2 * Adapted from Open Shading Language with this license:
4 * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
7 * Modifications Copyright 2011, Blender Foundation.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions are
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * * Neither the name of Sony Pictures Imageworks nor the names of its
18 * contributors may be used to endorse or promote products derived from
19 * this software without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 #include <OpenImageIO/fmath.h>
35 #include <OSL/genclosure.h>
37 #include "osl_closures.h"
39 #include "util_math.h"
45 // TODO: fresnel_dielectric is only used for derivatives, could be optimized
47 // TODO: refactor these two classes so they share everything by the microfacet
50 // microfacet model with GGX facet distribution
51 // see http://www.graphics.cornell.edu/~bjw/microfacetbsdf.pdf
52 template <int Refractive = 0>
53 class MicrofacetGGXClosure : public BSDFClosure {
56 float m_ag; // width parameter (roughness)
57 float m_eta; // index of refraction (for fresnel term)
58 MicrofacetGGXClosure() : BSDFClosure(Labels::GLOSSY, Refractive ? Back : Front) { m_eta = 1.0f; }
62 m_ag = clamp(m_ag, 1e-5f, 1.0f);
65 bool mergeable(const ClosurePrimitive *other) const {
66 const MicrofacetGGXClosure *comp = (const MicrofacetGGXClosure *)other;
67 return m_N == comp->m_N && m_ag == comp->m_ag &&
68 m_eta == comp->m_eta && BSDFClosure::mergeable(other);
71 size_t memsize() const { return sizeof(*this); }
73 const char *name() const {
74 return Refractive ? "microfacet_ggx_refraction" : "microfacet_ggx";
77 void print_on(std::ostream &out) const {
78 out << name() << " (";
79 out << "(" << m_N[0] << ", " << m_N[1] << ", " << m_N[2] << "), ";
85 float albedo(const Vec3 &omega_out) const
90 Color3 eval_reflect(const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
92 if (Refractive == 1) return Color3(0, 0, 0);
93 float cosNO = m_N.dot(omega_out);
94 float cosNI = m_N.dot(omega_in);
95 if (cosNI > 0 && cosNO > 0) {
97 Vec3 Hr = omega_in + omega_out;
99 // eq. 20: (F*G*D)/(4*in*on)
100 // eq. 33: first we calculate D(m) with m=Hr:
101 float alpha2 = m_ag * m_ag;
102 float cosThetaM = m_N.dot(Hr);
103 float cosThetaM2 = cosThetaM * cosThetaM;
104 float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
105 float cosThetaM4 = cosThetaM2 * cosThetaM2;
106 float D = alpha2 / ((float) M_PI * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
107 // eq. 34: now calculate G1(i,m) and G1(o,m)
108 float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
109 float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
111 float out = (G * D) * 0.25f / cosNO;
113 float pm = D * cosThetaM;
114 // convert into pdf of the sampled direction
115 // eq. 38 - but see also:
116 // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
117 pdf = pm * 0.25f / Hr.dot(omega_out);
118 return Color3(out, out, out);
120 return Color3(0, 0, 0);
123 Color3 eval_transmit(const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
125 if (Refractive == 0) return Color3(0, 0, 0);
126 float cosNO = m_N.dot(omega_out);
127 float cosNI = m_N.dot(omega_in);
128 if (cosNO <= 0 || cosNI >= 0)
129 return Color3(0, 0, 0); // vectors on same side -- not possible
130 // compute half-vector of the refraction (eq. 16)
131 Vec3 ht = -(m_eta * omega_in + omega_out);
132 Vec3 Ht = ht; Ht.normalize();
133 float cosHO = Ht.dot(omega_out);
135 float cosHI = Ht.dot(omega_in);
136 // eq. 33: first we calculate D(m) with m=Ht:
137 float alpha2 = m_ag * m_ag;
138 float cosThetaM = m_N.dot(Ht);
139 float cosThetaM2 = cosThetaM * cosThetaM;
140 float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
141 float cosThetaM4 = cosThetaM2 * cosThetaM2;
142 float D = alpha2 / ((float) M_PI * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
143 // eq. 34: now calculate G1(i,m) and G1(o,m)
144 float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
145 float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
148 float invHt2 = 1 / ht.dot(ht);
149 pdf = D * fabsf(cosThetaM) * (fabsf(cosHI) * (m_eta * m_eta)) * invHt2;
150 float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D) * invHt2) / cosNO;
151 return Color3(out, out, out);
154 ustring sample(const Vec3 &Ng,
155 const Vec3 &omega_out, const Vec3 &domega_out_dx, const Vec3 &domega_out_dy,
156 float randu, float randv,
157 Vec3 &omega_in, Vec3 &domega_in_dx, Vec3 &domega_in_dy,
158 float &pdf, Color3 &eval) const
160 float cosNO = m_N.dot(omega_out);
163 make_orthonormals(Z, X, Y);
164 // generate a random microfacet normal m
166 // we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
167 // and sin(atan(x)) == x/sqrt(1+x^2)
168 float alpha2 = m_ag * m_ag;
169 float tanThetaM2 = alpha2 * randu / (1 - randu);
170 float cosThetaM = 1 / sqrtf(1 + tanThetaM2);
171 float sinThetaM = cosThetaM * sqrtf(tanThetaM2);
172 float phiM = 2 * float(M_PI) * randv;
173 Vec3 m = (cosf(phiM) * sinThetaM) * X +
174 (sinf(phiM) * sinThetaM) * Y +
176 if (Refractive == 0) {
177 float cosMO = m.dot(omega_out);
179 // eq. 39 - compute actual reflected direction
180 omega_in = 2 * cosMO * m - omega_out;
181 if (Ng.dot(omega_in) > 0) {
182 // microfacet normal is visible to this ray
184 float cosThetaM2 = cosThetaM * cosThetaM;
185 float cosThetaM4 = cosThetaM2 * cosThetaM2;
186 float D = alpha2 / (float(M_PI) * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
188 float pm = D * cosThetaM;
189 // convert into pdf of the sampled direction
190 // eq. 38 - but see also:
191 // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
192 pdf = pm * 0.25f / cosMO;
194 float cosNI = m_N.dot(omega_in);
195 // eq. 34: now calculate G1(i,m) and G1(o,m)
196 float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
197 float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
199 // eq. 20: (F*G*D)/(4*in*on)
200 float out = (G * D) * 0.25f / cosNO;
201 eval.setValue(out, out, out);
202 domega_in_dx = (2 * m.dot(domega_out_dx)) * m - domega_out_dx;
203 domega_in_dy = (2 * m.dot(domega_out_dy)) * m - domega_out_dy;
205 /* disabled for now - gives texture filtering problems */
207 // Since there is some blur to this reflection, make the
208 // derivatives a bit bigger. In theory this varies with the
209 // roughness but the exact relationship is complex and
210 // requires more ops than are practical.
218 // CAUTION: the i and o variables are inverted relative to the paper
219 // eq. 39 - compute actual refractive direction
223 fresnel_dielectric(m_eta, m, omega_out, domega_out_dx, domega_out_dy,
233 float cosThetaM2 = cosThetaM * cosThetaM;
234 float cosThetaM4 = cosThetaM2 * cosThetaM2;
235 float D = alpha2 / (float(M_PI) * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
237 float pm = D * cosThetaM;
239 float cosNI = m_N.dot(omega_in);
240 // eq. 34: now calculate G1(i,m) and G1(o,m)
241 float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
242 float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
245 float cosHI = m.dot(omega_in);
246 float cosHO = m.dot(omega_out);
247 float Ht2 = m_eta * cosHI + cosHO;
249 float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D)) / (cosNO * Ht2);
251 pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2;
252 eval.setValue(out, out, out);
254 /* disabled for now - gives texture filtering problems */
256 // Since there is some blur to this refraction, make the
257 // derivatives a bit bigger. In theory this varies with the
258 // roughness but the exact relationship is complex and
259 // requires more ops than are practical.
266 return Refractive ? Labels::TRANSMIT : Labels::REFLECT;
270 // microfacet model with Beckmann facet distribution
271 // see http://www.graphics.cornell.edu/~bjw/microfacetbsdf.pdf
272 template <int Refractive = 0>
273 class MicrofacetBeckmannClosure : public BSDFClosure {
276 float m_ab; // width parameter (roughness)
277 float m_eta; // index of refraction (for fresnel term)
278 MicrofacetBeckmannClosure() : BSDFClosure(Labels::GLOSSY, Refractive ? Back : Front) {
283 m_ab = clamp(m_ab, 1e-5f, 1.0f);
286 bool mergeable(const ClosurePrimitive *other) const {
287 const MicrofacetBeckmannClosure *comp = (const MicrofacetBeckmannClosure *)other;
288 return m_N == comp->m_N && m_ab == comp->m_ab &&
289 m_eta == comp->m_eta && BSDFClosure::mergeable(other);
292 size_t memsize() const {
293 return sizeof(*this);
296 const char *name() const {
297 return Refractive ? "microfacet_beckmann_refraction"
298 : "microfacet_beckmann";
301 void print_on(std::ostream &out) const
303 out << name() << " (";
304 out << "(" << m_N[0] << ", " << m_N[1] << ", " << m_N[2] << "), ";
310 float albedo(const Vec3 &omega_out) const
315 Color3 eval_reflect(const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
317 if (Refractive == 1) return Color3(0, 0, 0);
318 float cosNO = m_N.dot(omega_out);
319 float cosNI = m_N.dot(omega_in);
320 if (cosNO > 0 && cosNI > 0) {
322 Vec3 Hr = omega_in + omega_out;
324 // eq. 20: (F*G*D)/(4*in*on)
325 // eq. 25: first we calculate D(m) with m=Hr:
326 float alpha2 = m_ab * m_ab;
327 float cosThetaM = m_N.dot(Hr);
328 float cosThetaM2 = cosThetaM * cosThetaM;
329 float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
330 float cosThetaM4 = cosThetaM2 * cosThetaM2;
331 float D = expf(-tanThetaM2 / alpha2) / (float(M_PI) * alpha2 * cosThetaM4);
332 // eq. 26, 27: now calculate G1(i,m) and G1(o,m)
333 float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
334 float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
335 float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
336 float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
338 float out = (G * D) * 0.25f / cosNO;
340 float pm = D * cosThetaM;
341 // convert into pdf of the sampled direction
342 // eq. 38 - but see also:
343 // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
344 pdf = pm * 0.25f / Hr.dot(omega_out);
345 return Color3(out, out, out);
347 return Color3(0, 0, 0);
350 Color3 eval_transmit(const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
352 if (Refractive == 0) return Color3(0, 0, 0);
353 float cosNO = m_N.dot(omega_out);
354 float cosNI = m_N.dot(omega_in);
355 if (cosNO <= 0 || cosNI >= 0)
356 return Color3(0, 0, 0);
357 // compute half-vector of the refraction (eq. 16)
358 Vec3 ht = -(m_eta * omega_in + omega_out);
359 Vec3 Ht = ht; Ht.normalize();
360 float cosHO = Ht.dot(omega_out);
362 float cosHI = Ht.dot(omega_in);
363 // eq. 33: first we calculate D(m) with m=Ht:
364 float alpha2 = m_ab * m_ab;
365 float cosThetaM = m_N.dot(Ht);
366 float cosThetaM2 = cosThetaM * cosThetaM;
367 float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
368 float cosThetaM4 = cosThetaM2 * cosThetaM2;
369 float D = expf(-tanThetaM2 / alpha2) / (float(M_PI) * alpha2 * cosThetaM4);
370 // eq. 26, 27: now calculate G1(i,m) and G1(o,m)
371 float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
372 float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
373 float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
374 float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
377 float invHt2 = 1 / ht.dot(ht);
378 pdf = D * fabsf(cosThetaM) * (fabsf(cosHI) * (m_eta * m_eta)) * invHt2;
379 float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D) * invHt2) / cosNO;
380 return Color3(out, out, out);
383 ustring sample(const Vec3 &Ng,
384 const Vec3 &omega_out, const Vec3 &domega_out_dx, const Vec3 &domega_out_dy,
385 float randu, float randv,
386 Vec3 &omega_in, Vec3 &domega_in_dx, Vec3 &domega_in_dy,
387 float &pdf, Color3 &eval) const
389 float cosNO = m_N.dot(omega_out);
392 make_orthonormals(Z, X, Y);
393 // generate a random microfacet normal m
395 // we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
396 // and sin(atan(x)) == x/sqrt(1+x^2)
397 float alpha2 = m_ab * m_ab;
398 float tanThetaM = sqrtf(-alpha2 * logf(1 - randu));
399 float cosThetaM = 1 / sqrtf(1 + tanThetaM * tanThetaM);
400 float sinThetaM = cosThetaM * tanThetaM;
401 float phiM = 2 * float(M_PI) * randv;
402 Vec3 m = (cosf(phiM) * sinThetaM) * X +
403 (sinf(phiM) * sinThetaM) * Y +
405 if (Refractive == 0) {
406 float cosMO = m.dot(omega_out);
408 // eq. 39 - compute actual reflected direction
409 omega_in = 2 * cosMO * m - omega_out;
410 if (Ng.dot(omega_in) > 0) {
411 // microfacet normal is visible to this ray
413 float cosThetaM2 = cosThetaM * cosThetaM;
414 float tanThetaM2 = tanThetaM * tanThetaM;
415 float cosThetaM4 = cosThetaM2 * cosThetaM2;
416 float D = expf(-tanThetaM2 / alpha2) / (float(M_PI) * alpha2 * cosThetaM4);
418 float pm = D * cosThetaM;
419 // convert into pdf of the sampled direction
420 // eq. 38 - but see also:
421 // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
422 pdf = pm * 0.25f / cosMO;
424 float cosNI = m_N.dot(omega_in);
425 // eq. 26, 27: now calculate G1(i,m) and G1(o,m)
426 float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
427 float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
428 float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
429 float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
431 // eq. 20: (F*G*D)/(4*in*on)
432 float out = (G * D) * 0.25f / cosNO;
433 eval.setValue(out, out, out);
434 domega_in_dx = (2 * m.dot(domega_out_dx)) * m - domega_out_dx;
435 domega_in_dy = (2 * m.dot(domega_out_dy)) * m - domega_out_dy;
437 /* disabled for now - gives texture filtering problems */
439 // Since there is some blur to this reflection, make the
440 // derivatives a bit bigger. In theory this varies with the
441 // roughness but the exact relationship is complex and
442 // requires more ops than are practical.
450 // CAUTION: the i and o variables are inverted relative to the paper
451 // eq. 39 - compute actual refractive direction
455 fresnel_dielectric(m_eta, m, omega_out, domega_out_dx, domega_out_dy,
464 float cosThetaM2 = cosThetaM * cosThetaM;
465 float tanThetaM2 = tanThetaM * tanThetaM;
466 float cosThetaM4 = cosThetaM2 * cosThetaM2;
467 float D = expf(-tanThetaM2 / alpha2) / (float(M_PI) * alpha2 * cosThetaM4);
469 float pm = D * cosThetaM;
471 float cosNI = m_N.dot(omega_in);
472 // eq. 26, 27: now calculate G1(i,m) and G1(o,m)
473 float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
474 float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
475 float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
476 float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
479 float cosHI = m.dot(omega_in);
480 float cosHO = m.dot(omega_out);
481 float Ht2 = m_eta * cosHI + cosHO;
483 float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D)) / (cosNO * Ht2);
485 pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2;
486 eval.setValue(out, out, out);
488 /* disabled for now - gives texture filtering problems */
490 // Since there is some blur to this refraction, make the
491 // derivatives a bit bigger. In theory this varies with the
492 // roughness but the exact relationship is complex and
493 // requires more ops than are practical.
500 return Refractive ? Labels::TRANSMIT : Labels::REFLECT;
506 ClosureParam bsdf_microfacet_ggx_params[] = {
507 CLOSURE_VECTOR_PARAM(MicrofacetGGXClosure<0>, m_N),
508 CLOSURE_FLOAT_PARAM(MicrofacetGGXClosure<0>, m_ag),
509 CLOSURE_STRING_KEYPARAM("label"),
510 CLOSURE_FINISH_PARAM(MicrofacetGGXClosure<0>)
513 ClosureParam bsdf_microfacet_ggx_refraction_params[] = {
514 CLOSURE_VECTOR_PARAM(MicrofacetGGXClosure<1>, m_N),
515 CLOSURE_FLOAT_PARAM(MicrofacetGGXClosure<1>, m_ag),
516 CLOSURE_FLOAT_PARAM(MicrofacetGGXClosure<1>, m_eta),
517 CLOSURE_STRING_KEYPARAM("label"),
518 CLOSURE_FINISH_PARAM(MicrofacetGGXClosure<1>)
521 ClosureParam bsdf_microfacet_beckmann_params[] = {
522 CLOSURE_VECTOR_PARAM(MicrofacetBeckmannClosure<0>, m_N),
523 CLOSURE_FLOAT_PARAM(MicrofacetBeckmannClosure<0>, m_ab),
524 CLOSURE_STRING_KEYPARAM("label"),
525 CLOSURE_FINISH_PARAM(MicrofacetBeckmannClosure<0>)
528 ClosureParam bsdf_microfacet_beckmann_refraction_params[] = {
529 CLOSURE_VECTOR_PARAM(MicrofacetBeckmannClosure<1>, m_N),
530 CLOSURE_FLOAT_PARAM(MicrofacetBeckmannClosure<1>, m_ab),
531 CLOSURE_FLOAT_PARAM(MicrofacetBeckmannClosure<1>, m_eta),
532 CLOSURE_STRING_KEYPARAM("label"),
533 CLOSURE_FINISH_PARAM(MicrofacetBeckmannClosure<1>)
536 CLOSURE_PREPARE(bsdf_microfacet_ggx_prepare, MicrofacetGGXClosure<0>)
537 CLOSURE_PREPARE(bsdf_microfacet_ggx_refraction_prepare, MicrofacetGGXClosure<1>)
538 CLOSURE_PREPARE(bsdf_microfacet_beckmann_prepare, MicrofacetBeckmannClosure<0>)
539 CLOSURE_PREPARE(bsdf_microfacet_beckmann_refraction_prepare, MicrofacetBeckmannClosure<1>)