1970df54339ae141ffda93d541729f1e2a79dc5b
[blender.git] / source / blender / blenkernel / intern / armature.c
1 /*
2  * ***** BEGIN GPL LICENSE BLOCK *****
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17  *
18  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
19  * All rights reserved.
20  *
21  * Contributor(s): Full recode, Ton Roosendaal, Crete 2005
22  *
23  * ***** END GPL LICENSE BLOCK *****
24  */
25
26 /** \file blender/blenkernel/intern/armature.c
27  *  \ingroup bke
28  */
29
30
31 #include <ctype.h>
32 #include <stdlib.h>
33 #include <math.h>
34 #include <string.h>
35 #include <stdio.h>
36 #include <float.h>
37
38 #include "MEM_guardedalloc.h"
39
40 #include "BLI_bpath.h"
41 #include "BLI_math.h"
42 #include "BLI_blenlib.h"
43 #include "BLI_utildefines.h"
44
45 #include "DNA_anim_types.h"
46 #include "DNA_armature_types.h"
47 #include "DNA_constraint_types.h"
48 #include "DNA_mesh_types.h"
49 #include "DNA_lattice_types.h"
50 #include "DNA_meshdata_types.h"
51 #include "DNA_nla_types.h"
52 #include "DNA_scene_types.h"
53 #include "DNA_object_types.h"
54
55 #include "BKE_animsys.h"
56 #include "BKE_armature.h"
57 #include "BKE_action.h"
58 #include "BKE_anim.h"
59 #include "BKE_constraint.h"
60 #include "BKE_curve.h"
61 #include "BKE_depsgraph.h"
62 #include "BKE_DerivedMesh.h"
63 #include "BKE_deform.h"
64 #include "BKE_displist.h"
65 #include "BKE_global.h"
66 #include "BKE_idprop.h"
67 #include "BKE_library.h"
68 #include "BKE_lattice.h"
69 #include "BKE_main.h"
70 #include "BKE_object.h"
71 #include "BKE_scene.h"
72
73 #include "BIK_api.h"
74 #include "BKE_sketch.h"
75
76 /* **************** Generic Functions, data level *************** */
77
78 bArmature *BKE_armature_add(const char *name)
79 {
80         bArmature *arm;
81
82         arm = BKE_libblock_alloc(&G.main->armature, ID_AR, name);
83         arm->deformflag = ARM_DEF_VGROUP | ARM_DEF_ENVELOPE;
84         arm->flag = ARM_COL_CUSTOM; /* custom bone-group colors */
85         arm->layer = 1;
86         return arm;
87 }
88
89 bArmature *BKE_armature_from_object(Object *ob)
90 {
91         if (ob->type == OB_ARMATURE)
92                 return (bArmature *)ob->data;
93         return NULL;
94 }
95
96 void BKE_armature_bonelist_free(ListBase *lb)
97 {
98         Bone *bone;
99
100         for (bone = lb->first; bone; bone = bone->next) {
101                 if (bone->prop) {
102                         IDP_FreeProperty(bone->prop);
103                         MEM_freeN(bone->prop);
104                 }
105                 BKE_armature_bonelist_free(&bone->childbase);
106         }
107
108         BLI_freelistN(lb);
109 }
110
111 void BKE_armature_free(bArmature *arm)
112 {
113         if (arm) {
114                 BKE_armature_bonelist_free(&arm->bonebase);
115
116                 /* free editmode data */
117                 if (arm->edbo) {
118                         BLI_freelistN(arm->edbo);
119
120                         MEM_freeN(arm->edbo);
121                         arm->edbo = NULL;
122                 }
123
124                 /* free sketch */
125                 if (arm->sketch) {
126                         freeSketch(arm->sketch);
127                         arm->sketch = NULL;
128                 }
129
130                 /* free animation data */
131                 if (arm->adt) {
132                         BKE_free_animdata(&arm->id);
133                         arm->adt = NULL;
134                 }
135         }
136 }
137
138 void BKE_armature_make_local(bArmature *arm)
139 {
140         Main *bmain = G.main;
141         int is_local = FALSE, is_lib = FALSE;
142         Object *ob;
143
144         if (arm->id.lib == NULL)
145                 return;
146         if (arm->id.us == 1) {
147                 id_clear_lib_data(bmain, &arm->id);
148                 return;
149         }
150
151         for (ob = bmain->object.first; ob && ELEM(0, is_lib, is_local); ob = ob->id.next) {
152                 if (ob->data == arm) {
153                         if (ob->id.lib)
154                                 is_lib = TRUE;
155                         else
156                                 is_local = TRUE;
157                 }
158         }
159
160         if (is_local && is_lib == FALSE) {
161                 id_clear_lib_data(bmain, &arm->id);
162         }
163         else if (is_local && is_lib) {
164                 bArmature *arm_new = BKE_armature_copy(arm);
165                 arm_new->id.us = 0;
166
167                 /* Remap paths of new ID using old library as base. */
168                 BKE_id_lib_local_paths(bmain, arm->id.lib, &arm_new->id);
169
170                 for (ob = bmain->object.first; ob; ob = ob->id.next) {
171                         if (ob->data == arm) {
172                                 if (ob->id.lib == NULL) {
173                                         ob->data = arm_new;
174                                         arm_new->id.us++;
175                                         arm->id.us--;
176                                 }
177                         }
178                 }
179         }
180 }
181
182 static void copy_bonechildren(Bone *newBone, Bone *oldBone, Bone *actBone, Bone **newActBone)
183 {
184         Bone *curBone, *newChildBone;
185
186         if (oldBone == actBone)
187                 *newActBone = newBone;
188
189         if (oldBone->prop)
190                 newBone->prop = IDP_CopyProperty(oldBone->prop);
191
192         /* Copy this bone's list */
193         BLI_duplicatelist(&newBone->childbase, &oldBone->childbase);
194
195         /* For each child in the list, update it's children */
196         newChildBone = newBone->childbase.first;
197         for (curBone = oldBone->childbase.first; curBone; curBone = curBone->next) {
198                 newChildBone->parent = newBone;
199                 copy_bonechildren(newChildBone, curBone, actBone, newActBone);
200                 newChildBone = newChildBone->next;
201         }
202 }
203
204 bArmature *BKE_armature_copy(bArmature *arm)
205 {
206         bArmature *newArm;
207         Bone *oldBone, *newBone;
208         Bone *newActBone = NULL;
209
210         newArm = BKE_libblock_copy(&arm->id);
211         BLI_duplicatelist(&newArm->bonebase, &arm->bonebase);
212
213         /* Duplicate the childrens' lists */
214         newBone = newArm->bonebase.first;
215         for (oldBone = arm->bonebase.first; oldBone; oldBone = oldBone->next) {
216                 newBone->parent = NULL;
217                 copy_bonechildren(newBone, oldBone, arm->act_bone, &newActBone);
218                 newBone = newBone->next;
219         }
220
221         newArm->act_bone = newActBone;
222
223         newArm->edbo = NULL;
224         newArm->act_edbone = NULL;
225         newArm->sketch = NULL;
226
227         return newArm;
228 }
229
230 static Bone *get_named_bone_bonechildren(Bone *bone, const char *name)
231 {
232         Bone *curBone, *rbone;
233
234         if (!strcmp(bone->name, name))
235                 return bone;
236
237         for (curBone = bone->childbase.first; curBone; curBone = curBone->next) {
238                 rbone = get_named_bone_bonechildren(curBone, name);
239                 if (rbone)
240                         return rbone;
241         }
242
243         return NULL;
244 }
245
246
247 /* Walk the list until the bone is found */
248 Bone *BKE_armature_find_bone_name(bArmature *arm, const char *name)
249 {
250         Bone *bone = NULL, *curBone;
251
252         if (!arm)
253                 return NULL;
254
255         for (curBone = arm->bonebase.first; curBone; curBone = curBone->next) {
256                 bone = get_named_bone_bonechildren(curBone, name);
257                 if (bone)
258                         return bone;
259         }
260
261         return bone;
262 }
263
264 /* Finds the best possible extension to the name on a particular axis. (For renaming, check for
265  * unique names afterwards) strip_number: removes number extensions  (TODO: not used)
266  * axis: the axis to name on
267  * head/tail: the head/tail co-ordinate of the bone on the specified axis */
268 int bone_autoside_name(char name[MAXBONENAME], int UNUSED(strip_number), short axis, float head, float tail)
269 {
270         unsigned int len;
271         char basename[MAXBONENAME] = "";
272         char extension[5] = "";
273
274         len = strlen(name);
275         if (len == 0)
276                 return 0;
277         BLI_strncpy(basename, name, sizeof(basename));
278
279         /* Figure out extension to append:
280          *      - The extension to append is based upon the axis that we are working on.
281          *      - If head happens to be on 0, then we must consider the tail position as well to decide
282          *        which side the bone is on
283          *              -> If tail is 0, then it's bone is considered to be on axis, so no extension should be added
284          *              -> Otherwise, extension is added from perspective of object based on which side tail goes to
285          *      - If head is non-zero, extension is added from perspective of object based on side head is on
286          */
287         if (axis == 2) {
288                 /* z-axis - vertical (top/bottom) */
289                 if (IS_EQ(head, 0)) {
290                         if (tail < 0)
291                                 strcpy(extension, "Bot");
292                         else if (tail > 0)
293                                 strcpy(extension, "Top");
294                 }
295                 else {
296                         if (head < 0)
297                                 strcpy(extension, "Bot");
298                         else
299                                 strcpy(extension, "Top");
300                 }
301         }
302         else if (axis == 1) {
303                 /* y-axis - depth (front/back) */
304                 if (IS_EQ(head, 0)) {
305                         if (tail < 0)
306                                 strcpy(extension, "Fr");
307                         else if (tail > 0)
308                                 strcpy(extension, "Bk");
309                 }
310                 else {
311                         if (head < 0)
312                                 strcpy(extension, "Fr");
313                         else
314                                 strcpy(extension, "Bk");
315                 }
316         }
317         else {
318                 /* x-axis - horizontal (left/right) */
319                 if (IS_EQ(head, 0)) {
320                         if (tail < 0)
321                                 strcpy(extension, "R");
322                         else if (tail > 0)
323                                 strcpy(extension, "L");
324                 }
325                 else {
326                         if (head < 0)
327                                 strcpy(extension, "R");
328                         /* XXX Shouldn't this be simple else, as for z and y axes? */
329                         else if (head > 0)
330                                 strcpy(extension, "L");
331                 }
332         }
333
334         /* Simple name truncation
335          *      - truncate if there is an extension and it wouldn't be able to fit
336          *      - otherwise, just append to end
337          */
338         if (extension[0]) {
339                 int change = 1;
340
341                 while (change) { /* remove extensions */
342                         change = 0;
343                         if (len > 2 && basename[len - 2] == '.') {
344                                 if (basename[len - 1] == 'L' || basename[len - 1] == 'R') { /* L R */
345                                         basename[len - 2] = '\0';
346                                         len -= 2;
347                                         change = 1;
348                                 }
349                         }
350                         else if (len > 3 && basename[len - 3] == '.') {
351                                 if ((basename[len - 2] == 'F' && basename[len - 1] == 'r') || /* Fr */
352                                     (basename[len - 2] == 'B' && basename[len - 1] == 'k')) /* Bk */
353                                 {
354                                         basename[len - 3] = '\0';
355                                         len -= 3;
356                                         change = 1;
357                                 }
358                         }
359                         else if (len > 4 && basename[len - 4] == '.') {
360                                 if ((basename[len - 3] == 'T' && basename[len - 2] == 'o' && basename[len - 1] == 'p') || /* Top */
361                                     (basename[len - 3] == 'B' && basename[len - 2] == 'o' && basename[len - 1] == 't')) /* Bot */
362                                 {
363                                         basename[len - 4] = '\0';
364                                         len -= 4;
365                                         change = 1;
366                                 }
367                         }
368                 }
369
370                 if ((MAXBONENAME - len) < strlen(extension) + 1) { /* add 1 for the '.' */
371                         strncpy(name, basename, len - strlen(extension));
372                 }
373
374                 BLI_snprintf(name, MAXBONENAME, "%s.%s", basename, extension);
375
376                 return 1;
377         }
378
379         else
380                 return 0;
381 }
382
383 /* ************* B-Bone support ******************* */
384
385 #define MAX_BBONE_SUBDIV    32
386
387 /* data has MAX_BBONE_SUBDIV+1 interpolated points, will become desired amount with equal distances */
388 static void equalize_bezier(float *data, int desired)
389 {
390         float *fp, totdist, ddist, dist, fac1, fac2;
391         float pdist[MAX_BBONE_SUBDIV + 1];
392         float temp[MAX_BBONE_SUBDIV + 1][4];
393         int a, nr;
394
395         pdist[0] = 0.0f;
396         for (a = 0, fp = data; a < MAX_BBONE_SUBDIV; a++, fp += 4) {
397                 copy_qt_qt(temp[a], fp);
398                 pdist[a + 1] = pdist[a] + len_v3v3(fp, fp + 4);
399         }
400         /* do last point */
401         copy_qt_qt(temp[a], fp);
402         totdist = pdist[a];
403
404         /* go over distances and calculate new points */
405         ddist = totdist / ((float)desired);
406         nr = 1;
407         for (a = 1, fp = data + 4; a < desired; a++, fp += 4) {
408                 dist = ((float)a) * ddist;
409
410                 /* we're looking for location (distance) 'dist' in the array */
411                 while ((dist >= pdist[nr]) && nr < MAX_BBONE_SUBDIV)
412                         nr++;
413
414                 fac1 = pdist[nr] - pdist[nr - 1];
415                 fac2 = pdist[nr] - dist;
416                 fac1 = fac2 / fac1;
417                 fac2 = 1.0f - fac1;
418
419                 fp[0] = fac1 * temp[nr - 1][0] + fac2 * temp[nr][0];
420                 fp[1] = fac1 * temp[nr - 1][1] + fac2 * temp[nr][1];
421                 fp[2] = fac1 * temp[nr - 1][2] + fac2 * temp[nr][2];
422                 fp[3] = fac1 * temp[nr - 1][3] + fac2 * temp[nr][3];
423         }
424         /* set last point, needed for orientation calculus */
425         copy_qt_qt(fp, temp[MAX_BBONE_SUBDIV]);
426 }
427
428 /* returns pointer to static array, filled with desired amount of bone->segments elements */
429 /* this calculation is done  within unit bone space */
430 Mat4 *b_bone_spline_setup(bPoseChannel *pchan, int rest)
431 {
432         static Mat4 bbone_array[MAX_BBONE_SUBDIV];
433         static Mat4 bbone_rest_array[MAX_BBONE_SUBDIV];
434         Mat4 *result_array = (rest) ? bbone_rest_array : bbone_array;
435         bPoseChannel *next, *prev;
436         Bone *bone = pchan->bone;
437         float h1[3], h2[3], scale[3], length, hlength1, hlength2, roll1 = 0.0f, roll2;
438         float mat3[3][3], imat[4][4], posemat[4][4], scalemat[4][4], iscalemat[4][4];
439         float data[MAX_BBONE_SUBDIV + 1][4], *fp;
440         int a, do_scale = 0;
441
442         length = bone->length;
443
444         if (!rest) {
445                 /* check if we need to take non-uniform bone scaling into account */
446                 scale[0] = len_v3(pchan->pose_mat[0]);
447                 scale[1] = len_v3(pchan->pose_mat[1]);
448                 scale[2] = len_v3(pchan->pose_mat[2]);
449
450                 if (fabsf(scale[0] - scale[1]) > 1e-6f || fabsf(scale[1] - scale[2]) > 1e-6f) {
451                         unit_m4(scalemat);
452                         scalemat[0][0] = scale[0];
453                         scalemat[1][1] = scale[1];
454                         scalemat[2][2] = scale[2];
455                         invert_m4_m4(iscalemat, scalemat);
456
457                         length *= scale[1];
458                         do_scale = 1;
459                 }
460         }
461
462         hlength1 = bone->ease1 * length * 0.390464f; /* 0.5f * sqrt(2) * kappa, the handle length for near-perfect circles */
463         hlength2 = bone->ease2 * length * 0.390464f;
464
465         /* evaluate next and prev bones */
466         if (bone->flag & BONE_CONNECTED)
467                 prev = pchan->parent;
468         else
469                 prev = NULL;
470
471         next = pchan->child;
472
473         /* find the handle points, since this is inside bone space, the
474          * first point = (0, 0, 0)
475          * last point =  (0, length, 0) */
476         if (rest) {
477                 invert_m4_m4(imat, pchan->bone->arm_mat);
478         }
479         else if (do_scale) {
480                 copy_m4_m4(posemat, pchan->pose_mat);
481                 normalize_m4(posemat);
482                 invert_m4_m4(imat, posemat);
483         }
484         else
485                 invert_m4_m4(imat, pchan->pose_mat);
486
487         if (prev) {
488                 float difmat[4][4], result[3][3], imat3[3][3];
489
490                 /* transform previous point inside this bone space */
491                 if (rest)
492                         copy_v3_v3(h1, prev->bone->arm_head);
493                 else
494                         copy_v3_v3(h1, prev->pose_head);
495                 mul_m4_v3(imat, h1);
496
497                 if (prev->bone->segments > 1) {
498                         /* if previous bone is B-bone too, use average handle direction */
499                         h1[1] -= length;
500                         roll1 = 0.0f;
501                 }
502
503                 normalize_v3(h1);
504                 mul_v3_fl(h1, -hlength1);
505
506                 if (prev->bone->segments == 1) {
507                         /* find the previous roll to interpolate */
508                         if (rest)
509                                 mult_m4_m4m4(difmat, imat, prev->bone->arm_mat);
510                         else
511                                 mult_m4_m4m4(difmat, imat, prev->pose_mat);
512                         copy_m3_m4(result, difmat); /* the desired rotation at beginning of next bone */
513
514                         vec_roll_to_mat3(h1, 0.0f, mat3); /* the result of vec_roll without roll */
515
516                         invert_m3_m3(imat3, mat3);
517                         mul_m3_m3m3(mat3, result, imat3); /* the matrix transforming vec_roll to desired roll */
518
519                         roll1 = (float)atan2(mat3[2][0], mat3[2][2]);
520                 }
521         }
522         else {
523                 h1[0] = 0.0f; h1[1] = hlength1; h1[2] = 0.0f;
524                 roll1 = 0.0f;
525         }
526         if (next) {
527                 float difmat[4][4], result[3][3], imat3[3][3];
528
529                 /* transform next point inside this bone space */
530                 if (rest)
531                         copy_v3_v3(h2, next->bone->arm_tail);
532                 else
533                         copy_v3_v3(h2, next->pose_tail);
534                 mul_m4_v3(imat, h2);
535
536                 /* if next bone is B-bone too, use average handle direction */
537                 if (next->bone->segments > 1) {
538                         /* pass */
539                 }
540                 else {
541                         h2[1] -= length;
542                 }
543                 normalize_v3(h2);
544
545                 /* find the next roll to interpolate as well */
546                 if (rest)
547                         mult_m4_m4m4(difmat, imat, next->bone->arm_mat);
548                 else
549                         mult_m4_m4m4(difmat, imat, next->pose_mat);
550                 copy_m3_m4(result, difmat); /* the desired rotation at beginning of next bone */
551
552                 vec_roll_to_mat3(h2, 0.0f, mat3); /* the result of vec_roll without roll */
553
554                 invert_m3_m3(imat3, mat3);
555                 mul_m3_m3m3(mat3, imat3, result); /* the matrix transforming vec_roll to desired roll */
556
557                 roll2 = (float)atan2(mat3[2][0], mat3[2][2]);
558
559                 /* and only now negate handle */
560                 mul_v3_fl(h2, -hlength2);
561         }
562         else {
563                 h2[0] = 0.0f; h2[1] = -hlength2; h2[2] = 0.0f;
564                 roll2 = 0.0;
565         }
566
567         /* make curve */
568         if (bone->segments > MAX_BBONE_SUBDIV)
569                 bone->segments = MAX_BBONE_SUBDIV;
570
571         BKE_curve_forward_diff_bezier(0.0f,  h1[0],                               h2[0],                               0.0f,   data[0],     MAX_BBONE_SUBDIV, 4 * sizeof(float));
572         BKE_curve_forward_diff_bezier(0.0f,  h1[1],                               length + h2[1],                      length, data[0] + 1, MAX_BBONE_SUBDIV, 4 * sizeof(float));
573         BKE_curve_forward_diff_bezier(0.0f,  h1[2],                               h2[2],                               0.0f,   data[0] + 2, MAX_BBONE_SUBDIV, 4 * sizeof(float));
574         BKE_curve_forward_diff_bezier(roll1, roll1 + 0.390464f * (roll2 - roll1), roll2 - 0.390464f * (roll2 - roll1), roll2,  data[0] + 3, MAX_BBONE_SUBDIV, 4 * sizeof(float));
575
576         equalize_bezier(data[0], bone->segments); /* note: does stride 4! */
577
578         /* make transformation matrices for the segments for drawing */
579         for (a = 0, fp = data[0]; a < bone->segments; a++, fp += 4) {
580                 sub_v3_v3v3(h1, fp + 4, fp);
581                 vec_roll_to_mat3(h1, fp[3], mat3); /* fp[3] is roll */
582
583                 copy_m4_m3(result_array[a].mat, mat3);
584                 copy_v3_v3(result_array[a].mat[3], fp);
585
586                 if (do_scale) {
587                         /* correct for scaling when this matrix is used in scaled space */
588                         mul_serie_m4(result_array[a].mat, iscalemat, result_array[a].mat, scalemat, NULL, NULL, NULL, NULL, NULL);
589                 }
590         }
591
592         return result_array;
593 }
594
595 /* ************ Armature Deform ******************* */
596
597 typedef struct bPoseChanDeform {
598         Mat4     *b_bone_mats;
599         DualQuat *dual_quat;
600         DualQuat *b_bone_dual_quats;
601 } bPoseChanDeform;
602
603 static void pchan_b_bone_defmats(bPoseChannel *pchan, bPoseChanDeform *pdef_info, int use_quaternion)
604 {
605         Bone *bone = pchan->bone;
606         Mat4 *b_bone = b_bone_spline_setup(pchan, 0);
607         Mat4 *b_bone_rest = b_bone_spline_setup(pchan, 1);
608         Mat4 *b_bone_mats;
609         DualQuat *b_bone_dual_quats = NULL;
610         float tmat[4][4] = MAT4_UNITY;
611         int a;
612
613         /* allocate b_bone matrices and dual quats */
614         b_bone_mats = MEM_mallocN((1 + bone->segments) * sizeof(Mat4), "BBone defmats");
615         pdef_info->b_bone_mats = b_bone_mats;
616
617         if (use_quaternion) {
618                 b_bone_dual_quats = MEM_mallocN((bone->segments) * sizeof(DualQuat), "BBone dqs");
619                 pdef_info->b_bone_dual_quats = b_bone_dual_quats;
620         }
621
622         /* first matrix is the inverse arm_mat, to bring points in local bone space
623          * for finding out which segment it belongs to */
624         invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat);
625
626         /* then we make the b_bone_mats:
627          * - first transform to local bone space
628          * - translate over the curve to the bbone mat space
629          * - transform with b_bone matrix
630          * - transform back into global space */
631
632         for (a = 0; a < bone->segments; a++) {
633                 invert_m4_m4(tmat, b_bone_rest[a].mat);
634
635                 mul_serie_m4(b_bone_mats[a + 1].mat, pchan->chan_mat, bone->arm_mat, b_bone[a].mat, tmat, b_bone_mats[0].mat,
636                              NULL, NULL, NULL);
637
638                 if (use_quaternion)
639                         mat4_to_dquat(&b_bone_dual_quats[a], bone->arm_mat, b_bone_mats[a + 1].mat);
640         }
641 }
642
643 static void b_bone_deform(bPoseChanDeform *pdef_info, Bone *bone, float co[3], DualQuat *dq, float defmat[][3])
644 {
645         Mat4 *b_bone = pdef_info->b_bone_mats;
646         float (*mat)[4] = b_bone[0].mat;
647         float segment, y;
648         int a;
649
650         /* need to transform co back to bonespace, only need y */
651         y = mat[0][1] * co[0] + mat[1][1] * co[1] + mat[2][1] * co[2] + mat[3][1];
652
653         /* now calculate which of the b_bones are deforming this */
654         segment = bone->length / ((float)bone->segments);
655         a = (int)(y / segment);
656
657         /* note; by clamping it extends deform at endpoints, goes best with
658          * straight joints in restpos. */
659         CLAMP(a, 0, bone->segments - 1);
660
661         if (dq) {
662                 copy_dq_dq(dq, &(pdef_info->b_bone_dual_quats)[a]);
663         }
664         else {
665                 mul_m4_v3(b_bone[a + 1].mat, co);
666
667                 if (defmat) {
668                         copy_m3_m4(defmat, b_bone[a + 1].mat);
669                 }
670         }
671 }
672
673 /* using vec with dist to bone b1 - b2 */
674 float distfactor_to_bone(const float vec[3], const float b1[3], const float b2[3], float rad1, float rad2, float rdist)
675 {
676         float dist = 0.0f;
677         float bdelta[3];
678         float pdelta[3];
679         float hsqr, a, l, rad;
680
681         sub_v3_v3v3(bdelta, b2, b1);
682         l = normalize_v3(bdelta);
683
684         sub_v3_v3v3(pdelta, vec, b1);
685
686         a = dot_v3v3(bdelta, pdelta);
687         hsqr = dot_v3v3(pdelta, pdelta);
688
689         if (a < 0.0f) {
690                 /* If we're past the end of the bone, do a spherical field attenuation thing */
691                 dist = len_squared_v3v3(b1, vec);
692                 rad = rad1;
693         }
694         else if (a > l) {
695                 /* If we're past the end of the bone, do a spherical field attenuation thing */
696                 dist = len_squared_v3v3(b2, vec);
697                 rad = rad2;
698         }
699         else {
700                 dist = (hsqr - (a * a));
701
702                 if (l != 0.0f) {
703                         rad = a / l;
704                         rad = rad * rad2 + (1.0f - rad) * rad1;
705                 }
706                 else
707                         rad = rad1;
708         }
709
710         a = rad * rad;
711         if (dist < a)
712                 return 1.0f;
713         else {
714                 l = rad + rdist;
715                 l *= l;
716                 if (rdist == 0.0f || dist >= l)
717                         return 0.0f;
718                 else {
719                         a = sqrtf(dist) - rad;
720                         return 1.0f - (a * a) / (rdist * rdist);
721                 }
722         }
723 }
724
725 static void pchan_deform_mat_add(bPoseChannel *pchan, float weight, float bbonemat[][3], float mat[][3])
726 {
727         float wmat[3][3];
728
729         if (pchan->bone->segments > 1)
730                 copy_m3_m3(wmat, bbonemat);
731         else
732                 copy_m3_m4(wmat, pchan->chan_mat);
733
734         mul_m3_fl(wmat, weight);
735         add_m3_m3m3(mat, mat, wmat);
736 }
737
738 static float dist_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float vec[3], DualQuat *dq,
739                               float mat[][3], const float co[3])
740 {
741         Bone *bone = pchan->bone;
742         float fac, contrib = 0.0;
743         float cop[3], bbonemat[3][3];
744         DualQuat bbonedq;
745
746         if (bone == NULL)
747                 return 0.0f;
748
749         copy_v3_v3(cop, co);
750
751         fac = distfactor_to_bone(cop, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
752
753         if (fac > 0.0f) {
754                 fac *= bone->weight;
755                 contrib = fac;
756                 if (contrib > 0.0f) {
757                         if (vec) {
758                                 if (bone->segments > 1)
759                                         /* applies on cop and bbonemat */
760                                         b_bone_deform(pdef_info, bone, cop, NULL, (mat) ? bbonemat : NULL);
761                                 else
762                                         mul_m4_v3(pchan->chan_mat, cop);
763
764                                 /* Make this a delta from the base position */
765                                 sub_v3_v3(cop, co);
766                                 madd_v3_v3fl(vec, cop, fac);
767
768                                 if (mat)
769                                         pchan_deform_mat_add(pchan, fac, bbonemat, mat);
770                         }
771                         else {
772                                 if (bone->segments > 1) {
773                                         b_bone_deform(pdef_info, bone, cop, &bbonedq, NULL);
774                                         add_weighted_dq_dq(dq, &bbonedq, fac);
775                                 }
776                                 else
777                                         add_weighted_dq_dq(dq, pdef_info->dual_quat, fac);
778                         }
779                 }
780         }
781
782         return contrib;
783 }
784
785 static void pchan_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float weight, float vec[3], DualQuat *dq,
786                               float mat[][3], const float co[3], float *contrib)
787 {
788         float cop[3], bbonemat[3][3];
789         DualQuat bbonedq;
790
791         if (!weight)
792                 return;
793
794         copy_v3_v3(cop, co);
795
796         if (vec) {
797                 if (pchan->bone->segments > 1)
798                         /* applies on cop and bbonemat */
799                         b_bone_deform(pdef_info, pchan->bone, cop, NULL, (mat) ? bbonemat : NULL);
800                 else
801                         mul_m4_v3(pchan->chan_mat, cop);
802
803                 vec[0] += (cop[0] - co[0]) * weight;
804                 vec[1] += (cop[1] - co[1]) * weight;
805                 vec[2] += (cop[2] - co[2]) * weight;
806
807                 if (mat)
808                         pchan_deform_mat_add(pchan, weight, bbonemat, mat);
809         }
810         else {
811                 if (pchan->bone->segments > 1) {
812                         b_bone_deform(pdef_info, pchan->bone, cop, &bbonedq, NULL);
813                         add_weighted_dq_dq(dq, &bbonedq, weight);
814                 }
815                 else
816                         add_weighted_dq_dq(dq, pdef_info->dual_quat, weight);
817         }
818
819         (*contrib) += weight;
820 }
821
822 void armature_deform_verts(Object *armOb, Object *target, DerivedMesh *dm, float (*vertexCos)[3],
823                            float (*defMats)[3][3], int numVerts, int deformflag,
824                            float (*prevCos)[3], const char *defgrp_name)
825 {
826         bPoseChanDeform *pdef_info_array;
827         bPoseChanDeform *pdef_info = NULL;
828         bArmature *arm = armOb->data;
829         bPoseChannel *pchan, **defnrToPC = NULL;
830         int *defnrToPCIndex = NULL;
831         MDeformVert *dverts = NULL;
832         bDeformGroup *dg;
833         DualQuat *dualquats = NULL;
834         float obinv[4][4], premat[4][4], postmat[4][4];
835         const short use_envelope = deformflag & ARM_DEF_ENVELOPE;
836         const short use_quaternion = deformflag & ARM_DEF_QUATERNION;
837         const short invert_vgroup = deformflag & ARM_DEF_INVERT_VGROUP;
838         int defbase_tot = 0;       /* safety for vertexgroup index overflow */
839         int i, target_totvert = 0; /* safety for vertexgroup overflow */
840         int use_dverts = FALSE;
841         int armature_def_nr;
842         int totchan;
843
844         if (arm->edbo) return;
845
846         invert_m4_m4(obinv, target->obmat);
847         copy_m4_m4(premat, target->obmat);
848         mult_m4_m4m4(postmat, obinv, armOb->obmat);
849         invert_m4_m4(premat, postmat);
850
851         /* bone defmats are already in the channels, chan_mat */
852
853         /* initialize B_bone matrices and dual quaternions */
854         totchan = BLI_countlist(&armOb->pose->chanbase);
855
856         if (use_quaternion) {
857                 dualquats = MEM_callocN(sizeof(DualQuat) * totchan, "dualquats");
858         }
859
860         pdef_info_array = MEM_callocN(sizeof(bPoseChanDeform) * totchan, "bPoseChanDeform");
861
862         totchan = 0;
863         pdef_info = pdef_info_array;
864         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
865                 if (!(pchan->bone->flag & BONE_NO_DEFORM)) {
866                         if (pchan->bone->segments > 1)
867                                 pchan_b_bone_defmats(pchan, pdef_info, use_quaternion);
868
869                         if (use_quaternion) {
870                                 pdef_info->dual_quat = &dualquats[totchan++];
871                                 mat4_to_dquat(pdef_info->dual_quat, pchan->bone->arm_mat, pchan->chan_mat);
872                         }
873                 }
874         }
875
876         /* get the def_nr for the overall armature vertex group if present */
877         armature_def_nr = defgroup_name_index(target, defgrp_name);
878
879         if (ELEM(target->type, OB_MESH, OB_LATTICE)) {
880                 defbase_tot = BLI_countlist(&target->defbase);
881
882                 if (target->type == OB_MESH) {
883                         Mesh *me = target->data;
884                         dverts = me->dvert;
885                         if (dverts)
886                                 target_totvert = me->totvert;
887                 }
888                 else {
889                         Lattice *lt = target->data;
890                         dverts = lt->dvert;
891                         if (dverts)
892                                 target_totvert = lt->pntsu * lt->pntsv * lt->pntsw;
893                 }
894         }
895
896         /* get a vertex-deform-index to posechannel array */
897         if (deformflag & ARM_DEF_VGROUP) {
898                 if (ELEM(target->type, OB_MESH, OB_LATTICE)) {
899                         /* if we have a DerivedMesh, only use dverts if it has them */
900                         if (dm) {
901                                 use_dverts = (dm->getVertData(dm, 0, CD_MDEFORMVERT) != NULL);
902                         }
903                         else if (dverts) {
904                                 use_dverts = TRUE;
905                         }
906
907                         if (use_dverts) {
908                                 defnrToPC = MEM_callocN(sizeof(*defnrToPC) * defbase_tot, "defnrToBone");
909                                 defnrToPCIndex = MEM_callocN(sizeof(*defnrToPCIndex) * defbase_tot, "defnrToIndex");
910                                 for (i = 0, dg = target->defbase.first; dg; i++, dg = dg->next) {
911                                         defnrToPC[i] = BKE_pose_channel_find_name(armOb->pose, dg->name);
912                                         /* exclude non-deforming bones */
913                                         if (defnrToPC[i]) {
914                                                 if (defnrToPC[i]->bone->flag & BONE_NO_DEFORM) {
915                                                         defnrToPC[i] = NULL;
916                                                 }
917                                                 else {
918                                                         defnrToPCIndex[i] = BLI_findindex(&armOb->pose->chanbase, defnrToPC[i]);
919                                                 }
920                                         }
921                                 }
922                         }
923                 }
924         }
925
926         for (i = 0; i < numVerts; i++) {
927                 MDeformVert *dvert;
928                 DualQuat sumdq, *dq = NULL;
929                 float *co, dco[3];
930                 float sumvec[3], summat[3][3];
931                 float *vec = NULL, (*smat)[3] = NULL;
932                 float contrib = 0.0f;
933                 float armature_weight = 1.0f; /* default to 1 if no overall def group */
934                 float prevco_weight = 1.0f;   /* weight for optional cached vertexcos */
935
936                 if (use_quaternion) {
937                         memset(&sumdq, 0, sizeof(DualQuat));
938                         dq = &sumdq;
939                 }
940                 else {
941                         sumvec[0] = sumvec[1] = sumvec[2] = 0.0f;
942                         vec = sumvec;
943
944                         if (defMats) {
945                                 zero_m3(summat);
946                                 smat = summat;
947                         }
948                 }
949
950                 if (use_dverts || armature_def_nr != -1) {
951                         if (dm)
952                                 dvert = dm->getVertData(dm, i, CD_MDEFORMVERT);
953                         else if (dverts && i < target_totvert)
954                                 dvert = dverts + i;
955                         else
956                                 dvert = NULL;
957                 }
958                 else
959                         dvert = NULL;
960
961                 if (armature_def_nr != -1 && dvert) {
962                         armature_weight = defvert_find_weight(dvert, armature_def_nr);
963
964                         if (invert_vgroup)
965                                 armature_weight = 1.0f - armature_weight;
966
967                         /* hackish: the blending factor can be used for blending with prevCos too */
968                         if (prevCos) {
969                                 prevco_weight = armature_weight;
970                                 armature_weight = 1.0f;
971                         }
972                 }
973
974                 /* check if there's any  point in calculating for this vert */
975                 if (armature_weight == 0.0f)
976                         continue;
977
978                 /* get the coord we work on */
979                 co = prevCos ? prevCos[i] : vertexCos[i];
980
981                 /* Apply the object's matrix */
982                 mul_m4_v3(premat, co);
983
984                 if (use_dverts && dvert && dvert->totweight) { /* use weight groups ? */
985                         MDeformWeight *dw = dvert->dw;
986                         int deformed = 0;
987                         unsigned int j;
988
989                         for (j = dvert->totweight; j != 0; j--, dw++) {
990                                 const int index = dw->def_nr;
991                                 if (index >= 0 && index < defbase_tot && (pchan = defnrToPC[index])) {
992                                         float weight = dw->weight;
993                                         Bone *bone = pchan->bone;
994                                         pdef_info = pdef_info_array + defnrToPCIndex[index];
995
996                                         deformed = 1;
997
998                                         if (bone && bone->flag & BONE_MULT_VG_ENV) {
999                                                 weight *= distfactor_to_bone(co, bone->arm_head, bone->arm_tail,
1000                                                                              bone->rad_head, bone->rad_tail, bone->dist);
1001                                         }
1002                                         pchan_bone_deform(pchan, pdef_info, weight, vec, dq, smat, co, &contrib);
1003                                 }
1004                         }
1005                         /* if there are vertexgroups but not groups with bones
1006                          * (like for softbody groups) */
1007                         if (deformed == 0 && use_envelope) {
1008                                 pdef_info = pdef_info_array;
1009                                 for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1010                                         if (!(pchan->bone->flag & BONE_NO_DEFORM))
1011                                                 contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
1012                                 }
1013                         }
1014                 }
1015                 else if (use_envelope) {
1016                         pdef_info = pdef_info_array;
1017                         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1018                                 if (!(pchan->bone->flag & BONE_NO_DEFORM))
1019                                         contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
1020                         }
1021                 }
1022
1023                 /* actually should be EPSILON? weight values and contrib can be like 10e-39 small */
1024                 if (contrib > 0.0001f) {
1025                         if (use_quaternion) {
1026                                 normalize_dq(dq, contrib);
1027
1028                                 if (armature_weight != 1.0f) {
1029                                         copy_v3_v3(dco, co);
1030                                         mul_v3m3_dq(dco, (defMats) ? summat : NULL, dq);
1031                                         sub_v3_v3(dco, co);
1032                                         mul_v3_fl(dco, armature_weight);
1033                                         add_v3_v3(co, dco);
1034                                 }
1035                                 else
1036                                         mul_v3m3_dq(co, (defMats) ? summat : NULL, dq);
1037
1038                                 smat = summat;
1039                         }
1040                         else {
1041                                 mul_v3_fl(vec, armature_weight / contrib);
1042                                 add_v3_v3v3(co, vec, co);
1043                         }
1044
1045                         if (defMats) {
1046                                 float pre[3][3], post[3][3], tmpmat[3][3];
1047
1048                                 copy_m3_m4(pre, premat);
1049                                 copy_m3_m4(post, postmat);
1050                                 copy_m3_m3(tmpmat, defMats[i]);
1051
1052                                 if (!use_quaternion) /* quaternion already is scale corrected */
1053                                         mul_m3_fl(smat, armature_weight / contrib);
1054
1055                                 mul_serie_m3(defMats[i], tmpmat, pre, smat, post, NULL, NULL, NULL, NULL);
1056                         }
1057                 }
1058
1059                 /* always, check above code */
1060                 mul_m4_v3(postmat, co);
1061
1062                 /* interpolate with previous modifier position using weight group */
1063                 if (prevCos) {
1064                         float mw = 1.0f - prevco_weight;
1065                         vertexCos[i][0] = prevco_weight * vertexCos[i][0] + mw * co[0];
1066                         vertexCos[i][1] = prevco_weight * vertexCos[i][1] + mw * co[1];
1067                         vertexCos[i][2] = prevco_weight * vertexCos[i][2] + mw * co[2];
1068                 }
1069         }
1070
1071         if (dualquats)
1072                 MEM_freeN(dualquats);
1073         if (defnrToPC)
1074                 MEM_freeN(defnrToPC);
1075         if (defnrToPCIndex)
1076                 MEM_freeN(defnrToPCIndex);
1077
1078         /* free B_bone matrices */
1079         pdef_info = pdef_info_array;
1080         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1081                 if (pdef_info->b_bone_mats)
1082                         MEM_freeN(pdef_info->b_bone_mats);
1083                 if (pdef_info->b_bone_dual_quats)
1084                         MEM_freeN(pdef_info->b_bone_dual_quats);
1085         }
1086
1087         MEM_freeN(pdef_info_array);
1088 }
1089
1090 /* ************ END Armature Deform ******************* */
1091
1092 void get_objectspace_bone_matrix(struct Bone *bone, float M_accumulatedMatrix[][4], int UNUSED(root),
1093                                  int UNUSED(posed))
1094 {
1095         copy_m4_m4(M_accumulatedMatrix, bone->arm_mat);
1096 }
1097
1098 /* **************** Space to Space API ****************** */
1099
1100 /* Convert World-Space Matrix to Pose-Space Matrix */
1101 void BKE_armature_mat_world_to_pose(Object *ob, float inmat[][4], float outmat[][4])
1102 {
1103         float obmat[4][4];
1104
1105         /* prevent crashes */
1106         if (ob == NULL)
1107                 return;
1108
1109         /* get inverse of (armature) object's matrix  */
1110         invert_m4_m4(obmat, ob->obmat);
1111
1112         /* multiply given matrix by object's-inverse to find pose-space matrix */
1113         mult_m4_m4m4(outmat, inmat, obmat);
1114 }
1115
1116 /* Convert World-Space Location to Pose-Space Location
1117  * NOTE: this cannot be used to convert to pose-space location of the supplied
1118  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1119 void BKE_armature_loc_world_to_pose(Object *ob, const float inloc[3], float outloc[3])
1120 {
1121         float xLocMat[4][4] = MAT4_UNITY;
1122         float nLocMat[4][4];
1123
1124         /* build matrix for location */
1125         copy_v3_v3(xLocMat[3], inloc);
1126
1127         /* get bone-space cursor matrix and extract location */
1128         BKE_armature_mat_world_to_pose(ob, xLocMat, nLocMat);
1129         copy_v3_v3(outloc, nLocMat[3]);
1130 }
1131
1132 /* Simple helper, computes the offset bone matrix.
1133  *     offs_bone = yoffs(b-1) + root(b) + bonemat(b).
1134  * Not exported, as it is only used in this file currently... */
1135 static void get_offset_bone_mat(Bone *bone, float offs_bone[][4])
1136 {
1137         if (!bone->parent)
1138                 return;
1139
1140         /* Bone transform itself. */
1141         copy_m4_m3(offs_bone, bone->bone_mat);
1142
1143         /* The bone's root offset (is in the parent's coordinate system). */
1144         copy_v3_v3(offs_bone[3], bone->head);
1145
1146         /* Get the length translation of parent (length along y axis). */
1147         offs_bone[3][1] += bone->parent->length;
1148 }
1149
1150 /* Construct the matrices (rot/scale and loc) to apply the PoseChannels into the armature (object) space.
1151  * I.e. (roughly) the "pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)" in the
1152  *     pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
1153  * ...function.
1154  *
1155  * This allows to get the transformations of a bone in its object space, *before* constraints (and IK)
1156  * get applied (used by pose evaluation code).
1157  * And reverse: to find pchan transformations needed to place a bone at a given loc/rot/scale
1158  * in object space (used by interactive transform, and snapping code).
1159  *
1160  * Note that, with the HINGE/NO_SCALE/NO_LOCAL_LOCATION options, the location matrix
1161  * will differ from the rotation/scale matrix...
1162  *
1163  * NOTE: This cannot be used to convert to pose-space transforms of the supplied
1164  *       pose-channel into its local space (i.e. 'visual'-keyframing).
1165  *       (note: I don't understand that, so I keep it :p --mont29).
1166  */
1167 void BKE_pchan_to_pose_mat(bPoseChannel *pchan, float rotscale_mat[][4], float loc_mat[][4])
1168 {
1169         Bone *bone, *parbone;
1170         bPoseChannel *parchan;
1171
1172         /* set up variables for quicker access below */
1173         bone = pchan->bone;
1174         parbone = bone->parent;
1175         parchan = pchan->parent;
1176
1177         if (parchan) {
1178                 float offs_bone[4][4];
1179                 /* yoffs(b-1) + root(b) + bonemat(b). */
1180                 get_offset_bone_mat(bone, offs_bone);
1181
1182                 /* Compose the rotscale matrix for this bone. */
1183                 if ((bone->flag & BONE_HINGE) && (bone->flag & BONE_NO_SCALE)) {
1184                         /* Parent rest rotation and scale. */
1185                         mult_m4_m4m4(rotscale_mat, parbone->arm_mat, offs_bone);
1186                 }
1187                 else if (bone->flag & BONE_HINGE) {
1188                         /* Parent rest rotation and pose scale. */
1189                         float tmat[4][4], tscale[3];
1190
1191                         /* Extract the scale of the parent pose matrix. */
1192                         mat4_to_size(tscale, parchan->pose_mat);
1193                         size_to_mat4(tmat, tscale);
1194
1195                         /* Applies the parent pose scale to the rest matrix. */
1196                         mult_m4_m4m4(tmat, tmat, parbone->arm_mat);
1197
1198                         mult_m4_m4m4(rotscale_mat, tmat, offs_bone);
1199                 }
1200                 else if (bone->flag & BONE_NO_SCALE) {
1201                         /* Parent pose rotation and rest scale (i.e. no scaling). */
1202                         float tmat[4][4];
1203                         copy_m4_m4(tmat, parchan->pose_mat);
1204                         normalize_m4(tmat);
1205                         mult_m4_m4m4(rotscale_mat, tmat, offs_bone);
1206                 }
1207                 else
1208                         mult_m4_m4m4(rotscale_mat, parchan->pose_mat, offs_bone);
1209
1210                 /* Compose the loc matrix for this bone. */
1211                 /* NOTE: That version does not modify bone's loc when HINGE/NO_SCALE options are set. */
1212
1213                 /* In this case, use the object's space *orientation*. */
1214                 if (bone->flag & BONE_NO_LOCAL_LOCATION) {
1215                         /* XXX I'm sure that code can be simplified! */
1216                         float bone_loc[4][4], bone_rotscale[3][3], tmat4[4][4], tmat3[3][3];
1217                         unit_m4(bone_loc);
1218                         unit_m4(loc_mat);
1219                         unit_m4(tmat4);
1220
1221                         mul_v3_m4v3(bone_loc[3], parchan->pose_mat, offs_bone[3]);
1222
1223                         unit_m3(bone_rotscale);
1224                         copy_m3_m4(tmat3, parchan->pose_mat);
1225                         mul_m3_m3m3(bone_rotscale, tmat3, bone_rotscale);
1226
1227                         copy_m4_m3(tmat4, bone_rotscale);
1228                         mult_m4_m4m4(loc_mat, bone_loc, tmat4);
1229                 }
1230                 /* Those flags do not affect position, use plain parent transform space! */
1231                 else if (bone->flag & (BONE_HINGE | BONE_NO_SCALE)) {
1232                         mult_m4_m4m4(loc_mat, parchan->pose_mat, offs_bone);
1233                 }
1234                 /* Else (i.e. default, usual case), just use the same matrix for rotation/scaling, and location. */
1235                 else
1236                         copy_m4_m4(loc_mat, rotscale_mat);
1237         }
1238         /* Root bones. */
1239         else {
1240                 /* Rotation/scaling. */
1241                 copy_m4_m4(rotscale_mat, pchan->bone->arm_mat);
1242                 /* Translation. */
1243                 if (pchan->bone->flag & BONE_NO_LOCAL_LOCATION) {
1244                         /* Translation of arm_mat, without the rotation. */
1245                         unit_m4(loc_mat);
1246                         copy_v3_v3(loc_mat[3], pchan->bone->arm_mat[3]);
1247                 }
1248                 else
1249                         copy_m4_m4(loc_mat, rotscale_mat);
1250         }
1251 }
1252
1253 /* Convert Pose-Space Matrix to Bone-Space Matrix.
1254  * NOTE: this cannot be used to convert to pose-space transforms of the supplied
1255  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1256 void BKE_armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[][4], float outmat[][4])
1257 {
1258         float rotscale_mat[4][4], loc_mat[4][4], inmat_[4][4];
1259
1260         /* Security, this allows to call with inmat == outmat! */
1261         copy_m4_m4(inmat_, inmat);
1262
1263         BKE_pchan_to_pose_mat(pchan, rotscale_mat, loc_mat);
1264         invert_m4(rotscale_mat);
1265         invert_m4(loc_mat);
1266
1267         mult_m4_m4m4(outmat, rotscale_mat, inmat_);
1268         mul_v3_m4v3(outmat[3], loc_mat, inmat_[3]);
1269 }
1270
1271 /* Convert Bone-Space Matrix to Pose-Space Matrix. */
1272 void BKE_armature_mat_bone_to_pose(bPoseChannel *pchan, float inmat[][4], float outmat[][4])
1273 {
1274         float rotscale_mat[4][4], loc_mat[4][4], inmat_[4][4];
1275
1276         /* Security, this allows to call with inmat == outmat! */
1277         copy_m4_m4(inmat_, inmat);
1278
1279         BKE_pchan_to_pose_mat(pchan, rotscale_mat, loc_mat);
1280
1281         mult_m4_m4m4(outmat, rotscale_mat, inmat_);
1282         mul_v3_m4v3(outmat[3], loc_mat, inmat_[3]);
1283 }
1284
1285 /* Convert Pose-Space Location to Bone-Space Location
1286  * NOTE: this cannot be used to convert to pose-space location of the supplied
1287  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1288 void BKE_armature_loc_pose_to_bone(bPoseChannel *pchan, const float inloc[3], float outloc[3])
1289 {
1290         float xLocMat[4][4] = MAT4_UNITY;
1291         float nLocMat[4][4];
1292
1293         /* build matrix for location */
1294         copy_v3_v3(xLocMat[3], inloc);
1295
1296         /* get bone-space cursor matrix and extract location */
1297         BKE_armature_mat_pose_to_bone(pchan, xLocMat, nLocMat);
1298         copy_v3_v3(outloc, nLocMat[3]);
1299 }
1300
1301 void BKE_armature_mat_pose_to_bone_ex(Object *ob, bPoseChannel *pchan, float inmat[][4], float outmat[][4])
1302 {
1303         bPoseChannel work_pchan = *pchan;
1304
1305         /* recalculate pose matrix with only parent transformations,
1306          * bone loc/sca/rot is ignored, scene and frame are not used. */
1307         BKE_pose_where_is_bone(NULL, ob, &work_pchan, 0.0f, FALSE);
1308
1309         /* find the matrix, need to remove the bone transforms first so this is
1310          * calculated as a matrix to set rather then a difference ontop of whats
1311          * already there. */
1312         unit_m4(outmat);
1313         BKE_pchan_apply_mat4(&work_pchan, outmat, FALSE);
1314
1315         BKE_armature_mat_pose_to_bone(&work_pchan, inmat, outmat);
1316 }
1317
1318 /* same as BKE_object_mat3_to_rot() */
1319 void BKE_pchan_mat3_to_rot(bPoseChannel *pchan, float mat[][3], short use_compat)
1320 {
1321         switch (pchan->rotmode) {
1322                 case ROT_MODE_QUAT:
1323                         mat3_to_quat(pchan->quat, mat);
1324                         break;
1325                 case ROT_MODE_AXISANGLE:
1326                         mat3_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat);
1327                         break;
1328                 default: /* euler */
1329                         if (use_compat)
1330                                 mat3_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat);
1331                         else
1332                                 mat3_to_eulO(pchan->eul, pchan->rotmode, mat);
1333         }
1334 }
1335
1336 /* Apply a 4x4 matrix to the pose bone,
1337  * similar to BKE_object_apply_mat4() */
1338 void BKE_pchan_apply_mat4(bPoseChannel *pchan, float mat[][4], short use_compat)
1339 {
1340         float rot[3][3];
1341         mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat);
1342         BKE_pchan_mat3_to_rot(pchan, rot, use_compat);
1343 }
1344
1345 /* Remove rest-position effects from pose-transform for obtaining
1346  * 'visual' transformation of pose-channel.
1347  * (used by the Visual-Keyframing stuff) */
1348 void BKE_armature_mat_pose_to_delta(float delta_mat[][4], float pose_mat[][4], float arm_mat[][4])
1349 {
1350         float imat[4][4];
1351
1352         invert_m4_m4(imat, arm_mat);
1353         mult_m4_m4m4(delta_mat, imat, pose_mat);
1354 }
1355
1356 /* **************** Rotation Mode Conversions ****************************** */
1357 /* Used for Objects and Pose Channels, since both can have multiple rotation representations */
1358
1359 /* Called from RNA when rotation mode changes
1360  * - the result should be that the rotations given in the provided pointers have had conversions
1361  *   applied (as appropriate), such that the rotation of the element hasn't 'visually' changed  */
1362 void BKE_rotMode_change_values(float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode)
1363 {
1364         /* check if any change - if so, need to convert data */
1365         if (newMode > 0) { /* to euler */
1366                 if (oldMode == ROT_MODE_AXISANGLE) {
1367                         /* axis-angle to euler */
1368                         axis_angle_to_eulO(eul, newMode, axis, *angle);
1369                 }
1370                 else if (oldMode == ROT_MODE_QUAT) {
1371                         /* quat to euler */
1372                         normalize_qt(quat);
1373                         quat_to_eulO(eul, newMode, quat);
1374                 }
1375                 /* else { no conversion needed } */
1376         }
1377         else if (newMode == ROT_MODE_QUAT) { /* to quat */
1378                 if (oldMode == ROT_MODE_AXISANGLE) {
1379                         /* axis angle to quat */
1380                         axis_angle_to_quat(quat, axis, *angle);
1381                 }
1382                 else if (oldMode > 0) {
1383                         /* euler to quat */
1384                         eulO_to_quat(quat, eul, oldMode);
1385                 }
1386                 /* else { no conversion needed } */
1387         }
1388         else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */
1389                 if (oldMode > 0) {
1390                         /* euler to axis angle */
1391                         eulO_to_axis_angle(axis, angle, eul, oldMode);
1392                 }
1393                 else if (oldMode == ROT_MODE_QUAT) {
1394                         /* quat to axis angle */
1395                         normalize_qt(quat);
1396                         quat_to_axis_angle(axis, angle, quat);
1397                 }
1398
1399                 /* when converting to axis-angle, we need a special exception for the case when there is no axis */
1400                 if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
1401                         /* for now, rotate around y-axis then (so that it simply becomes the roll) */
1402                         axis[1] = 1.0f;
1403                 }
1404         }
1405 }
1406
1407 /* **************** The new & simple (but OK!) armature evaluation ********* */
1408
1409 /* ****************** And how it works! ****************************************
1410  *
1411  * This is the bone transformation trick; they're hierarchical so each bone(b)
1412  * is in the coord system of bone(b-1):
1413  *
1414  * arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)
1415  *
1416  * -> yoffs is just the y axis translation in parent's coord system
1417  * -> d_root is the translation of the bone root, also in parent's coord system
1418  *
1419  * pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
1420  *
1421  * we then - in init deform - store the deform in chan_mat, such that:
1422  *
1423  * pose_mat(b)= arm_mat(b) * chan_mat(b)
1424  *
1425  * *************************************************************************** */
1426 /* Computes vector and roll based on a rotation.
1427  * "mat" must contain only a rotation, and no scaling. */
1428 void mat3_to_vec_roll(float mat[][3], float r_vec[3], float *r_roll)
1429 {
1430         if (r_vec) {
1431                 copy_v3_v3(r_vec, mat[1]);
1432         }
1433
1434         if (r_roll) {
1435                 float vecmat[3][3], vecmatinv[3][3], rollmat[3][3];
1436
1437                 vec_roll_to_mat3(mat[1], 0.0f, vecmat);
1438                 invert_m3_m3(vecmatinv, vecmat);
1439                 mul_m3_m3m3(rollmat, vecmatinv, mat);
1440
1441                 *r_roll = atan2f(rollmat[2][0], rollmat[2][2]);
1442         }
1443 }
1444
1445 /* Calculates the rest matrix of a bone based
1446  * On its vector and a roll around that vector */
1447 void vec_roll_to_mat3(const float vec[3], const float roll, float mat[][3])
1448 {
1449         float nor[3], axis[3], target[3] = {0, 1, 0};
1450         float theta;
1451         float rMatrix[3][3], bMatrix[3][3];
1452
1453         normalize_v3_v3(nor, vec);
1454
1455         /* Find Axis & Amount for bone matrix */
1456         cross_v3_v3v3(axis, target, nor);
1457
1458         /* was 0.0000000000001, caused bug [#23954], smaller values give unstable
1459          * roll when toggling editmode.
1460          *
1461          * was 0.00001, causes bug [#27675], with 0.00000495,
1462          * so a value inbetween these is needed.
1463          *
1464          * was 0.000001, causes bug [#30438] (which is same as [#27675, imho).
1465          * Resetting it to org value seems to cause no more [#23954]...
1466          *
1467          * was 0.0000000000001, caused bug [#31333], smaller values give unstable
1468          * roll when toggling editmode again...
1469          * No good value here, trying 0.000000001 as best compromise. :/
1470          */
1471         if (dot_v3v3(axis, axis) > 1.0e-9f) {
1472                 /* if nor is *not* a multiple of target ... */
1473                 normalize_v3(axis);
1474
1475                 theta = angle_normalized_v3v3(target, nor);
1476
1477                 /* Make Bone matrix*/
1478                 vec_rot_to_mat3(bMatrix, axis, theta);
1479         }
1480         else {
1481                 /* if nor is a multiple of target ... */
1482                 float updown;
1483
1484                 /* point same direction, or opposite? */
1485                 updown = (dot_v3v3(target, nor) > 0) ? 1.0f : -1.0f;
1486
1487                 /* I think this should work... */
1488                 bMatrix[0][0] = updown; bMatrix[0][1] = 0.0;    bMatrix[0][2] = 0.0;
1489                 bMatrix[1][0] = 0.0;    bMatrix[1][1] = updown; bMatrix[1][2] = 0.0;
1490                 bMatrix[2][0] = 0.0;    bMatrix[2][1] = 0.0;    bMatrix[2][2] = 1.0;
1491         }
1492
1493         /* Make Roll matrix */
1494         vec_rot_to_mat3(rMatrix, nor, roll);
1495
1496         /* Combine and output result */
1497         mul_m3_m3m3(mat, rMatrix, bMatrix);
1498 }
1499
1500
1501 /* recursive part, calculates restposition of entire tree of children */
1502 /* used by exiting editmode too */
1503 void BKE_armature_where_is_bone(Bone *bone, Bone *prevbone)
1504 {
1505         float vec[3];
1506
1507         /* Bone Space */
1508         sub_v3_v3v3(vec, bone->tail, bone->head);
1509         vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);
1510
1511         bone->length = len_v3v3(bone->head, bone->tail);
1512
1513         /* this is called on old file reading too... */
1514         if (bone->xwidth == 0.0f) {
1515                 bone->xwidth = 0.1f;
1516                 bone->zwidth = 0.1f;
1517                 bone->segments = 1;
1518         }
1519
1520         if (prevbone) {
1521                 float offs_bone[4][4];
1522                 /* yoffs(b-1) + root(b) + bonemat(b) */
1523                 get_offset_bone_mat(bone, offs_bone);
1524
1525                 /* Compose the matrix for this bone  */
1526                 mult_m4_m4m4(bone->arm_mat, prevbone->arm_mat, offs_bone);
1527         }
1528         else {
1529                 copy_m4_m3(bone->arm_mat, bone->bone_mat);
1530                 copy_v3_v3(bone->arm_mat[3], bone->head);
1531         }
1532
1533         /* and the kiddies */
1534         prevbone = bone;
1535         for (bone = bone->childbase.first; bone; bone = bone->next) {
1536                 BKE_armature_where_is_bone(bone, prevbone);
1537         }
1538 }
1539
1540 /* updates vectors and matrices on rest-position level, only needed
1541  * after editing armature itself, now only on reading file */
1542 void BKE_armature_where_is(bArmature *arm)
1543 {
1544         Bone *bone;
1545
1546         /* hierarchical from root to children */
1547         for (bone = arm->bonebase.first; bone; bone = bone->next) {
1548                 BKE_armature_where_is_bone(bone, NULL);
1549         }
1550 }
1551
1552 /* if bone layer is protected, copy the data from from->pose
1553  * when used with linked libraries this copies from the linked pose into the local pose */
1554 static void pose_proxy_synchronize(Object *ob, Object *from, int layer_protected)
1555 {
1556         bPose *pose = ob->pose, *frompose = from->pose;
1557         bPoseChannel *pchan, *pchanp;
1558         bConstraint *con;
1559         int error = 0;
1560
1561         if (frompose == NULL)
1562                 return;
1563
1564         /* in some cases when rigs change, we cant synchronize
1565          * to avoid crashing check for possible errors here */
1566         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1567                 if (pchan->bone->layer & layer_protected) {
1568                         if (BKE_pose_channel_find_name(frompose, pchan->name) == NULL) {
1569                                 printf("failed to sync proxy armature because '%s' is missing pose channel '%s'\n",
1570                                        from->id.name, pchan->name);
1571                                 error = 1;
1572                         }
1573                 }
1574         }
1575
1576         if (error)
1577                 return;
1578
1579         /* clear all transformation values from library */
1580         BKE_pose_rest(frompose);
1581
1582         /* copy over all of the proxy's bone groups */
1583         /* TODO for later
1584          * - implement 'local' bone groups as for constraints
1585          * Note: this isn't trivial, as bones reference groups by index not by pointer,
1586          *       so syncing things correctly needs careful attention */
1587         BLI_freelistN(&pose->agroups);
1588         BLI_duplicatelist(&pose->agroups, &frompose->agroups);
1589         pose->active_group = frompose->active_group;
1590
1591         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1592                 pchanp = BKE_pose_channel_find_name(frompose, pchan->name);
1593                 
1594                 if (UNLIKELY(pchanp == NULL)) {
1595                         /* happens for proxies that become invalid because of a missing link
1596                          * for regular cases it shouldn't happen at all */
1597                 }
1598                 else if (pchan->bone->layer & layer_protected) {
1599                         ListBase proxylocal_constraints = {NULL, NULL};
1600                         bPoseChannel pchanw = {NULL};
1601                         
1602                         /* copy posechannel to temp, but restore important pointers */
1603                         pchanw = *pchanp;
1604                         pchanw.prev = pchan->prev;
1605                         pchanw.next = pchan->next;
1606                         pchanw.parent = pchan->parent;
1607                         pchanw.child = pchan->child;
1608                         
1609                         /* this is freed so copy a copy, else undo crashes */
1610                         if (pchanw.prop) {
1611                                 pchanw.prop = IDP_CopyProperty(pchanw.prop);
1612                                 
1613                                 /* use the values from the the existing props */
1614                                 if (pchan->prop) {
1615                                         IDP_SyncGroupValues(pchanw.prop, pchan->prop);
1616                                 }
1617                         }
1618                         
1619                         /* constraints - proxy constraints are flushed... local ones are added after
1620                          *     1. extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints
1621                          *     2. copy proxy-pchan's constraints on-to new
1622                          *     3. add extracted local constraints back on top
1623                          *
1624                          * Note for copy_constraints: when copying constraints, disable 'do_extern' otherwise
1625                          *                            we get the libs direct linked in this blend. */
1626                         extract_proxylocal_constraints(&proxylocal_constraints, &pchan->constraints);
1627                         copy_constraints(&pchanw.constraints, &pchanp->constraints, FALSE);
1628                         BLI_movelisttolist(&pchanw.constraints, &proxylocal_constraints);
1629                         
1630                         /* constraints - set target ob pointer to own object */
1631                         for (con = pchanw.constraints.first; con; con = con->next) {
1632                                 bConstraintTypeInfo *cti = constraint_get_typeinfo(con);
1633                                 ListBase targets = {NULL, NULL};
1634                                 bConstraintTarget *ct;
1635                                 
1636                                 if (cti && cti->get_constraint_targets) {
1637                                         cti->get_constraint_targets(con, &targets);
1638                                         
1639                                         for (ct = targets.first; ct; ct = ct->next) {
1640                                                 if (ct->tar == from)
1641                                                         ct->tar = ob;
1642                                         }
1643                                         
1644                                         if (cti->flush_constraint_targets)
1645                                                 cti->flush_constraint_targets(con, &targets, 0);
1646                                 }
1647                         }
1648                         
1649                         /* free stuff from current channel */
1650                         BKE_pose_channel_free(pchan);
1651                         
1652                         /* copy data in temp back over to the cleaned-out (but still allocated) original channel */
1653                         *pchan = pchanw;
1654                 }
1655                 else {
1656                         /* always copy custom shape */
1657                         pchan->custom = pchanp->custom;
1658                         pchan->custom_tx = pchanp->custom_tx;
1659
1660                         /* ID-Property Syncing */
1661                         {
1662                                 IDProperty *prop_orig = pchan->prop;
1663                                 if (pchanp->prop) {
1664                                         pchan->prop = IDP_CopyProperty(pchanp->prop);
1665                                         if (prop_orig) {
1666                                                 /* copy existing values across when types match */
1667                                                 IDP_SyncGroupValues(pchan->prop, prop_orig);
1668                                         }
1669                                 }
1670                                 else {
1671                                         pchan->prop = NULL;
1672                                 }
1673                                 if (prop_orig) {
1674                                         IDP_FreeProperty(prop_orig);
1675                                         MEM_freeN(prop_orig);
1676                                 }
1677                         }
1678                 }
1679         }
1680 }
1681
1682 static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
1683 {
1684         bPoseChannel *pchan = BKE_pose_channel_verify(pose, bone->name); /* verify checks and/or adds */
1685
1686         pchan->bone = bone;
1687         pchan->parent = parchan;
1688
1689         counter++;
1690
1691         for (bone = bone->childbase.first; bone; bone = bone->next) {
1692                 counter = rebuild_pose_bone(pose, bone, pchan, counter);
1693                 /* for quick detecting of next bone in chain, only b-bone uses it now */
1694                 if (bone->flag & BONE_CONNECTED)
1695                         pchan->child = BKE_pose_channel_find_name(pose, bone->name);
1696         }
1697
1698         return counter;
1699 }
1700
1701 /* only after leave editmode, duplicating, validating older files, library syncing */
1702 /* NOTE: pose->flag is set for it */
1703 void BKE_pose_rebuild(Object *ob, bArmature *arm)
1704 {
1705         Bone *bone;
1706         bPose *pose;
1707         bPoseChannel *pchan, *next;
1708         int counter = 0;
1709
1710         /* only done here */
1711         if (ob->pose == NULL) {
1712                 /* create new pose */
1713                 ob->pose = MEM_callocN(sizeof(bPose), "new pose");
1714
1715                 /* set default settings for animviz */
1716                 animviz_settings_init(&ob->pose->avs);
1717         }
1718         pose = ob->pose;
1719
1720         /* clear */
1721         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1722                 pchan->bone = NULL;
1723                 pchan->child = NULL;
1724         }
1725
1726         /* first step, check if all channels are there */
1727         for (bone = arm->bonebase.first; bone; bone = bone->next) {
1728                 counter = rebuild_pose_bone(pose, bone, NULL, counter);
1729         }
1730
1731         /* and a check for garbage */
1732         for (pchan = pose->chanbase.first; pchan; pchan = next) {
1733                 next = pchan->next;
1734                 if (pchan->bone == NULL) {
1735                         BKE_pose_channel_free(pchan);
1736                         BKE_pose_channels_hash_free(pose);
1737                         BLI_freelinkN(&pose->chanbase, pchan);
1738                 }
1739         }
1740         /* printf("rebuild pose %s, %d bones\n", ob->id.name, counter); */
1741
1742         /* synchronize protected layers with proxy */
1743         if (ob->proxy) {
1744                 BKE_object_copy_proxy_drivers(ob, ob->proxy);
1745                 pose_proxy_synchronize(ob, ob->proxy, arm->layer_protected);
1746         }
1747
1748         BKE_pose_update_constraint_flags(ob->pose); /* for IK detection for example */
1749
1750         /* the sorting */
1751         if (counter > 1)
1752                 DAG_pose_sort(ob);
1753
1754         ob->pose->flag &= ~POSE_RECALC;
1755         ob->pose->flag |= POSE_WAS_REBUILT;
1756
1757         BKE_pose_channels_hash_make(ob->pose);
1758 }
1759
1760
1761 /* ********************** SPLINE IK SOLVER ******************* */
1762
1763 /* Temporary evaluation tree data used for Spline IK */
1764 typedef struct tSplineIK_Tree {
1765         struct tSplineIK_Tree *next, *prev;
1766
1767         int type;                    /* type of IK that this serves (CONSTRAINT_TYPE_KINEMATIC or ..._SPLINEIK) */
1768
1769         short free_points;           /* free the point positions array */
1770         short chainlen;              /* number of bones in the chain */
1771
1772         float *points;               /* parametric positions for the joints along the curve */
1773         bPoseChannel **chain;        /* chain of bones to affect using Spline IK (ordered from the tip) */
1774
1775         bPoseChannel *root;          /* bone that is the root node of the chain */
1776
1777         bConstraint *con;            /* constraint for this chain */
1778         bSplineIKConstraint *ikData; /* constraint settings for this chain */
1779 } tSplineIK_Tree;
1780
1781 /* ----------- */
1782
1783 /* Tag the bones in the chain formed by the given bone for IK */
1784 static void splineik_init_tree_from_pchan(Scene *scene, Object *UNUSED(ob), bPoseChannel *pchan_tip)
1785 {
1786         bPoseChannel *pchan, *pchanRoot = NULL;
1787         bPoseChannel *pchanChain[255];
1788         bConstraint *con = NULL;
1789         bSplineIKConstraint *ikData = NULL;
1790         float boneLengths[255], *jointPoints;
1791         float totLength = 0.0f;
1792         short free_joints = 0;
1793         int segcount = 0;
1794
1795         /* find the SplineIK constraint */
1796         for (con = pchan_tip->constraints.first; con; con = con->next) {
1797                 if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
1798                         ikData = con->data;
1799
1800                         /* target can only be curve */
1801                         if ((ikData->tar == NULL) || (ikData->tar->type != OB_CURVE))
1802                                 continue;
1803                         /* skip if disabled */
1804                         if ((con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)))
1805                                 continue;
1806
1807                         /* otherwise, constraint is ok... */
1808                         break;
1809                 }
1810         }
1811         if (con == NULL)
1812                 return;
1813
1814         /* make sure that the constraint targets are ok
1815          *     - this is a workaround for a depsgraph bug...
1816          */
1817         if (ikData->tar) {
1818                 Curve *cu = ikData->tar->data;
1819
1820                 /* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
1821                  *       currently for paths to work it needs to go through the bevlist/displist system (ton)
1822                  */
1823
1824                 /* only happens on reload file, but violates depsgraph still... fix! */
1825                 if (ELEM(NULL, cu->path, cu->path->data)) {
1826                         BKE_displist_make_curveTypes(scene, ikData->tar, 0);
1827                         
1828                         /* path building may fail in EditMode after removing verts [#33268]*/
1829                         if (ELEM(NULL, cu->path, cu->path->data)) {
1830                                 /* BLI_assert(cu->path != NULL); */
1831                                 return;
1832                         }
1833                 }
1834         }
1835
1836         /* find the root bone and the chain of bones from the root to the tip
1837          * NOTE: this assumes that the bones are connected, but that may not be true... */
1838         for (pchan = pchan_tip; pchan && (segcount < ikData->chainlen); pchan = pchan->parent, segcount++) {
1839                 /* store this segment in the chain */
1840                 pchanChain[segcount] = pchan;
1841
1842                 /* if performing rebinding, calculate the length of the bone */
1843                 boneLengths[segcount] = pchan->bone->length;
1844                 totLength += boneLengths[segcount];
1845         }
1846
1847         if (segcount == 0)
1848                 return;
1849         else
1850                 pchanRoot = pchanChain[segcount - 1];
1851
1852         /* perform binding step if required */
1853         if ((ikData->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
1854                 float segmentLen = (1.0f / (float)segcount);
1855                 int i;
1856
1857                 /* setup new empty array for the points list */
1858                 if (ikData->points)
1859                         MEM_freeN(ikData->points);
1860                 ikData->numpoints = ikData->chainlen + 1;
1861                 ikData->points = MEM_callocN(sizeof(float) * ikData->numpoints, "Spline IK Binding");
1862
1863                 /* bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint) */
1864                 ikData->points[0] = 1.0f;
1865
1866                 /* perform binding of the joints to parametric positions along the curve based
1867                  * proportion of the total length that each bone occupies
1868                  */
1869                 for (i = 0; i < segcount; i++) {
1870                         /* 'head' joints, traveling towards the root of the chain
1871                          *  - 2 methods; the one chosen depends on whether we've got usable lengths
1872                          */
1873                         if ((ikData->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totLength == 0.0f)) {
1874                                 /* 1) equi-spaced joints */
1875                                 ikData->points[i + 1] = ikData->points[i] - segmentLen;
1876                         }
1877                         else {
1878                                 /* 2) to find this point on the curve, we take a step from the previous joint
1879                                  *    a distance given by the proportion that this bone takes
1880                                  */
1881                                 ikData->points[i + 1] = ikData->points[i] - (boneLengths[i] / totLength);
1882                         }
1883                 }
1884
1885                 /* spline has now been bound */
1886                 ikData->flag |= CONSTRAINT_SPLINEIK_BOUND;
1887         }
1888
1889         /* apply corrections for sensitivity to scaling on a copy of the bind points,
1890          * since it's easier to determine the positions of all the joints beforehand this way
1891          */
1892         if ((ikData->flag & CONSTRAINT_SPLINEIK_SCALE_LIMITED) && (totLength != 0.0f)) {
1893                 Curve *cu = (Curve *)ikData->tar->data;
1894                 float splineLen, maxScale;
1895                 int i;
1896
1897                 /* make a copy of the points array, that we'll store in the tree
1898                  *     - although we could just multiply the points on the fly, this approach means that
1899                  *       we can introduce per-segment stretchiness later if it is necessary
1900                  */
1901                 jointPoints = MEM_dupallocN(ikData->points);
1902                 free_joints = 1;
1903
1904                 /* get the current length of the curve */
1905                 /* NOTE: this is assumed to be correct even after the curve was resized */
1906                 splineLen = cu->path->totdist;
1907
1908                 /* calculate the scale factor to multiply all the path values by so that the
1909                  * bone chain retains its current length, such that
1910                  *     maxScale * splineLen = totLength
1911                  */
1912                 maxScale = totLength / splineLen;
1913
1914                 /* apply scaling correction to all of the temporary points */
1915                 /* TODO: this is really not adequate enough on really short chains */
1916                 for (i = 0; i < segcount; i++)
1917                         jointPoints[i] *= maxScale;
1918         }
1919         else {
1920                 /* just use the existing points array */
1921                 jointPoints = ikData->points;
1922                 free_joints = 0;
1923         }
1924
1925         /* make a new Spline-IK chain, and store it in the IK chains */
1926         /* TODO: we should check if there is already an IK chain on this, since that would take presidence... */
1927         {
1928                 /* make new tree */
1929                 tSplineIK_Tree *tree = MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree");
1930                 tree->type = CONSTRAINT_TYPE_SPLINEIK;
1931
1932                 tree->chainlen = segcount;
1933
1934                 /* copy over the array of links to bones in the chain (from tip to root) */
1935                 tree->chain = MEM_callocN(sizeof(bPoseChannel *) * segcount, "SplineIK Chain");
1936                 memcpy(tree->chain, pchanChain, sizeof(bPoseChannel *) * segcount);
1937
1938                 /* store reference to joint position array */
1939                 tree->points = jointPoints;
1940                 tree->free_points = free_joints;
1941
1942                 /* store references to different parts of the chain */
1943                 tree->root = pchanRoot;
1944                 tree->con = con;
1945                 tree->ikData = ikData;
1946
1947                 /* AND! link the tree to the root */
1948                 BLI_addtail(&pchanRoot->siktree, tree);
1949         }
1950
1951         /* mark root channel having an IK tree */
1952         pchanRoot->flag |= POSE_IKSPLINE;
1953 }
1954
1955 /* Tag which bones are members of Spline IK chains */
1956 static void splineik_init_tree(Scene *scene, Object *ob, float UNUSED(ctime))
1957 {
1958         bPoseChannel *pchan;
1959
1960         /* find the tips of Spline IK chains, which are simply the bones which have been tagged as such */
1961         for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
1962                 if (pchan->constflag & PCHAN_HAS_SPLINEIK)
1963                         splineik_init_tree_from_pchan(scene, ob, pchan);
1964         }
1965 }
1966
1967 /* ----------- */
1968
1969 /* Evaluate spline IK for a given bone */
1970 static void splineik_evaluate_bone(tSplineIK_Tree *tree, Scene *scene, Object *ob, bPoseChannel *pchan,
1971                                    int index, float ctime)
1972 {
1973         bSplineIKConstraint *ikData = tree->ikData;
1974         float poseHead[3], poseTail[3], poseMat[4][4];
1975         float splineVec[3], scaleFac, radius = 1.0f;
1976
1977         /* firstly, calculate the bone matrix the standard way, since this is needed for roll control */
1978         BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);
1979
1980         copy_v3_v3(poseHead, pchan->pose_head);
1981         copy_v3_v3(poseTail, pchan->pose_tail);
1982
1983         /* step 1: determine the positions for the endpoints of the bone */
1984         {
1985                 float vec[4], dir[3], rad;
1986                 float tailBlendFac = 1.0f;
1987
1988                 /* determine if the bone should still be affected by SplineIK */
1989                 if (tree->points[index + 1] >= 1.0f) {
1990                         /* spline doesn't affect the bone anymore, so done... */
1991                         pchan->flag |= POSE_DONE;
1992                         return;
1993                 }
1994                 else if ((tree->points[index] >= 1.0f) && (tree->points[index + 1] < 1.0f)) {
1995                         /* blending factor depends on the amount of the bone still left on the chain */
1996                         tailBlendFac = (1.0f - tree->points[index + 1]) / (tree->points[index] - tree->points[index + 1]);
1997                 }
1998
1999                 /* tail endpoint */
2000                 if (where_on_path(ikData->tar, tree->points[index], vec, dir, NULL, &rad, NULL)) {
2001                         /* apply curve's object-mode transforms to the position
2002                          * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
2003                          */
2004                         if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
2005                                 mul_m4_v3(ikData->tar->obmat, vec);
2006
2007                         /* convert the position to pose-space, then store it */
2008                         mul_m4_v3(ob->imat, vec);
2009                         interp_v3_v3v3(poseTail, pchan->pose_tail, vec, tailBlendFac);
2010
2011                         /* set the new radius */
2012                         radius = rad;
2013                 }
2014
2015                 /* head endpoint */
2016                 if (where_on_path(ikData->tar, tree->points[index + 1], vec, dir, NULL, &rad, NULL)) {
2017                         /* apply curve's object-mode transforms to the position
2018                          * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
2019                          */
2020                         if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
2021                                 mul_m4_v3(ikData->tar->obmat, vec);
2022
2023                         /* store the position, and convert it to pose space */
2024                         mul_m4_v3(ob->imat, vec);
2025                         copy_v3_v3(poseHead, vec);
2026
2027                         /* set the new radius (it should be the average value) */
2028                         radius = (radius + rad) / 2;
2029                 }
2030         }
2031
2032         /* step 2: determine the implied transform from these endpoints
2033          *     - splineVec: the vector direction that the spline applies on the bone
2034          *     - scaleFac: the factor that the bone length is scaled by to get the desired amount
2035          */
2036         sub_v3_v3v3(splineVec, poseTail, poseHead);
2037         scaleFac = len_v3(splineVec) / pchan->bone->length;
2038
2039         /* step 3: compute the shortest rotation needed to map from the bone rotation to the current axis
2040          *      - this uses the same method as is used for the Damped Track Constraint (see the code there for details)
2041          */
2042         {
2043                 float dmat[3][3], rmat[3][3], tmat[3][3];
2044                 float raxis[3], rangle;
2045
2046                 /* compute the raw rotation matrix from the bone's current matrix by extracting only the
2047                  * orientation-relevant axes, and normalizing them
2048                  */
2049                 copy_v3_v3(rmat[0], pchan->pose_mat[0]);
2050                 copy_v3_v3(rmat[1], pchan->pose_mat[1]);
2051                 copy_v3_v3(rmat[2], pchan->pose_mat[2]);
2052                 normalize_m3(rmat);
2053
2054                 /* also, normalize the orientation imposed by the bone, now that we've extracted the scale factor */
2055                 normalize_v3(splineVec);
2056
2057                 /* calculate smallest axis-angle rotation necessary for getting from the
2058                  * current orientation of the bone, to the spline-imposed direction
2059                  */
2060                 cross_v3_v3v3(raxis, rmat[1], splineVec);
2061
2062                 rangle = dot_v3v3(rmat[1], splineVec);
2063                 CLAMP(rangle, -1.0f, 1.0f);
2064                 rangle = acosf(rangle);
2065
2066                 /* multiply the magnitude of the angle by the influence of the constraint to
2067                  * control the influence of the SplineIK effect
2068                  */
2069                 rangle *= tree->con->enforce;
2070
2071                 /* construct rotation matrix from the axis-angle rotation found above
2072                  *      - this call takes care to make sure that the axis provided is a unit vector first
2073                  */
2074                 axis_angle_to_mat3(dmat, raxis, rangle);
2075
2076                 /* combine these rotations so that the y-axis of the bone is now aligned as the spline dictates,
2077                  * while still maintaining roll control from the existing bone animation
2078                  */
2079                 mul_m3_m3m3(tmat, dmat, rmat); /* m1, m3, m2 */
2080                 normalize_m3(tmat); /* attempt to reduce shearing, though I doubt this'll really help too much now... */
2081                 copy_m4_m3(poseMat, tmat);
2082         }
2083
2084         /* step 4: set the scaling factors for the axes */
2085         {
2086                 /* only multiply the y-axis by the scaling factor to get nice volume-preservation */
2087                 mul_v3_fl(poseMat[1], scaleFac);
2088
2089                 /* set the scaling factors of the x and z axes from... */
2090                 switch (ikData->xzScaleMode) {
2091                         case CONSTRAINT_SPLINEIK_XZS_ORIGINAL:
2092                         {
2093                                 /* original scales get used */
2094                                 float scale;
2095
2096                                 /* x-axis scale */
2097                                 scale = len_v3(pchan->pose_mat[0]);
2098                                 mul_v3_fl(poseMat[0], scale);
2099                                 /* z-axis scale */
2100                                 scale = len_v3(pchan->pose_mat[2]);
2101                                 mul_v3_fl(poseMat[2], scale);
2102                         }
2103                         break;
2104                         case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC:
2105                         {
2106                                 /* 'volume preservation' */
2107                                 float scale;
2108
2109                                 /* calculate volume preservation factor which is
2110                                  * basically the inverse of the y-scaling factor
2111                                  */
2112                                 if (fabsf(scaleFac) != 0.0f) {
2113                                         scale = 1.0f / fabsf(scaleFac);
2114
2115                                         /* we need to clamp this within sensible values */
2116                                         /* NOTE: these should be fine for now, but should get sanitised in future */
2117                                         CLAMP(scale, 0.0001f, 100000.0f);
2118                                 }
2119                                 else
2120                                         scale = 1.0f;
2121
2122                                 /* apply the scaling */
2123                                 mul_v3_fl(poseMat[0], scale);
2124                                 mul_v3_fl(poseMat[2], scale);
2125                         }
2126                         break;
2127                 }
2128
2129                 /* finally, multiply the x and z scaling by the radius of the curve too,
2130                  * to allow automatic scales to get tweaked still
2131                  */
2132                 if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
2133                         mul_v3_fl(poseMat[0], radius);
2134                         mul_v3_fl(poseMat[2], radius);
2135                 }
2136         }
2137
2138         /* step 5: set the location of the bone in the matrix */
2139         if (ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
2140                 /* when the 'no-root' option is affected, the chain can retain
2141                  * the shape but be moved elsewhere
2142                  */
2143                 copy_v3_v3(poseHead, pchan->pose_head);
2144         }
2145         else if (tree->con->enforce < 1.0f) {
2146                 /* when the influence is too low
2147                  *      - blend the positions for the 'root' bone
2148                  *      - stick to the parent for any other
2149                  */
2150                 if (pchan->parent) {
2151                         copy_v3_v3(poseHead, pchan->pose_head);
2152                 }
2153                 else {
2154                         /* FIXME: this introduces popping artifacts when we reach 0.0 */
2155                         interp_v3_v3v3(poseHead, pchan->pose_head, poseHead, tree->con->enforce);
2156                 }
2157         }
2158         copy_v3_v3(poseMat[3], poseHead);
2159
2160         /* finally, store the new transform */
2161         copy_m4_m4(pchan->pose_mat, poseMat);
2162         copy_v3_v3(pchan->pose_head, poseHead);
2163
2164         /* recalculate tail, as it's now outdated after the head gets adjusted above! */
2165         BKE_pose_where_is_bone_tail(pchan);
2166
2167         /* done! */
2168         pchan->flag |= POSE_DONE;
2169 }
2170
2171 /* Evaluate the chain starting from the nominated bone */
2172 static void splineik_execute_tree(Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
2173 {
2174         tSplineIK_Tree *tree;
2175
2176         /* for each pose-tree, execute it if it is spline, otherwise just free it */
2177         while ((tree = pchan_root->siktree.first) != NULL) {
2178                 int i;
2179
2180                 /* walk over each bone in the chain, calculating the effects of spline IK
2181                  *     - the chain is traversed in the opposite order to storage order (i.e. parent to children)
2182                  *       so that dependencies are correct
2183                  */
2184                 for (i = tree->chainlen - 1; i >= 0; i--) {
2185                         bPoseChannel *pchan = tree->chain[i];
2186                         splineik_evaluate_bone(tree, scene, ob, pchan, i, ctime);
2187                 }
2188
2189                 /* free the tree info specific to SplineIK trees now */
2190                 if (tree->chain)
2191                         MEM_freeN(tree->chain);
2192                 if (tree->free_points)
2193                         MEM_freeN(tree->points);
2194
2195                 /* free this tree */
2196                 BLI_freelinkN(&pchan_root->siktree, tree);
2197         }
2198 }
2199
2200 /* ********************** THE POSE SOLVER ******************* */
2201
2202 /* loc/rot/size to given mat4 */
2203 void BKE_pchan_to_mat4(bPoseChannel *pchan, float chan_mat[4][4])
2204 {
2205         float smat[3][3];
2206         float rmat[3][3];
2207         float tmat[3][3];
2208
2209         /* get scaling matrix */
2210         size_to_mat3(smat, pchan->size);
2211
2212         /* rotations may either be quats, eulers (with various rotation orders), or axis-angle */
2213         if (pchan->rotmode > 0) {
2214                 /* euler rotations (will cause gimble lock, but this can be alleviated a bit with rotation orders) */
2215                 eulO_to_mat3(rmat, pchan->eul, pchan->rotmode);
2216         }
2217         else if (pchan->rotmode == ROT_MODE_AXISANGLE) {
2218                 /* axis-angle - not really that great for 3D-changing orientations */
2219                 axis_angle_to_mat3(rmat, pchan->rotAxis, pchan->rotAngle);
2220         }
2221         else {
2222                 /* quats are normalized before use to eliminate scaling issues */
2223                 float quat[4];
2224
2225                 /* NOTE: we now don't normalize the stored values anymore, since this was kindof evil in some cases
2226                  * but if this proves to be too problematic, switch back to the old system of operating directly on
2227                  * the stored copy
2228                  */
2229                 normalize_qt_qt(quat, pchan->quat);
2230                 quat_to_mat3(rmat, quat);
2231         }
2232
2233         /* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */
2234         mul_m3_m3m3(tmat, rmat, smat);
2235         copy_m4_m3(chan_mat, tmat);
2236
2237         /* prevent action channels breaking chains */
2238         /* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
2239         if ((pchan->bone == NULL) || !(pchan->bone->flag & BONE_CONNECTED)) {
2240                 copy_v3_v3(chan_mat[3], pchan->loc);
2241         }
2242 }
2243
2244 /* loc/rot/size to mat4 */
2245 /* used in constraint.c too */
2246 void BKE_pchan_calc_mat(bPoseChannel *pchan)
2247 {
2248         /* this is just a wrapper around the copy of this function which calculates the matrix
2249          * and stores the result in any given channel
2250          */
2251         BKE_pchan_to_mat4(pchan, pchan->chan_mat);
2252 }
2253
2254 #if 0 /* XXX OLD ANIMSYS, NLASTRIPS ARE NO LONGER USED */
2255
2256 /* NLA strip modifiers */
2257 static void do_strip_modifiers(Scene *scene, Object *armob, Bone *bone, bPoseChannel *pchan)
2258 {
2259         bActionModifier *amod;
2260         bActionStrip *strip, *strip2;
2261         float scene_cfra = (float)scene->r.cfra;
2262         int do_modif;
2263
2264         for (strip = armob->nlastrips.first; strip; strip = strip->next) {
2265                 do_modif = FALSE;
2266
2267                 if (scene_cfra >= strip->start && scene_cfra <= strip->end)
2268                         do_modif = TRUE;
2269
2270                 if ((scene_cfra > strip->end) && (strip->flag & ACTSTRIP_HOLDLASTFRAME)) {
2271                         do_modif = TRUE;
2272
2273                         /* if there are any other strips active, ignore modifiers for this strip -
2274                          * 'hold' option should only hold action modifiers if there are
2275                          * no other active strips */
2276                         for (strip2 = strip->next; strip2; strip2 = strip2->next) {
2277                                 if (strip2 == strip) continue;
2278
2279                                 if (scene_cfra >= strip2->start && scene_cfra <= strip2->end) {
2280                                         if (!(strip2->flag & ACTSTRIP_MUTE))
2281                                                 do_modif = FALSE;
2282                                 }
2283                         }
2284
2285                         /* if there are any later, activated, strips with 'hold' set, they take precedence,
2286                          * so ignore modifiers for this strip */
2287                         for (strip2 = strip->next; strip2; strip2 = strip2->next) {
2288                                 if (scene_cfra < strip2->start) continue;
2289                                 if ((strip2->flag & ACTSTRIP_HOLDLASTFRAME) && !(strip2->flag & ACTSTRIP_MUTE)) {
2290                                         do_modif = FALSE;
2291                                 }
2292                         }
2293                 }
2294
2295                 if (do_modif) {
2296                         /* temporal solution to prevent 2 strips accumulating */
2297                         if (scene_cfra == strip->end && strip->next && strip->next->start == scene_cfra)
2298                                 continue;
2299
2300                         for (amod = strip->modifiers.first; amod; amod = amod->next) {
2301                                 switch (amod->type) {
2302                                         case ACTSTRIP_MOD_DEFORM:
2303                                         {
2304                                                 /* validate first */
2305                                                 if (amod->ob && amod->ob->type == OB_CURVE && amod->channel[0]) {
2306
2307                                                         if (strcmp(pchan->name, amod->channel) == 0) {
2308                                                                 float mat4[4][4], mat3[3][3];
2309
2310                                                                 curve_deform_vector(scene, amod->ob, armob, bone->arm_mat[3], pchan->pose_mat[3], mat3, amod->no_rot_axis);
2311                                                                 copy_m4_m4(mat4, pchan->pose_mat);
2312                                                                 mul_m4_m3m4(pchan->pose_mat, mat3, mat4);
2313
2314                                                         }
2315                                                 }
2316                                         }
2317                                         break;
2318                                         case ACTSTRIP_MOD_NOISE:
2319                                         {
2320                                                 if (strcmp(pchan->name, amod->channel) == 0) {
2321                                                         float nor[3], loc[3], ofs;
2322                                                         float eul[3], size[3], eulo[3], sizeo[3];
2323
2324                                                         /* calculate turbulance */
2325                                                         ofs = amod->turbul / 200.0f;
2326
2327                                                         /* make a copy of starting conditions */
2328                                                         copy_v3_v3(loc, pchan->pose_mat[3]);
2329                                                         mat4_to_eul(eul, pchan->pose_mat);
2330                                                         mat4_to_size(size, pchan->pose_mat);
2331                                                         copy_v3_v3(eulo, eul);
2332                                                         copy_v3_v3(sizeo, size);
2333
2334                                                         /* apply noise to each set of channels */
2335                                                         if (amod->channels & 4) {
2336                                                                 /* for scaling */
2337                                                                 nor[0] = BLI_gNoise(amod->noisesize, size[0] + ofs, size[1], size[2], 0, 0) - ofs;
2338                                                                 nor[1] = BLI_gNoise(amod->noisesize, size[0], size[1] + ofs, size[2], 0, 0) - ofs;
2339                                                                 nor[2] = BLI_gNoise(amod->noisesize, size[0], size[1], size[2] + ofs, 0, 0) - ofs;
2340                                                                 add_v3_v3(size, nor);
2341
2342                                                                 if (sizeo[0] != 0)
2343                                                                         mul_v3_fl(pchan->pose_mat[0], size[0] / sizeo[0]);
2344                                                                 if (sizeo[1] != 0)
2345                                                                         mul_v3_fl(pchan->pose_mat[1], size[1] / sizeo[1]);
2346                                                                 if (sizeo[2] != 0)
2347                                                                         mul_v3_fl(pchan->pose_mat[2], size[2] / sizeo[2]);
2348                                                         }
2349                                                         if (amod->channels & 2) {
2350                                                                 /* for rotation */
2351                                                                 nor[0] = BLI_gNoise(amod->noisesize, eul[0] + ofs, eul[1], eul[2], 0, 0) - ofs;
2352                                                                 nor[1] = BLI_gNoise(amod->noisesize, eul[0], eul[1] + ofs, eul[2], 0, 0) - ofs;
2353                                                                 nor[2] = BLI_gNoise(amod->noisesize, eul[0], eul[1], eul[2] + ofs, 0, 0) - ofs;
2354
2355                                                                 compatible_eul(nor, eulo);
2356                                                                 add_v3_v3(eul, nor);
2357                                                                 compatible_eul(eul, eulo);
2358
2359                                                                 loc_eul_size_to_mat4(pchan->pose_mat, loc, eul, size);
2360                                                         }
2361                                                         if (amod->channels & 1) {
2362                                                                 /* for location */
2363                                                                 nor[0] = BLI_gNoise(amod->noisesize, loc[0] + ofs, loc[1], loc[2], 0, 0) - ofs;
2364                                                                 nor[1] = BLI_gNoise(amod->noisesize, loc[0], loc[1] + ofs, loc[2], 0, 0) - ofs;
2365                                                                 nor[2] = BLI_gNoise(amod->noisesize, loc[0], loc[1], loc[2] + ofs, 0, 0) - ofs;
2366
2367                                                                 add_v3_v3v3(pchan->pose_mat[3], loc, nor);
2368                                                         }
2369                                                 }
2370                                         }
2371                                         break;
2372                                 }
2373                         }
2374                 }
2375         }
2376 }
2377
2378 #endif
2379
2380 /* calculate tail of posechannel */
2381 void BKE_pose_where_is_bone_tail(bPoseChannel *pchan)
2382 {
2383         float vec[3];
2384
2385         copy_v3_v3(vec, pchan->pose_mat[1]);
2386         mul_v3_fl(vec, pchan->bone->length);
2387         add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec);
2388 }
2389
2390 /* The main armature solver, does all constraints excluding IK */
2391 /* pchan is validated, as having bone and parent pointer
2392  * 'do_extra': when zero skips loc/size/rot, constraints and strip modifiers.
2393  */
2394 void BKE_pose_where_is_bone(Scene *scene, Object *ob, bPoseChannel *pchan, float ctime, int do_extra)
2395 {
2396         /* This gives a chan_mat with actions (ipos) results. */
2397         if (do_extra)
2398                 BKE_pchan_calc_mat(pchan);
2399         else
2400                 unit_m4(pchan->chan_mat);
2401
2402         /* Construct the posemat based on PoseChannels, that we do before applying constraints. */
2403         /* pose_mat(b) = pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
2404         BKE_armature_mat_bone_to_pose(pchan, pchan->chan_mat, pchan->pose_mat);
2405
2406         /* Only rootbones get the cyclic offset (unless user doesn't want that). */
2407         /* XXX That could be a problem for snapping and other "reverse transform" features... */
2408         if (!pchan->parent) {
2409                 if ((pchan->bone->flag & BONE_NO_CYCLICOFFSET) == 0)
2410                         add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset);
2411         }
2412
2413         if (do_extra) {
2414 #if 0   /* XXX OLD ANIMSYS, NLASTRIPS ARE NO LONGER USED */
2415                 /* do NLA strip modifiers - i.e. curve follow */
2416                 do_strip_modifiers(scene, ob, bone, pchan);
2417 #endif
2418
2419                 /* Do constraints */
2420                 if (pchan->constraints.first) {
2421                         bConstraintOb *cob;
2422                         float vec[3];
2423
2424                         /* make a copy of location of PoseChannel for later */
2425                         copy_v3_v3(vec, pchan->pose_mat[3]);
2426
2427                         /* prepare PoseChannel for Constraint solving
2428                          * - makes a copy of matrix, and creates temporary struct to use
2429                          */
2430                         cob = constraints_make_evalob(scene, ob, pchan, CONSTRAINT_OBTYPE_BONE);
2431
2432                         /* Solve PoseChannel's Constraints */
2433                         solve_constraints(&pchan->constraints, cob, ctime); /* ctime doesnt alter objects */
2434
2435                         /* cleanup after Constraint Solving
2436                          * - applies matrix back to pchan, and frees temporary struct used
2437                          */
2438                         constraints_clear_evalob(cob);
2439
2440                         /* prevent constraints breaking a chain */
2441                         if (pchan->bone->flag & BONE_CONNECTED) {
2442                                 copy_v3_v3(pchan->pose_mat[3], vec);
2443                         }
2444                 }
2445         }
2446
2447         /* calculate head */
2448         copy_v3_v3(pchan->pose_head, pchan->pose_mat[3]);
2449         /* calculate tail */
2450         BKE_pose_where_is_bone_tail(pchan);
2451 }
2452
2453 /* This only reads anim data from channels, and writes to channels */
2454 /* This is the only function adding poses */
2455 void BKE_pose_where_is(Scene *scene, Object *ob)
2456 {
2457         bArmature *arm;
2458         Bone *bone;
2459         bPoseChannel *pchan;
2460         float imat[4][4];
2461         float ctime;
2462
2463         if (ob->type != OB_ARMATURE)
2464                 return;
2465         arm = ob->data;
2466
2467         if (ELEM(NULL, arm, scene))
2468                 return;
2469         if ((ob->pose == NULL) || (ob->pose->flag & POSE_RECALC))
2470                 BKE_pose_rebuild(ob, arm);
2471
2472         ctime = BKE_scene_frame_get(scene); /* not accurate... */
2473
2474         /* In editmode or restposition we read the data from the bones */
2475         if (arm->edbo || (arm->flag & ARM_RESTPOS)) {
2476                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2477                         bone = pchan->bone;
2478                         if (bone) {
2479                                 copy_m4_m4(pchan->pose_mat, bone->arm_mat);
2480                                 copy_v3_v3(pchan->pose_head, bone->arm_head);
2481                                 copy_v3_v3(pchan->pose_tail, bone->arm_tail);
2482                         }
2483                 }
2484         }
2485         else {
2486                 invert_m4_m4(ob->imat, ob->obmat); /* imat is needed */
2487
2488                 /* 1. clear flags */
2489                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2490                         pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE);
2491                 }
2492
2493                 /* 2a. construct the IK tree (standard IK) */
2494                 BIK_initialize_tree(scene, ob, ctime);
2495
2496                 /* 2b. construct the Spline IK trees
2497                  *  - this is not integrated as an IK plugin, since it should be able
2498                  *        to function in conjunction with standard IK
2499                  */
2500                 splineik_init_tree(scene, ob, ctime);
2501
2502                 /* 3. the main loop, channels are already hierarchical sorted from root to children */
2503                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2504                         /* 4a. if we find an IK root, we handle it separated */
2505                         if (pchan->flag & POSE_IKTREE) {
2506                                 BIK_execute_tree(scene, ob, pchan, ctime);
2507                         }
2508                         /* 4b. if we find a Spline IK root, we handle it separated too */
2509                         else if (pchan->flag & POSE_IKSPLINE) {
2510                                 splineik_execute_tree(scene, ob, pchan, ctime);
2511                         }
2512                         /* 5. otherwise just call the normal solver */
2513                         else if (!(pchan->flag & POSE_DONE)) {
2514                                 BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);
2515                         }
2516                 }
2517                 /* 6. release the IK tree */
2518                 BIK_release_tree(scene, ob, ctime);
2519         }
2520
2521         /* calculating deform matrices */
2522         for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2523                 if (pchan->bone) {
2524                         invert_m4_m4(imat, pchan->bone->arm_mat);
2525                         mult_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat);
2526                 }
2527         }
2528 }
2529
2530 /************** Bounding box ********************/
2531 static int minmax_armature(Object *ob, float r_min[3], float r_max[3])
2532 {
2533         bPoseChannel *pchan;
2534
2535         /* For now, we assume BKE_pose_where_is has already been called (hence we have valid data in pachan). */
2536         for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2537                 minmax_v3v3_v3(r_min, r_max, pchan->pose_head);
2538                 minmax_v3v3_v3(r_min, r_max, pchan->pose_tail);
2539         }
2540
2541         return (ob->pose->chanbase.first != NULL);
2542 }
2543
2544 static void boundbox_armature(Object *ob, float loc[3], float size[3])
2545 {
2546         BoundBox *bb;
2547         float min[3], max[3];
2548         float mloc[3], msize[3];
2549
2550         if (ob->bb == NULL)
2551                 ob->bb = MEM_callocN(sizeof(BoundBox), "Armature boundbox");
2552         bb = ob->bb;
2553
2554         if (!loc)
2555                 loc = mloc;
2556         if (!size)
2557                 size = msize;
2558
2559         INIT_MINMAX(min, max);
2560         if (!minmax_armature(ob, min, max)) {
2561                 min[0] = min[1] = min[2] = -1.0f;
2562                 max[0] = max[1] = max[2] = 1.0f;
2563         }
2564
2565         mid_v3_v3v3(loc, min, max);
2566
2567         size[0] = (max[0] - min[0]) / 2.0f;
2568         size[1] = (max[1] - min[1]) / 2.0f;
2569         size[2] = (max[2] - min[2]) / 2.0f;
2570
2571         BKE_boundbox_init_from_minmax(bb, min, max);
2572 }
2573
2574 BoundBox *BKE_armature_boundbox_get(Object *ob)
2575 {
2576         boundbox_armature(ob, NULL, NULL);
2577
2578         return ob->bb;
2579 }