Cycles: option to make background visible through glass transparent.
[blender-staging.git] / intern / cycles / kernel / kernel_path.h
index 58da141aed34ff60523623d5257a097941fe46c5..1e98bca66ad5ae6a48ee6c82c3d977d5020d9732 100644 (file)
 #include "kernel/kernel_path_volume.h"
 #include "kernel/kernel_path_subsurface.h"
 
+CCL_NAMESPACE_BEGIN
+
+ccl_device_forceinline bool kernel_path_scene_intersect(
+       KernelGlobals *kg,
+       ccl_addr_space PathState *state,
+       Ray *ray,
+       Intersection *isect,
+       PathRadiance *L)
+{
+       uint visibility = path_state_ray_visibility(kg, state);
+
+       if(path_state_ao_bounce(kg, state)) {
+               visibility = PATH_RAY_SHADOW;
+               ray->t = kernel_data.background.ao_distance;
+       }
+
+#ifdef __HAIR__
+       float difl = 0.0f, extmax = 0.0f;
+       uint lcg_state = 0;
+
+       if(kernel_data.bvh.have_curves) {
+               if((kernel_data.cam.resolution == 1) && (state->flag & PATH_RAY_CAMERA)) {
+                       float3 pixdiff = ray->dD.dx + ray->dD.dy;
+                       /*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/
+                       difl = kernel_data.curve.minimum_width * len(pixdiff) * 0.5f;
+               }
+
+               extmax = kernel_data.curve.maximum_width;
+               lcg_state = lcg_state_init_addrspace(state, 0x51633e2d);
+       }
+
+       bool hit = scene_intersect(kg, *ray, visibility, isect, &lcg_state, difl, extmax);
+#else
+       bool hit = scene_intersect(kg, *ray, visibility, isect, NULL, 0.0f, 0.0f);
+#endif  /* __HAIR__ */
+
 #ifdef __KERNEL_DEBUG__
-#  include "kernel/kernel_debug.h"
-#endif
+       if(state->flag & PATH_RAY_CAMERA) {
+               L->debug_data.num_bvh_traversed_nodes += isect->num_traversed_nodes;
+               L->debug_data.num_bvh_traversed_instances += isect->num_traversed_instances;
+               L->debug_data.num_bvh_intersections += isect->num_intersections;
+       }
+       L->debug_data.num_ray_bounces++;
+#endif  /* __KERNEL_DEBUG__ */
 
-CCL_NAMESPACE_BEGIN
+       return hit;
+}
+
+ccl_device_forceinline void kernel_path_lamp_emission(
+       KernelGlobals *kg,
+       ccl_addr_space PathState *state,
+       Ray *ray,
+       float3 throughput,
+       ccl_addr_space Intersection *isect,
+       ShaderData *emission_sd,
+       PathRadiance *L)
+{
+#ifdef __LAMP_MIS__
+       if(kernel_data.integrator.use_lamp_mis && !(state->flag & PATH_RAY_CAMERA)) {
+               /* ray starting from previous non-transparent bounce */
+               Ray light_ray;
+
+               light_ray.P = ray->P - state->ray_t*ray->D;
+               state->ray_t += isect->t;
+               light_ray.D = ray->D;
+               light_ray.t = state->ray_t;
+               light_ray.time = ray->time;
+               light_ray.dD = ray->dD;
+               light_ray.dP = ray->dP;
+
+               /* intersect with lamp */
+               float3 emission;
+
+               if(indirect_lamp_emission(kg, emission_sd, state, &light_ray, &emission))
+                       path_radiance_accum_emission(L, state, throughput, emission);
+       }
+#endif  /* __LAMP_MIS__ */
+}
+
+ccl_device_forceinline void kernel_path_background(
+       KernelGlobals *kg,
+       ccl_addr_space PathState *state,
+       ccl_addr_space Ray *ray,
+       float3 throughput,
+       ShaderData *sd,
+       PathRadiance *L)
+{
+       /* eval background shader if nothing hit */
+       if(kernel_data.background.transparent && (state->flag & PATH_RAY_TRANSPARENT_BACKGROUND)) {
+               L->transparent += average(throughput);
+
+#ifdef __PASSES__
+               if(!(kernel_data.film.light_pass_flag & PASSMASK(BACKGROUND)))
+#endif  /* __PASSES__ */
+                       return;
+       }
+
+       /* When using the ao bounces approximation, adjust background
+        * shader intensity with ao factor. */
+       if(path_state_ao_bounce(kg, state)) {
+               throughput *= kernel_data.background.ao_bounces_factor;
+       }
+
+#ifdef __BACKGROUND__
+       /* sample background shader */
+       float3 L_background = indirect_background(kg, sd, state, ray);
+       path_radiance_accum_background(L, state, throughput, L_background);
+#endif  /* __BACKGROUND__ */
+}
+
+#ifndef __SPLIT_KERNEL__
+
+#ifdef __VOLUME__
+ccl_device_forceinline VolumeIntegrateResult kernel_path_volume(
+       KernelGlobals *kg,
+       ShaderData *sd,
+       PathState *state,
+       Ray *ray,
+       float3 *throughput,
+       ccl_addr_space Intersection *isect,
+       bool hit,
+       ShaderData *emission_sd,
+       PathRadiance *L)
+{
+       /* Sanitize volume stack. */
+       if(!hit) {
+               kernel_volume_clean_stack(kg, state->volume_stack);
+       }
+
+       if(state->volume_stack[0].shader == SHADER_NONE) {
+               return VOLUME_PATH_ATTENUATED;
+       }
+
+       /* volume attenuation, emission, scatter */
+       Ray volume_ray = *ray;
+       volume_ray.t = (hit)? isect->t: FLT_MAX;
+
+       bool heterogeneous = volume_stack_is_heterogeneous(kg, state->volume_stack);
+
+#  ifdef __VOLUME_DECOUPLED__
+       int sampling_method = volume_stack_sampling_method(kg, state->volume_stack);
+       bool direct = (state->flag & PATH_RAY_CAMERA) != 0;
+       bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, direct, sampling_method);
+
+       if(decoupled) {
+               /* cache steps along volume for repeated sampling */
+               VolumeSegment volume_segment;
+
+               shader_setup_from_volume(kg, sd, &volume_ray);
+               kernel_volume_decoupled_record(kg, state,
+                       &volume_ray, sd, &volume_segment, heterogeneous);
+
+               volume_segment.sampling_method = sampling_method;
+
+               /* emission */
+               if(volume_segment.closure_flag & SD_EMISSION)
+                       path_radiance_accum_emission(L, state, *throughput, volume_segment.accum_emission);
+
+               /* scattering */
+               VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
+
+               if(volume_segment.closure_flag & SD_SCATTER) {
+                       int all = kernel_data.integrator.sample_all_lights_indirect;
+
+                       /* direct light sampling */
+                       kernel_branched_path_volume_connect_light(kg, sd,
+                               emission_sd, *throughput, state, L, all,
+                               &volume_ray, &volume_segment);
+
+                       /* indirect sample. if we use distance sampling and take just
+                        * one sample for direct and indirect light, we could share
+                        * this computation, but makes code a bit complex */
+                       float rphase = path_state_rng_1D(kg, state, PRNG_PHASE_CHANNEL);
+                       float rscatter = path_state_rng_1D(kg, state, PRNG_SCATTER_DISTANCE);
+
+                       result = kernel_volume_decoupled_scatter(kg,
+                               state, &volume_ray, sd, throughput,
+                               rphase, rscatter, &volume_segment, NULL, true);
+               }
+
+               /* free cached steps */
+               kernel_volume_decoupled_free(kg, &volume_segment);
+
+               if(result == VOLUME_PATH_SCATTERED) {
+                       if(kernel_path_volume_bounce(kg, sd, throughput, state, &L->state, ray))
+                               return VOLUME_PATH_SCATTERED;
+                       else
+                               return VOLUME_PATH_MISSED;
+               }
+               else {
+                       *throughput *= volume_segment.accum_transmittance;
+               }
+       }
+       else
+#  endif  /* __VOLUME_DECOUPLED__ */
+       {
+               /* integrate along volume segment with distance sampling */
+               VolumeIntegrateResult result = kernel_volume_integrate(
+                       kg, state, sd, &volume_ray, L, throughput, heterogeneous);
+
+#  ifdef __VOLUME_SCATTER__
+               if(result == VOLUME_PATH_SCATTERED) {
+                       /* direct lighting */
+                       kernel_path_volume_connect_light(kg, sd, emission_sd, *throughput, state, L);
+
+                       /* indirect light bounce */
+                       if(kernel_path_volume_bounce(kg, sd, throughput, state, &L->state, ray))
+                               return VOLUME_PATH_SCATTERED;
+                       else
+                               return VOLUME_PATH_MISSED;
+               }
+#  endif  /* __VOLUME_SCATTER__ */
+       }
+
+       return VOLUME_PATH_ATTENUATED;
+}
+#endif  /* __VOLUME__ */
+
+#endif /* __SPLIT_KERNEL__ */
+
+ccl_device_forceinline bool kernel_path_shader_apply(
+       KernelGlobals *kg,
+       ShaderData *sd,
+       ccl_addr_space PathState *state,
+       ccl_addr_space Ray *ray,
+       float3 throughput,
+       ShaderData *emission_sd,
+       PathRadiance *L,
+       ccl_global float *buffer)
+{
+#ifdef __SHADOW_TRICKS__
+       if((sd->object_flag & SD_OBJECT_SHADOW_CATCHER)) {
+               if(state->flag & PATH_RAY_TRANSPARENT_BACKGROUND) {
+                       state->flag |= (PATH_RAY_SHADOW_CATCHER |
+                                                  PATH_RAY_STORE_SHADOW_INFO);
+
+                       float3 bg = make_float3(0.0f, 0.0f, 0.0f);
+                       if(!kernel_data.background.transparent) {
+                               bg = indirect_background(kg, emission_sd, state, ray);
+                       }
+                       path_radiance_accum_shadowcatcher(L, throughput, bg);
+               }
+       }
+       else if(state->flag & PATH_RAY_SHADOW_CATCHER) {
+               /* Only update transparency after shadow catcher bounce. */
+               L->shadow_transparency *=
+                               average(shader_bsdf_transparency(kg, sd));
+       }
+#endif  /* __SHADOW_TRICKS__ */
+
+       /* holdout */
+#ifdef __HOLDOUT__
+       if(((sd->flag & SD_HOLDOUT) ||
+               (sd->object_flag & SD_OBJECT_HOLDOUT_MASK)) &&
+          (state->flag & PATH_RAY_TRANSPARENT_BACKGROUND))
+       {
+               if(kernel_data.background.transparent) {
+                       float3 holdout_weight;
+                       if(sd->object_flag & SD_OBJECT_HOLDOUT_MASK) {
+                               holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
+                       }
+                       else {
+                               holdout_weight = shader_holdout_eval(kg, sd);
+                       }
+                       /* any throughput is ok, should all be identical here */
+                       L->transparent += average(holdout_weight*throughput);
+               }
+
+               if(sd->object_flag & SD_OBJECT_HOLDOUT_MASK) {
+                       return false;
+               }
+       }
+#endif  /* __HOLDOUT__ */
+
+       /* holdout mask objects do not write data passes */
+       kernel_write_data_passes(kg, buffer, L, sd, state, throughput);
+
+       /* blurring of bsdf after bounces, for rays that have a small likelihood
+        * of following this particular path (diffuse, rough glossy) */
+       if(kernel_data.integrator.filter_glossy != FLT_MAX) {
+               float blur_pdf = kernel_data.integrator.filter_glossy*state->min_ray_pdf;
+
+               if(blur_pdf < 1.0f) {
+                       float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
+                       shader_bsdf_blur(kg, sd, blur_roughness);
+               }
+       }
+
+#ifdef __EMISSION__
+       /* emission */
+       if(sd->flag & SD_EMISSION) {
+               float3 emission = indirect_primitive_emission(kg, sd, sd->ray_length, state->flag, state->ray_pdf);
+               path_radiance_accum_emission(L, state, throughput, emission);
+       }
+#endif  /* __EMISSION__ */
+
+       return true;
+}
 
 ccl_device_noinline void kernel_path_ao(KernelGlobals *kg,
                                         ShaderData *sd,
                                         ShaderData *emission_sd,
                                         PathRadiance *L,
                                         ccl_addr_space PathState *state,
-                                        RNG *rng,
                                         float3 throughput,
                                         float3 ao_alpha)
 {
        /* todo: solve correlation */
        float bsdf_u, bsdf_v;
 
-       path_state_rng_2D(kg, rng, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
+       path_state_rng_2D(kg, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
 
        float ao_factor = kernel_data.background.ao_factor;
        float3 ao_N;
@@ -83,282 +375,100 @@ ccl_device_noinline void kernel_path_ao(KernelGlobals *kg,
                light_ray.P = ray_offset(sd->P, sd->Ng);
                light_ray.D = ao_D;
                light_ray.t = kernel_data.background.ao_distance;
-#ifdef __OBJECT_MOTION__
                light_ray.time = sd->time;
-#endif  /* __OBJECT_MOTION__ */
                light_ray.dP = sd->dP;
                light_ray.dD = differential3_zero();
 
-               if(!shadow_blocked(kg, emission_sd, state, &light_ray, &ao_shadow)) {
-                       path_radiance_accum_ao(L, throughput, ao_alpha, ao_bsdf, ao_shadow, state->bounce);
+               if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &ao_shadow)) {
+                       path_radiance_accum_ao(L, state, throughput, ao_alpha, ao_bsdf, ao_shadow);
                }
                else {
-                       path_radiance_accum_total_ao(L, throughput, ao_bsdf);
+                       path_radiance_accum_total_ao(L, state, throughput, ao_bsdf);
                }
        }
 }
 
 #ifndef __SPLIT_KERNEL__
 
+#if defined(__BRANCHED_PATH__) || defined(__BAKING__)
+
 ccl_device void kernel_path_indirect(KernelGlobals *kg,
                                      ShaderData *sd,
                                      ShaderData *emission_sd,
-                                     RNG *rng,
                                      Ray *ray,
                                      float3 throughput,
-                                     int num_samples,
                                      PathState *state,
                                      PathRadiance *L)
 {
        /* path iteration */
        for(;;) {
-               /* intersect scene */
+               /* Find intersection with objects in scene. */
                Intersection isect;
-               uint visibility = path_state_ray_visibility(kg, state);
-               if(state->bounce > kernel_data.integrator.ao_bounces) {
-                       visibility = PATH_RAY_SHADOW;
-                       ray->t = kernel_data.background.ao_distance;
-               }
-               bool hit = scene_intersect(kg,
-                                          *ray,
-                                          visibility,
-                                          &isect,
-                                          NULL,
-                                          0.0f, 0.0f);
+               bool hit = kernel_path_scene_intersect(kg, state, ray, &isect, L);
 
-#ifdef __LAMP_MIS__
-               if(kernel_data.integrator.use_lamp_mis && !(state->flag & PATH_RAY_CAMERA)) {
-                       /* ray starting from previous non-transparent bounce */
-                       Ray light_ray;
-
-                       light_ray.P = ray->P - state->ray_t*ray->D;
-                       state->ray_t += isect.t;
-                       light_ray.D = ray->D;
-                       light_ray.t = state->ray_t;
-                       light_ray.time = ray->time;
-                       light_ray.dD = ray->dD;
-                       light_ray.dP = ray->dP;
-
-                       /* intersect with lamp */
-                       float3 emission;
-                       if(indirect_lamp_emission(kg, emission_sd, state, &light_ray, &emission)) {
-                               path_radiance_accum_emission(L,
-                                                            throughput,
-                                                            emission,
-                                                            state->bounce);
-                       }
-               }
-#endif  /* __LAMP_MIS__ */
+               /* Find intersection with lamps and compute emission for MIS. */
+               kernel_path_lamp_emission(kg, state, ray, throughput, &isect, sd, L);
 
 #ifdef __VOLUME__
-               /* Sanitize volume stack. */
-               if(!hit) {
-                       kernel_volume_clean_stack(kg, state->volume_stack);
-               }
-               /* volume attenuation, emission, scatter */
-               if(state->volume_stack[0].shader != SHADER_NONE) {
-                       Ray volume_ray = *ray;
-                       volume_ray.t = (hit)? isect.t: FLT_MAX;
-
-                       bool heterogeneous =
-                               volume_stack_is_heterogeneous(kg,
-                                                             state->volume_stack);
-
-#  ifdef __VOLUME_DECOUPLED__
-                       int sampling_method =
-                               volume_stack_sampling_method(kg,
-                                                            state->volume_stack);
-                       bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, false, sampling_method);
-
-                       if(decoupled) {
-                               /* cache steps along volume for repeated sampling */
-                               VolumeSegment volume_segment;
-
-                               shader_setup_from_volume(kg,
-                                                        sd,
-                                                        &volume_ray);
-                               kernel_volume_decoupled_record(kg,
-                                                              state,
-                                                              &volume_ray,
-                                                              sd,
-                                                              &volume_segment,
-                                                              heterogeneous);
-
-                               volume_segment.sampling_method = sampling_method;
-
-                               /* emission */
-                               if(volume_segment.closure_flag & SD_EMISSION) {
-                                       path_radiance_accum_emission(L,
-                                                                    throughput,
-                                                                    volume_segment.accum_emission,
-                                                                    state->bounce);
-                               }
-
-                               /* scattering */
-                               VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
-
-                               if(volume_segment.closure_flag & SD_SCATTER) {
-                                       int all = kernel_data.integrator.sample_all_lights_indirect;
-
-                                       /* direct light sampling */
-                                       kernel_branched_path_volume_connect_light(kg,
-                                                                                 rng,
-                                                                                 sd,
-                                                                                 emission_sd,
-                                                                                 throughput,
-                                                                                 state,
-                                                                                 L,
-                                                                                 all,
-                                                                                 &volume_ray,
-                                                                                 &volume_segment);
-
-                                       /* indirect sample. if we use distance sampling and take just
-                                        * one sample for direct and indirect light, we could share
-                                        * this computation, but makes code a bit complex */
-                                       float rphase = path_state_rng_1D_for_decision(kg, rng, state, PRNG_PHASE);
-                                       float rscatter = path_state_rng_1D_for_decision(kg, rng, state, PRNG_SCATTER_DISTANCE);
-
-                                       result = kernel_volume_decoupled_scatter(kg,
-                                                                                state,
-                                                                                &volume_ray,
-                                                                                sd,
-                                                                                &throughput,
-                                                                                rphase,
-                                                                                rscatter,
-                                                                                &volume_segment,
-                                                                                NULL,
-                                                                                true);
-                               }
-
-                               /* free cached steps */
-                               kernel_volume_decoupled_free(kg, &volume_segment);
-
-                               if(result == VOLUME_PATH_SCATTERED) {
-                                       if(kernel_path_volume_bounce(kg,
-                                                                    rng,
-                                                                    sd,
-                                                                    &throughput,
-                                                                    state,
-                                                                    L,
-                                                                    ray))
-                                       {
-                                               continue;
-                                       }
-                                       else {
-                                               break;
-                                       }
-                               }
-                               else {
-                                       throughput *= volume_segment.accum_transmittance;
-                               }
-                       }
-                       else
-#  endif  /* __VOLUME_DECOUPLED__ */
-                       {
-                               /* integrate along volume segment with distance sampling */
-                               VolumeIntegrateResult result = kernel_volume_integrate(
-                                       kg, state, sd, &volume_ray, L, &throughput, rng, heterogeneous);
-
-#  ifdef __VOLUME_SCATTER__
-                               if(result == VOLUME_PATH_SCATTERED) {
-                                       /* direct lighting */
-                                       kernel_path_volume_connect_light(kg,
-                                                                        rng,
-                                                                        sd,
-                                                                        emission_sd,
-                                                                        throughput,
-                                                                        state,
-                                                                        L);
-
-                                       /* indirect light bounce */
-                                       if(kernel_path_volume_bounce(kg,
-                                                                    rng,
-                                                                    sd,
-                                                                    &throughput,
-                                                                    state,
-                                                                    L,
-                                                                    ray))
-                                       {
-                                               continue;
-                                       }
-                                       else {
-                                               break;
-                                       }
-                               }
-#  endif  /* __VOLUME_SCATTER__ */
-                       }
+               /* Volume integration. */
+               VolumeIntegrateResult result = kernel_path_volume(kg,
+                                                                  sd,
+                                                                  state,
+                                                                  ray,
+                                                                  &throughput,
+                                                                  &isect,
+                                                                  hit,
+                                                                  emission_sd,
+                                                                  L);
+
+               if(result == VOLUME_PATH_SCATTERED) {
+                       continue;
+               }
+               else if(result == VOLUME_PATH_MISSED) {
+                       break;
                }
-#endif  /* __VOLUME__ */
+#endif /* __VOLUME__*/
 
+               /* Shade background. */
                if(!hit) {
-#ifdef __BACKGROUND__
-                       /* sample background shader */
-                       float3 L_background = indirect_background(kg, emission_sd, state, ray);
-                       path_radiance_accum_background(L,
-                                                      state,
-                                                      throughput,
-                                                      L_background);
-#endif  /* __BACKGROUND__ */
-
+                       kernel_path_background(kg, state, ray, throughput, sd, L);
                        break;
                }
-               else if(state->bounce > kernel_data.integrator.ao_bounces) {
+               else if(path_state_ao_bounce(kg, state)) {
                        break;
                }
 
-               /* setup shading */
+               /* Setup and evaluate shader. */
                shader_setup_from_ray(kg,
                                      sd,
                                      &isect,
                                      ray);
-               float rbsdf = path_state_rng_1D_for_decision(kg, rng, state, PRNG_BSDF);
-               shader_eval_surface(kg, sd, rng, state, rbsdf, state->flag, SHADER_CONTEXT_INDIRECT);
-#ifdef __BRANCHED_PATH__
-               shader_merge_closures(sd);
-#endif  /* __BRANCHED_PATH__ */
-
-#ifdef __SHADOW_TRICKS__
-               if(!(sd->object_flag & SD_OBJECT_SHADOW_CATCHER)) {
-                       state->flag &= ~PATH_RAY_SHADOW_CATCHER_ONLY;
-               }
-#endif  /* __SHADOW_TRICKS__ */
-
-               /* blurring of bsdf after bounces, for rays that have a small likelihood
-                * of following this particular path (diffuse, rough glossy) */
-               if(kernel_data.integrator.filter_glossy != FLT_MAX) {
-                       float blur_pdf = kernel_data.integrator.filter_glossy*state->min_ray_pdf;
-
-                       if(blur_pdf < 1.0f) {
-                               float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
-                               shader_bsdf_blur(kg, sd, blur_roughness);
-                       }
-               }
-
-#ifdef __EMISSION__
-               /* emission */
-               if(sd->flag & SD_EMISSION) {
-                       float3 emission = indirect_primitive_emission(kg,
-                                                                     sd,
-                                                                     isect.t,
-                                                                     state->flag,
-                                                                     state->ray_pdf);
-                       path_radiance_accum_emission(L, throughput, emission, state->bounce);
+               shader_eval_surface(kg, sd, state, state->flag, kernel_data.integrator.max_closures);
+               shader_prepare_closures(sd, state);
+
+               /* Apply shadow catcher, holdout, emission. */
+               if(!kernel_path_shader_apply(kg,
+                                            sd,
+                                            state,
+                                            ray,
+                                            throughput,
+                                            emission_sd,
+                                            L,
+                                            NULL))
+               {
+                       break;
                }
-#endif  /* __EMISSION__ */
 
                /* path termination. this is a strange place to put the termination, it's
                 * mainly due to the mixed in MIS that we use. gives too many unneeded
                 * shader evaluations, only need emission if we are going to terminate */
-               float probability =
-                       path_state_terminate_probability(kg,
-                                                        state,
-                                                        throughput*num_samples);
+               float probability = path_state_continuation_probability(kg, state, throughput);
 
                if(probability == 0.0f) {
                        break;
                }
                else if(probability != 1.0f) {
-                       float terminate = path_state_rng_1D_for_decision(kg, rng, state, PRNG_TERMINATE);
+                       float terminate = path_state_rng_1D(kg, state, PRNG_TERMINATE);
 
                        if(terminate >= probability)
                                break;
@@ -366,10 +476,12 @@ ccl_device void kernel_path_indirect(KernelGlobals *kg,
                        throughput /= probability;
                }
 
+               kernel_update_denoising_features(kg, sd, state, L);
+
 #ifdef __AO__
                /* ambient occlusion */
                if(kernel_data.integrator.use_ambient_occlusion || (sd->flag & SD_AO)) {
-                       kernel_path_ao(kg, sd, emission_sd, L, state, rng, throughput, make_float3(0.0f, 0.0f, 0.0f));
+                       kernel_path_ao(kg, sd, emission_sd, L, state, throughput, make_float3(0.0f, 0.0f, 0.0f));
                }
 #endif  /* __AO__ */
 
@@ -377,22 +489,18 @@ ccl_device void kernel_path_indirect(KernelGlobals *kg,
                /* bssrdf scatter to a different location on the same object, replacing
                 * the closures with a diffuse BSDF */
                if(sd->flag & SD_BSSRDF) {
-                       float bssrdf_probability;
-                       ShaderClosure *sc = subsurface_scatter_pick_closure(kg, sd, &bssrdf_probability);
+                       float bssrdf_u, bssrdf_v;
+                       path_state_rng_2D(kg,
+                                         state,
+                                         PRNG_BSDF_U,
+                                         &bssrdf_u, &bssrdf_v);
 
-                       /* modify throughput for picking bssrdf or bsdf */
-                       throughput *= bssrdf_probability;
+                       const ShaderClosure *sc = shader_bssrdf_pick(sd, &throughput, &bssrdf_u);
 
                        /* do bssrdf scatter step if we picked a bssrdf closure */
                        if(sc) {
-                               uint lcg_state = lcg_state_init(rng, state->rng_offset, state->sample, 0x68bc21eb);
-
-                               float bssrdf_u, bssrdf_v;
-                               path_state_rng_2D(kg,
-                                                 rng,
-                                                 state,
-                                                 PRNG_BSDF_U,
-                                                 &bssrdf_u, &bssrdf_v);
+                               uint lcg_state = lcg_state_init(state, 0x68bc21eb);
+
                                subsurface_scatter_step(kg,
                                                        sd,
                                                        state,
@@ -405,12 +513,11 @@ ccl_device void kernel_path_indirect(KernelGlobals *kg,
                }
 #endif  /* __SUBSURFACE__ */
 
-#if defined(__EMISSION__) && defined(__BRANCHED_PATH__)
+#if defined(__EMISSION__)
                if(kernel_data.integrator.use_direct_light) {
                        int all = (kernel_data.integrator.sample_all_lights_indirect) ||
                                  (state->flag & PATH_RAY_SHADOW_CATCHER);
                        kernel_branched_path_surface_connect_light(kg,
-                                                                  rng,
                                                                   sd,
                                                                   emission_sd,
                                                                   state,
@@ -419,39 +526,26 @@ ccl_device void kernel_path_indirect(KernelGlobals *kg,
                                                                   L,
                                                                   all);
                }
-#endif  /* defined(__EMISSION__) && defined(__BRANCHED_PATH__) */
+#endif  /* defined(__EMISSION__) */
 
-               if(!kernel_path_surface_bounce(kg, rng, sd, &throughput, state, L, ray))
+               if(!kernel_path_surface_bounce(kg, sd, &throughput, state, &L->state, ray))
                        break;
        }
 }
 
+#endif /* defined(__BRANCHED_PATH__) || defined(__BAKING__) */
 
-ccl_device_inline float4 kernel_path_integrate(KernelGlobals *kg,
-                                               RNG *rng,
-                                               int sample,
-                                               Ray ray,
-                                               ccl_global float *buffer)
+ccl_device_forceinline void kernel_path_integrate(
+       KernelGlobals *kg,
+       PathState *state,
+       float3 throughput,
+       Ray *ray,
+       PathRadiance *L,
+       ccl_global float *buffer,
+       ShaderData *emission_sd)
 {
-       /* initialize */
-       PathRadiance L;
-       float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
-       float L_transparent = 0.0f;
-
-       path_radiance_init(&L, kernel_data.film.use_light_pass);
-
-       /* shader data memory used for both volumes and surfaces, saves stack space */
+       /* Shader data memory used for both volumes and surfaces, saves stack space. */
        ShaderData sd;
-       /* shader data used by emission, shadows, volume stacks */
-       ShaderData emission_sd;
-
-       PathState state;
-       path_state_init(kg, &emission_sd, &state, rng, sample, &ray);
-
-#ifdef __KERNEL_DEBUG__
-       DebugData debug_data;
-       debug_data_init(&debug_data);
-#endif  /* __KERNEL_DEBUG__ */
 
 #ifdef __SUBSURFACE__
        SubsurfaceIndirectRays ss_indirect;
@@ -462,263 +556,82 @@ ccl_device_inline float4 kernel_path_integrate(KernelGlobals *kg,
 
        /* path iteration */
        for(;;) {
-               /* intersect scene */
+               /* Find intersection with objects in scene. */
                Intersection isect;
-               uint visibility = path_state_ray_visibility(kg, &state);
-
-#ifdef __HAIR__
-               float difl = 0.0f, extmax = 0.0f;
-               uint lcg_state = 0;
-
-               if(kernel_data.bvh.have_curves) {
-                       if((kernel_data.cam.resolution == 1) && (state.flag & PATH_RAY_CAMERA)) {       
-                               float3 pixdiff = ray.dD.dx + ray.dD.dy;
-                               /*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/
-                               difl = kernel_data.curve.minimum_width * len(pixdiff) * 0.5f;
-                       }
+               bool hit = kernel_path_scene_intersect(kg, state, ray, &isect, L);
 
-                       extmax = kernel_data.curve.maximum_width;
-                       lcg_state = lcg_state_init(rng, state.rng_offset, state.sample, 0x51633e2d);
-               }
-
-               if(state.bounce > kernel_data.integrator.ao_bounces) {
-                       visibility = PATH_RAY_SHADOW;
-                       ray.t = kernel_data.background.ao_distance;
-               }
-
-               bool hit = scene_intersect(kg, ray, visibility, &isect, &lcg_state, difl, extmax);
-#else
-               bool hit = scene_intersect(kg, ray, visibility, &isect, NULL, 0.0f, 0.0f);
-#endif  /* __HAIR__ */
-
-#ifdef __KERNEL_DEBUG__
-               if(state.flag & PATH_RAY_CAMERA) {
-                       debug_data.num_bvh_traversed_nodes += isect.num_traversed_nodes;
-                       debug_data.num_bvh_traversed_instances += isect.num_traversed_instances;
-                       debug_data.num_bvh_intersections += isect.num_intersections;
-               }
-               debug_data.num_ray_bounces++;
-#endif  /* __KERNEL_DEBUG__ */
-
-#ifdef __LAMP_MIS__
-               if(kernel_data.integrator.use_lamp_mis && !(state.flag & PATH_RAY_CAMERA)) {
-                       /* ray starting from previous non-transparent bounce */
-                       Ray light_ray;
-
-                       light_ray.P = ray.P - state.ray_t*ray.D;
-                       state.ray_t += isect.t;
-                       light_ray.D = ray.D;
-                       light_ray.t = state.ray_t;
-                       light_ray.time = ray.time;
-                       light_ray.dD = ray.dD;
-                       light_ray.dP = ray.dP;
-
-                       /* intersect with lamp */
-                       float3 emission;
-
-                       if(indirect_lamp_emission(kg, &emission_sd, &state, &light_ray, &emission))
-                               path_radiance_accum_emission(&L, throughput, emission, state.bounce);
-               }
-#endif  /* __LAMP_MIS__ */
+               /* Find intersection with lamps and compute emission for MIS. */
+               kernel_path_lamp_emission(kg, state, ray, throughput, &isect, &sd, L);
 
 #ifdef __VOLUME__
-               /* Sanitize volume stack. */
-               if(!hit) {
-                       kernel_volume_clean_stack(kg, state.volume_stack);
-               }
-               /* volume attenuation, emission, scatter */
-               if(state.volume_stack[0].shader != SHADER_NONE) {
-                       Ray volume_ray = ray;
-                       volume_ray.t = (hit)? isect.t: FLT_MAX;
-
-                       bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack);
-
-#  ifdef __VOLUME_DECOUPLED__
-                       int sampling_method = volume_stack_sampling_method(kg, state.volume_stack);
-                       bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, true, sampling_method);
-
-                       if(decoupled) {
-                               /* cache steps along volume for repeated sampling */
-                               VolumeSegment volume_segment;
-
-                               shader_setup_from_volume(kg, &sd, &volume_ray);
-                               kernel_volume_decoupled_record(kg, &state,
-                                       &volume_ray, &sd, &volume_segment, heterogeneous);
-
-                               volume_segment.sampling_method = sampling_method;
-
-                               /* emission */
-                               if(volume_segment.closure_flag & SD_EMISSION)
-                                       path_radiance_accum_emission(&L, throughput, volume_segment.accum_emission, state.bounce);
-
-                               /* scattering */
-                               VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
-
-                               if(volume_segment.closure_flag & SD_SCATTER) {
-                                       int all = false;
-
-                                       /* direct light sampling */
-                                       kernel_branched_path_volume_connect_light(kg, rng, &sd,
-                                               &emission_sd, throughput, &state, &L, all,
-                                               &volume_ray, &volume_segment);
-
-                                       /* indirect sample. if we use distance sampling and take just
-                                        * one sample for direct and indirect light, we could share
-                                        * this computation, but makes code a bit complex */
-                                       float rphase = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_PHASE);
-                                       float rscatter = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_SCATTER_DISTANCE);
-
-                                       result = kernel_volume_decoupled_scatter(kg,
-                                               &state, &volume_ray, &sd, &throughput,
-                                               rphase, rscatter, &volume_segment, NULL, true);
-                               }
-
-                               /* free cached steps */
-                               kernel_volume_decoupled_free(kg, &volume_segment);
-
-                               if(result == VOLUME_PATH_SCATTERED) {
-                                       if(kernel_path_volume_bounce(kg, rng, &sd, &throughput, &state, &L, &ray))
-                                               continue;
-                                       else
-                                               break;
-                               }
-                               else {
-                                       throughput *= volume_segment.accum_transmittance;
-                               }
-                       }
-                       else
-#  endif  /* __VOLUME_DECOUPLED__ */
-                       {
-                               /* integrate along volume segment with distance sampling */
-                               VolumeIntegrateResult result = kernel_volume_integrate(
-                                       kg, &state, &sd, &volume_ray, &L, &throughput, rng, heterogeneous);
-
-#  ifdef __VOLUME_SCATTER__
-                               if(result == VOLUME_PATH_SCATTERED) {
-                                       /* direct lighting */
-                                       kernel_path_volume_connect_light(kg, rng, &sd, &emission_sd, throughput, &state, &L);
-
-                                       /* indirect light bounce */
-                                       if(kernel_path_volume_bounce(kg, rng, &sd, &throughput, &state, &L, &ray))
-                                               continue;
-                                       else
-                                               break;
-                               }
-#  endif  /* __VOLUME_SCATTER__ */
-                       }
+               /* Volume integration. */
+               VolumeIntegrateResult result = kernel_path_volume(kg,
+                                                                  &sd,
+                                                                  state,
+                                                                  ray,
+                                                                  &throughput,
+                                                                  &isect,
+                                                                  hit,
+                                                                  emission_sd,
+                                                                  L);
+
+               if(result == VOLUME_PATH_SCATTERED) {
+                       continue;
+               }
+               else if(result == VOLUME_PATH_MISSED) {
+                       break;
                }
-#endif  /* __VOLUME__ */
+#endif /* __VOLUME__*/
 
+               /* Shade background. */
                if(!hit) {
-                       /* eval background shader if nothing hit */
-                       if(kernel_data.background.transparent && (state.flag & PATH_RAY_CAMERA)) {
-                               L_transparent += average(throughput);
-
-#ifdef __PASSES__
-                               if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
-#endif  /* __PASSES__ */
-                                       break;
-                       }
-
-#ifdef __BACKGROUND__
-                       /* sample background shader */
-                       float3 L_background = indirect_background(kg, &emission_sd, &state, &ray);
-                       path_radiance_accum_background(&L, &state, throughput, L_background);
-#endif  /* __BACKGROUND__ */
-
+                       kernel_path_background(kg, state, ray, throughput, &sd, L);
                        break;
                }
-               else if(state.bounce > kernel_data.integrator.ao_bounces) {
+               else if(path_state_ao_bounce(kg, state)) {
                        break;
                }
 
-               /* setup shading */
-               shader_setup_from_ray(kg, &sd, &isect, &ray);
-               float rbsdf = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_BSDF);
-               shader_eval_surface(kg, &sd, rng, &state, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
-
-#ifdef __SHADOW_TRICKS__
-               if((sd.object_flag & SD_OBJECT_SHADOW_CATCHER)) {
-                       if(state.flag & PATH_RAY_CAMERA) {
-                               state.flag |= (PATH_RAY_SHADOW_CATCHER | PATH_RAY_SHADOW_CATCHER_ONLY);
-                               state.catcher_object = sd.object;
-                               if(!kernel_data.background.transparent) {
-                                       L.shadow_color = indirect_background(kg, &emission_sd, &state, &ray);
-                               }
-                       }
-               }
-               else {
-                       state.flag &= ~PATH_RAY_SHADOW_CATCHER_ONLY;
-               }
-#endif  /* __SHADOW_TRICKS__ */
-
-               /* holdout */
-#ifdef __HOLDOUT__
-               if(((sd.flag & SD_HOLDOUT) ||
-                   (sd.object_flag & SD_OBJECT_HOLDOUT_MASK)) &&
-                  (state.flag & PATH_RAY_CAMERA))
+               /* Setup and evaluate shader. */
+               shader_setup_from_ray(kg, &sd, &isect, ray);
+               shader_eval_surface(kg, &sd, state, state->flag, kernel_data.integrator.max_closures);
+               shader_prepare_closures(&sd, state);
+
+               /* Apply shadow catcher, holdout, emission. */
+               if(!kernel_path_shader_apply(kg,
+                                            &sd,
+                                            state,
+                                            ray,
+                                            throughput,
+                                            emission_sd,
+                                            L,
+                                            buffer))
                {
-                       if(kernel_data.background.transparent) {
-                               float3 holdout_weight;
-                               if(sd.object_flag & SD_OBJECT_HOLDOUT_MASK) {
-                                       holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
-                               }
-                               else {
-                                       holdout_weight = shader_holdout_eval(kg, &sd);
-                               }
-                               /* any throughput is ok, should all be identical here */
-                               L_transparent += average(holdout_weight*throughput);
-                       }
-
-                       if(sd.object_flag & SD_OBJECT_HOLDOUT_MASK) {
-                               break;
-                       }
-               }
-#endif  /* __HOLDOUT__ */
-
-               /* holdout mask objects do not write data passes */
-               kernel_write_data_passes(kg, buffer, &L, &sd, sample, &state, throughput);
-
-               /* blurring of bsdf after bounces, for rays that have a small likelihood
-                * of following this particular path (diffuse, rough glossy) */
-               if(kernel_data.integrator.filter_glossy != FLT_MAX) {
-                       float blur_pdf = kernel_data.integrator.filter_glossy*state.min_ray_pdf;
-
-                       if(blur_pdf < 1.0f) {
-                               float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
-                               shader_bsdf_blur(kg, &sd, blur_roughness);
-                       }
-               }
-
-#ifdef __EMISSION__
-               /* emission */
-               if(sd.flag & SD_EMISSION) {
-                       /* todo: is isect.t wrong here for transparent surfaces? */
-                       float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, state.ray_pdf);
-                       path_radiance_accum_emission(&L, throughput, emission, state.bounce);
+                       break;
                }
-#endif  /* __EMISSION__ */
 
                /* path termination. this is a strange place to put the termination, it's
                 * mainly due to the mixed in MIS that we use. gives too many unneeded
                 * shader evaluations, only need emission if we are going to terminate */
-               float probability = path_state_terminate_probability(kg, &state, throughput);
+               float probability = path_state_continuation_probability(kg, state, throughput);
 
                if(probability == 0.0f) {
                        break;
                }
                else if(probability != 1.0f) {
-                       float terminate = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_TERMINATE);
+                       float terminate = path_state_rng_1D(kg, state, PRNG_TERMINATE);
                        if(terminate >= probability)
                                break;
 
                        throughput /= probability;
                }
 
+               kernel_update_denoising_features(kg, &sd, state, L);
+
 #ifdef __AO__
                /* ambient occlusion */
                if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
-                       kernel_path_ao(kg, &sd, &emission_sd, &L, &state, rng, throughput, shader_bsdf_alpha(kg, &sd));
+                       kernel_path_ao(kg, &sd, emission_sd, L, state, throughput, shader_bsdf_alpha(kg, &sd));
                }
 #endif  /* __AO__ */
 
@@ -728,11 +641,10 @@ ccl_device_inline float4 kernel_path_integrate(KernelGlobals *kg,
                if(sd.flag & SD_BSSRDF) {
                        if(kernel_path_subsurface_scatter(kg,
                                                          &sd,
-                                                         &emission_sd,
-                                                         &L,
-                                                         &state,
-                                                         rng,
-                                                         &ray,
+                                                         emission_sd,
+                                                         L,
+                                                         state,
+                                                         ray,
                                                          &throughput,
                                                          &ss_indirect))
                        {
@@ -742,25 +654,23 @@ ccl_device_inline float4 kernel_path_integrate(KernelGlobals *kg,
 #endif  /* __SUBSURFACE__ */
 
                /* direct lighting */
-               kernel_path_surface_connect_light(kg, rng, &sd, &emission_sd, throughput, &state, &L);
+               kernel_path_surface_connect_light(kg, &sd, emission_sd, throughput, state, L);
 
                /* compute direct lighting and next bounce */
-               if(!kernel_path_surface_bounce(kg, rng, &sd, &throughput, &state, &L, &ray))
+               if(!kernel_path_surface_bounce(kg, &sd, &throughput, state, &L->state, ray))
                        break;
        }
 
 #ifdef __SUBSURFACE__
-               kernel_path_subsurface_accum_indirect(&ss_indirect, &L);
-
                /* Trace indirect subsurface rays by restarting the loop. this uses less
                 * stack memory than invoking kernel_path_indirect.
                 */
                if(ss_indirect.num_rays) {
                        kernel_path_subsurface_setup_indirect(kg,
                                                              &ss_indirect,
-                                                             &state,
-                                                             &ray,
-                                                             &L,
+                                                             state,
+                                                             ray,
+                                                             L,
                                                              &throughput);
                }
                else {
@@ -768,56 +678,50 @@ ccl_device_inline float4 kernel_path_integrate(KernelGlobals *kg,
                }
        }
 #endif  /* __SUBSURFACE__ */
-
-       float3 L_sum;
-#ifdef __SHADOW_TRICKS__
-       if(state.flag & PATH_RAY_SHADOW_CATCHER) {
-               L_sum = path_radiance_sum_shadowcatcher(kg, &L, &L_transparent);
-       }
-       else
-#endif  /* __SHADOW_TRICKS__ */
-       {
-               L_sum = path_radiance_clamp_and_sum(kg, &L);
-       }
-
-       kernel_write_light_passes(kg, buffer, &L, sample);
-
-#ifdef __KERNEL_DEBUG__
-       kernel_write_debug_passes(kg, buffer, &state, &debug_data, sample);
-#endif  /* __KERNEL_DEBUG__ */
-
-       return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent);
 }
 
 ccl_device void kernel_path_trace(KernelGlobals *kg,
-       ccl_global float *buffer, ccl_global uint *rng_state,
+       ccl_global float *buffer,
        int sample, int x, int y, int offset, int stride)
 {
        /* buffer offset */
        int index = offset + x + y*stride;
        int pass_stride = kernel_data.film.pass_stride;
 
-       rng_state += index;
        buffer += index*pass_stride;
 
-       /* initialize random numbers and ray */
-       RNG rng;
+       /* Initialize random numbers and sample ray. */
+       uint rng_hash;
        Ray ray;
 
-       kernel_path_trace_setup(kg, rng_state, sample, x, y, &rng, &ray);
+       kernel_path_trace_setup(kg, sample, x, y, &rng_hash, &ray);
 
-       /* integrate */
-       float4 L;
+       if(ray.t == 0.0f) {
+               return;
+       }
 
-       if(ray.t != 0.0f)
-               L = kernel_path_integrate(kg, &rng, sample, ray, buffer);
-       else
-               L = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+       /* Initialize state. */
+       float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
 
-       /* accumulate result in output buffer */
-       kernel_write_pass_float4(buffer, sample, L);
+       PathRadiance L;
+       path_radiance_init(&L, kernel_data.film.use_light_pass);
+
+       ShaderDataTinyStorage emission_sd_storage;
+       ShaderData *emission_sd = AS_SHADER_DATA(&emission_sd_storage);
 
-       path_rng_end(kg, rng_state, rng);
+       PathState state;
+       path_state_init(kg, emission_sd, &state, rng_hash, sample, &ray);
+
+       /* Integrate. */
+       kernel_path_integrate(kg,
+                             &state,
+                             throughput,
+                             &ray,
+                             &L,
+                             buffer,
+                             emission_sd);
+
+       kernel_write_result(kg, buffer, sample, &L);
 }
 
 #endif  /* __SPLIT_KERNEL__ */