svn merge ^/trunk/blender -r46100:46200
[blender.git] / intern / cycles / kernel / kernel_camera.h
1 /*
2  * Copyright 2011, Blender Foundation.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17  */
18
19 CCL_NAMESPACE_BEGIN
20
21 /* Perspective Camera */
22
23 __device float2 camera_sample_aperture(KernelGlobals *kg, float u, float v)
24 {
25         float blades = kernel_data.cam.blades;
26
27         if(blades == 0.0f) {
28                 /* sample disk */
29                 return concentric_sample_disk(u, v);
30         }
31         else {
32                 /* sample polygon */
33                 float rotation = kernel_data.cam.bladesrotation;
34                 return regular_polygon_sample(blades, rotation, u, v);
35         }
36 }
37
38 __device void camera_sample_perspective(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, Ray *ray)
39 {
40         /* create ray form raster position */
41         Transform rastertocamera = kernel_data.cam.rastertocamera;
42         float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
43
44         ray->P = make_float3(0.0f, 0.0f, 0.0f);
45         ray->D = Pcamera;
46
47         /* modify ray for depth of field */
48         float aperturesize = kernel_data.cam.aperturesize;
49
50         if(aperturesize > 0.0f) {
51                 /* sample point on aperture */
52                 float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;
53
54                 /* compute point on plane of focus */
55                 float ft = kernel_data.cam.focaldistance/ray->D.z;
56                 float3 Pfocus = ray->P + ray->D*ft;
57
58                 /* update ray for effect of lens */
59                 ray->P = make_float3(lensuv.x, lensuv.y, 0.0f);
60                 ray->D = normalize(Pfocus - ray->P);
61         }
62
63         /* transform ray from camera to world */
64         Transform cameratoworld = kernel_data.cam.cameratoworld;
65
66 #ifdef __MOTION__
67         if(kernel_data.cam.have_motion)
68                 transform_motion_interpolate(&cameratoworld, &kernel_data.cam.motion, ray->time);
69 #endif
70
71         ray->P = transform_point(&cameratoworld, ray->P);
72         ray->D = transform_direction(&cameratoworld, ray->D);
73         ray->D = normalize(ray->D);
74
75 #ifdef __RAY_DIFFERENTIALS__
76         /* ray differential */
77         float3 Ddiff = transform_direction(&cameratoworld, Pcamera);
78
79         ray->dP.dx = make_float3(0.0f, 0.0f, 0.0f);
80         ray->dP.dy = make_float3(0.0f, 0.0f, 0.0f);
81
82         ray->dD.dx = normalize(Ddiff + float4_to_float3(kernel_data.cam.dx)) - normalize(Ddiff);
83         ray->dD.dy = normalize(Ddiff + float4_to_float3(kernel_data.cam.dy)) - normalize(Ddiff);
84 #endif
85
86 #ifdef __CAMERA_CLIPPING__
87         /* clipping */
88         ray->P += kernel_data.cam.nearclip*ray->D;
89         ray->t = kernel_data.cam.cliplength;
90 #else
91         ray->t = FLT_MAX;
92 #endif
93 }
94
95 /* Orthographic Camera */
96
97 __device void camera_sample_orthographic(KernelGlobals *kg, float raster_x, float raster_y, Ray *ray)
98 {
99         /* create ray form raster position */
100         Transform rastertocamera = kernel_data.cam.rastertocamera;
101         float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
102
103         ray->P = Pcamera;
104         ray->D = make_float3(0.0f, 0.0f, 1.0f);
105
106         /* transform ray from camera to world */
107         Transform cameratoworld = kernel_data.cam.cameratoworld;
108
109 #ifdef __MOTION__
110         if(kernel_data.cam.have_motion)
111                 transform_motion_interpolate(&cameratoworld, &kernel_data.cam.motion, ray->time);
112 #endif
113
114         ray->P = transform_point(&cameratoworld, ray->P);
115         ray->D = transform_direction(&cameratoworld, ray->D);
116         ray->D = normalize(ray->D);
117
118 #ifdef __RAY_DIFFERENTIALS__
119         /* ray differential */
120         ray->dP.dx = float4_to_float3(kernel_data.cam.dx);
121         ray->dP.dy = float4_to_float3(kernel_data.cam.dy);
122
123         ray->dD.dx = make_float3(0.0f, 0.0f, 0.0f);
124         ray->dD.dy = make_float3(0.0f, 0.0f, 0.0f);
125 #endif
126
127 #ifdef __CAMERA_CLIPPING__
128         /* clipping */
129         ray->t = kernel_data.cam.cliplength;
130 #else
131         ray->t = FLT_MAX;
132 #endif
133 }
134
135 /* Environment Camera */
136
137 __device void camera_sample_environment(KernelGlobals *kg, float raster_x, float raster_y, Ray *ray)
138 {
139         Transform rastertocamera = kernel_data.cam.rastertocamera;
140         float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
141
142         /* create ray form raster position */
143         ray->P = make_float3(0.0f, 0.0f, 0.0f);
144         ray->D = equirectangular_to_direction(Pcamera.x, Pcamera.y);
145
146         /* transform ray from camera to world */
147         Transform cameratoworld = kernel_data.cam.cameratoworld;
148
149 #ifdef __MOTION__
150         if(kernel_data.cam.have_motion)
151                 transform_motion_interpolate(&cameratoworld, &kernel_data.cam.motion, ray->time);
152 #endif
153
154         ray->P = transform_point(&cameratoworld, ray->P);
155         ray->D = transform_direction(&cameratoworld, ray->D);
156         ray->D = normalize(ray->D);
157
158 #ifdef __RAY_DIFFERENTIALS__
159         /* ray differential */
160         ray->dP.dx = make_float3(0.0f, 0.0f, 0.0f);
161         ray->dP.dy = make_float3(0.0f, 0.0f, 0.0f);
162
163         Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x + 1.0f, raster_y, 0.0f));
164         ray->dD.dx = normalize(transform_direction(&cameratoworld, equirectangular_to_direction(Pcamera.x, Pcamera.y))) - ray->D;
165
166         Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y + 1.0f, 0.0f));
167         ray->dD.dy = normalize(transform_direction(&cameratoworld, equirectangular_to_direction(Pcamera.x, Pcamera.y))) - ray->D;
168 #endif
169
170 #ifdef __CAMERA_CLIPPING__
171         /* clipping */
172         ray->t = kernel_data.cam.cliplength;
173 #else
174         ray->t = FLT_MAX;
175 #endif
176 }
177
178 /* Common */
179
180 __device void camera_sample(KernelGlobals *kg, int x, int y, float filter_u, float filter_v,
181         float lens_u, float lens_v, float time, Ray *ray)
182 {
183         /* pixel filter */
184         float raster_x = x + kernel_tex_interp(__filter_table, filter_u, FILTER_TABLE_SIZE);
185         float raster_y = y + kernel_tex_interp(__filter_table, filter_v, FILTER_TABLE_SIZE);
186
187 #ifdef __MOTION__
188         /* motion blur */
189         if(kernel_data.cam.shuttertime == 0.0f)
190                 ray->time = TIME_INVALID;
191         else
192                 ray->time = 0.5f + (time - 0.5f)*kernel_data.cam.shuttertime;
193 #endif
194
195         /* sample */
196         if(kernel_data.cam.type == CAMERA_PERSPECTIVE)
197                 camera_sample_perspective(kg, raster_x, raster_y, lens_u, lens_v, ray);
198         else if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
199                 camera_sample_orthographic(kg, raster_x, raster_y, ray);
200         else
201                 camera_sample_environment(kg, raster_x, raster_y, ray);
202 }
203
204 CCL_NAMESPACE_END
205