, "O!O!O!:area_tri", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3)) { return NULL; } if (vec1->size != vec2->size || vec1->size != vec3->size) { PyErr_SetString(PyExc_ValueError, "vectors must be of the same size"); return NULL; } if (BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1 || BaseMath_ReadCallback(vec3) == -1) { return NULL; } if (vec1->size == 3) { return PyFloat_FromDouble(area_tri_v3(vec1->vec, vec2->vec, vec3->vec)); } else if (vec1->size == 2) { return PyFloat_FromDouble(area_tri_v2(vec1->vec, vec2->vec, vec3->vec)); } else { PyErr_SetString(PyExc_ValueError, "only 2D,3D vectors are supported"); return NULL; } } PyDoc_STRVAR(M_Geometry_volume_tetrahedron_doc, ".. function:: volume_tetrahedron(v1, v2, v3, v4)\n" "\n" " Return the volume formed by a tetrahedron (points can be in any order).\n" "\n" " :arg v1: Point1\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Point2\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: Point3\n" " :type v3: :class:`mathutils.Vector`\n" " :arg v4: Point4\n" " :type v4: :class:`mathutils.Vector`\n" " :rtype: float\n" ); static PyObject *M_Geometry_volume_tetrahedron(PyObject *UNUSED(self), PyObject *args) { VectorObject *vec1, *vec2, *vec3, *vec4; if (!PyArg_ParseTuple(args, "O!O!O!O!:volume_tetrahedron", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4)) { return NULL; } if (vec1->size < 3 || vec2->size < 3 || vec3->size < 3 || vec4->size < 3) { PyErr_SetString(PyExc_ValueError, "geometry.volume_tetrahedron(...): " " can't use 2D Vectors"); return NULL; } if (BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1 || BaseMath_ReadCallback(vec3) == -1 || BaseMath_ReadCallback(vec4) == -1) { return NULL; } return PyFloat_FromDouble(volume_tetrahedron_v3(vec1->vec, vec2->vec, vec3->vec, vec4->vec)); } PyDoc_STRVAR(M_Geometry_intersect_line_line_2d_doc, ".. function:: intersect_line_line_2d(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n" "\n" " Takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None.\n" "\n" " :arg lineA_p1: First point of the first line\n" " :type lineA_p1: :class:`mathutils.Vector`\n" " :arg lineA_p2: Second point of the first line\n" " :type lineA_p2: :class:`mathutils.Vector`\n" " :arg lineB_p1: First point of the second line\n" " :type lineB_p1: :class:`mathutils.Vector`\n" " :arg lineB_p2: Second point of the second line\n" " :type lineB_p2: :class:`mathutils.Vector`\n" " :return: The point of intersection or None when not found\n" " :rtype: :class:`mathutils.Vector` or None\n" ); static PyObject *M_Geometry_intersect_line_line_2d(PyObject *UNUSED(self), PyObject *args) { VectorObject *line_a1, *line_a2, *line_b1, *line_b2; float vi[2]; if (!PyArg_ParseTuple(args, "O!O!O!O!:intersect_line_line_2d", &vector_Type, &line_a1, &vector_Type, &line_a2, &vector_Type, &line_b1, &vector_Type, &line_b2)) { return NULL; } if (BaseMath_ReadCallback(line_a1) == -1 || BaseMath_ReadCallback(line_a2) == -1 || BaseMath_ReadCallback(line_b1) == -1 || BaseMath_ReadCallback(line_b2) == -1) { return NULL; } if (isect_seg_seg_v2_point(line_a1->vec, line_a2->vec, line_b1->vec, line_b2->vec, vi) == 1) { return Vector_CreatePyObject(vi, 2, Py_NEW, NULL); } else { Py_RETURN_NONE; } } PyDoc_STRVAR(M_Geometry_intersect_line_plane_doc, ".. function:: intersect_line_plane(line_a, line_b, plane_co, plane_no, no_flip=False)\n" "\n" " Calculate the intersection between a line (as 2 vectors) and a plane.\n" " Returns a vector for the intersection or None.\n" "\n" " :arg line_a: First point of the first line\n" " :type line_a: :class:`mathutils.Vector`\n" " :arg line_b: Second point of the first line\n" " :type line_b: :class:`mathutils.Vector`\n" " :arg plane_co: A point on the plane\n" " :type plane_co: :class:`mathutils.Vector`\n" " :arg plane_no: The direction the plane is facing\n" " :type plane_no: :class:`mathutils.Vector`\n" " :arg no_flip: Always return an intersection on the directon defined bt line_a -> line_b\n" " :type no_flip: :boolean\n" " :return: The point of intersection or None when not found\n" " :rtype: :class:`mathutils.Vector` or None\n" ); static PyObject *M_Geometry_intersect_line_plane(PyObject *UNUSED(self), PyObject *args) { VectorObject *line_a, *line_b, *plane_co, *plane_no; int no_flip = 0; float isect[3]; if (!PyArg_ParseTuple(args, "O!O!O!O!|i:intersect_line_plane", &vector_Type, &line_a, &vector_Type, &line_b, &vector_Type, &plane_co, &vector_Type, &plane_no, &no_flip)) { return NULL; } if (BaseMath_ReadCallback(line_a) == -1 || BaseMath_ReadCallback(line_b) == -1 || BaseMath_ReadCallback(plane_co) == -1 || BaseMath_ReadCallback(plane_no) == -1) { return NULL; } if (ELEM4(2, line_a->size, line_b->size, plane_co->size, plane_no->size)) { PyErr_SetString(PyExc_ValueError, "geometry.intersect_line_plane(...): " " can't use 2D Vectors"); return NULL; } if (isect_line_plane_v3(isect, line_a->vec, line_b->vec, plane_co->vec, plane_no->vec, no_flip) == 1) { return Vector_CreatePyObject(isect, 3, Py_NEW, NULL); } else { Py_RETURN_NONE; } } PyDoc_STRVAR(M_Geometry_intersect_plane_plane_doc, ".. function:: intersect_plane_plane(plane_a_co, plane_a_no, plane_b_co, plane_b_no)\n" "\n" " Return the intersection between two planes\n" "\n" " :arg plane_a_co: Point on the first plane\n" " :type plane_a_co: :class:`mathutils.Vector`\n" " :arg plane_a_no: Normal of the first plane\n" " :type plane_a_no: :class:`mathutils.Vector`\n" " :arg plane_b_co: Point on the second plane\n" " :type plane_b_co: :class:`mathutils.Vector`\n" " :arg plane_b_no: Normal of the second plane\n" " :type plane_b_no: :class:`mathutils.Vector`\n" " :return: The line of the intersection represented as a point and a vector\n" " :rtype: tuple pair of :class:`mathutils.Vector`\n" ); static PyObject *M_Geometry_intersect_plane_plane(PyObject *UNUSED(self), PyObject *args) { PyObject *ret; VectorObject *plane_a_co, *plane_a_no, *plane_b_co, *plane_b_no; float isect_co[3]; float isect_no[3]; if (!PyArg_ParseTuple(args, "O!O!O!O!|i:intersect_plane_plane", &vector_Type, &plane_a_co, &vector_Type, &plane_a_no, &vector_Type, &plane_b_co, &vector_Type, &plane_b_no)) { return NULL; } if (BaseMath_ReadCallback(plane_a_co) == -1 || BaseMath_ReadCallback(plane_a_no) == -1 || BaseMath_ReadCallback(plane_b_co) == -1 || BaseMath_ReadCallback(plane_b_no) == -1) { return NULL; } if (ELEM4(2, plane_a_co->size, plane_a_no->size, plane_b_co->size, plane_b_no->size)) { PyErr_SetString(PyExc_ValueError, "geometry.intersect_plane_plane(...): " " can't use 2D Vectors"); return NULL; } isect_plane_plane_v3(isect_co, isect_no, plane_a_co->vec, plane_a_no->vec, plane_b_co->vec, plane_b_no->vec); normalize_v3(isect_no); ret = PyTuple_New(2); PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(isect_co, 3, Py_NEW, NULL)); PyTuple_SET_ITEM(ret, 1, Vector_CreatePyObject(isect_no, 3, Py_NEW, NULL)); return ret; } PyDoc_STRVAR(M_Geometry_intersect_line_sphere_doc, ".. function:: intersect_line_sphere(line_a, line_b, sphere_co, sphere_radius, clip=True)\n" "\n" " Takes a lines (as 2 vectors), a sphere as a point and a radius and\n" " returns the intersection\n" "\n" " :arg line_a: First point of the first line\n" " :type line_a: :class:`mathutils.Vector`\n" " :arg line_b: Second point of the first line\n" " :type line_b: :class:`mathutils.Vector`\n" " :arg sphere_co: The center of the sphere\n" " :type sphere_co: :class:`mathutils.Vector`\n" " :arg sphere_radius: Radius of the sphere\n" " :type sphere_radius: sphere_radius\n" " :return: The intersection points as a pair of vectors or None when there is no intersection\n" " :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n" ); static PyObject *M_Geometry_intersect_line_sphere(PyObject *UNUSED(self), PyObject *args) { VectorObject *line_a, *line_b, *sphere_co; float sphere_radius; int clip = TRUE; float isect_a[3]; float isect_b[3]; if (!PyArg_ParseTuple(args, "O!O!O!f|i:intersect_line_sphere", &vector_Type, &line_a, &vector_Type, &line_b, &vector_Type, &sphere_co, &sphere_radius, &clip)) { return NULL; } if (BaseMath_ReadCallback(line_a) == -1 || BaseMath_ReadCallback(line_b) == -1 || BaseMath_ReadCallback(sphere_co) == -1) { return NULL; } if (ELEM3(2, line_a->size, line_b->size, sphere_co->size)) { PyErr_SetString(PyExc_ValueError, "geometry.intersect_line_sphere(...): " " can't use 2D Vectors"); return NULL; } else { short use_a = TRUE; short use_b = TRUE; float lambda; PyObject *ret = PyTuple_New(2); switch (isect_line_sphere_v3(line_a->vec, line_b->vec, sphere_co->vec, sphere_radius, isect_a, isect_b)) { case 1: if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a = FALSE; use_b = FALSE; break; case 2: if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a = FALSE; if (!(!clip || (((lambda = line_point_factor_v3(isect_b, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_b = FALSE; break; default: use_a = FALSE; use_b = FALSE; } if (use_a) { PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(isect_a, 3, Py_NEW, NULL)); } else { PyTuple_SET_ITEM(ret, 0, Py_None); Py_INCREF(Py_None); } if (use_b) { PyTuple_SET_ITEM(ret, 1, Vector_CreatePyObject(isect_b, 3, Py_NEW, NULL)); } else { PyTuple_SET_ITEM(ret, 1, Py_None); Py_INCREF(Py_None); } return ret; } } /* keep in sync with M_Geometry_intersect_line_sphere */ PyDoc_STRVAR(M_Geometry_intersect_line_sphere_2d_doc, ".. function:: intersect_line_sphere_2d(line_a, line_b, sphere_co, sphere_radius, clip=True)\n" "\n" " Takes a lines (as 2 vectors), a sphere as a point and a radius and\n" " returns the intersection\n" "\n" " :arg line_a: First point of the first line\n" " :type line_a: :class:`mathutils.Vector`\n" " :arg line_b: Second point of the first line\n" " :type line_b: :class:`mathutils.Vector`\n" " :arg sphere_co: The center of the sphere\n" " :type sphere_co: :class:`mathutils.Vector`\n" " :arg sphere_radius: Radius of the sphere\n" " :type sphere_radius: sphere_radius\n" " :return: The intersection points as a pair of vectors or None when there is no intersection\n" " :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n" ); static PyObject *M_Geometry_intersect_line_sphere_2d(PyObject *UNUSED(self), PyObject *args) { VectorObject *line_a, *line_b, *sphere_co; float sphere_radius; int clip = TRUE; float isect_a[2]; float isect_b[2]; if (!PyArg_ParseTuple(args, "O!O!O!f|i:intersect_line_sphere_2d", &vector_Type, &line_a, &vector_Type, &line_b, &vector_Type, &sphere_co, &sphere_radius, &clip)) { return NULL; } if (BaseMath_ReadCallback(line_a) == -1 || BaseMath_ReadCallback(line_b) == -1 || BaseMath_ReadCallback(sphere_co) == -1) { return NULL; } else { bool use_a = true; bool use_b = true; float lambda; PyObject *ret = PyTuple_New(2); switch (isect_line_sphere_v2(line_a->vec, line_b->vec, sphere_co->vec, sphere_radius, isect_a, isect_b)) { case 1: if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a = false; use_b = FALSE; break; case 2: if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a = false; if (!(!clip || (((lambda = line_point_factor_v2(isect_b, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_b = false; break; default: use_a = false; use_b = false; } if (use_a) { PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(isect_a, 2, Py_NEW, NULL)); } else { PyTuple_SET_ITEM(ret, 0, Py_None); Py_INCREF(Py_None); } if (use_b) { PyTuple_SET_ITEM(ret, 1, Vector_CreatePyObject(isect_b, 2, Py_NEW, NULL)); } else { PyTuple_SET_ITEM(ret, 1, Py_None); Py_INCREF(Py_None); } return ret; } } PyDoc_STRVAR(M_Geometry_intersect_point_line_doc, ".. function:: intersect_point_line(pt, line_p1, line_p2)\n" "\n" " Takes a point and a line and returns a tuple with the closest point on the line and its distance from the first point of the line as a percentage of the length of the line.\n" "\n" " :arg pt: Point\n" " :type pt: :class:`mathutils.Vector`\n" " :arg line_p1: First point of the line\n" " :type line_p1: :class:`mathutils.Vector`\n" " :arg line_p1: Second point of the line\n" " :type line_p1: :class:`mathutils.Vector`\n" " :rtype: (:class:`mathutils.Vector`, float)\n" ); static PyObject *M_Geometry_intersect_point_line(PyObject *UNUSED(self), PyObject *args) { VectorObject *pt, *line_1, *line_2; float pt_in[3], pt_out[3], l1[3], l2[3]; float lambda; PyObject *ret; int size = 2; if (!PyArg_ParseTuple(args, "O!O!O!:intersect_point_line", &vector_Type, &pt, &vector_Type, &line_1, &vector_Type, &line_2)) { return NULL; } if (BaseMath_ReadCallback(pt) == -1 || BaseMath_ReadCallback(line_1) == -1 || BaseMath_ReadCallback(line_2) == -1) { return NULL; } /* accept 2d verts */ if (pt->size >= 3) { copy_v3_v3(pt_in, pt->vec); size = 3; } else { copy_v2_v2(pt_in, pt->vec); pt_in[2] = 0.0f; } if (line_1->size >= 3) { copy_v3_v3(l1, line_1->vec); size = 3; } else { copy_v2_v2(l1, line_1->vec); l1[2] = 0.0f; } if (line_2->size >= 3) { copy_v3_v3(l2, line_2->vec); size = 3; } else { copy_v2_v2(l2, line_2->vec); l2[2] = 0.0f; } /* do the calculation */ lambda = closest_to_line_v3(pt_out, pt_in, l1, l2); ret = PyTuple_New(2); PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(pt_out, size, Py_NEW, NULL)); PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(lambda)); return ret; } PyDoc_STRVAR(M_Geometry_intersect_point_tri_2d_doc, ".. function:: intersect_point_tri_2d(pt, tri_p1, tri_p2, tri_p3)\n" "\n" " Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n" "\n" " :arg pt: Point\n" " :type v1: :class:`mathutils.Vector`\n" " :arg tri_p1: First point of the triangle\n" " :type tri_p1: :class:`mathutils.Vector`\n" " :arg tri_p2: Second point of the triangle\n" " :type tri_p2: :class:`mathutils.Vector`\n" " :arg tri_p3: Third point of the triangle\n" " :type tri_p3: :class:`mathutils.Vector`\n" " :rtype: int\n" ); static PyObject *M_Geometry_intersect_point_tri_2d(PyObject *UNUSED(self), PyObject *args) { VectorObject *pt_vec, *tri_p1, *tri_p2, *tri_p3; if (!PyArg_ParseTuple(args, "O!O!O!O!:intersect_point_tri_2d", &vector_Type, &pt_vec, &vector_Type, &tri_p1, &vector_Type, &tri_p2, &vector_Type, &tri_p3)) { return NULL; } if (BaseMath_ReadCallback(pt_vec) == -1 || BaseMath_ReadCallback(tri_p1) == -1 || BaseMath_ReadCallback(tri_p2) == -1 || BaseMath_ReadCallback(tri_p3) == -1) { return NULL; } return PyLong_FromLong(isect_point_tri_v2(pt_vec->vec, tri_p1->vec, tri_p2->vec, tri_p3->vec)); } PyDoc_STRVAR(M_Geometry_intersect_point_quad_2d_doc, ".. function:: intersect_point_quad_2d(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n" "\n" " Takes 5 vectors (using only the x and y coordinates): one is the point and the next 4 define the quad, \n" " only the x and y are used from the vectors. Returns 1 if the point is within the quad, otherwise 0.\n" " Works only with convex quads without singular edges." "\n" " :arg pt: Point\n" " :type pt: :class:`mathutils.Vector`\n" " :arg quad_p1: First point of the quad\n" " :type quad_p1: :class:`mathutils.Vector`\n" " :arg quad_p2: Second point of the quad\n" " :type quad_p2: :class:`mathutils.Vector`\n" " :arg quad_p3: Third point of the quad\n" " :type quad_p3: :class:`mathutils.Vector`\n" " :arg quad_p4: Forth point of the quad\n" " :type quad_p4: :class:`mathutils.Vector`\n" " :rtype: int\n" ); static PyObject *M_Geometry_intersect_point_quad_2d(PyObject *UNUSED(self), PyObject *args) { VectorObject *pt_vec, *quad_p1, *quad_p2, *quad_p3, *quad_p4; if (!PyArg_ParseTuple(args, "O!O!O!O!O!:intersect_point_quad_2d", &vector_Type, &pt_vec, &vector_Type, &quad_p1, &vector_Type, &quad_p2, &vector_Type, &quad_p3, &vector_Type, &quad_p4)) { return NULL; } if (BaseMath_ReadCallback(pt_vec) == -1 || BaseMath_ReadCallback(quad_p1) == -1 || BaseMath_ReadCallback(quad_p2) == -1 || BaseMath_ReadCallback(quad_p3) == -1 || BaseMath_ReadCallback(quad_p4) == -1) { return NULL; } return PyLong_FromLong(isect_point_quad_v2(pt_vec->vec, quad_p1->vec, quad_p2->vec, quad_p3->vec, quad_p4->vec)); } PyDoc_STRVAR(M_Geometry_distance_point_to_plane_doc, ".. function:: distance_point_to_plane(pt, plane_co, plane_no)\n" "\n" " Returns the signed distance between a point and a plane " " (negative when below the normal).\n" "\n" " :arg pt: Point\n" " :type pt: :class:`mathutils.Vector`\n" " :arg plane_co: First point of the quad\n" " :type plane_co: :class:`mathutils.Vector`\n" " :arg plane_no: Second point of the quad\n" " :type plane_no: :class:`mathutils.Vector`\n" " :rtype: float\n" ); static PyObject *M_Geometry_distance_point_to_plane(PyObject *UNUSED(self), PyObject *args) { VectorObject *pt, *plene_co, *plane_no; if (!PyArg_ParseTuple(args, "O!O!O!:distance_point_to_plane", &vector_Type, &pt, &vector_Type, &plene_co, &vector_Type, &plane_no)) { return NULL; } if (BaseMath_ReadCallback(pt) == -1 || BaseMath_ReadCallback(plene_co) == -1 || BaseMath_ReadCallback(plane_no) == -1) { return NULL; } return PyFloat_FromDouble(dist_to_plane_v3(pt->vec, plene_co->vec, plane_no->vec)); } PyDoc_STRVAR(M_Geometry_barycentric_transform_doc, ".. function:: barycentric_transform(point, tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)\n" "\n" " Return a transformed point, the transformation is defined by 2 triangles.\n" "\n" " :arg point: The point to transform.\n" " :type point: :class:`mathutils.Vector`\n" " :arg tri_a1: source triangle vertex.\n" " :type tri_a1: :class:`mathutils.Vector`\n" " :arg tri_a2: source triangle vertex.\n" " :type tri_a2: :class:`mathutils.Vector`\n" " :arg tri_a3: source triangle vertex.\n" " :type tri_a3: :class:`mathutils.Vector`\n" " :arg tri_a1: target triangle vertex.\n" " :type tri_a1: :class:`mathutils.Vector`\n" " :arg tri_a2: target triangle vertex.\n" " :type tri_a2: :class:`mathutils.Vector`\n" " :arg tri_a3: target triangle vertex.\n" " :type tri_a3: :class:`mathutils.Vector`\n" " :return: The transformed point\n" " :rtype: :class:`mathutils.Vector`'s\n" ); static PyObject *M_Geometry_barycentric_transform(PyObject *UNUSED(self), PyObject *args) { VectorObject *vec_pt; VectorObject *vec_t1_tar, *vec_t2_tar, *vec_t3_tar; VectorObject *vec_t1_src, *vec_t2_src, *vec_t3_src; float vec[3]; if (!PyArg_ParseTuple(args, "O!O!O!O!O!O!O!:barycentric_transform", &vector_Type, &vec_pt, &vector_Type, &vec_t1_src, &vector_Type, &vec_t2_src, &vector_Type, &vec_t3_src, &vector_Type, &vec_t1_tar, &vector_Type, &vec_t2_tar, &vector_Type, &vec_t3_tar)) { return NULL; } if (vec_pt->size != 3 || vec_t1_src->size != 3 || vec_t2_src->size != 3 || vec_t3_src->size != 3 || vec_t1_tar->size != 3 || vec_t2_tar->size != 3 || vec_t3_tar->size != 3) { PyErr_SetString(PyExc_ValueError, "One of more of the vector arguments wasn't a 3D vector"); return NULL; } barycentric_transform(vec, vec_pt->vec, vec_t1_tar->vec, vec_t2_tar->vec, vec_t3_tar->vec, vec_t1_src->vec, vec_t2_src->vec, vec_t3_src->vec); return Vector_CreatePyObject(vec, 3, Py_NEW, NULL); } PyDoc_STRVAR(M_Geometry_points_in_planes_doc, ".. function:: points_in_planes(planes)\n" "\n" " Returns a list of points inside all planes given and a list of index values for the planes used.\n" "\n" " :arg planes: List of planes (4D vectors).\n" " :type planes: list of :class:`mathutils.Vector`\n" " :return: two lists, once containing the vertices inside the planes, another containing the plane indicies used\n" " :rtype: pair of lists\n" ); /* note: this function could be optimized by some spatial structure */ static PyObject *M_Geometry_points_in_planes(PyObject *UNUSED(self), PyObject *args) { PyObject *py_planes; float (*planes)[4]; unsigned int planes_len; if (!PyArg_ParseTuple(args, "O:points_in_planes", &py_planes)) { return NULL; } if ((planes_len = mathutils_array_parse_alloc_v((float **)&planes, 4, py_planes, "points_in_planes")) == -1) { return NULL; } else { /* note, this could be refactored into plain C easy - py bits are noted */ const float eps = 0.0001f; const unsigned int len = (unsigned int)planes_len; unsigned int i, j, k, l; float n1n2[3], n2n3[3], n3n1[3]; float potentialVertex[3]; char *planes_used = PyMem_Malloc(sizeof(char) * len); /* python */ PyObject *py_verts = PyList_New(0); PyObject *py_plene_index = PyList_New(0); memset(planes_used, 0, sizeof(char) * len); for (i = 0; i < len; i++) { const float *N1 = planes[i]; for (j = i + 1; j < len; j++) { const float *N2 = planes[j]; cross_v3_v3v3(n1n2, N1, N2); if (len_squared_v3(n1n2) > eps) { for (k = j + 1; k < len; k++) { const float *N3 = planes[k]; cross_v3_v3v3(n2n3, N2, N3); if (len_squared_v3(n2n3) > eps) { cross_v3_v3v3(n3n1, N3, N1); if (len_squared_v3(n3n1) > eps) { const float quotient = dot_v3v3(N1, n2n3); if (fabsf(quotient) > eps) { /* potentialVertex = (n2n3 * N1[3] + n3n1 * N2[3] + n1n2 * N3[3]) * (-1.0 / quotient); */ const float quotient_ninv = -1.0f / quotient; potentialVertex[0] = ((n2n3[0] * N1[3]) + (n3n1[0] * N2[3]) + (n1n2[0] * N3[3])) * quotient_ninv; potentialVertex[1] = ((n2n3[1] * N1[3]) + (n3n1[1] * N2[3]) + (n1n2[1] * N3[3])) * quotient_ninv; potentialVertex[2] = ((n2n3[2] * N1[3]) + (n3n1[2] * N2[3]) + (n1n2[2] * N3[3])) * quotient_ninv; for (l = 0; l < len; l++) { const float *NP = planes[l]; if ((dot_v3v3(NP, potentialVertex) + NP[3]) > 0.000001f) { break; } } if (l == len) { /* ok */ /* python */ PyObject *item = Vector_CreatePyObject(potentialVertex, 3, Py_NEW, NULL); PyList_Append(py_verts, item); Py_DECREF(item); planes_used[i] = planes_used[j] = planes_used[k] = TRUE; } } } } } } } } PyMem_Free(planes); /* now make a list of used planes */ for (i = 0; i < len; i++) { if (planes_used[i]) { PyObject *item = PyLong_FromLong(i); PyList_Append(py_plene_index, item); Py_DECREF(item); } } PyMem_Free(planes_used); { PyObject *ret = PyTuple_New(2); PyTuple_SET_ITEM(ret, 0, py_verts); PyTuple_SET_ITEM(ret, 1, py_plene_index); return ret; } } } #ifndef MATH_STANDALONE PyDoc_STRVAR(M_Geometry_interpolate_bezier_doc, ".. function:: interpolate_bezier(knot1, handle1, handle2, knot2, resolution)\n" "\n" " Interpolate a bezier spline segment.\n" "\n" " :arg knot1: First bezier spline point.\n" " :type knot1: :class:`mathutils.Vector`\n" " :arg handle1: First bezier spline handle.\n" " :type handle1: :class:`mathutils.Vector`\n" " :arg handle2: Second bezier spline handle.\n" " :type handle2: :class:`mathutils.Vector`\n" " :arg knot2: Second bezier spline point.\n" " :type knot2: :class:`mathutils.Vector`\n" " :arg resolution: Number of points to return.\n" " :type resolution: int\n" " :return: The interpolated points\n" " :rtype: list of :class:`mathutils.Vector`'s\n" ); static PyObject *M_Geometry_interpolate_bezier(PyObject *UNUSED(self), PyObject *args) { VectorObject *vec_k1, *vec_h1, *vec_k2, *vec_h2; int resolu; int dims; int i; float *coord_array, *fp; PyObject *list; float k1[4] = {0.0, 0.0, 0.0, 0.0}; float h1[4] = {0.0, 0.0, 0.0, 0.0}; float k2[4] = {0.0, 0.0, 0.0, 0.0}; float h2[4] = {0.0, 0.0, 0.0, 0.0}; if (!PyArg_ParseTuple(args, "O!O!O!O!i:interpolate_bezier", &vector_Type, &vec_k1, &vector_Type, &vec_h1, &vector_Type, &vec_h2, &vector_Type, &vec_k2, &resolu)) { return NULL; } if (resolu <= 1) { PyErr_SetString(PyExc_ValueError, "resolution must be 2 or over"); return NULL; } if (BaseMath_ReadCallback(vec_k1) == -1 || BaseMath_ReadCallback(vec_h1) == -1 || BaseMath_ReadCallback(vec_k2) == -1 || BaseMath_ReadCallback(vec_h2) == -1) { return NULL; } dims = max_iiii(vec_k1->size, vec_h1->size, vec_h2->size, vec_k2->size); for (i = 0; i < vec_k1->size; i++) k1[i] = vec_k1->vec[i]; for (i = 0; i < vec_h1->size; i++) h1[i] = vec_h1->vec[i]; for (i = 0; i < vec_k2->size; i++) k2[i] = vec_k2->vec[i]; for (i = 0; i < vec_h2->size; i++) h2[i] = vec_h2->vec[i]; coord_array = MEM_callocN(dims * (resolu) * sizeof(float), "interpolate_bezier"); for (i = 0; i < dims; i++) { BKE_curve_forward_diff_bezier(k1[i], h1[i], h2[i], k2[i], coord_array + i, resolu - 1, sizeof(float) * dims); } list = PyList_New(resolu); fp = coord_array; for (i = 0; i < resolu; i++, fp = fp + dims) { PyList_SET_ITEM(list, i, Vector_CreatePyObject(fp, dims, Py_NEW, NULL)); } MEM_freeN(coord_array); return list; } PyDoc_STRVAR(M_Geometry_tessellate_polygon_doc, ".. function:: tessellate_polygon(veclist_list)\n" "\n" " Takes a list of polylines (each point a vector) and returns the point indices for a polyline filled with triangles.\n" "\n" " :arg veclist_list: list of polylines\n" " :rtype: list\n" ); /* PolyFill function, uses Blenders scanfill to fill multiple poly lines */ static PyObject *M_Geometry_tessellate_polygon(PyObject *UNUSED(self), PyObject *polyLineSeq) { PyObject *tri_list; /*return this list of tri's */ PyObject *polyLine, *polyVec; int i, len_polylines, len_polypoints, ls_error = 0; /* display listbase */ ListBase dispbase = {NULL, NULL}; DispList *dl; float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */ int index, *dl_face, totpoints = 0; if (!PySequence_Check(polyLineSeq)) { PyErr_SetString(PyExc_TypeError, "expected a sequence of poly lines"); return NULL; } len_polylines = PySequence_Size(polyLineSeq); for (i = 0; i < len_polylines; i++) { polyLine = PySequence_GetItem(polyLineSeq, i); if (!PySequence_Check(polyLine)) { BKE_displist_free(&dispbase); Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/ PyErr_SetString(PyExc_TypeError, "One or more of the polylines is not a sequence of mathutils.Vector's"); return NULL; } len_polypoints = PySequence_Size(polyLine); if (len_polypoints > 0) { /* don't bother adding edges as polylines */ #if 0 if (EXPP_check_sequence_consistency(polyLine, &vector_Type) != 1) { freedisplist(&dispbase); Py_DECREF(polyLine); PyErr_SetString(PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type"); return NULL; } #endif dl = MEM_callocN(sizeof(DispList), "poly disp"); BLI_addtail(&dispbase, dl); dl->type = DL_INDEX3; dl->nr = len_polypoints; dl->type = DL_POLY; dl->parts = 1; /* no faces, 1 edge loop */ dl->col = 0; /* no material */ dl->verts = fp = MEM_callocN(sizeof(float) * 3 * len_polypoints, "dl verts"); dl->index = MEM_callocN(sizeof(int) * 3 * len_polypoints, "dl index"); for (index = 0; index < len_polypoints; index++, fp += 3) { polyVec = PySequence_GetItem(polyLine, index); if (VectorObject_Check(polyVec)) { if (BaseMath_ReadCallback((VectorObject *)polyVec) == -1) ls_error = 1; fp[0] = ((VectorObject *)polyVec)->vec[0]; fp[1] = ((VectorObject *)polyVec)->vec[1]; if (((VectorObject *)polyVec)->size > 2) fp[2] = ((VectorObject *)polyVec)->vec[2]; else fp[2] = 0.0f; /* if its a 2d vector then set the z to be zero */ } else { ls_error = 1; } totpoints++; Py_DECREF(polyVec); } } Py_DECREF(polyLine); } if (ls_error) { BKE_displist_free(&dispbase); /* possible some dl was allocated */ PyErr_SetString(PyExc_TypeError, "A point in one of the polylines " "is not a mathutils.Vector type"); return NULL; } else if (totpoints) { /* now make the list to return */ /* TODO, add normal arg */ BKE_displist_fill(&dispbase, &dispbase, NULL, false); /* The faces are stored in a new DisplayList * thats added to the head of the listbase */ dl = dispbase.first; tri_list = PyList_New(dl->parts); if (!tri_list) { BKE_displist_free(&dispbase); PyErr_SetString(PyExc_RuntimeError, "failed to make a new list"); return NULL; } index = 0; dl_face = dl->index; while (index < dl->parts) { PyList_SET_ITEM(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2])); dl_face += 3; index++; } BKE_displist_free(&dispbase); } else { /* no points, do this so scripts don't barf */ BKE_displist_free(&dispbase); /* possible some dl was allocated */ tri_list = PyList_New(0); } return tri_list; } static int boxPack_FromPyObject(PyObject *value, BoxPack **boxarray) { Py_ssize_t len, i; PyObject *list_item, *item_1, *item_2; BoxPack *box; /* Error checking must already be done */ if (!PyList_Check(value)) { PyErr_SetString(PyExc_TypeError, "can only back a list of [x, y, w, h]"); return -1; } len = PyList_GET_SIZE(value); *boxarray = MEM_mallocN(len * sizeof(BoxPack), "BoxPack box"); for (i = 0; i < len; i++) { list_item = PyList_GET_ITEM(value, i); if (!PyList_Check(list_item) || PyList_GET_SIZE(list_item) < 4) { MEM_freeN(*boxarray); PyErr_SetString(PyExc_TypeError, "can only pack a list of [x, y, w, h]"); return -1; } box = (*boxarray) + i; item_1 = PyList_GET_ITEM(list_item, 2); item_2 = PyList_GET_ITEM(list_item, 3); box->w = (float)PyFloat_AsDouble(item_1); box->h = (float)PyFloat_AsDouble(item_2); box->index = i; /* accounts for error case too and overwrites with own error */ if (box->w < 0.0f || box->h < 0.0f) { MEM_freeN(*boxarray); PyErr_SetString(PyExc_TypeError, "error parsing width and height values from list: " "[x, y, w, h], not numbers or below zero"); return -1; } /* verts will be added later */ } return 0; } static void boxPack_ToPyObject(PyObject *value, BoxPack **boxarray) { Py_ssize_t len, i; PyObject *list_item; BoxPack *box; len = PyList_GET_SIZE(value); for (i = 0; i < len; i++) { box = (*boxarray) + i; list_item = PyList_GET_ITEM(value, box->index); PyList_SET_ITEM(list_item, 0, PyFloat_FromDouble(box->x)); PyList_SET_ITEM(list_item, 1, PyFloat_FromDouble(box->y)); } MEM_freeN(*boxarray); } PyDoc_STRVAR(M_Geometry_box_pack_2d_doc, ".. function:: box_pack_2d(boxes)\n" "\n" " Returns the normal of the 3D tri or quad.\n" "\n" " :arg boxes: list of boxes, each box is a list where the first 4 items are [x, y, width, height, ...] other items are ignored.\n" " :type boxes: list\n" " :return: the width and height of the packed bounding box\n" " :rtype: tuple, pair of floats\n" ); static PyObject *M_Geometry_box_pack_2d(PyObject *UNUSED(self), PyObject *boxlist) { float tot_width = 0.0f, tot_height = 0.0f; Py_ssize_t len; PyObject *ret; if (!PyList_Check(boxlist)) { PyErr_SetString(PyExc_TypeError, "expected a list of boxes [[x, y, w, h], ... ]"); return NULL; } len = PyList_GET_SIZE(boxlist); if (len) { BoxPack *boxarray = NULL; if (boxPack_FromPyObject(boxlist, &boxarray) == -1) { return NULL; /* exception set */ } /* Non Python function */ BLI_box_pack_2D(boxarray, len, &tot_width, &tot_height); boxPack_ToPyObject(boxlist, &boxarray); } ret = PyTuple_New(2); PyTuple_SET_ITEM(ret, 0, PyFloat_FromDouble(tot_width)); PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(tot_width)); return ret; } #endif /* MATH_STANDALONE */ static PyMethodDef M_Geometry_methods[] = { {"intersect_ray_tri", (PyCFunction) M_Geometry_intersect_ray_tri, METH_VARARGS, M_Geometry_intersect_ray_tri_doc}, {"intersect_point_line", (PyCFunction) M_Geometry_intersect_point_line, METH_VARARGS, M_Geometry_intersect_point_line_doc}, {"intersect_point_tri_2d", (PyCFunction) M_Geometry_intersect_point_tri_2d, METH_VARARGS, M_Geometry_intersect_point_tri_2d_doc}, {"intersect_point_quad_2d", (PyCFunction) M_Geometry_intersect_point_quad_2d, METH_VARARGS, M_Geometry_intersect_point_quad_2d_doc}, {"intersect_line_line", (PyCFunction) M_Geometry_intersect_line_line, METH_VARARGS, M_Geometry_intersect_line_line_doc}, {"intersect_line_line_2d", (PyCFunction) M_Geometry_intersect_line_line_2d, METH_VARARGS, M_Geometry_intersect_line_line_2d_doc}, {"intersect_line_plane", (PyCFunction) M_Geometry_intersect_line_plane, METH_VARARGS, M_Geometry_intersect_line_plane_doc}, {"intersect_plane_plane", (PyCFunction) M_Geometry_intersect_plane_plane, METH_VARARGS, M_Geometry_intersect_plane_plane_doc}, {"intersect_line_sphere", (PyCFunction) M_Geometry_intersect_line_sphere, METH_VARARGS, M_Geometry_intersect_line_sphere_doc}, {"intersect_line_sphere_2d", (PyCFunction) M_Geometry_intersect_line_sphere_2d, METH_VARARGS, M_Geometry_intersect_line_sphere_2d_doc}, {"distance_point_to_plane", (PyCFunction) M_Geometry_distance_point_to_plane, METH_VARARGS, M_Geometry_distance_point_to_plane_doc}, {"intersect_sphere_sphere_2d", (PyCFunction) M_Geometry_intersect_sphere_sphere_2d, METH_VARARGS, M_Geometry_intersect_sphere_sphere_2d_doc}, {"area_tri", (PyCFunction) M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc}, {"volume_tetrahedron", (PyCFunction) M_Geometry_volume_tetrahedron, METH_VARARGS, M_Geometry_volume_tetrahedron_doc}, {"normal", (PyCFunction) M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc}, {"barycentric_transform", (PyCFunction) M_Geometry_barycentric_transform, METH_VARARGS, M_Geometry_barycentric_transform_doc}, {"points_in_planes", (PyCFunction) M_Geometry_points_in_planes, METH_VARARGS, M_Geometry_points_in_planes_doc}, #ifndef MATH_STANDALONE {"interpolate_bezier", (PyCFunction) M_Geometry_interpolate_bezier, METH_VARARGS, M_Geometry_interpolate_bezier_doc}, {"tessellate_polygon", (PyCFunction) M_Geometry_tessellate_polygon, METH_O, M_Geometry_tessellate_polygon_doc}, {"box_pack_2d", (PyCFunction) M_Geometry_box_pack_2d, METH_O, M_Geometry_box_pack_2d_doc}, #endif {NULL, NULL, 0, NULL} }; static struct PyModuleDef M_Geometry_module_def = { PyModuleDef_HEAD_INIT, "mathutils.geometry", /* m_name */ M_Geometry_doc, /* m_doc */ 0, /* m_size */ M_Geometry_methods, /* m_methods */ NULL, /* m_reload */ NULL, /* m_traverse */ NULL, /* m_clear */ NULL, /* m_free */ }; /*----------------------------MODULE INIT-------------------------*/ PyMODINIT_FUNC PyInit_mathutils_geometry(void) { PyObject *submodule = PyModule_Create(&M_Geometry_module_def); return submodule; }