--- /dev/null
+#
+# Filename : ChainingIterators.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Chaining Iterators to be used with chaining operators
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+
+## the natural chaining iterator
+## It follows the edges of same nature following the topology of
+## objects with preseance on silhouettes, then borders,
+## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
+## You can specify whether to stay in the selection or not.
+class pyChainSilhouetteIterator(ChainingIterator):
+ def __init__(self, stayInSelection=1):
+ ChainingIterator.__init__(self, stayInSelection, 1,None,1)
+ def getExactTypeName(self):
+ return "pyChainSilhouetteIterator"
+ def init(self):
+ pass
+ def traverse(self, iter):
+ winner = None
+ it = AdjacencyIterator(iter)
+ tvertex = self.getVertex()
+ if type(tvertex) is TVertex:
+ mateVE = tvertex.mate(self.getCurrentEdge())
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ if(ve.getId() == mateVE.getId() ):
+ winner = ve
+ break
+ it.increment()
+ else:
+ ## case of NonTVertex
+ natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
+ for i in range(len(natures)):
+ currentNature = self.getCurrentEdge().getNature()
+ if(natures[i] & currentNature):
+ count=0
+ while(it.isEnd() == 0):
+ visitNext = 0
+ oNature = it.getObject().getNature()
+ if(oNature & natures[i] != 0):
+ if(natures[i] != oNature):
+ for j in range(i):
+ if(natures[j] & oNature != 0):
+ visitNext = 1
+ break
+ if(visitNext != 0):
+ break
+ count = count+1
+ winner = it.getObject()
+ it.increment()
+ if(count != 1):
+ winner = None
+ break
+ return winner
+
+## the natural chaining iterator
+## It follows the edges of same nature on the same
+## objects with preseance on silhouettes, then borders,
+## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
+## You can specify whether to stay in the selection or not.
+## You can specify whether to chain iterate over edges that were
+## already visited or not.
+class pyChainSilhouetteGenericIterator(ChainingIterator):
+ def __init__(self, stayInSelection=1, stayInUnvisited=1):
+ ChainingIterator.__init__(self, stayInSelection, stayInUnvisited,None,1)
+ def getExactTypeName(self):
+ return "pyChainSilhouetteGenericIterator"
+ def init(self):
+ pass
+ def traverse(self, iter):
+ winner = None
+ it = AdjacencyIterator(iter)
+ tvertex = self.getVertex()
+ if type(tvertex) is TVertex:
+ mateVE = tvertex.mate(self.getCurrentEdge())
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ if(ve.getId() == mateVE.getId() ):
+ winner = ve
+ break
+ it.increment()
+ else:
+ ## case of NonTVertex
+ natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
+ for i in range(len(natures)):
+ currentNature = self.getCurrentEdge().getNature()
+ if(natures[i] & currentNature):
+ count=0
+ while(it.isEnd() == 0):
+ visitNext = 0
+ oNature = it.getObject().getNature()
+ ve = it.getObject()
+ if(ve.getId() == self.getCurrentEdge().getId()):
+ it.increment()
+ continue
+ if(oNature & natures[i] != 0):
+ if(natures[i] != oNature):
+ for j in range(i):
+ if(natures[j] & oNature != 0):
+ visitNext = 1
+ break
+ if(visitNext != 0):
+ break
+ count = count+1
+ winner = ve
+ it.increment()
+ if(count != 1):
+ winner = None
+ break
+ return winner
+
+class pyExternalContourChainingIterator(ChainingIterator):
+ def __init__(self):
+ ChainingIterator.__init__(self, 0, 1,None,1)
+ self._isExternalContour = ExternalContourUP1D()
+
+ def getExactTypeName(self):
+ return "pyExternalContourIterator"
+
+ def init(self):
+ self._nEdges = 0
+ self._isInSelection = 1
+
+ def checkViewEdge(self, ve, orientation):
+ if(orientation != 0):
+ vertex = ve.B()
+ else:
+ vertex = ve.A()
+ it = AdjacencyIterator(vertex,1,1)
+ while(it.isEnd() == 0):
+ ave = it.getObject()
+ if(self._isExternalContour(ave)):
+ return 1
+ it.increment()
+ print("pyExternlContourChainingIterator : didn't find next edge")
+ return 0
+ def traverse(self, iter):
+ winner = None
+ it = AdjacencyIterator(iter)
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ if(self._isExternalContour(ve)):
+ if (ve.getTimeStamp() == GetTimeStampCF()):
+ winner = ve
+ it.increment()
+
+ self._nEdges = self._nEdges+1
+ if(winner == None):
+ orient = 1
+ it = AdjacencyIterator(iter)
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ if(it.isIncoming() != 0):
+ orient = 0
+ good = self.checkViewEdge(ve,orient)
+ if(good != 0):
+ winner = ve
+ it.increment()
+ return winner
+
+## the natural chaining iterator
+## with a sketchy multiple touch
+class pySketchyChainSilhouetteIterator(ChainingIterator):
+ def __init__(self, nRounds=3,stayInSelection=1):
+ ChainingIterator.__init__(self, stayInSelection, 0,None,1)
+ self._timeStamp = GetTimeStampCF()+nRounds
+ self._nRounds = nRounds
+ def getExactTypeName(self):
+ return "pySketchyChainSilhouetteIterator"
+ def init(self):
+ self._timeStamp = GetTimeStampCF()+self._nRounds
+ def traverse(self, iter):
+ winner = None
+ it = AdjacencyIterator(iter)
+ tvertex = self.getVertex()
+ if type(tvertex) is TVertex:
+ mateVE = tvertex.mate(self.getCurrentEdge())
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ if(ve.getId() == mateVE.getId() ):
+ winner = ve
+ break
+ it.increment()
+ else:
+ ## case of NonTVertex
+ natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
+ for i in range(len(natures)):
+ currentNature = self.getCurrentEdge().getNature()
+ if(natures[i] & currentNature):
+ count=0
+ while(it.isEnd() == 0):
+ visitNext = 0
+ oNature = it.getObject().getNature()
+ ve = it.getObject()
+ if(ve.getId() == self.getCurrentEdge().getId()):
+ it.increment()
+ continue
+ if(oNature & natures[i] != 0):
+ if(natures[i] != oNature):
+ for j in range(i):
+ if(natures[j] & oNature != 0):
+ visitNext = 1
+ break
+ if(visitNext != 0):
+ break
+ count = count+1
+ winner = ve
+ it.increment()
+ if(count != 1):
+ winner = None
+ break
+ if(winner == None):
+ winner = self.getCurrentEdge()
+ if(winner.getChainingTimeStamp() == self._timeStamp):
+ winner = None
+ return winner
+
+
+# Chaining iterator designed for sketchy style.
+# can chain several times the same ViewEdge
+# in order to produce multiple strokes per ViewEdge.
+class pySketchyChainingIterator(ChainingIterator):
+ def __init__(self, nRounds=3, stayInSelection=1):
+ ChainingIterator.__init__(self, stayInSelection, 0,None,1)
+ self._timeStamp = GetTimeStampCF()+nRounds
+ self._nRounds = nRounds
+ def getExactTypeName(self):
+ return "pySketchyChainingIterator"
+
+ def init(self):
+ self._timeStamp = GetTimeStampCF()+self._nRounds
+
+ def traverse(self, iter):
+ winner = None
+ it = AdjacencyIterator(iter)
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ if(ve.getId() == self.getCurrentEdge().getId()):
+ it.increment()
+ continue
+ winner = ve
+ it.increment()
+ if(winner == None):
+ winner = self.getCurrentEdge()
+ if(winner.getChainingTimeStamp() == self._timeStamp):
+ return None
+ return winner
+
+
+## Chaining iterator that fills small occlusions
+## percent
+## The max length of the occluded part
+## expressed in % of the total chain length
+class pyFillOcclusionsRelativeChainingIterator(ChainingIterator):
+ def __init__(self, percent):
+ ChainingIterator.__init__(self, 0, 1,None,1)
+ self._length = 0
+ self._percent = float(percent)
+ def getExactTypeName(self):
+ return "pyFillOcclusionsChainingIterator"
+ def init(self):
+ # each time we're evaluating a chain length
+ # we try to do it once. Thus we reinit
+ # the chain length here:
+ self._length = 0
+ def traverse(self, iter):
+ winner = None
+ winnerOrientation = 0
+ print(self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond())
+ it = AdjacencyIterator(iter)
+ tvertex = self.getVertex()
+ if type(tvertex) is TVertex:
+ mateVE = tvertex.mate(self.getCurrentEdge())
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ if(ve.getId() == mateVE.getId() ):
+ winner = ve
+ if(it.isIncoming() == 0):
+ winnerOrientation = 1
+ else:
+ winnerOrientation = 0
+ break
+ it.increment()
+ else:
+ ## case of NonTVertex
+ natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
+ for nat in natures:
+ if(self.getCurrentEdge().getNature() & nat != 0):
+ count=0
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ if(ve.getNature() & nat != 0):
+ count = count+1
+ winner = ve
+ if(it.isIncoming() == 0):
+ winnerOrientation = 1
+ else:
+ winnerOrientation = 0
+ it.increment()
+ if(count != 1):
+ winner = None
+ break
+ if(winner != None):
+ # check whether this edge was part of the selection
+ if(winner.getTimeStamp() != GetTimeStampCF()):
+ #print("---", winner.getId().getFirst(), winner.getId().getSecond())
+ # if not, let's check whether it's short enough with
+ # respect to the chain made without staying in the selection
+ #------------------------------------------------------------
+ # Did we compute the prospective chain length already ?
+ if(self._length == 0):
+ #if not, let's do it
+ _it = pyChainSilhouetteGenericIterator(0,0)
+ _it.setBegin(winner)
+ _it.setCurrentEdge(winner)
+ _it.setOrientation(winnerOrientation)
+ _it.init()
+ while(_it.isEnd() == 0):
+ ve = _it.getObject()
+ #print("--------", ve.getId().getFirst(), ve.getId().getSecond())
+ self._length = self._length + ve.getLength2D()
+ _it.increment()
+ if(_it.isBegin() != 0):
+ break;
+ _it.setBegin(winner)
+ _it.setCurrentEdge(winner)
+ _it.setOrientation(winnerOrientation)
+ if(_it.isBegin() == 0):
+ _it.decrement()
+ while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
+ ve = _it.getObject()
+ #print("--------", ve.getId().getFirst(), ve.getId().getSecond())
+ self._length = self._length + ve.getLength2D()
+ _it.decrement()
+
+ # let's do the comparison:
+ # nw let's compute the length of this connex non selected part:
+ connexl = 0
+ _cit = pyChainSilhouetteGenericIterator(0,0)
+ _cit.setBegin(winner)
+ _cit.setCurrentEdge(winner)
+ _cit.setOrientation(winnerOrientation)
+ _cit.init()
+ while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
+ ve = _cit.getObject()
+ #print("-------- --------", ve.getId().getFirst(), ve.getId().getSecond())
+ connexl = connexl + ve.getLength2D()
+ _cit.increment()
+ if(connexl > self._percent * self._length):
+ winner = None
+ return winner
+
+## Chaining iterator that fills small occlusions
+## size
+## The max length of the occluded part
+## expressed in pixels
+class pyFillOcclusionsAbsoluteChainingIterator(ChainingIterator):
+ def __init__(self, length):
+ ChainingIterator.__init__(self, 0, 1,None,1)
+ self._length = float(length)
+ def getExactTypeName(self):
+ return "pySmallFillOcclusionsChainingIterator"
+ def init(self):
+ pass
+ def traverse(self, iter):
+ winner = None
+ winnerOrientation = 0
+ #print(self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond())
+ it = AdjacencyIterator(iter)
+ tvertex = self.getVertex()
+ if type(tvertex) is TVertex:
+ mateVE = tvertex.mate(self.getCurrentEdge())
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ if(ve.getId() == mateVE.getId() ):
+ winner = ve
+ if(it.isIncoming() == 0):
+ winnerOrientation = 1
+ else:
+ winnerOrientation = 0
+ break
+ it.increment()
+ else:
+ ## case of NonTVertex
+ natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
+ for nat in natures:
+ if(self.getCurrentEdge().getNature() & nat != 0):
+ count=0
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ if(ve.getNature() & nat != 0):
+ count = count+1
+ winner = ve
+ if(it.isIncoming() == 0):
+ winnerOrientation = 1
+ else:
+ winnerOrientation = 0
+ it.increment()
+ if(count != 1):
+ winner = None
+ break
+ if(winner != None):
+ # check whether this edge was part of the selection
+ if(winner.getTimeStamp() != GetTimeStampCF()):
+ #print("---", winner.getId().getFirst(), winner.getId().getSecond())
+ # nw let's compute the length of this connex non selected part:
+ connexl = 0
+ _cit = pyChainSilhouetteGenericIterator(0,0)
+ _cit.setBegin(winner)
+ _cit.setCurrentEdge(winner)
+ _cit.setOrientation(winnerOrientation)
+ _cit.init()
+ while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
+ ve = _cit.getObject()
+ #print("-------- --------", ve.getId().getFirst(), ve.getId().getSecond())
+ connexl = connexl + ve.getLength2D()
+ _cit.increment()
+ if(connexl > self._length):
+ winner = None
+ return winner
+
+
+## Chaining iterator that fills small occlusions
+## percent
+## The max length of the occluded part
+## expressed in % of the total chain length
+class pyFillOcclusionsAbsoluteAndRelativeChainingIterator(ChainingIterator):
+ def __init__(self, percent, l):
+ ChainingIterator.__init__(self, 0, 1,None,1)
+ self._length = 0
+ self._absLength = l
+ self._percent = float(percent)
+ def getExactTypeName(self):
+ return "pyFillOcclusionsChainingIterator"
+ def init(self):
+ # each time we're evaluating a chain length
+ # we try to do it once. Thus we reinit
+ # the chain length here:
+ self._length = 0
+ def traverse(self, iter):
+ winner = None
+ winnerOrientation = 0
+ print(self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond())
+ it = AdjacencyIterator(iter)
+ tvertex = self.getVertex()
+ if type(tvertex) is TVertex:
+ mateVE = tvertex.mate(self.getCurrentEdge())
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ if(ve.getId() == mateVE.getId() ):
+ winner = ve
+ if(it.isIncoming() == 0):
+ winnerOrientation = 1
+ else:
+ winnerOrientation = 0
+ break
+ it.increment()
+ else:
+ ## case of NonTVertex
+ natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
+ for nat in natures:
+ if(self.getCurrentEdge().getNature() & nat != 0):
+ count=0
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ if(ve.getNature() & nat != 0):
+ count = count+1
+ winner = ve
+ if(it.isIncoming() == 0):
+ winnerOrientation = 1
+ else:
+ winnerOrientation = 0
+ it.increment()
+ if(count != 1):
+ winner = None
+ break
+ if(winner != None):
+ # check whether this edge was part of the selection
+ if(winner.getTimeStamp() != GetTimeStampCF()):
+ #print("---", winner.getId().getFirst(), winner.getId().getSecond())
+ # if not, let's check whether it's short enough with
+ # respect to the chain made without staying in the selection
+ #------------------------------------------------------------
+ # Did we compute the prospective chain length already ?
+ if(self._length == 0):
+ #if not, let's do it
+ _it = pyChainSilhouetteGenericIterator(0,0)
+ _it.setBegin(winner)
+ _it.setCurrentEdge(winner)
+ _it.setOrientation(winnerOrientation)
+ _it.init()
+ while(_it.isEnd() == 0):
+ ve = _it.getObject()
+ #print("--------", ve.getId().getFirst(), ve.getId().getSecond())
+ self._length = self._length + ve.getLength2D()
+ _it.increment()
+ if(_it.isBegin() != 0):
+ break;
+ _it.setBegin(winner)
+ _it.setCurrentEdge(winner)
+ _it.setOrientation(winnerOrientation)
+ if(_it.isBegin() == 0):
+ _it.decrement()
+ while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
+ ve = _it.getObject()
+ #print("--------", ve.getId().getFirst(), ve.getId().getSecond())
+ self._length = self._length + ve.getLength2D()
+ _it.decrement()
+
+ # let's do the comparison:
+ # nw let's compute the length of this connex non selected part:
+ connexl = 0
+ _cit = pyChainSilhouetteGenericIterator(0,0)
+ _cit.setBegin(winner)
+ _cit.setCurrentEdge(winner)
+ _cit.setOrientation(winnerOrientation)
+ _cit.init()
+ while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
+ ve = _cit.getObject()
+ #print("-------- --------", ve.getId().getFirst(), ve.getId().getSecond())
+ connexl = connexl + ve.getLength2D()
+ _cit.increment()
+ if((connexl > self._percent * self._length) or (connexl > self._absLength)):
+ winner = None
+ return winner
+
+## Chaining iterator that fills small occlusions without caring about the
+## actual selection
+## percent
+## The max length of the occluded part
+## expressed in % of the total chain length
+class pyFillQi0AbsoluteAndRelativeChainingIterator(ChainingIterator):
+ def __init__(self, percent, l):
+ ChainingIterator.__init__(self, 0, 1,None,1)
+ self._length = 0
+ self._absLength = l
+ self._percent = float(percent)
+ def getExactTypeName(self):
+ return "pyFillOcclusionsChainingIterator"
+ def init(self):
+ # each time we're evaluating a chain length
+ # we try to do it once. Thus we reinit
+ # the chain length here:
+ self._length = 0
+ def traverse(self, iter):
+ winner = None
+ winnerOrientation = 0
+ print(self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond())
+ it = AdjacencyIterator(iter)
+ tvertex = self.getVertex()
+ if type(tvertex) is TVertex:
+ mateVE = tvertex.mate(self.getCurrentEdge())
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ if(ve.getId() == mateVE.getId() ):
+ winner = ve
+ if(it.isIncoming() == 0):
+ winnerOrientation = 1
+ else:
+ winnerOrientation = 0
+ break
+ it.increment()
+ else:
+ ## case of NonTVertex
+ natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
+ for nat in natures:
+ if(self.getCurrentEdge().getNature() & nat != 0):
+ count=0
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ if(ve.getNature() & nat != 0):
+ count = count+1
+ winner = ve
+ if(it.isIncoming() == 0):
+ winnerOrientation = 1
+ else:
+ winnerOrientation = 0
+ it.increment()
+ if(count != 1):
+ winner = None
+ break
+ if(winner != None):
+ # check whether this edge was part of the selection
+ if(winner.qi() != 0):
+ #print("---", winner.getId().getFirst(), winner.getId().getSecond())
+ # if not, let's check whether it's short enough with
+ # respect to the chain made without staying in the selection
+ #------------------------------------------------------------
+ # Did we compute the prospective chain length already ?
+ if(self._length == 0):
+ #if not, let's do it
+ _it = pyChainSilhouetteGenericIterator(0,0)
+ _it.setBegin(winner)
+ _it.setCurrentEdge(winner)
+ _it.setOrientation(winnerOrientation)
+ _it.init()
+ while(_it.isEnd() == 0):
+ ve = _it.getObject()
+ #print("--------", ve.getId().getFirst(), ve.getId().getSecond())
+ self._length = self._length + ve.getLength2D()
+ _it.increment()
+ if(_it.isBegin() != 0):
+ break;
+ _it.setBegin(winner)
+ _it.setCurrentEdge(winner)
+ _it.setOrientation(winnerOrientation)
+ if(_it.isBegin() == 0):
+ _it.decrement()
+ while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
+ ve = _it.getObject()
+ #print("--------", ve.getId().getFirst(), ve.getId().getSecond())
+ self._length = self._length + ve.getLength2D()
+ _it.decrement()
+
+ # let's do the comparison:
+ # nw let's compute the length of this connex non selected part:
+ connexl = 0
+ _cit = pyChainSilhouetteGenericIterator(0,0)
+ _cit.setBegin(winner)
+ _cit.setCurrentEdge(winner)
+ _cit.setOrientation(winnerOrientation)
+ _cit.init()
+ while((_cit.isEnd() == 0) and (_cit.getObject().qi() != 0)):
+ ve = _cit.getObject()
+ #print("-------- --------", ve.getId().getFirst(), ve.getId().getSecond())
+ connexl = connexl + ve.getLength2D()
+ _cit.increment()
+ if((connexl > self._percent * self._length) or (connexl > self._absLength)):
+ winner = None
+ return winner
+
+
+## the natural chaining iterator
+## It follows the edges of same nature on the same
+## objects with preseance on silhouettes, then borders,
+## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
+## You can specify whether to stay in the selection or not.
+class pyNoIdChainSilhouetteIterator(ChainingIterator):
+ def __init__(self, stayInSelection=1):
+ ChainingIterator.__init__(self, stayInSelection, 1,None,1)
+ def getExactTypeName(self):
+ return "pyChainSilhouetteIterator"
+ def init(self):
+ pass
+ def traverse(self, iter):
+ winner = None
+ it = AdjacencyIterator(iter)
+ tvertex = self.getVertex()
+ if type(tvertex) is TVertex:
+ mateVE = tvertex.mate(self.getCurrentEdge())
+ while(it.isEnd() == 0):
+ ve = it.getObject()
+ feB = self.getCurrentEdge().fedgeB()
+ feA = ve.fedgeA()
+ vB = feB.vertexB()
+ vA = feA.vertexA()
+ if vA.getId().getFirst() == vB.getId().getFirst():
+ winner = ve
+ break
+ feA = self.getCurrentEdge().fedgeA()
+ feB = ve.fedgeB()
+ vB = feB.vertexB()
+ vA = feA.vertexA()
+ if vA.getId().getFirst() == vB.getId().getFirst():
+ winner = ve
+ break
+ feA = self.getCurrentEdge().fedgeB()
+ feB = ve.fedgeB()
+ vB = feB.vertexB()
+ vA = feA.vertexB()
+ if vA.getId().getFirst() == vB.getId().getFirst():
+ winner = ve
+ break
+ feA = self.getCurrentEdge().fedgeA()
+ feB = ve.fedgeA()
+ vB = feB.vertexA()
+ vA = feA.vertexA()
+ if vA.getId().getFirst() == vB.getId().getFirst():
+ winner = ve
+ break
+ it.increment()
+ else:
+ ## case of NonTVertex
+ natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
+ for i in range(len(natures)):
+ currentNature = self.getCurrentEdge().getNature()
+ if(natures[i] & currentNature):
+ count=0
+ while(it.isEnd() == 0):
+ visitNext = 0
+ oNature = it.getObject().getNature()
+ if(oNature & natures[i] != 0):
+ if(natures[i] != oNature):
+ for j in range(i):
+ if(natures[j] & oNature != 0):
+ visitNext = 1
+ break
+ if(visitNext != 0):
+ break
+ count = count+1
+ winner = it.getObject()
+ it.increment()
+ if(count != 1):
+ winner = None
+ break
+ return winner
+
--- /dev/null
+from freestyle_init import *
+
+
+class pyInverseCurvature2DAngleF0D(UnaryFunction0DDouble):
+ def getName(self):
+ return "InverseCurvature2DAngleF0D"
+
+ def __call__(self, inter):
+ func = Curvature2DAngleF0D()
+ c = func(inter)
+ return (3.1415 - c)
+
+class pyCurvilinearLengthF0D(UnaryFunction0DDouble):
+ def getName(self):
+ return "CurvilinearLengthF0D"
+
+ def __call__(self, inter):
+ i0d = inter.getObject()
+ s = i0d.getExactTypeName()
+ if (string.find(s, "CurvePoint") == -1):
+ print("CurvilinearLengthF0D: not implemented yet for", s)
+ return -1
+ cp = castToCurvePoint(i0d)
+ return cp.t2d()
+
+## estimate anisotropy of density
+class pyDensityAnisotropyF0D(UnaryFunction0DDouble):
+ def __init__(self,level):
+ UnaryFunction0DDouble.__init__(self)
+ self.IsoDensity = ReadCompleteViewMapPixelF0D(level)
+ self.d0Density = ReadSteerableViewMapPixelF0D(0, level)
+ self.d1Density = ReadSteerableViewMapPixelF0D(1, level)
+ self.d2Density = ReadSteerableViewMapPixelF0D(2, level)
+ self.d3Density = ReadSteerableViewMapPixelF0D(3, level)
+ def getName(self):
+ return "pyDensityAnisotropyF0D"
+ def __call__(self, inter):
+ c_iso = self.IsoDensity(inter)
+ c_0 = self.d0Density(inter)
+ c_1 = self.d1Density(inter)
+ c_2 = self.d2Density(inter)
+ c_3 = self.d3Density(inter)
+ cMax = max( max(c_0,c_1), max(c_2,c_3))
+ cMin = min( min(c_0,c_1), min(c_2,c_3))
+ if ( c_iso == 0 ):
+ v = 0
+ else:
+ v = (cMax-cMin)/c_iso
+ return (v)
+
+## Returns the gradient vector for a pixel
+## l
+## the level at which one wants to compute the gradient
+class pyViewMapGradientVectorF0D(UnaryFunction0DVec2f):
+ def __init__(self, l):
+ UnaryFunction0DVec2f.__init__(self)
+ self._l = l
+ self._step = pow(2,self._l)
+ def getName(self):
+ return "pyViewMapGradientVectorF0D"
+ def __call__(self, iter):
+ p = iter.getObject().getPoint2D()
+ gx = ReadCompleteViewMapPixelCF(self._l, int(p.x()+self._step), int(p.y()))- ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()))
+ gy = ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()+self._step))- ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()))
+ return Vector(gx, gy)
+
+class pyViewMapGradientNormF0D(UnaryFunction0DDouble):
+ def __init__(self, l):
+ UnaryFunction0DDouble.__init__(self)
+ self._l = l
+ self._step = pow(2,self._l)
+ def getName(self):
+ return "pyViewMapGradientNormF0D"
+ def __call__(self, iter):
+ p = iter.getObject().getPoint2D()
+ gx = ReadCompleteViewMapPixelCF(self._l, int(p.x()+self._step), int(p.y()))- ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()))
+ gy = ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()+self._step))- ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()))
+ grad = Vector(gx, gy)
+ return grad.length
+
+
--- /dev/null
+from freestyle_init import *
+from Functions0D import *
+import string
+
+class pyGetInverseProjectedZF1D(UnaryFunction1DDouble):
+ def getName(self):
+ return "pyGetInverseProjectedZF1D"
+
+ def __call__(self, inter):
+ func = GetProjectedZF1D()
+ z = func(inter)
+ return (1.0 - z)
+
+class pyGetSquareInverseProjectedZF1D(UnaryFunction1DDouble):
+ def getName(self):
+ return "pyGetInverseProjectedZF1D"
+
+ def __call__(self, inter):
+ func = GetProjectedZF1D()
+ z = func(inter)
+ return (1.0 - z*z)
+
+class pyDensityAnisotropyF1D(UnaryFunction1DDouble):
+ def __init__(self,level, integrationType=IntegrationType.MEAN, sampling=2.0):
+ UnaryFunction1DDouble.__init__(self, integrationType)
+ self._func = pyDensityAnisotropyF0D(level)
+ self._integration = integrationType
+ self._sampling = sampling
+ def getName(self):
+ return "pyDensityAnisotropyF1D"
+ def __call__(self, inter):
+ v = integrate(self._func, inter.pointsBegin(self._sampling), inter.pointsEnd(self._sampling), self._integration)
+ return v
+
+class pyViewMapGradientNormF1D(UnaryFunction1DDouble):
+ def __init__(self,l, integrationType, sampling=2.0):
+ UnaryFunction1DDouble.__init__(self, integrationType)
+ self._func = pyViewMapGradientNormF0D(l)
+ self._integration = integrationType
+ self._sampling = sampling
+ def getName(self):
+ return "pyViewMapGradientNormF1D"
+ def __call__(self, inter):
+ v = integrate(self._func, inter.pointsBegin(self._sampling), inter.pointsEnd(self._sampling), self._integration)
+ return v
--- /dev/null
+from freestyle_init import *
+from Functions1D import *
+from random import *
+
+class pyZBP1D(BinaryPredicate1D):
+ def getName(self):
+ return "pyZBP1D"
+
+ def __call__(self, i1, i2):
+ func = GetZF1D()
+ return (func(i1) > func(i2))
+
+class pyZDiscontinuityBP1D(BinaryPredicate1D):
+ def __init__(self, iType = IntegrationType.MEAN):
+ BinaryPredicate1D.__init__(self)
+ self._GetZDiscontinuity = ZDiscontinuityF1D(iType)
+
+ def getName(self):
+ return "pyZDiscontinuityBP1D"
+
+ def __call__(self, i1, i2):
+ return (self._GetZDiscontinuity(i1) > self._GetZDiscontinuity(i2))
+
+class pyLengthBP1D(BinaryPredicate1D):
+ def getName(self):
+ return "LengthBP1D"
+
+ def __call__(self, i1, i2):
+ return (i1.getLength2D() > i2.getLength2D())
+
+class pySilhouetteFirstBP1D(BinaryPredicate1D):
+ def getName(self):
+ return "SilhouetteFirstBP1D"
+
+ def __call__(self, inter1, inter2):
+ bpred = SameShapeIdBP1D()
+ if (bpred(inter1, inter2) != 1):
+ return 0
+ if (inter1.getNature() & Nature.SILHOUETTE):
+ return (inter2.getNature() & Nature.SILHOUETTE)
+ return (inter1.getNature() == inter2.getNature())
+
+class pyNatureBP1D(BinaryPredicate1D):
+ def getName(self):
+ return "NatureBP1D"
+
+ def __call__(self, inter1, inter2):
+ return (inter1.getNature() & inter2.getNature())
+
+class pyViewMapGradientNormBP1D(BinaryPredicate1D):
+ def __init__(self,l, sampling=2.0):
+ BinaryPredicate1D.__init__(self)
+ self._GetGradient = pyViewMapGradientNormF1D(l, IntegrationType.MEAN)
+ def getName(self):
+ return "pyViewMapGradientNormBP1D"
+ def __call__(self, i1,i2):
+ print("compare gradient")
+ return (self._GetGradient(i1) > self._GetGradient(i2))
+
+class pyShuffleBP1D(BinaryPredicate1D):
+ def __init__(self):
+ BinaryPredicate1D.__init__(self)
+ seed(1)
+ def getName(self):
+ return "pyNearAndContourFirstBP1D"
+
+ def __call__(self, inter1, inter2):
+ r1 = uniform(0,1)
+ r2 = uniform(0,1)
+ return (r1<r2)
--- /dev/null
+from freestyle_init import *
+from Functions0D import *
+
+class pyHigherCurvature2DAngleUP0D(UnaryPredicate0D):
+ def __init__(self,a):
+ UnaryPredicate0D.__init__(self)
+ self._a = a
+
+ def getName(self):
+ return "HigherCurvature2DAngleUP0D"
+
+ def __call__(self, inter):
+ func = Curvature2DAngleF0D()
+ a = func(inter)
+ return ( a > self._a)
+
+class pyUEqualsUP0D(UnaryPredicate0D):
+ def __init__(self,u, w):
+ UnaryPredicate0D.__init__(self)
+ self._u = u
+ self._w = w
+
+ def getName(self):
+ return "UEqualsUP0D"
+
+ def __call__(self, inter):
+ func = pyCurvilinearLengthF0D()
+ u = func(inter)
+ return ( ( u > (self._u-self._w) ) and ( u < (self._u+self._w) ) )
+
+class pyVertexNatureUP0D(UnaryPredicate0D):
+ def __init__(self,nature):
+ UnaryPredicate0D.__init__(self)
+ self._nature = nature
+
+ def getName(self):
+ return "pyVertexNatureUP0D"
+
+ def __call__(self, inter):
+ v = inter.getObject()
+ nat = v.getNature()
+ if(nat & self._nature):
+ return 1;
+ return 0
+
+## check whether an Interface0DIterator
+## is a TVertex and is the one that is
+## hidden (inferred from the context)
+class pyBackTVertexUP0D(UnaryPredicate0D):
+ def __init__(self):
+ UnaryPredicate0D.__init__(self)
+ self._getQI = QuantitativeInvisibilityF0D()
+ def getName(self):
+ return "pyBackTVertexUP0D"
+ def __call__(self, iter):
+ v = iter.getObject()
+ nat = v.getNature()
+ if(nat & Nature.T_VERTEX == 0):
+ return 0
+ next = iter
+ if(next.isEnd()):
+ return 0
+ if(self._getQI(next) != 0):
+ return 1
+ return 0
+
+class pyParameterUP0DGoodOne(UnaryPredicate0D):
+ def __init__(self,pmin,pmax):
+ UnaryPredicate0D.__init__(self)
+ self._m = pmin
+ self._M = pmax
+ #self.getCurvilinearAbscissa = GetCurvilinearAbscissaF0D()
+
+ def getName(self):
+ return "pyCurvilinearAbscissaHigherThanUP0D"
+
+ def __call__(self, inter):
+ #s = self.getCurvilinearAbscissa(inter)
+ u = inter.u()
+ #print(u)
+ return ((u>=self._m) and (u<=self._M))
+
+class pyParameterUP0D(UnaryPredicate0D):
+ def __init__(self,pmin,pmax):
+ UnaryPredicate0D.__init__(self)
+ self._m = pmin
+ self._M = pmax
+ #self.getCurvilinearAbscissa = GetCurvilinearAbscissaF0D()
+
+ def getName(self):
+ return "pyCurvilinearAbscissaHigherThanUP0D"
+
+ def __call__(self, inter):
+ func = Curvature2DAngleF0D()
+ c = func(inter)
+ b1 = (c>0.1)
+ #s = self.getCurvilinearAbscissa(inter)
+ u = inter.u()
+ #print(u)
+ b = ((u>=self._m) and (u<=self._M))
+ return b and b1
+
+
--- /dev/null
+from freestyle_init import *
+from Functions1D import *
+
+count = 0
+class pyNFirstUP1D(UnaryPredicate1D):
+ def __init__(self, n):
+ UnaryPredicate1D.__init__(self)
+ self.__n = n
+ def __call__(self, inter):
+ global count
+ count = count + 1
+ if count <= self.__n:
+ return 1
+ return 0
+
+class pyHigherLengthUP1D(UnaryPredicate1D):
+ def __init__(self,l):
+ UnaryPredicate1D.__init__(self)
+ self._l = l
+
+ def getName(self):
+ return "HigherLengthUP1D"
+
+ def __call__(self, inter):
+ return (inter.getLength2D() > self._l)
+
+class pyNatureUP1D(UnaryPredicate1D):
+ def __init__(self,nature):
+ UnaryPredicate1D.__init__(self)
+ self._nature = nature
+ self._getNature = CurveNatureF1D()
+
+ def getName(self):
+ return "pyNatureUP1D"
+
+ def __call__(self, inter):
+ if(self._getNature(inter) & self._nature):
+ return 1
+ return 0
+
+class pyHigherNumberOfTurnsUP1D(UnaryPredicate1D):
+ def __init__(self,n,a):
+ UnaryPredicate1D.__init__(self)
+ self._n = n
+ self._a = a
+
+ def getName(self):
+ return "HigherNumberOfTurnsUP1D"
+
+ def __call__(self, inter):
+ count = 0
+ func = Curvature2DAngleF0D()
+ it = inter.verticesBegin()
+ while(it.isEnd() == 0):
+ if(func(it) > self._a):
+ count = count+1
+ if(count > self._n):
+ return 1
+ it.increment()
+ return 0
+
+class pyDensityUP1D(UnaryPredicate1D):
+ def __init__(self,wsize,threshold, integration = IntegrationType.MEAN, sampling=2.0):
+ UnaryPredicate1D.__init__(self)
+ self._wsize = wsize
+ self._threshold = threshold
+ self._integration = integration
+ self._func = DensityF1D(self._wsize, self._integration, sampling)
+
+ def getName(self):
+ return "pyDensityUP1D"
+
+ def __call__(self, inter):
+ if(self._func(inter) < self._threshold):
+ return 1
+ return 0
+
+class pyLowSteerableViewMapDensityUP1D(UnaryPredicate1D):
+ def __init__(self,threshold, level,integration = IntegrationType.MEAN):
+ UnaryPredicate1D.__init__(self)
+ self._threshold = threshold
+ self._level = level
+ self._integration = integration
+
+ def getName(self):
+ return "pyLowSteerableViewMapDensityUP1D"
+
+ def __call__(self, inter):
+ func = GetSteerableViewMapDensityF1D(self._level, self._integration)
+ v = func(inter)
+ print(v)
+ if(v < self._threshold):
+ return 1
+ return 0
+
+class pyLowDirectionalViewMapDensityUP1D(UnaryPredicate1D):
+ def __init__(self,threshold, orientation, level,integration = IntegrationType.MEAN):
+ UnaryPredicate1D.__init__(self)
+ self._threshold = threshold
+ self._orientation = orientation
+ self._level = level
+ self._integration = integration
+
+ def getName(self):
+ return "pyLowDirectionalViewMapDensityUP1D"
+
+ def __call__(self, inter):
+ func = GetDirectionalViewMapDensityF1D(self._orientation, self._level, self._integration)
+ v = func(inter)
+ #print(v)
+ if(v < self._threshold):
+ return 1
+ return 0
+
+class pyHighSteerableViewMapDensityUP1D(UnaryPredicate1D):
+ def __init__(self,threshold, level,integration = IntegrationType.MEAN):
+ UnaryPredicate1D.__init__(self)
+ self._threshold = threshold
+ self._level = level
+ self._integration = integration
+ self._func = GetSteerableViewMapDensityF1D(self._level, self._integration)
+ def getName(self):
+ return "pyHighSteerableViewMapDensityUP1D"
+
+ def __call__(self, inter):
+
+ v = self._func(inter)
+ if(v > self._threshold):
+ return 1
+ return 0
+
+class pyHighDirectionalViewMapDensityUP1D(UnaryPredicate1D):
+ def __init__(self,threshold, orientation, level,integration = IntegrationType.MEAN, sampling=2.0):
+ UnaryPredicate1D.__init__(self)
+ self._threshold = threshold
+ self._orientation = orientation
+ self._level = level
+ self._integration = integration
+ self._sampling = sampling
+ def getName(self):
+ return "pyLowDirectionalViewMapDensityUP1D"
+
+ def __call__(self, inter):
+ func = GetDirectionalViewMapDensityF1D(self._orientation, self._level, self._integration, self._sampling)
+ v = func(inter)
+ if(v > self._threshold):
+ return 1
+ return 0
+
+class pyHighViewMapDensityUP1D(UnaryPredicate1D):
+ def __init__(self,threshold, level,integration = IntegrationType.MEAN, sampling=2.0):
+ UnaryPredicate1D.__init__(self)
+ self._threshold = threshold
+ self._level = level
+ self._integration = integration
+ self._sampling = sampling
+ self._func = GetCompleteViewMapDensityF1D(self._level, self._integration, self._sampling) # 2.0 is the smpling
+
+ def getName(self):
+ return "pyHighViewMapDensityUP1D"
+
+ def __call__(self, inter):
+ #print("toto")
+ #print(func.getName())
+ #print(inter.getExactTypeName())
+ v= self._func(inter)
+ if(v > self._threshold):
+ return 1
+ return 0
+
+class pyDensityFunctorUP1D(UnaryPredicate1D):
+ def __init__(self,wsize,threshold, functor, funcmin=0.0, funcmax=1.0, integration = IntegrationType.MEAN):
+ UnaryPredicate1D.__init__(self)
+ self._wsize = wsize
+ self._threshold = float(threshold)
+ self._functor = functor
+ self._funcmin = float(funcmin)
+ self._funcmax = float(funcmax)
+ self._integration = integration
+
+ def getName(self):
+ return "pyDensityFunctorUP1D"
+
+ def __call__(self, inter):
+ func = DensityF1D(self._wsize, self._integration)
+ res = self._functor(inter)
+ k = (res-self._funcmin)/(self._funcmax-self._funcmin)
+ if(func(inter) < self._threshold*k):
+ return 1
+ return 0
+
+class pyZSmallerUP1D(UnaryPredicate1D):
+ def __init__(self,z, integration=IntegrationType.MEAN):
+ UnaryPredicate1D.__init__(self)
+ self._z = z
+ self._integration = integration
+ def getName(self):
+ return "pyZSmallerUP1D"
+
+ def __call__(self, inter):
+ func = GetProjectedZF1D(self._integration)
+ if(func(inter) < self._z):
+ return 1
+ return 0
+
+class pyIsOccludedByUP1D(UnaryPredicate1D):
+ def __init__(self,id):
+ UnaryPredicate1D.__init__(self)
+ self._id = id
+ def getName(self):
+ return "pyIsOccludedByUP1D"
+ def __call__(self, inter):
+ func = GetShapeF1D()
+ shapes = func(inter)
+ for s in shapes:
+ if(s.getId() == self._id):
+ return 0
+ it = inter.verticesBegin()
+ itlast = inter.verticesEnd()
+ itlast.decrement()
+ v = it.getObject()
+ vlast = itlast.getObject()
+ tvertex = v.viewvertex()
+ if type(tvertex) is TVertex:
+ print("TVertex: [ ", tvertex.getId().getFirst(), ",", tvertex.getId().getSecond()," ]")
+ eit = tvertex.edgesBegin()
+ while(eit.isEnd() == 0):
+ ve, incoming = eit.getObject()
+ if(ve.getId() == self._id):
+ return 1
+ print("-------", ve.getId().getFirst(), "-", ve.getId().getSecond())
+ eit.increment()
+ tvertex = vlast.viewvertex()
+ if type(tvertex) is TVertex:
+ print("TVertex: [ ", tvertex.getId().getFirst(), ",", tvertex.getId().getSecond()," ]")
+ eit = tvertex.edgesBegin()
+ while(eit.isEnd() == 0):
+ ve, incoming = eit.getObject()
+ if(ve.getId() == self._id):
+ return 1
+ print("-------", ve.getId().getFirst(), "-", ve.getId().getSecond())
+ eit.increment()
+ return 0
+
+class pyIsInOccludersListUP1D(UnaryPredicate1D):
+ def __init__(self,id):
+ UnaryPredicate1D.__init__(self)
+ self._id = id
+ def getName(self):
+ return "pyIsInOccludersListUP1D"
+ def __call__(self, inter):
+ func = GetOccludersF1D()
+ occluders = func(inter)
+ for a in occluders:
+ if(a.getId() == self._id):
+ return 1
+ return 0
+
+class pyIsOccludedByItselfUP1D(UnaryPredicate1D):
+ def __init__(self):
+ UnaryPredicate1D.__init__(self)
+ self.__func1 = GetOccludersF1D()
+ self.__func2 = GetShapeF1D()
+ def getName(self):
+ return "pyIsOccludedByItselfUP1D"
+ def __call__(self, inter):
+ lst1 = self.__func1(inter)
+ lst2 = self.__func2(inter)
+ for vs1 in lst1:
+ for vs2 in lst2:
+ if vs1.getId() == vs2.getId():
+ return 1
+ return 0
+
+class pyIsOccludedByIdListUP1D(UnaryPredicate1D):
+ def __init__(self, idlist):
+ UnaryPredicate1D.__init__(self)
+ self._idlist = idlist
+ self.__func1 = GetOccludersF1D()
+ def getName(self):
+ return "pyIsOccludedByIdListUP1D"
+ def __call__(self, inter):
+ lst1 = self.__func1(inter)
+ for vs1 in lst1:
+ for id in self._idlist:
+ if vs1.getId() == id:
+ return 1
+ return 0
+
+class pyShapeIdListUP1D(UnaryPredicate1D):
+ def __init__(self,idlist):
+ UnaryPredicate1D.__init__(self)
+ self._idlist = idlist
+ self._funcs = []
+ for id in idlist :
+ self._funcs.append(ShapeUP1D(id.getFirst(), id.getSecond()))
+
+ def getName(self):
+ return "pyShapeIdUP1D"
+ def __call__(self, inter):
+ for func in self._funcs :
+ if(func(inter) == 1) :
+ return 1
+ return 0
+
+## deprecated
+class pyShapeIdUP1D(UnaryPredicate1D):
+ def __init__(self,id):
+ UnaryPredicate1D.__init__(self)
+ self._id = id
+ def getName(self):
+ return "pyShapeIdUP1D"
+ def __call__(self, inter):
+ func = GetShapeF1D()
+ shapes = func(inter)
+ for a in shapes:
+ if(a.getId() == self._id):
+ return 1
+ return 0
+
+class pyHighDensityAnisotropyUP1D(UnaryPredicate1D):
+ def __init__(self,threshold, level, sampling=2.0):
+ UnaryPredicate1D.__init__(self)
+ self._l = threshold
+ self.func = pyDensityAnisotropyF1D(level, IntegrationType.MEAN, sampling)
+ def getName(self):
+ return "pyHighDensityAnisotropyUP1D"
+ def __call__(self, inter):
+ return (self.func(inter) > self._l)
+
+class pyHighViewMapGradientNormUP1D(UnaryPredicate1D):
+ def __init__(self,threshold, l, sampling=2.0):
+ UnaryPredicate1D.__init__(self)
+ self._threshold = threshold
+ self._GetGradient = pyViewMapGradientNormF1D(l, IntegrationType.MEAN)
+ def getName(self):
+ return "pyHighViewMapGradientNormUP1D"
+ def __call__(self, inter):
+ gn = self._GetGradient(inter)
+ #print(gn)
+ return (gn > self._threshold)
+
+class pyDensityVariableSigmaUP1D(UnaryPredicate1D):
+ def __init__(self,functor, sigmaMin,sigmaMax, lmin, lmax, tmin, tmax, integration = IntegrationType.MEAN, sampling=2.0):
+ UnaryPredicate1D.__init__(self)
+ self._functor = functor
+ self._sigmaMin = float(sigmaMin)
+ self._sigmaMax = float(sigmaMax)
+ self._lmin = float(lmin)
+ self._lmax = float(lmax)
+ self._tmin = tmin
+ self._tmax = tmax
+ self._integration = integration
+ self._sampling = sampling
+
+ def getName(self):
+ return "pyDensityUP1D"
+
+ def __call__(self, inter):
+ sigma = (self._sigmaMax-self._sigmaMin)/(self._lmax-self._lmin)*(self._functor(inter)-self._lmin) + self._sigmaMin
+ t = (self._tmax-self._tmin)/(self._lmax-self._lmin)*(self._functor(inter)-self._lmin) + self._tmin
+ if(sigma<self._sigmaMin):
+ sigma = self._sigmaMin
+ self._func = DensityF1D(sigma, self._integration, self._sampling)
+ d = self._func(inter)
+ if(d<t):
+ return 1
+ return 0
+
+class pyClosedCurveUP1D(UnaryPredicate1D):
+ def __call__(self, inter):
+ it = inter.verticesBegin()
+ itlast = inter.verticesEnd()
+ itlast.decrement()
+ vlast = itlast.getObject()
+ v = it.getObject()
+ print(v.getId().getFirst(), v.getId().getSecond())
+ print(vlast.getId().getFirst(), vlast.getId().getSecond())
+ if(v.getId() == vlast.getId()):
+ return 1
+ return 0
--- /dev/null
+#
+# Filename : anisotropic_diffusion.py
+# Author : Fredo Durand
+# Date : 12/08/2004
+# Purpose : Smoothes lines using an anisotropic diffusion scheme
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from shaders import *
+from PredicatesU0D import *
+from math import *
+
+## thickness modifiers
+
+normalInfo=Normal2DF0D()
+curvatureInfo=Curvature2DAngleF0D()
+
+def edgestopping(x, sigma):
+ return exp(- x*x/(2*sigma*sigma))
+
+class pyDiffusion2Shader(StrokeShader):
+ def __init__(self, lambda1, nbIter):
+ StrokeShader.__init__(self)
+ self._lambda = lambda1
+ self._nbIter = nbIter
+ def getName(self):
+ return "pyDiffusionShader"
+ def shade(self, stroke):
+ for i in range (1, self._nbIter):
+ it = stroke.strokeVerticesBegin()
+ while it.isEnd() == 0:
+ v=it.getObject()
+ p1 = v.getPoint()
+ p2 = normalInfo(it.castToInterface0DIterator())*self._lambda*curvatureInfo(it.castToInterface0DIterator())
+ v.setPoint(p1+p2)
+ it.increment()
+
+upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
+Operators.select( upred )
+bpred = TrueBP1D();
+Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(upred) )
+shaders_list = [
+ ConstantThicknessShader(4),
+ StrokeTextureShader("smoothAlpha.bmp", Stroke.OPAQUE_MEDIUM, 0),
+ SamplingShader(2),
+ pyDiffusion2Shader(-0.03, 30),
+ IncreasingColorShader(1.0,0.0,0.0,1, 0, 1, 0, 1)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
+
+
+
--- /dev/null
+#
+# Filename : apriori_and_causal_density.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Selects the lines with high a priori density and
+# subjects them to the causal density so as to avoid
+# cluttering
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from PredicatesU1D import *
+from shaders import *
+
+upred = AndUP1D(QuantitativeInvisibilityUP1D(0), pyHighViewMapDensityUP1D(0.3, IntegrationType.LAST))
+Operators.select(upred)
+bpred = TrueBP1D()
+Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(QuantitativeInvisibilityUP1D(0)))
+shaders_list = [
+ ConstantThicknessShader(2),
+ ConstantColorShader(0.0, 0.0, 0.0,1)
+ ]
+Operators.create(pyDensityUP1D(1,0.1, IntegrationType.MEAN), shaders_list)
--- /dev/null
+#
+# Filename : apriori_density.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Draws lines having a high a priori density
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from PredicatesU1D import *
+from shaders import *
+
+Operators.select(AndUP1D(QuantitativeInvisibilityUP1D(0), pyHighViewMapDensityUP1D(0.1,5)))
+bpred = TrueBP1D()
+upred = AndUP1D(QuantitativeInvisibilityUP1D(0), pyHighViewMapDensityUP1D(0.0007,5))
+Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(QuantitativeInvisibilityUP1D(0)))
+shaders_list = [
+ ConstantThicknessShader(2),
+ ConstantColorShader(0.0, 0.0, 0.0,1)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : backbone_stretcher.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Stretches the geometry of visible lines
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from shaders import *
+
+Operators.select(QuantitativeInvisibilityUP1D(0))
+Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
+shaders_list = [TextureAssignerShader(4), ConstantColorShader(0.5, 0.5, 0.5), BackboneStretcherShader(20)]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : blueprint_circles.py
+# Author : Emmanuel Turquin
+# Date : 04/08/2005
+# Purpose : Produces a blueprint using circular contour strokes
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from PredicatesU1D import *
+from shaders import *
+
+upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D())
+bpred = SameShapeIdBP1D()
+Operators.select(upred)
+Operators.bidirectionalChain(ChainPredicateIterator(upred,bpred), NotUP1D(upred))
+Operators.select(pyHigherLengthUP1D(200))
+shaders_list = [
+ ConstantThicknessShader(5),
+ pyBluePrintCirclesShader(3),
+ pyPerlinNoise1DShader(0.1, 15, 8),
+ TextureAssignerShader(4),
+ IncreasingColorShader(0.8, 0.8, 0.3, 0.4, 0.3, 0.3, 0.3, 0.1)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : blueprint_ellipses.py
+# Author : Emmanuel Turquin
+# Date : 04/08/2005
+# Purpose : Produces a blueprint using elliptic contour strokes
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from PredicatesU1D import *
+from shaders import *
+
+upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D())
+bpred = SameShapeIdBP1D()
+Operators.select(upred)
+Operators.bidirectionalChain(ChainPredicateIterator(upred,bpred), NotUP1D(upred))
+Operators.select(pyHigherLengthUP1D(200))
+shaders_list = [
+ ConstantThicknessShader(5),
+ pyBluePrintEllipsesShader(3),
+ pyPerlinNoise1DShader(0.1, 10, 8),
+ TextureAssignerShader(4),
+ IncreasingColorShader(0.6, 0.3, 0.3, 0.7, 0.3, 0.3, 0.3, 0.1)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+# Filename : blueprint_squares.py
+# Author : Emmanuel Turquin
+# Date : 04/08/2005
+# Purpose : Produces a blueprint using square contour strokes
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from PredicatesU1D import *
+from shaders import *
+
+upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D())
+bpred = SameShapeIdBP1D()
+Operators.select(upred)
+Operators.bidirectionalChain(ChainPredicateIterator(upred,bpred), NotUP1D(upred))
+Operators.select(pyHigherLengthUP1D(200))
+shaders_list = [
+ ConstantThicknessShader(8),
+ pyBluePrintSquaresShader(2, 20),
+ pyPerlinNoise1DShader(0.07, 10, 8),
+ TextureAssignerShader(4),
+ IncreasingColorShader(0.6, 0.3, 0.3, 0.7, 0.6, 0.3, 0.3, 0.3),
+ ConstantThicknessShader(4)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : cartoon.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Draws colored lines. The color is automatically
+# infered from each object's material in a cartoon-like
+# fashion.
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from shaders import *
+
+Operators.select(QuantitativeInvisibilityUP1D(0))
+Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
+shaders_list = [
+ BezierCurveShader(3),
+ ConstantThicknessShader(4),
+ pyMaterialColorShader(0.8)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : contour.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Draws each object's visible contour
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from PredicatesU1D import *
+from shaders import *
+
+Operators.select(AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D() ) )
+bpred = SameShapeIdBP1D();
+upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D())
+Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(QuantitativeInvisibilityUP1D(0)))
+shaders_list = [
+ ConstantThicknessShader(5.0),
+ IncreasingColorShader(0.8,0,0,1,0.1,0,0,1)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : curvature2d.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : The stroke points are colored in gray levels and depending
+# on the 2d curvature value
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from shaders import *
+
+class py2DCurvatureColorShader(StrokeShader):
+ def getName(self):
+ return "py2DCurvatureColorShader"
+
+ def shade(self, stroke):
+ it = stroke.strokeVerticesBegin()
+ it_end = stroke.strokeVerticesEnd()
+ func = Curvature2DAngleF0D()
+ while it.isEnd() == 0:
+ it0D = it.castToInterface0DIterator()
+ sv = it.getObject()
+ att = sv.attribute()
+ c = func(it0D)
+ if (c<0):
+ print("negative 2D curvature")
+ color = 10.0 * c/3.1415
+ att.setColor(color,color,color);
+ it.increment()
+
+Operators.select(QuantitativeInvisibilityUP1D(0))
+Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
+shaders_list = [
+ StrokeTextureShader("smoothAlpha.bmp", Stroke.OPAQUE_MEDIUM, 0),
+ ConstantThicknessShader(5),
+ py2DCurvatureColorShader()
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : external_contour.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Draws the external contour of the scene
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from PredicatesU1D import *
+from ChainingIterators import *
+from shaders import *
+
+upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
+Operators.select(upred )
+bpred = TrueBP1D();
+Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(upred))
+shaders_list = [
+ ConstantThicknessShader(3),
+ ConstantColorShader(0.0, 0.0, 0.0,1)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
\ No newline at end of file
--- /dev/null
+#
+# Filename : external_contour_sketchy.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Draws the external contour of the scene using a sketchy
+# chaining iterator (in particular each ViewEdge can be drawn
+# several times
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+
+from freestyle_init import *
+from logical_operators import *
+from ChainingIterators import *
+from shaders import *
+
+
+upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
+Operators.select(upred)
+Operators.bidirectionalChain(pySketchyChainingIterator(), NotUP1D(upred))
+shaders_list = [
+ SamplingShader(4),
+ SpatialNoiseShader(10, 150, 2, 1, 1),
+ IncreasingThicknessShader(4, 10),
+ SmoothingShader(400, 0.1, 0, 0.2, 0, 0, 0, 1),
+ IncreasingColorShader(1,0,0,1,0,1,0,1),
+ TextureAssignerShader(4)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : external_contour_smooth.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Draws a smooth external contour
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from PredicatesU1D import *
+from shaders import *
+from ChainingIterators import *
+
+upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
+Operators.select(upred)
+bpred = TrueBP1D();
+Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(upred))
+shaders_list = [
+ SamplingShader(2),
+ IncreasingThicknessShader(4,20),
+ IncreasingColorShader(1.0, 0.0, 0.5,1, 0.5,1, 0.3, 1),
+ SmoothingShader(100, 0.05, 0, 0.2, 0, 0, 0, 1)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+1suggestive.py
+1ridges.py
+1nor_suggestive_or_ridges.py
--- /dev/null
+from Freestyle import *
+from Mathutils import Vector
--- /dev/null
+#
+# Filename : haloing.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : This style module selects the lines that
+# are connected (in the image) to a specific
+# object and trims them in order to produce
+# a haloing effect around the target shape
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesU1D import *
+from PredicatesB1D import *
+from shaders import *
+
+# id corresponds to the id of the target object
+# (accessed by SHIFT+click)
+id = Id(3,0)
+upred = AndUP1D(QuantitativeInvisibilityUP1D(0) , pyIsOccludedByUP1D(id))
+Operators.select(upred)
+Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
+shaders_list = [
+ IncreasingThicknessShader(3, 5),
+ IncreasingColorShader(1,0,0, 1,0,1,0,1),
+ SamplingShader(1.0),
+ pyTVertexRemoverShader(),
+ TipRemoverShader(3.0)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : ignore_small_oclusions.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : The strokes are drawn through small occlusions
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from ChainingIterators import *
+from shaders import *
+
+Operators.select(QuantitativeInvisibilityUP1D(0))
+#Operators.bidirectionalChain(pyFillOcclusionsChainingIterator(0.1))
+Operators.bidirectionalChain(pyFillOcclusionsAbsoluteChainingIterator(12))
+shaders_list = [
+ SamplingShader(5.0),
+ ConstantThicknessShader(3),
+ ConstantColorShader(0.0,0.0,0.0),
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : invisible_lines.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Draws all lines whose Quantitative Invisibility
+# is different from 0
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from ChainingIterators import *
+from shaders import *
+
+upred = NotUP1D(QuantitativeInvisibilityUP1D(0))
+Operators.select(upred)
+Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
+shaders_list = [
+ SamplingShader(5.0),
+ ConstantThicknessShader(3.0),
+ ConstantColorShader(0.7,0.7,0.7)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : japanese_bigbrush.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Simulates a big brush fr oriental painting
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesU1D import *
+from PredicatesB1D import *
+from Functions0D import *
+from shaders import *
+
+Operators.select(QuantitativeInvisibilityUP1D(0))
+Operators.bidirectionalChain(ChainSilhouetteIterator(),NotUP1D(QuantitativeInvisibilityUP1D(0)))
+## Splits strokes at points of highest 2D curavture
+## when there are too many abrupt turns in it
+func = pyInverseCurvature2DAngleF0D()
+Operators.recursiveSplit(func, pyParameterUP0D(0.2,0.8), NotUP1D(pyHigherNumberOfTurnsUP1D(3, 0.5)), 2)
+## Keeps only long enough strokes
+Operators.select(pyHigherLengthUP1D(100))
+## Sorts so as to draw the longest strokes first
+## (this will be done using the causal density)
+Operators.sort(pyLengthBP1D())
+shaders_list = [
+ pySamplingShader(10),
+ BezierCurveShader(30),
+ SamplingShader(50),
+ ConstantThicknessShader(10),
+ pyNonLinearVaryingThicknessShader(4,25, 0.6),
+ TextureAssignerShader(6),
+ ConstantColorShader(0.2, 0.2, 0.2,1.0),
+ TipRemoverShader(10)
+ ]
+
+## Use the causal density to avoid cluttering
+Operators.create(pyDensityUP1D(8,0.4, IntegrationType.MEAN), shaders_list)
+
+
--- /dev/null
+from freestyle_init import *
+
+class AndUP1D(UnaryPredicate1D):
+ def __init__(self, pred1, pred2):
+ UnaryPredicate1D.__init__(self)
+ self.__pred1 = pred1
+ self.__pred2 = pred2
+
+ def getName(self):
+ return "AndUP1D"
+
+ def __call__(self, inter):
+ return self.__pred1(inter) and self.__pred2(inter)
+
+class OrUP1D(UnaryPredicate1D):
+ def __init__(self, pred1, pred2):
+ UnaryPredicate1D.__init__(self)
+ self.__pred1 = pred1
+ self.__pred2 = pred2
+
+ def getName(self):
+ return "OrUP1D"
+
+ def __call__(self, inter):
+ return self.__pred1(inter) or self.__pred2(inter)
+
+class NotUP1D(UnaryPredicate1D):
+ def __init__(self, pred):
+ UnaryPredicate1D.__init__(self)
+ self.__pred = pred
+
+ def getName(self):
+ return "NotUP1D"
+
+ def __call__(self, inter):
+ return self.__pred(inter) == 0
--- /dev/null
+#
+# Filename : long_anisotropically_dense.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Selects the lines that are long and have a high anisotropic
+# a priori density and uses causal density
+# to draw without cluttering. Ideally, half of the
+# selected lines are culled using the causal density.
+#
+# ********************* WARNING *************************************
+# ******** The Directional a priori density maps must ******
+# ******** have been computed prior to using this style module ******
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesU1D import *
+from PredicatesU0D import *
+from PredicatesB1D import *
+from Functions0D import *
+from Functions1D import *
+from shaders import *
+
+## custom density predicate
+class pyDensityUP1D(UnaryPredicate1D):
+ def __init__(self,wsize,threshold, integration = IntegrationType.MEAN, sampling=2.0):
+ UnaryPredicate1D.__init__(self)
+ self._wsize = wsize
+ self._threshold = threshold
+ self._integration = integration
+ self._func = DensityF1D(self._wsize, self._integration, sampling)
+ self._func2 = DensityF1D(self._wsize, IntegrationType.MAX, sampling)
+
+ def getName(self):
+ return "pyDensityUP1D"
+
+ def __call__(self, inter):
+ c = self._func(inter)
+ m = self._func2(inter)
+ if(c < self._threshold):
+ return 1
+ if( m > 4* c ):
+ if ( c < 1.5*self._threshold ):
+ return 1
+ return 0
+
+Operators.select(QuantitativeInvisibilityUP1D(0))
+Operators.bidirectionalChain(ChainSilhouetteIterator(),NotUP1D(QuantitativeInvisibilityUP1D(0)))
+Operators.select(pyHigherLengthUP1D(40))
+## selects lines having a high anisotropic a priori density
+Operators.select(pyHighDensityAnisotropyUP1D(0.3,4))
+Operators.sort(pyLengthBP1D())
+shaders_list = [
+ SamplingShader(2.0),
+ ConstantThicknessShader(2),
+ ConstantColorShader(0.2,0.2,0.25,1),
+ ]
+## uniform culling
+Operators.create(pyDensityUP1D(3.0,2.0e-2, IntegrationType.MEAN, 0.1), shaders_list)
+
+
--- /dev/null
+#
+# Filename : multiple_parameterization.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : The thickness and the color of the strokes vary continuously
+# independently from occlusions although only
+# visible lines are actually drawn. This is equivalent
+# to assigning the thickness using a parameterization covering
+# the complete silhouette (visible+invisible) and drawing
+# the strokes using a second parameterization that only
+# covers the visible portions.
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from ChainingIterators import *
+from shaders import *
+
+Operators.select(QuantitativeInvisibilityUP1D(0))
+## Chain following the same nature, but without the restriction
+## of staying inside the selection (0).
+Operators.bidirectionalChain(ChainSilhouetteIterator(0))
+shaders_list = [
+ SamplingShader(20),
+ IncreasingThicknessShader(1.5, 30),
+ ConstantColorShader(0.0,0.0,0.0),
+ IncreasingColorShader(1,0,0,1,0,1,0,1),
+ TextureAssignerShader(-1),
+ pyHLRShader() ## this shader draws only visible portions
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : nature.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Uses the NatureUP1D predicate to select the lines
+# of a given type (among Nature.SILHOUETTE, Nature.CREASE, Nature.SUGGESTIVE_CONTOURS,
+# Nature.BORDERS).
+# The suggestive contours must have been enabled in the
+# options dialog to appear in the View Map.
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from shaders import *
+
+Operators.select(pyNatureUP1D(Nature.SILHOUETTE))
+Operators.bidirectionalChain(ChainSilhouetteIterator(),NotUP1D( pyNatureUP1D( Nature.SILHOUETTE) ) )
+shaders_list = [
+ IncreasingThicknessShader(3, 10),
+ IncreasingColorShader(0.0,0.0,0.0, 1, 0.8,0,0,1)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : near_lines.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Draws the lines that are "closer" than a threshold
+# (between 0 and 1)
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from PredicatesU1D import *
+from shaders import *
+
+upred = AndUP1D(QuantitativeInvisibilityUP1D(0), pyZSmallerUP1D(0.5, IntegrationType.MEAN))
+Operators.select(upred)
+Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
+shaders_list = [
+ TextureAssignerShader(-1),
+ ConstantThicknessShader(5),
+ ConstantColorShader(0.0, 0.0, 0.0)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : occluded_by_specific_object.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Draws only the lines that are occluded by a given object
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesU1D import *
+from shaders import *
+
+## the id of the occluder (use SHIFT+click on the ViewMap to
+## retrieve ids)
+id = Id(3,0)
+upred = AndUP1D(NotUP1D(QuantitativeInvisibilityUP1D(0)),
+pyIsInOccludersListUP1D(id))
+Operators.select(upred)
+Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
+shaders_list = [
+ SamplingShader(5),
+ ConstantThicknessShader(3),
+ ConstantColorShader(0.3,0.3,0.3,1)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : polygonalize.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Make the strokes more "polygonal"
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+from freestyle_init import *
+from logical_operators import *
+from ChainingIterators import *
+from shaders import *
+
+Operators.select(QuantitativeInvisibilityUP1D(0))
+Operators.bidirectionalChain(ChainSilhouetteIterator(),NotUP1D(QuantitativeInvisibilityUP1D(0)))
+shaders_list = [
+ SamplingShader(2.0),
+ ConstantThicknessShader(3),
+ ConstantColorShader(0.0,0.0,0.0),
+ PolygonalizationShader(8)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
\ No newline at end of file
--- /dev/null
+#
+# Filename : qi0.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Draws the visible lines (chaining follows same nature lines)
+# (most basic style module)
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from ChainingIterators import *
+from shaders import *
+
+Operators.select(QuantitativeInvisibilityUP1D(0))
+Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
+shaders_list = [
+ SamplingShader(5.0),
+ ConstantThicknessShader(4.0),
+ ConstantColorShader(0.0,0.0,0.0)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
\ No newline at end of file
--- /dev/null
+#
+# Filename : qi0_not_external_contour.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Draws the visible lines (chaining follows same nature lines)
+# that do not belong to the external contour of the scene
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+
+upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
+Operators.select(upred)
+Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
+shaders_list = [
+ SamplingShader(4),
+ SpatialNoiseShader(4, 150, 2, True, True),
+ IncreasingThicknessShader(2, 5),
+ BackboneStretcherShader(20),
+ IncreasingColorShader(1,0,0,1,0,1,0,1),
+ TextureAssignerShader(4)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : qi1.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Draws lines hidden by one surface.
+# *** Quantitative Invisibility must have been
+# enabled in the options dialog to use this style module ****
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from shaders import *
+
+Operators.select(QuantitativeInvisibilityUP1D(1))
+Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(1)))
+shaders_list = [
+ SamplingShader(5.0),
+ ConstantThicknessShader(3),
+ ConstantColorShader(0.5,0.5,0.5, 1)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
--- /dev/null
+#
+# Filename : qi2.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Draws lines hidden by two surfaces.
+# *** Quantitative Invisibility must have been
+# enabled in the options dialog to use this style module ****
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesB1D import *
+from shaders import *
+
+Operators.select(QuantitativeInvisibilityUP1D(2))
+Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(2)))
+shaders_list = [
+ SamplingShader(10),
+ ConstantThicknessShader(1.5),
+ ConstantColorShader(0.7,0.7,0.7, 1)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
\ No newline at end of file
--- /dev/null
+#
+# Filename : sequentialsplit_sketchy.py
+# Author : Stephane Grabli
+# Date : 04/08/2005
+# Purpose : Use the sequential split with two different
+# predicates to specify respectively the starting and
+# the stopping extremities for strokes
+#
+#############################################################################
+#
+# Copyright (C) : Please refer to the COPYRIGHT file distributed
+# with this source distribution.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+#############################################################################
+
+from freestyle_init import *
+from logical_operators import *
+from PredicatesU1D import *
+from PredicatesU0D import *
+from Functions0D import *
+
+## Predicate to tell whether a TVertex
+## corresponds to a change from 0 to 1 or not.
+class pyBackTVertexUP0D(UnaryPredicate0D):
+ def __init__(self):
+ UnaryPredicate0D.__init__(self)
+ self._getQI = QuantitativeInvisibilityF0D()
+ def getName(self):
+ return "pyBackTVertexUP0D"
+ def __call__(self, iter):
+ v = iter.getObject()
+ nat = v.getNature()
+ if(nat & Nature.T_VERTEX == 0):
+ return 0
+ if(self._getQI(iter) != 0):
+ return 1
+ return 0
+
+
+upred = QuantitativeInvisibilityUP1D(0)
+Operators.select(upred)
+Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
+## starting and stopping predicates:
+start = pyVertexNatureUP0D(Nature.NON_T_VERTEX)
+stop = pyBackTVertexUP0D()
+Operators.sequentialSplit(start, stop, 10)
+shaders_list = [
+ SpatialNoiseShader(7, 120, 2, True, True),
+ IncreasingThicknessShader(5, 8),
+ ConstantColorShader(0.2, 0.2, 0.2, 1),
+ TextureAssignerShader(4)
+ ]
+Operators.create(TrueUP1D(), shaders_list)
+
--- /dev/null
+from freestyle_init import *
+from PredicatesU0D import *
+from PredicatesB1D import *
+from PredicatesU1D import *
+from logical_operators import *
+from ChainingIterators import *
+from random import *
+from math import *
+
+## thickness modifiers
+######################
+
+class pyDepthDiscontinuityThicknessShader(StrokeShader):
+ def __init__(self, min, max):
+ StrokeShader.__init__(self)
+ self.__min = float(min)
+ self.__max = float(max)
+ self.__func = ZDiscontinuityF0D()
+ def getName(self):
+ return "pyDepthDiscontinuityThicknessShader"
+ def shade(self, stroke):
+ it = stroke.strokeVerticesBegin()
+ z_min=0.0
+ z_max=1.0
+ a = (self.__max - self.__min)/(z_max-z_min)
+ b = (self.__min*z_max-self.__max*z_min)/(z_max-z_min)
+ it = stroke.strokeVerticesBegin()
+ while it.isEnd() == 0:
+ z = self.__func(it.castToInterface0DIterator())
+ thickness = a*z+b
+ it.getObject().attribute().setThickness(thickness, thickness)
+ it.increment()
+
+class pyConstantThicknessShader(StrokeShader):
+ def __init__(self, thickness):
+ StrokeShader.__init__(self)
+ self._thickness = thickness
+
+ def getName(self):
+ return "pyConstantThicknessShader"
+ def shade(self, stroke):
+ it = stroke.strokeVerticesBegin()
+ it_end = stroke.strokeVerticesEnd()
+ while it.isEnd() == 0:
+ att = it.getObject().attribute()
+ t = self._thickness/2.0
+ att.setThickness(t, t)
+ it.increment()
+
+class pyFXSThicknessShader(StrokeShader):
+ def __init__(self, thickness):
+ StrokeShader.__init__(self)
+ self._thickness = thickness
+
+ def getName(self):
+ return "pyFXSThicknessShader"
+ def shade(self, stroke):
+ it = stroke.strokeVerticesBegin()
+ it_end = stroke.strokeVerticesEnd()
+ while it.isEnd() == 0:
+ att = it.getObject().attribute()
+ t = self._thickness/2.0
+ att.setThickness(t, t)
+ it.increment()
+
+class pyFXSVaryingThicknessWithDensityShader(StrokeShader):
+ def __init__(self, wsize, threshold_min, threshold_max, thicknessMin, thicknessMax):
+ StrokeShader.__init__(self)
+ self.wsize= wsize
+ self.threshold_min= threshold_min
+ self.threshold_max= threshold_max
+ self._thicknessMin = thicknessMin
+ self._thicknessMax = thicknessMax
+
+ def getName(self):
+ return "pyVaryingThicknessWithDensityShader"
+ def shade(self, stroke):
+ n = stroke.strokeVerticesSize()
+ i = 0
+ it = stroke.strokeVerticesBegin()
+ it_end = stroke.strokeVerticesEnd()
+ func = DensityF0D(self.wsize)
+ while it.isEnd() == 0:
+ att = it.getObject().attribute()
+ toto = it.castToInterface0DIterator()
+ c= func(toto)
+ if (c < self.threshold_min ):
+ c = self.threshold_min
+ if (c > self.threshold_max ):
+ c = self.threshold_max
+## t = (c - self.threshold_min)/(self.threshold_max - self.threshold_min)*(self._thicknessMax-self._thicknessMin) + self._thicknessMin
+ t = (self.threshold_max - c )/(self.threshold_max - self.threshold_min)*(self._thicknessMax-self._thicknessMin) + self._thicknessMin
+ att.setThickness(t/2.0, t/2.0)
+ i = i+1
+ it.increment()
+class pyIncreasingThicknessShader(StrokeShader):
+ def __init__(self, thicknessMin, thicknessMax):
+ StrokeShader.__init__(self)
+ self._thicknessMin = thicknessMin
+ self._thicknessMax = thicknessMax
+
+ def getName(self):
+ return "pyIncreasingThicknessShader"
+ def shade(self, stroke):
+ n = stroke.strokeVerticesSize()
+ i = 0
+ it = stroke.strokeVerticesBegin()
+ it_end = stroke.strokeVerticesEnd()
+ while it.isEnd() == 0:
+ att = it.getObject().attribute()
+ c = float(i)/float(n)
+ if(i < float(n)/2.0):
+ t = (1.0 - c)*self._thicknessMin + c * self._thicknessMax
+ else:
+ t = (1.0 - c)*self._thicknessMax + c * self._thicknessMin
+ att.setThickness(t/2.0, t/2.0)
+ i = i+1
+ it.increment()
+
+class pyConstrainedIncreasingThicknessShader(StrokeShader):
+ def __init__(self, thicknessMin, thicknessMax, ratio):
+ StrokeShader.__init__(self)
+ self._thicknessMin = thicknessMin
+ self._thicknessMax = thicknessMax
+ self._ratio = ratio
+
+ def getName(self):
+ return "pyConstrainedIncreasingThicknessShader"
+ def shade(self, stroke):
+ slength = stroke.getLength2D()
+ tmp = self._ratio*slength
+ maxT = 0.0
+ if(tmp < self._thicknessMax):
+ maxT = tmp
+ else:
+ maxT = self._thicknessMax
+ n = stroke.strokeVerticesSize()
+ i = 0
+ it = stroke.strokeVerticesBegin()
+ it_end = stroke.strokeVerticesEnd()
+ while it.isEnd() == 0:
+ att = it.getObject().attribute()
+ c = float(i)/float(n)
+ if(i < float(n)/2.0):
+ t = (1.0 - c)*self._thicknessMin + c * maxT
+ else:
+ t = (1.0 - c)*maxT + c * self._thicknessMin
+ att.setThickness(t/2.0, t/2.0)
+ if(i == n-1):
+ att.setThickness(self._thicknessMin/2.0, self._thicknessMin/2.0)
+ i = i+1
+ it.increment()
+
+class pyDecreasingThicknessShader(StrokeShader):
+ def __init__(self, thicknessMax, thicknessMin):
+ StrokeShader.__init__(self)
+ self._thicknessMin = thicknessMin
+ self._thicknessMax = thicknessMax
+
+ def getName(self):
+ return "pyDecreasingThicknessShader"
+ def shade(self, stroke):
+ l = stroke.getLength2D()
+ tMax = self._thicknessMax
+ if(self._thicknessMax > 0.33*l):
+ tMax = 0.33*l
+ tMin = self._thicknessMin
+ if(self._thicknessMin > 0.1*l):
+ tMin = 0.1*l
+ n = stroke.strokeVerticesSize()
+ i = 0
+ it = stroke.strokeVerticesBegin()
+ it_end = stroke.strokeVerticesEnd()
+ while it.isEnd() == 0:
+ att = it.getObject().attribute()
+ c = float(i)/float(n)
+ t = (1.0 - c)*tMax +c*tMin
+ att.setThickness(t/2.0, t/2.0)
+ i = i+1
+ it.increment()
+
+def smoothC( a, exp ):
+ c = pow(float(a),exp)*pow(2.0,exp)
+ return c
+
+class pyNonLinearVaryingThicknessShader(StrokeShader):
+ def __init__(self, thicknessExtremity, thicknessMiddle, exponent):
+ StrokeShader.__init__(self)
+ self._thicknessMin = thicknessMiddle
+ self._thicknessMax = thicknessExtremity
+ self._exponent = exponent
+
+ def getName(self):
+ return "pyNonLinearVaryingThicknessShader"
+ def shade(self, stroke):
+ n = stroke.strokeVerticesSize()
+ i = 0
+ it = stroke.strokeVerticesBegin()
+ it_end = stroke.strokeVerticesEnd()
+ while it.isEnd() == 0:
+ att = it.getObject().attribute()
+ if(i < float(n)/2.0):
+ c = float(i)/float(n)
+ else:
+ c = float(n-i)/float(n)
+ c = smoothC(c, self._exponent)
+ t = (1.0 - c)*self._thicknessMax + c * self._thicknessMin
+ att.setThickness(t/2.0, t/2.0)
+ i = i+1
+ it.increment()
+
+## Spherical linear interpolation (cos)
+class pySLERPThicknessShader(StrokeShader):
+ def __init__(self, thicknessMin, thicknessMax, omega=1.2):
+ StrokeShader.__init__(self)
+ self._thicknessMin = thicknessMin
+ self._thicknessMax = thicknessMax
+ self._omega = omega
+
+ def getName(self):
+ return "pySLERPThicknessShader"
+ def shade(self, stroke):
+ slength = stroke.getLength2D()
+ tmp = 0.33*slength
+ maxT = self._thicknessMax
+ if(tmp < self._thicknessMax):
+ maxT = tmp
+
+ n = stroke.strokeVerticesSize()
+ i = 0
+ it = stroke.strokeVerticesBegin()
+ it_end = stroke.strokeVerticesEnd()
+ while it.isEnd() == 0:
+ att = it.getObject().attribute()
+ c = float(i)/float(n)
+ if(i < float(n)/2.0):
+ t = sin((1-c)*self._omega)/sinh(self._omega)*self._thicknessMin + sin(c*self._omega)/sinh(self._omega) * maxT
+ else:
+ t = sin((1-c)*self._omega)/sinh(self._omega)*maxT + sin(c*self._omega)/sinh(self._omega) * self._thicknessMin
+ att.setThickness(t/2.0, t/2.0)
+ i = i+1
+ it.increment()
+
+class pyTVertexThickenerShader(StrokeShader): ## FIXME
+ def __init__(self, a=1.5, n=3):
+ StrokeShader.__init__(self)
+ self._a = a
+ self._n = n
+
+ def getName(self):
+ return "pyTVertexThickenerShader"
+
+ def shade(self, stroke):
+ it = stroke.strokeVerticesBegin()
+ predTVertex = pyVertexNatureUP0D(Nature.T_VERTEX)
+ while it.isEnd() == 0:
+ if(predTVertex(it) == 1):
+ it2 = StrokeVertexIterator(it)
+ it2.increment()
+ if not(it.isBegin() or it2.isEnd()):
+ it.increment()
+ continue
+ n = self._n
+ a = self._a
+ if(it.isBegin()):
+ it3 = StrokeVertexIterator(it)
+ count = 0
+ while (it3.isEnd() == 0 and count < n):
+ att = it3.getObject().attribute()
+ tr = att.getThicknessR();
+ tl = att.getThicknessL();
+ r = (a-1.0)/float(n-1)*(float(n)/float(count+1) - 1) + 1
+ #r = (1.0-a)/float(n-1)*count + a
+ att.setThickness(r*tr, r*tl)
+ it3.increment()
+ count = count + 1
+ if(it2.isEnd()):
+ it4 = StrokeVertexIterator(it)
+ count = 0
+ while (it4.isBegin() == 0 and count < n):
+ att = it4.getObject().attribute()
+ tr = att.getThicknessR();
+ tl = att.getThicknessL();
+ r = (a-1.0)/float(n-1)*(float(n)/float(count+1) - 1) + 1
+ #r = (1.0-a)/float(n-1)*count + a
+ att.setThickness(r*tr, r*tl)
+ it4.decrement()
+ count = count + 1
+ if ((it4.isBegin() == 1)):
+ att = it4.getObject().attribute()
+ tr = att.getThicknessR();
+ tl = att.getThicknessL();
+ r = (a-1.0)/float(n-1)*(float(n)/float(count+1) - 1) + 1
+ #r = (1.0-a)/float(n-1)*count + a
+ att.setThickness(r*tr, r*tl)
+ it.increment()
+
+class pyImportance2DThicknessShader(StrokeShader):
+ def __init__(self, x, y, w, kmin, kmax):
+ StrokeShader.__init__(self)
+ self._x = x
+ self._y = y
+ self._w = float(w)
+ self._kmin = float(kmin)
+ self._kmax = float(kmax)
+
+ def getName(self):
+ return "pyImportanceThicknessShader"
+ def shade(self, stroke):
+ origin = Vector(self._x, self._y)
+ it = stroke.strokeVerticesBegin()
+ while it.isEnd() == 0:
+ v = it.getObject()
+ p = Vector(v.getProjectedX(), v.getProjectedY())
+ d = (p-origin).length
+ if(d>self._w):
+ k = self._kmin
+ else:
+ k = (self._kmax*(self._w-d) + self._kmin*d)/self._w
+ att = v.attribute()
+ tr = att.getThicknessR()
+ tl = att.getThicknessL()
+ att.setThickness(k*tr/2.0, k*tl/2.0)
+ it.increment()
+
+class pyImportance3DThicknessShader(StrokeShader):
+ def __init__(self, x, y, z, w, kmin, kmax):
+ StrokeShader.__init__(self)
+ self._x = x
+ self._y = y
+ self._z = z
+ self._w = float(w)
+ self._kmin = float(kmin)
+ self._kmax = float(kmax)
+
+ def getName(self):
+ return "pyImportance3DThicknessShader"
+ def shade(self, stroke):
+ origin = Vector(self._x, self._y, self._z)
+ it = stroke.strokeVerticesBegin()
+ while it.isEnd() == 0:
+ v = it.getObject()
+ p = Vector(v.getX(), v.getY(), v.getZ())
+ d = (p-origin).length
+ if(d>self._w):
+ k = self._kmin
+ else:
+ k = (self._kmax*(self._w-d) + self._kmin*d)/self._w
+ att = v.attribute()
+ tr = att.getThicknessR()
+ tl = att.getThicknessL()
+ att.setThickness(k*tr/2.0, k*tl/2.0)
+ it.increment()
+
+class pyZDependingThicknessShader(StrokeShader):
+ def __init__(self, min, max):
+ StrokeShader.__init__(self)
+ self.__min = min
+ self.__max = max
+ self.__func = GetProjectedZF0D()
+ def getName(self):
+ return "pyZDependingThicknessShader"
+ def shade(self, stroke):
+ it = stroke.strokeVerticesBegin()
+ z_min = 1
+ z_max = 0
+ while it.isEnd() == 0:
+ z = self.__func(it.castToInterface0DIterator())
+ if z < z_min:
+ z_min = z
+ elif z > z_max:
+ z_max = z
+ it.increment()
+ z_diff = 1 / (z_max - z_min)
+ it = stroke.strokeVerticesBegin()
+ while it.isEnd() == 0:
+ z = (self.__func(it.castToInterface0DIterator()) - z_min) * z_diff
+ thickness = (1 - z) * self.__max + z * self.__min
+ it.getObject().attribute().setThickness(thickness, thickness)
+ it.increment()
+
+
+## color modifiers
+##################
+
+class pyConstantColorShader(StrokeShader):
+ def __init__(self,r,g,b, a = 1):
+ StrokeShader.__init__(self)
+ self._r = r
+ self._g = g
+ self._b = b
+ self._a = a
+ def getName(self):
+ return "pyConstantColorShader"
+ def shade(self, stroke):
+ it = stroke.strokeVerticesBegin()
+ it_end = stroke.strokeVerticesEnd()
+ while it.isEnd() == 0:
+ att = it.getObject().attribute()
+ att.setColor(self._r, self._g, self._b)
+ att.setAlpha(self._a)
+ it.increment()
+
+#c1->c2
+class pyIncreasingColorShader(StrokeShader):
+ def __init__(self,r1,g1,b1,a1, r2,g2,b2,a2):
+ StrokeShader.__init__(self)
+ self._c1 = [r1,g1,b1,a1]
+ self._c2 = [r2,g2,b2,a2]
+ def getName(self):
+ return "pyIncreasingColorShader"
+ def shade(self, stroke):
+ n = stroke.strokeVerticesSize() - 1
+ inc = 0
+ it = stroke.strokeVerticesBegin()
+ it_end = stroke.strokeVerticesEnd()
+ while it.isEnd() == 0:
+ att = it.getObject().attribute()
+ c = float(inc)/float(n)
+
+ att.setColor( (1-c)*self._c1[0] + c*self._c2[0],
+ (1-c)*self._c1[1] + c*self._c2[1],
+ (1-c)*self._c1[2] + c*self._c2[2],)
+ att.setAlpha((1-c)*self._c1[3] + c*self._c2[3],)
+ inc = inc+1
+ it.increment()
+
+# c1->c2->c1
+class pyInterpolateColorShader(StrokeShader):
+ def __init__(self,r1,g1,b1,a1, r2,g2,b2,a2):
+ StrokeShader.__init__(self)
+ self._c1 = [r1,g1,b1,a1]
+ self._c2 = [r2,g2,b2,a2]
+ def getName(self):
+ return "pyInterpolateColorShader"
+ def shade(self, stroke):
+ n = stroke.strokeVerticesSize() - 1
+ inc = 0
+ it = stroke.strokeVerticesBegin()
+ it_end = stroke.strokeVerticesEnd()
+ while it.isEnd() == 0:
+ att = it.getObject().attribute()
+ u = float(inc)/float(n)
+ c = 1-2*(fabs(u-0.5))
+ att.setColor( (1-c)*self._c1[0] + c*self._c2[0],
+ (1-c)*self._c1[1] + c*self._c2[1],
+ (1-c)*self._c1[2] + c*self._c2[2],)
+ att.setAlpha((1-c)*self._c1[3] + c*self._c2[3],)
+ inc = inc+1
+ it.increment()
+
+class pyMaterialColorShader(StrokeShader):
+ def __init__(self, threshold=50):
+ StrokeShader.__init__(self)
+ self._threshold = threshold
+
+ def getName(self):
+ return "pyMaterialColorShader"
+
+ def shade(self, stroke):
+ it = stroke.strokeVerticesBegin()
+ it_end = stroke.strokeVerticesEnd()
+ func = MaterialF0D()
+ xn = 0.312713
+ yn = 0.329016
+ Yn = 1.0
+ un = 4.* xn/ ( -2.*xn + 12.*yn + 3. )
+ vn= 9.* yn/ ( -2.*xn + 12.*yn +3. )
+ while it.isEnd() == 0:
+ toto = it.castToInterface0DIterator()
+ mat = func(toto)
+
+ r = mat.diffuseR()
+ g = mat.diffuseG()
+ b = mat.diffuseB()
+
+ X = 0.412453*r + 0.35758 *g + 0.180423*b
+ Y = 0.212671*r + 0.71516 *g + 0.072169*b
+ Z = 0.019334*r + 0.119193*g + 0.950227*b
+
+ if((X == 0) and (Y == 0) and (Z == 0)):
+ X = 0.01
+ Y = 0.01
+ Z = 0.01
+ u = 4.*X / (X + 15.*Y + 3.*Z)
+ v = 9.*Y / (X + 15.*Y + 3.*Z)
+
+ L= 116. * pow((Y/Yn),(1./3.)) -16
+ U = 13. * L * (u - un)
+ V = 13. * L * (v - vn)
+
+ if (L > self._threshold):
+ L = L/1.3
+ U = U+10
+ else:
+ L = L +2.5*(100-L)/5.
+ U = U/3.0
+ V = V/3.0
+ u = U / (13. * L) + un
+ v = V / (13. * L) + vn
+
+ Y = Yn * pow( ((L+16.)/116.), 3.)
+ X = -9. * Y * u / ((u - 4.)* v - u * v)
+ Z = (9. * Y - 15*v*Y - v*X) /( 3. * v)
+
+ r = 3.240479 * X - 1.53715 * Y - 0.498535 * Z
+ g = -0.969256 * X + 1.875991 * Y + 0.041556 * Z
+ b = 0.055648 * X - 0.204043 * Y + 1.057311 * Z
+
+ att = it.getObject().attribute()
+ att.setColor(r, g, b)
+ it.increment()
+
+class pyRandomColorShader(StrokeShader):
+ def getName(self):
+ return "pyRandomColorShader"
+ def __init__(self, s=1):
+ StrokeShader.__init__(self)
+ seed(s)
+ def shade(self, stroke):
+ ## pick a random color
+ c0 = float(uniform(15,75))/100.0
+ c1 = float(uniform(15,75))/100.0
+ c2 = float(uniform(15,75))/100.0
+ print(c0, c1, c2)
+ it = stroke.strokeVerticesBegin()
+ while(it.isEnd() == 0):
+ it.getObject().attribute().setColor(c0,c1,c2)
+ it.increment()
+
+class py2DCurvatureColorShader(StrokeShader):
+ def getName(self):
+ return "py2DCurvatureColorShader"
+
+ def shade(self, stroke):
+