6 * ***** BEGIN GPL LICENSE BLOCK *****
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 * The Original Code is Copyright (C) Blender Foundation.
23 * All rights reserved.
25 * The Original Code is: all of this file.
27 * Contributor(s): Daniel Genrich
29 * ***** END GPL LICENSE BLOCK *****
32 /** \file blender/blenkernel/intern/smoke.c
37 /* Part of the code copied from elbeem fluid library, copyright by Nils Thuerey */
41 #include "MEM_guardedalloc.h"
46 #include <string.h> /* memset */
48 #include "BLI_linklist.h"
50 #include "BLI_jitter.h"
51 #include "BLI_blenlib.h"
53 #include "BLI_edgehash.h"
54 #include "BLI_kdtree.h"
55 #include "BLI_kdopbvh.h"
56 #include "BLI_utildefines.h"
58 #include "BKE_bvhutils.h"
59 #include "BKE_cdderivedmesh.h"
60 #include "BKE_customdata.h"
61 #include "BKE_DerivedMesh.h"
62 #include "BKE_effect.h"
63 #include "BKE_modifier.h"
64 #include "BKE_particle.h"
65 #include "BKE_pointcache.h"
66 #include "BKE_smoke.h"
69 #include "DNA_customdata_types.h"
70 #include "DNA_group_types.h"
71 #include "DNA_lamp_types.h"
72 #include "DNA_mesh_types.h"
73 #include "DNA_meshdata_types.h"
74 #include "DNA_modifier_types.h"
75 #include "DNA_object_types.h"
76 #include "DNA_particle_types.h"
77 #include "DNA_scene_types.h"
78 #include "DNA_smoke_types.h"
80 #include "smoke_API.h"
82 #include "BKE_smoke.h"
90 static LARGE_INTEGER liFrequency;
91 static LARGE_INTEGER liStartTime;
92 static LARGE_INTEGER liCurrentTime;
94 static void tstart ( void )
96 QueryPerformanceFrequency ( &liFrequency );
97 QueryPerformanceCounter ( &liStartTime );
99 static void tend ( void )
101 QueryPerformanceCounter ( &liCurrentTime );
103 static double tval( void )
105 return ((double)( (liCurrentTime.QuadPart - liStartTime.QuadPart)* (double)1000.0/(double)liFrequency.QuadPart ));
108 #include <sys/time.h>
109 static struct timeval _tstart, _tend;
110 static struct timezone tz;
111 static void tstart ( void )
113 gettimeofday ( &_tstart, &tz );
115 static void tend ( void )
117 gettimeofday ( &_tend,&tz );
124 t1 = ( double ) _tstart.tv_sec*1000 + ( double ) _tstart.tv_usec/ ( 1000 );
125 t2 = ( double ) _tend.tv_sec*1000 + ( double ) _tend.tv_usec/ ( 1000 );
134 struct SmokeModifierData;
136 // forward declerations
137 static void get_cell(float *p0, int res[3], float dx, float *pos, int *cell, int correct);
138 void calcTriangleDivs(Object *ob, MVert *verts, int numverts, MFace *tris, int numfaces, int numtris, int **tridivs, float cell_len);
139 static void fill_scs_points(Object *ob, DerivedMesh *dm, SmokeCollSettings *scs);
141 #define TRI_UVOFFSET (1./4.)
143 /* Stubs to use when smoke is disabled */
145 struct WTURBULENCE *smoke_turbulence_init(int *UNUSED(res), int UNUSED(amplify), int UNUSED(noisetype)) { return NULL; }
146 struct FLUID_3D *smoke_init(int *UNUSED(res), float *UNUSED(p0)) { return NULL; }
147 void smoke_free(struct FLUID_3D *UNUSED(fluid)) {}
148 void smoke_turbulence_free(struct WTURBULENCE *UNUSED(wt)) {}
149 void smoke_initWaveletBlenderRNA(struct WTURBULENCE *UNUSED(wt), float *UNUSED(strength)) {}
150 void smoke_initBlenderRNA(struct FLUID_3D *UNUSED(fluid), float *UNUSED(alpha), float *UNUSED(beta), float *UNUSED(dt_factor), float *UNUSED(vorticity), int *UNUSED(border_colli)) {}
151 long long smoke_get_mem_req(int UNUSED(xres), int UNUSED(yres), int UNUSED(zres), int UNUSED(amplify)) { return 0; }
152 void smokeModifier_do(SmokeModifierData *UNUSED(smd), Scene *UNUSED(scene), Object *UNUSED(ob), DerivedMesh *UNUSED(dm)) {}
156 static int smokeModifier_init (SmokeModifierData *smd, Object *ob, Scene *scene, DerivedMesh *dm)
158 if((smd->type & MOD_SMOKE_TYPE_DOMAIN) && smd->domain && !smd->domain->fluid)
161 float min[3] = {FLT_MAX, FLT_MAX, FLT_MAX}, max[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
163 MVert *verts = dm->getVertArray(dm);
167 res = smd->domain->maxres;
170 for(i = 0; i < dm->getNumVerts(dm); i++)
174 VECCOPY(tmp, verts[i].co);
175 mul_m4_v3(ob->obmat, tmp);
178 min[0] = MIN2(min[0], tmp[0]);
179 min[1] = MIN2(min[1], tmp[1]);
180 min[2] = MIN2(min[2], tmp[2]);
183 max[0] = MAX2(max[0], tmp[0]);
184 max[1] = MAX2(max[1], tmp[1]);
185 max[2] = MAX2(max[2], tmp[2]);
188 VECCOPY(smd->domain->p0, min);
189 VECCOPY(smd->domain->p1, max);
191 // calc other res with max_res provided
192 VECSUB(size, max, min);
194 // printf("size: %f, %f, %f\n", size[0], size[1], size[2]);
196 // prevent crash when initializing a plane as domain
197 if((size[0] < FLT_EPSILON) || (size[1] < FLT_EPSILON) || (size[2] < FLT_EPSILON))
200 if(size[0] > size[1])
202 if(size[0] > size[2])
204 scale = res / size[0];
205 smd->domain->dx = size[0] / res;
206 smd->domain->res[0] = res;
207 smd->domain->res[1] = (int)(size[1] * scale + 0.5);
208 smd->domain->res[2] = (int)(size[2] * scale + 0.5);
212 scale = res / size[2];
213 smd->domain->dx = size[2] / res;
214 smd->domain->res[2] = res;
215 smd->domain->res[0] = (int)(size[0] * scale + 0.5);
216 smd->domain->res[1] = (int)(size[1] * scale + 0.5);
221 if(size[1] > size[2])
223 scale = res / size[1];
224 smd->domain->dx = size[1] / res;
225 smd->domain->res[1] = res;
226 smd->domain->res[0] = (int)(size[0] * scale + 0.5);
227 smd->domain->res[2] = (int)(size[2] * scale + 0.5);
231 scale = res / size[2];
232 smd->domain->dx = size[2] / res;
233 smd->domain->res[2] = res;
234 smd->domain->res[0] = (int)(size[0] * scale + 0.5);
235 smd->domain->res[1] = (int)(size[1] * scale + 0.5);
239 // printf("smd->domain->dx: %f\n", smd->domain->dx);
241 // TODO: put in failsafe if res<=0 - dg
243 // printf("res[0]: %d, res[1]: %d, res[2]: %d\n", smd->domain->res[0], smd->domain->res[1], smd->domain->res[2]);
245 smd->domain->fluid = smoke_init(smd->domain->res, smd->domain->p0);
246 smd->time = scene->r.cfra;
248 if(smd->domain->flags & MOD_SMOKE_HIGHRES)
250 smd->domain->wt = smoke_turbulence_init(smd->domain->res, smd->domain->amplify + 1, smd->domain->noise);
251 smd->domain->res_wt[0] = smd->domain->res[0] * (smd->domain->amplify + 1);
252 smd->domain->res_wt[1] = smd->domain->res[1] * (smd->domain->amplify + 1);
253 smd->domain->res_wt[2] = smd->domain->res[2] * (smd->domain->amplify + 1);
254 smd->domain->dx_wt = smd->domain->dx / (smd->domain->amplify + 1);
255 // printf("smd->domain->amplify: %d\n", smd->domain->amplify);
256 // printf("(smd->domain->flags & MOD_SMOKE_HIGHRES)\n");
259 if(!smd->domain->shadow)
260 smd->domain->shadow = MEM_callocN(sizeof(float) * smd->domain->res[0] * smd->domain->res[1] * smd->domain->res[2], "SmokeDomainShadow");
262 smoke_initBlenderRNA(smd->domain->fluid, &(smd->domain->alpha), &(smd->domain->beta), &(smd->domain->time_scale), &(smd->domain->vorticity), &(smd->domain->border_collisions));
266 smoke_initWaveletBlenderRNA(smd->domain->wt, &(smd->domain->strength));
267 // printf("smoke_initWaveletBlenderRNA\n");
271 else if((smd->type & MOD_SMOKE_TYPE_FLOW) && smd->flow)
273 // handle flow object here
276 smd->time = scene->r.cfra;
278 // update particle lifetime to be one frame
279 // smd->flow->psys->part->lifetime = scene->r.efra + 1;
283 // smd->flow->bvh = MEM_callocN(sizeof(BVHTreeFromMesh), "smoke_bvhfromfaces");
284 // bvhtree_from_mesh_faces(smd->flow->bvh, dm, 0.0, 2, 6);
287 // copy_m4_m4(smd->flow->mat, ob->obmat);
288 // copy_m4_m4(smd->flow->mat_old, ob->obmat);
294 else if((smd->type & MOD_SMOKE_TYPE_COLL))
296 smd->time = scene->r.cfra;
298 // todo: delete this when loading colls work -dg
300 smokeModifier_createType(smd);
302 if(!smd->coll->points)
304 // init collision points
305 SmokeCollSettings *scs = smd->coll;
308 copy_m4_m4(scs->mat, ob->obmat);
309 copy_m4_m4(scs->mat_old, ob->obmat);
311 fill_scs_points(ob, dm, scs);
314 if(!smd->coll->bvhtree)
316 smd->coll->bvhtree = NULL; // bvhtree_build_from_smoke ( ob->obmat, dm->getFaceArray(dm), dm->getNumFaces(dm), dm->getVertArray(dm), dm->getNumVerts(dm), 0.0 );
324 static void fill_scs_points(Object *ob, DerivedMesh *dm, SmokeCollSettings *scs)
326 MVert *mvert = dm->getVertArray(dm);
327 MFace *mface = dm->getFaceArray(dm);
330 float cell_len = 1.0 / 50.0; // for res = 50
332 int quads = 0, facecounter = 0;
335 for(i = 0; i < dm->getNumFaces(dm); i++)
341 calcTriangleDivs(ob, mvert, dm->getNumVerts(dm), mface, dm->getNumFaces(dm), dm->getNumFaces(dm) + quads, &tridivs, cell_len);
343 // count triangle divisions
344 for(i = 0; i < dm->getNumFaces(dm) + quads; i++)
346 divs += (tridivs[3 * i] + 1) * (tridivs[3 * i + 1] + 1) * (tridivs[3 * i + 2] + 1);
349 // printf("divs: %d\n", divs);
351 scs->points = MEM_callocN(sizeof(float) * (dm->getNumVerts(dm) + divs) * 3, "SmokeCollPoints");
353 for(i = 0; i < dm->getNumVerts(dm); i++)
356 VECCOPY(tmpvec, mvert[i].co);
357 mul_m4_v3(ob->obmat, tmpvec);
358 VECCOPY(&scs->points[i * 3], tmpvec);
361 for(i = 0, facecounter = 0; i < dm->getNumFaces(dm); i++)
367 int divs1 = tridivs[3 * facecounter + 0];
368 int divs2 = tridivs[3 * facecounter + 1];
369 //int divs3 = tridivs[3 * facecounter + 2];
370 float side1[3], side2[3], trinormorg[3], trinorm[3];
372 if(again == 1 && mface[i].v4)
374 VECSUB(side1, mvert[ mface[i].v3 ].co, mvert[ mface[i].v1 ].co);
375 VECSUB(side2, mvert[ mface[i].v4 ].co, mvert[ mface[i].v1 ].co);
379 VECSUB(side1, mvert[ mface[i].v2 ].co, mvert[ mface[i].v1 ].co);
380 VECSUB(side2, mvert[ mface[i].v3 ].co, mvert[ mface[i].v1 ].co);
383 cross_v3_v3v3(trinormorg, side1, side2);
384 normalize_v3(trinormorg);
385 VECCOPY(trinorm, trinormorg);
386 mul_v3_fl(trinorm, 0.25 * cell_len);
388 for(j = 0; j <= divs1; j++)
390 for(k = 0; k <= divs2; k++)
392 float p1[3], p2[3], p3[3], p[3]={0,0,0};
393 const float uf = (float)(j + TRI_UVOFFSET) / (float)(divs1 + 0.0);
394 const float vf = (float)(k + TRI_UVOFFSET) / (float)(divs2 + 0.0);
399 // printf("bigger - divs1: %d, divs2: %d\n", divs1, divs2);
403 VECCOPY(p1, mvert[ mface[i].v1 ].co);
404 if(again == 1 && mface[i].v4)
406 VECCOPY(p2, mvert[ mface[i].v3 ].co);
407 VECCOPY(p3, mvert[ mface[i].v4 ].co);
411 VECCOPY(p2, mvert[ mface[i].v2 ].co);
412 VECCOPY(p3, mvert[ mface[i].v3 ].co);
415 mul_v3_fl(p1, (1.0-uf-vf));
423 printf("mem problem\n");
425 // mMovPoints.push_back(p + trinorm);
427 VECADD(tmpvec, tmpvec, trinorm);
428 mul_m4_v3(ob->obmat, tmpvec);
429 VECCOPY(&scs->points[3 * (dm->getNumVerts(dm) + newdivs)], tmpvec);
433 printf("mem problem\n");
435 // mMovPoints.push_back(p - trinorm);
437 VECSUB(tmpvec, tmpvec, trinorm);
438 mul_m4_v3(ob->obmat, tmpvec);
439 VECCOPY(&scs->points[3 * (dm->getNumVerts(dm) + newdivs)], tmpvec);
444 if(again == 0 && mface[i].v4)
454 scs->numpoints = dm->getNumVerts(dm) + newdivs;
459 /*! init triangle divisions */
460 void calcTriangleDivs(Object *ob, MVert *verts, int UNUSED(numverts), MFace *faces, int numfaces, int numtris, int **tridivs, float cell_len)
462 // mTriangleDivs1.resize( faces.size() );
463 // mTriangleDivs2.resize( faces.size() );
464 // mTriangleDivs3.resize( faces.size() );
466 size_t i = 0, facecounter = 0;
467 float maxscale[3] = {1,1,1}; // = channelFindMaxVf(mcScale);
468 float maxpart = ABS(maxscale[0]);
471 if(ABS(maxscale[1])>maxpart) maxpart = ABS(maxscale[1]);
472 if(ABS(maxscale[2])>maxpart) maxpart = ABS(maxscale[2]);
473 scaleFac = 1.0 / maxpart;
474 // featureSize = mLevel[mMaxRefine].nodeSize
475 fsTri = cell_len * 0.5 * scaleFac;
480 *tridivs = MEM_callocN(sizeof(int) * numtris * 3, "Smoke_Tridivs");
482 for(i = 0, facecounter = 0; i < numfaces; i++)
484 float p0[3], p1[3], p2[3];
488 int divs1=0, divs2=0, divs3=0;
490 VECCOPY(p0, verts[faces[i].v1].co);
491 mul_m4_v3(ob->obmat, p0);
492 VECCOPY(p1, verts[faces[i].v2].co);
493 mul_m4_v3(ob->obmat, p1);
494 VECCOPY(p2, verts[faces[i].v3].co);
495 mul_m4_v3(ob->obmat, p2);
497 VECSUB(side1, p1, p0);
498 VECSUB(side2, p2, p0);
499 VECSUB(side3, p1, p2);
501 if(INPR(side1, side1) > fsTri*fsTri)
503 float tmp = normalize_v3(side1);
504 divs1 = (int)ceil(tmp/fsTri);
506 if(INPR(side2, side2) > fsTri*fsTri)
508 float tmp = normalize_v3(side2);
509 divs2 = (int)ceil(tmp/fsTri);
514 printf("b tmp: %f, fsTri: %f, divs2: %d\n", tmp, fsTri, divs2);
518 (*tridivs)[3 * facecounter + 0] = divs1;
519 (*tridivs)[3 * facecounter + 1] = divs2;
520 (*tridivs)[3 * facecounter + 2] = divs3;
525 divs1=0, divs2=0, divs3=0;
529 VECCOPY(p0, verts[faces[i].v3].co);
530 mul_m4_v3(ob->obmat, p0);
531 VECCOPY(p1, verts[faces[i].v4].co);
532 mul_m4_v3(ob->obmat, p1);
533 VECCOPY(p2, verts[faces[i].v1].co);
534 mul_m4_v3(ob->obmat, p2);
536 VECSUB(side1, p1, p0);
537 VECSUB(side2, p2, p0);
538 VECSUB(side3, p1, p2);
540 if(INPR(side1, side1) > fsTri*fsTri)
542 float tmp = normalize_v3(side1);
543 divs1 = (int)ceil(tmp/fsTri);
545 if(INPR(side2, side2) > fsTri*fsTri)
547 float tmp = normalize_v3(side2);
548 divs2 = (int)ceil(tmp/fsTri);
551 (*tridivs)[3 * facecounter + 0] = divs1;
552 (*tridivs)[3 * facecounter + 1] = divs2;
553 (*tridivs)[3 * facecounter + 2] = divs3;
559 static void smokeModifier_freeDomain(SmokeModifierData *smd)
563 if(smd->domain->shadow)
564 MEM_freeN(smd->domain->shadow);
565 smd->domain->shadow = NULL;
567 if(smd->domain->fluid)
568 smoke_free(smd->domain->fluid);
571 smoke_turbulence_free(smd->domain->wt);
573 if(smd->domain->effector_weights)
574 MEM_freeN(smd->domain->effector_weights);
575 smd->domain->effector_weights = NULL;
577 BKE_ptcache_free_list(&(smd->domain->ptcaches[0]));
578 smd->domain->point_cache[0] = NULL;
580 MEM_freeN(smd->domain);
585 static void smokeModifier_freeFlow(SmokeModifierData *smd)
592 free_bvhtree_from_mesh(smd->flow->bvh);
593 MEM_freeN(smd->flow->bvh);
595 smd->flow->bvh = NULL;
597 MEM_freeN(smd->flow);
602 static void smokeModifier_freeCollision(SmokeModifierData *smd)
606 if(smd->coll->points)
608 MEM_freeN(smd->coll->points);
609 smd->coll->points = NULL;
612 if(smd->coll->bvhtree)
614 BLI_bvhtree_free(smd->coll->bvhtree);
615 smd->coll->bvhtree = NULL;
619 smd->coll->dm->release(smd->coll->dm);
620 smd->coll->dm = NULL;
622 MEM_freeN(smd->coll);
627 void smokeModifier_reset_turbulence(struct SmokeModifierData *smd)
629 if(smd && smd->domain && smd->domain->wt)
631 smoke_turbulence_free(smd->domain->wt);
632 smd->domain->wt = NULL;
636 void smokeModifier_reset(struct SmokeModifierData *smd)
642 if(smd->domain->shadow)
643 MEM_freeN(smd->domain->shadow);
644 smd->domain->shadow = NULL;
646 if(smd->domain->fluid)
648 smoke_free(smd->domain->fluid);
649 smd->domain->fluid = NULL;
652 smokeModifier_reset_turbulence(smd);
656 // printf("reset domain end\n");
663 free_bvhtree_from_mesh(smd->flow->bvh);
664 MEM_freeN(smd->flow->bvh);
666 smd->flow->bvh = NULL;
671 if(smd->coll->points)
673 MEM_freeN(smd->coll->points);
674 smd->coll->points = NULL;
677 if(smd->coll->bvhtree)
679 BLI_bvhtree_free(smd->coll->bvhtree);
680 smd->coll->bvhtree = NULL;
684 smd->coll->dm->release(smd->coll->dm);
685 smd->coll->dm = NULL;
691 void smokeModifier_free (SmokeModifierData *smd)
695 smokeModifier_freeDomain(smd);
696 smokeModifier_freeFlow(smd);
697 smokeModifier_freeCollision(smd);
701 void smokeModifier_createType(struct SmokeModifierData *smd)
705 if(smd->type & MOD_SMOKE_TYPE_DOMAIN)
708 smokeModifier_freeDomain(smd);
710 smd->domain = MEM_callocN(sizeof(SmokeDomainSettings), "SmokeDomain");
712 smd->domain->smd = smd;
714 smd->domain->point_cache[0] = BKE_ptcache_add(&(smd->domain->ptcaches[0]));
715 smd->domain->point_cache[0]->flag |= PTCACHE_DISK_CACHE;
716 smd->domain->point_cache[0]->step = 1;
719 smd->domain->point_cache[1] = NULL;
720 smd->domain->ptcaches[1].first = smd->domain->ptcaches[1].last = NULL;
721 /* set some standard values */
722 smd->domain->fluid = NULL;
723 smd->domain->wt = NULL;
724 smd->domain->eff_group = NULL;
725 smd->domain->fluid_group = NULL;
726 smd->domain->coll_group = NULL;
727 smd->domain->maxres = 32;
728 smd->domain->amplify = 1;
729 smd->domain->omega = 1.0;
730 smd->domain->alpha = -0.001;
731 smd->domain->beta = 0.1;
732 smd->domain->time_scale = 1.0;
733 smd->domain->vorticity = 2.0;
734 smd->domain->border_collisions = 1; // vertically non-colliding
735 smd->domain->flags = MOD_SMOKE_DISSOLVE_LOG | MOD_SMOKE_HIGH_SMOOTH;
736 smd->domain->strength = 2.0;
737 smd->domain->noise = MOD_SMOKE_NOISEWAVE;
738 smd->domain->diss_speed = 5;
739 // init 3dview buffer
741 smd->domain->viewsettings = MOD_SMOKE_VIEW_SHOWBIG;
742 smd->domain->effector_weights = BKE_add_effector_weights(NULL);
744 else if(smd->type & MOD_SMOKE_TYPE_FLOW)
747 smokeModifier_freeFlow(smd);
749 smd->flow = MEM_callocN(sizeof(SmokeFlowSettings), "SmokeFlow");
751 smd->flow->smd = smd;
753 /* set some standard values */
754 smd->flow->density = 1.0;
755 smd->flow->temp = 1.0;
756 smd->flow->flags = MOD_SMOKE_FLOW_ABSOLUTE;
757 smd->flow->vel_multi = 1.0;
759 smd->flow->psys = NULL;
762 else if(smd->type & MOD_SMOKE_TYPE_COLL)
765 smokeModifier_freeCollision(smd);
767 smd->coll = MEM_callocN(sizeof(SmokeCollSettings), "SmokeColl");
769 smd->coll->smd = smd;
770 smd->coll->points = NULL;
771 smd->coll->numpoints = 0;
772 smd->coll->bvhtree = NULL;
773 smd->coll->dm = NULL;
778 void smokeModifier_copy(struct SmokeModifierData *smd, struct SmokeModifierData *tsmd)
780 tsmd->type = smd->type;
781 tsmd->time = smd->time;
783 smokeModifier_createType(tsmd);
786 tsmd->domain->maxres = smd->domain->maxres;
787 tsmd->domain->amplify = smd->domain->amplify;
788 tsmd->domain->omega = smd->domain->omega;
789 tsmd->domain->alpha = smd->domain->alpha;
790 tsmd->domain->beta = smd->domain->beta;
791 tsmd->domain->flags = smd->domain->flags;
792 tsmd->domain->strength = smd->domain->strength;
793 tsmd->domain->noise = smd->domain->noise;
794 tsmd->domain->diss_speed = smd->domain->diss_speed;
795 tsmd->domain->viewsettings = smd->domain->viewsettings;
796 tsmd->domain->fluid_group = smd->domain->fluid_group;
797 tsmd->domain->coll_group = smd->domain->coll_group;
798 tsmd->domain->vorticity = smd->domain->vorticity;
799 tsmd->domain->time_scale = smd->domain->time_scale;
800 tsmd->domain->border_collisions = smd->domain->border_collisions;
802 MEM_freeN(tsmd->domain->effector_weights);
803 tsmd->domain->effector_weights = MEM_dupallocN(smd->domain->effector_weights);
804 } else if (tsmd->flow) {
805 tsmd->flow->density = smd->flow->density;
806 tsmd->flow->temp = smd->flow->temp;
807 tsmd->flow->psys = smd->flow->psys;
808 tsmd->flow->type = smd->flow->type;
809 tsmd->flow->flags = smd->flow->flags;
810 tsmd->flow->vel_multi = smd->flow->vel_multi;
811 } else if (tsmd->coll) {
813 /* leave it as initialised, collision settings is mostly caches */
818 // forward decleration
819 static void smoke_calc_transparency(float *result, float *input, float *p0, float *p1, int res[3], float dx, float *light, bresenham_callback cb, float correct);
820 static float calc_voxel_transp(float *result, float *input, int res[3], int *pixel, float *tRay, float correct);
824 static int get_lamp(Scene *scene, float *light)
826 Base *base_tmp = NULL;
829 // try to find a lamp, preferably local
830 for(base_tmp = scene->base.first; base_tmp; base_tmp= base_tmp->next) {
831 if(base_tmp->object->type == OB_LAMP) {
832 Lamp *la = base_tmp->object->data;
834 if(la->type == LA_LOCAL) {
835 copy_v3_v3(light, base_tmp->object->obmat[3]);
838 else if(!found_lamp) {
839 copy_v3_v3(light, base_tmp->object->obmat[3]);
848 static void smoke_calc_domain(Scene *scene, Object *ob, SmokeModifierData *smd)
850 SmokeDomainSettings *sds = smd->domain;
851 GroupObject *go = NULL;
854 // do collisions, needs to be done before emission, so that smoke isn't emitted inside collision cells
857 Object *otherobj = NULL;
858 ModifierData *md = NULL;
860 if(sds->coll_group) // we use groups since we have 2 domains
861 go = sds->coll_group->gobject.first;
863 base = scene->base.first;
874 otherobj = base->object;
883 md = modifiers_findByType(otherobj, eModifierType_Smoke);
885 // check for active smoke modifier
886 if(md && md->mode & (eModifierMode_Realtime | eModifierMode_Render))
888 SmokeModifierData *smd2 = (SmokeModifierData *)md;
890 if((smd2->type & MOD_SMOKE_TYPE_COLL) && smd2->coll && smd2->coll->points)
892 // we got nice collision object
893 SmokeCollSettings *scs = smd2->coll;
895 unsigned char *obstacles = smoke_get_obstacle(smd->domain->fluid);
897 for(i = 0; i < scs->numpoints; i++)
903 // 1. get corresponding cell
904 get_cell(smd->domain->p0, smd->domain->res, smd->domain->dx, &scs->points[3 * i], cell, 0);
906 // check if cell is valid (in the domain boundary)
907 for(j = 0; j < 3; j++)
908 if((cell[j] > sds->res[j] - 1) || (cell[j] < 0))
916 // 2. set cell values (heat, density and velocity)
917 index = smoke_get_index(cell[0], sds->res[0], cell[1], sds->res[1], cell[2]);
919 // printf("cell[0]: %d, cell[1]: %d, cell[2]: %d\n", cell[0], cell[1], cell[2]);
920 // printf("res[0]: %d, res[1]: %d, res[2]: %d, index: %d\n\n", sds->res[0], sds->res[1], sds->res[2], index);
921 obstacles[index] = 1;
922 // for moving gobstacles
924 const LbmFloat maxVelVal = 0.1666;
925 const LbmFloat maxusqr = maxVelVal*maxVelVal*3. *1.5;
927 LbmVec objvel = vec2L((mMOIVertices[n]-mMOIVerticesOld[n]) /dvec);
929 const LbmFloat usqr = (objvel[0]*objvel[0]+objvel[1]*objvel[1]+objvel[2]*objvel[2])*1.5;
930 USQRMAXCHECK(usqr, objvel[0],objvel[1],objvel[2], mMaxVlen, mMxvx,mMxvy,mMxvz);
932 // cutoff at maxVelVal
933 for(int jj=0; jj<3; jj++) {
934 if(objvel[jj]>0.) objvel[jj] = maxVelVal;
935 if(objvel[jj]<0.) objvel[jj] = -maxVelVal;
939 const LbmFloat dp=dot(objvel, vec2L((*pNormals)[n]) );
940 const LbmVec oldov=objvel; // debug
941 objvel = vec2L((*pNormals)[n]) *dp;
954 // do flows and fluids
957 Object *otherobj = NULL;
958 ModifierData *md = NULL;
959 if(sds->fluid_group) // we use groups since we have 2 domains
960 go = sds->fluid_group->gobject.first;
962 base = scene->base.first;
972 otherobj = base->object;
983 md = modifiers_findByType(otherobj, eModifierType_Smoke);
985 // check for active smoke modifier
986 if(md && md->mode & (eModifierMode_Realtime | eModifierMode_Render))
988 SmokeModifierData *smd2 = (SmokeModifierData *)md;
990 // check for initialized smoke object
991 if((smd2->type & MOD_SMOKE_TYPE_FLOW) && smd2->flow)
993 // we got nice flow object
994 SmokeFlowSettings *sfs = smd2->flow;
996 if(sfs && sfs->psys && sfs->psys->part && sfs->psys->part->type==PART_EMITTER) // is particle system selected
998 ParticleSimulationData sim;
999 ParticleSystem *psys = sfs->psys;
1001 float *density = smoke_get_density(sds->fluid);
1002 float *bigdensity = smoke_turbulence_get_density(sds->wt);
1003 float *heat = smoke_get_heat(sds->fluid);
1004 float *velocity_x = smoke_get_velocity_x(sds->fluid);
1005 float *velocity_y = smoke_get_velocity_y(sds->fluid);
1006 float *velocity_z = smoke_get_velocity_z(sds->fluid);
1007 unsigned char *obstacle = smoke_get_obstacle(sds->fluid);
1009 short absolute_flow = (sfs->flags & MOD_SMOKE_FLOW_ABSOLUTE);
1010 short high_emission_smoothing = bigdensity ? (smd->domain->flags & MOD_SMOKE_HIGH_SMOOTH) : 0;
1013 * A temporary volume map used to store whole emissive
1014 * area to be added to smoke density and interpolated
1015 * for high resolution smoke.
1017 float *temp_emission_map = NULL;
1023 // initialize temp emission map
1024 if(!(sfs->type & MOD_SMOKE_FLOW_TYPE_OUTFLOW))
1027 temp_emission_map = MEM_callocN(sizeof(float) * sds->res[0]*sds->res[1]*sds->res[2], "SmokeTempEmission");
1028 // set whole volume to 0.0f
1029 for (i=0; i<sds->res[0]*sds->res[1]*sds->res[2]; i++) {
1030 temp_emission_map[i] = 0.0f;
1034 // mostly copied from particle code
1035 for(p=0; p<psys->totpart; p++)
1043 if(psys->particles[p].flag & (PARS_NO_DISP|PARS_UNEXIST))
1046 state.time = smd->time;
1048 if(psys_get_particle_state(&sim, p, &state, 0) == 0)
1051 // VECCOPY(pos, pa->state.co);
1052 // mul_m4_v3(ob->imat, pos);
1053 // 1. get corresponding cell
1054 get_cell(smd->domain->p0, smd->domain->res, smd->domain->dx, state.co, cell, 0);
1055 // check if cell is valid (in the domain boundary)
1056 for(i = 0; i < 3; i++)
1058 if((cell[i] > sds->res[i] - 1) || (cell[i] < 0))
1066 // 2. set cell values (heat, density and velocity)
1067 index = smoke_get_index(cell[0], sds->res[0], cell[1], sds->res[1], cell[2]);
1068 if(!(sfs->type & MOD_SMOKE_FLOW_TYPE_OUTFLOW) && !(obstacle[index])) // this is inflow
1070 // heat[index] += sfs->temp * 0.1;
1071 // density[index] += sfs->density * 0.1;
1072 heat[index] = sfs->temp;
1074 // Add emitter density to temp emission map
1075 temp_emission_map[index] = sfs->density;
1077 // Uses particle velocity as initial velocity for smoke
1078 if(sfs->flags & MOD_SMOKE_FLOW_INITVELOCITY && (psys->part->phystype != PART_PHYS_NO))
1080 velocity_x[index] = state.vel[0]*sfs->vel_multi;
1081 velocity_y[index] = state.vel[1]*sfs->vel_multi;
1082 velocity_z[index] = state.vel[2]*sfs->vel_multi;
1085 else if(sfs->type & MOD_SMOKE_FLOW_TYPE_OUTFLOW) // outflow
1088 density[index] = 0.f;
1089 velocity_x[index] = 0.f;
1090 velocity_y[index] = 0.f;
1091 velocity_z[index] = 0.f;
1092 // we need different handling for the high-res feature
1095 // init all surrounding cells according to amplification, too
1097 smoke_turbulence_get_res(smd->domain->wt, bigres);
1099 for(i = 0; i < smd->domain->amplify + 1; i++)
1100 for(j = 0; j < smd->domain->amplify + 1; j++)
1101 for(k = 0; k < smd->domain->amplify + 1; k++)
1103 index = smoke_get_index((smd->domain->amplify + 1)* cell[0] + i, bigres[0], (smd->domain->amplify + 1)* cell[1] + j, bigres[1], (smd->domain->amplify + 1)* cell[2] + k);
1104 bigdensity[index] = 0.f;
1111 // apply emission values
1112 if(!(sfs->type & MOD_SMOKE_FLOW_TYPE_OUTFLOW)) {
1114 // initialize variables
1115 int ii, jj, kk, x, y, z, block_size;
1116 size_t index, index_big;
1118 smoke_turbulence_get_res(smd->domain->wt, bigres);
1119 block_size = smd->domain->amplify + 1; // high res block size
1122 // loop through every low res cell
1123 for(x = 0; x < sds->res[0]; x++)
1124 for(y = 0; y < sds->res[1]; y++)
1125 for(z = 0; z < sds->res[2]; z++)
1128 // neighbour cell emission densities (for high resolution smoke smooth interpolation)
1129 float c000, c001, c010, c011, c100, c101, c110, c111;
1131 c000 = (x>0 && y>0 && z>0) ? temp_emission_map[smoke_get_index(x-1, sds->res[0], y-1, sds->res[1], z-1)] : 0;
1132 c001 = (x>0 && y>0) ? temp_emission_map[smoke_get_index(x-1, sds->res[0], y-1, sds->res[1], z)] : 0;
1133 c010 = (x>0 && z>0) ? temp_emission_map[smoke_get_index(x-1, sds->res[0], y, sds->res[1], z-1)] : 0;
1134 c011 = (x>0) ? temp_emission_map[smoke_get_index(x-1, sds->res[0], y, sds->res[1], z)] : 0;
1136 c100 = (y>0 && z>0) ? temp_emission_map[smoke_get_index(x, sds->res[0], y-1, sds->res[1], z-1)] : 0;
1137 c101 = (y>0) ? temp_emission_map[smoke_get_index(x, sds->res[0], y-1, sds->res[1], z)] : 0;
1138 c110 = (z>0) ? temp_emission_map[smoke_get_index(x, sds->res[0], y, sds->res[1], z-1)] : 0;
1139 c111 = temp_emission_map[smoke_get_index(x, sds->res[0], y, sds->res[1], z)]; // this cell
1144 index = smoke_get_index(x, sds->res[0], y, sds->res[1], z);
1146 // add emission to low resolution density
1147 if (absolute_flow) {if (temp_emission_map[index]>0) density[index] = temp_emission_map[index];}
1149 density[index] += temp_emission_map[index];
1150 if (density[index]>1) density[index]=1.0f;
1153 smoke_turbulence_get_res(smd->domain->wt, bigres);
1158 loop through high res blocks if high res enabled
1161 for(ii = 0; ii < block_size; ii++)
1162 for(jj = 0; jj < block_size; jj++)
1163 for(kk = 0; kk < block_size; kk++)
1166 float fx,fy,fz, interpolated_value;
1167 int shift_x, shift_y, shift_z;
1171 * Do volume interpolation if emitter smoothing
1174 if (high_emission_smoothing) {
1175 // convert block position to relative
1176 // for interpolation smoothing
1177 fx = (float)ii/block_size + 0.5f/block_size;
1178 fy = (float)jj/block_size + 0.5f/block_size;
1179 fz = (float)kk/block_size + 0.5f/block_size;
1181 // calculate trilinear interpolation
1182 interpolated_value = c000 * (1-fx) * (1-fy) * (1-fz) +
1183 c100 * fx * (1-fy) * (1-fz) +
1184 c010 * (1-fx) * fy * (1-fz) +
1185 c001 * (1-fx) * (1-fy) * fz +
1186 c101 * fx * (1-fy) * fz +
1187 c011 * (1-fx) * fy * fz +
1188 c110 * fx * fy * (1-fz) +
1189 c111 * fx * fy * fz;
1192 // add some contrast / sharpness
1193 // depending on hi-res block size
1195 interpolated_value = (interpolated_value-0.4f*sfs->density)*(block_size/2) + 0.4f*sfs->density;
1196 if (interpolated_value<0.0f) interpolated_value = 0.0f;
1197 if (interpolated_value>1.0f) interpolated_value = 1.0f;
1199 // shift smoke block index
1200 // (because pixel center is actually
1201 // in halfway of the low res block)
1202 shift_x = (x < 1) ? 0 : block_size/2;
1203 shift_y = (y < 1) ? 0 : block_size/2;
1204 shift_z = (z < 1) ? 0 : block_size/2;
1207 // without interpolation use same low resolution
1208 // block value for all hi-res blocks
1209 interpolated_value = c111;
1215 // get shifted index for current high resolution block
1216 index_big = smoke_get_index(block_size * x + ii - shift_x, bigres[0], block_size * y + jj - shift_y, bigres[1], block_size * z + kk - shift_z);
1218 // add emission data to high resolution density
1219 if (absolute_flow) {if (interpolated_value > 0) bigdensity[index_big] = interpolated_value;}
1221 bigdensity[index_big] += interpolated_value;
1222 if (bigdensity[index_big]>1) bigdensity[index_big]=1.0f;
1225 } // end of hires loop
1227 } // end of low res loop
1229 // free temporary emission map
1230 if (temp_emission_map) MEM_freeN(temp_emission_map);
1243 BVHTreeNearest nearest;
1245 nearest.dist = FLT_MAX;
1247 BLI_bvhtree_find_nearest(sfs->bvh->tree, pco, &nearest, sfs->bvh->nearest_callback, sfs->bvh);
1252 if(sds->fluid_group)
1261 ListBase *effectors = pdInitEffectors(scene, ob, NULL, sds->effector_weights);
1265 float *density = smoke_get_density(sds->fluid);
1266 float *force_x = smoke_get_force_x(sds->fluid);
1267 float *force_y = smoke_get_force_y(sds->fluid);
1268 float *force_z = smoke_get_force_z(sds->fluid);
1269 float *velocity_x = smoke_get_velocity_x(sds->fluid);
1270 float *velocity_y = smoke_get_velocity_y(sds->fluid);
1271 float *velocity_z = smoke_get_velocity_z(sds->fluid);
1274 // precalculate wind forces
1275 for(x = 0; x < sds->res[0]; x++)
1276 for(y = 0; y < sds->res[1]; y++)
1277 for(z = 0; z < sds->res[2]; z++)
1279 EffectedPoint epoint;
1280 float voxelCenter[3] = {0,0,0} , vel[3] = {0,0,0} , retvel[3] = {0,0,0};
1281 unsigned int index = smoke_get_index(x, sds->res[0], y, sds->res[1], z);
1283 if(density[index] < FLT_EPSILON)
1286 vel[0] = velocity_x[index];
1287 vel[1] = velocity_y[index];
1288 vel[2] = velocity_z[index];
1290 voxelCenter[0] = sds->p0[0] + sds->dx * x + sds->dx * 0.5;
1291 voxelCenter[1] = sds->p0[1] + sds->dx * y + sds->dx * 0.5;
1292 voxelCenter[2] = sds->p0[2] + sds->dx * z + sds->dx * 0.5;
1294 pd_point_from_loc(scene, voxelCenter, vel, index, &epoint);
1295 pdDoEffectors(effectors, NULL, sds->effector_weights, &epoint, retvel, NULL);
1297 // TODO dg - do in force!
1298 force_x[index] = MIN2(MAX2(-1.0, retvel[0] * 0.2), 1.0);
1299 force_y[index] = MIN2(MAX2(-1.0, retvel[1] * 0.2), 1.0);
1300 force_z[index] = MIN2(MAX2(-1.0, retvel[2] * 0.2), 1.0);
1304 pdEndEffectors(&effectors);
1308 void smokeModifier_do(SmokeModifierData *smd, Scene *scene, Object *ob, DerivedMesh *dm)
1310 if((smd->type & MOD_SMOKE_TYPE_FLOW))
1312 if(scene->r.cfra >= smd->time)
1313 smokeModifier_init(smd, ob, scene, dm);
1315 if(scene->r.cfra > smd->time)
1318 smd->time = scene->r.cfra;
1320 // rigid movement support
1322 copy_m4_m4(smd->flow->mat_old, smd->flow->mat);
1323 copy_m4_m4(smd->flow->mat, ob->obmat);
1326 else if(scene->r.cfra < smd->time)
1328 smd->time = scene->r.cfra;
1329 smokeModifier_reset(smd);
1332 else if(smd->type & MOD_SMOKE_TYPE_COLL)
1334 if(scene->r.cfra >= smd->time)
1335 smokeModifier_init(smd, ob, scene, dm);
1337 if(scene->r.cfra > smd->time)
1340 smd->time = scene->r.cfra;
1343 smd->coll->dm->release(smd->coll->dm);
1345 smd->coll->dm = CDDM_copy(dm);
1347 // rigid movement support
1348 copy_m4_m4(smd->coll->mat_old, smd->coll->mat);
1349 copy_m4_m4(smd->coll->mat, ob->obmat);
1351 else if(scene->r.cfra < smd->time)
1353 smd->time = scene->r.cfra;
1354 smokeModifier_reset(smd);
1357 else if(smd->type & MOD_SMOKE_TYPE_DOMAIN)
1359 SmokeDomainSettings *sds = smd->domain;
1361 PointCache *cache = NULL;
1363 int startframe, endframe, framenr;
1366 framenr = scene->r.cfra;
1368 //printf("time: %d\n", scene->r.cfra);
1370 cache = sds->point_cache[0];
1371 BKE_ptcache_id_from_smoke(&pid, ob, smd);
1372 BKE_ptcache_id_time(&pid, scene, framenr, &startframe, &endframe, ×cale);
1374 if(!smd->domain->fluid || framenr == startframe)
1376 BKE_ptcache_id_reset(scene, &pid, PTCACHE_RESET_OUTDATED);
1377 BKE_ptcache_validate(cache, framenr);
1378 cache->flag &= ~PTCACHE_REDO_NEEDED;
1381 if(!smd->domain->fluid && (framenr != startframe) && (smd->domain->flags & MOD_SMOKE_FILE_LOAD)==0 && (cache->flag & PTCACHE_BAKED)==0)
1384 smd->domain->flags &= ~MOD_SMOKE_FILE_LOAD;
1386 CLAMP(framenr, startframe, endframe);
1388 /* If already viewing a pre/after frame, no need to reload */
1389 if ((smd->time == framenr) && (framenr != scene->r.cfra))
1392 // printf("startframe: %d, framenr: %d\n", startframe, framenr);
1394 if(smokeModifier_init(smd, ob, scene, dm)==0)
1396 printf("bad smokeModifier_init\n");
1400 /* try to read from cache */
1401 if(BKE_ptcache_read(&pid, (float)framenr) == PTCACHE_READ_EXACT) {
1402 BKE_ptcache_validate(cache, framenr);
1403 smd->time = framenr;
1407 /* only calculate something when we advanced a single frame */
1408 if(framenr != (int)smd->time+1)
1411 /* don't simulate if viewing start frame, but scene frame is not real start frame */
1412 if (framenr != scene->r.cfra)
1417 smoke_calc_domain(scene, ob, smd);
1419 /* if on second frame, write cache for first frame */
1420 if((int)smd->time == startframe && (cache->flag & PTCACHE_OUTDATED || cache->last_exact==0)) {
1421 // create shadows straight after domain initialization so we get nice shadows for startframe, too
1422 if(get_lamp(scene, light))
1423 smoke_calc_transparency(sds->shadow, smoke_get_density(sds->fluid), sds->p0, sds->p1, sds->res, sds->dx, light, calc_voxel_transp, -7.0*sds->dx);
1427 if(sds->flags & MOD_SMOKE_DISSOLVE)
1428 smoke_dissolve_wavelet(sds->wt, sds->diss_speed, sds->flags & MOD_SMOKE_DISSOLVE_LOG);
1429 smoke_turbulence_step(sds->wt, sds->fluid);
1432 BKE_ptcache_write(&pid, startframe);
1436 smd->time = scene->r.cfra;
1442 // simulate the actual smoke (c++ code in intern/smoke)
1443 // DG: interesting commenting this line + deactivating loading of noise files
1444 if(framenr!=startframe)
1446 if(sds->flags & MOD_SMOKE_DISSOLVE)
1447 smoke_dissolve(sds->fluid, sds->diss_speed, sds->flags & MOD_SMOKE_DISSOLVE_LOG);
1448 smoke_step(sds->fluid, smd->time, scene->r.frs_sec / scene->r.frs_sec_base);
1451 // create shadows before writing cache so they get stored
1452 if(get_lamp(scene, light))
1453 smoke_calc_transparency(sds->shadow, smoke_get_density(sds->fluid), sds->p0, sds->p1, sds->res, sds->dx, light, calc_voxel_transp, -7.0*sds->dx);
1457 if(sds->flags & MOD_SMOKE_DISSOLVE)
1458 smoke_dissolve_wavelet(sds->wt, sds->diss_speed, sds->flags & MOD_SMOKE_DISSOLVE_LOG);
1459 smoke_turbulence_step(sds->wt, sds->fluid);
1462 BKE_ptcache_validate(cache, framenr);
1463 if(framenr != startframe)
1464 BKE_ptcache_write(&pid, framenr);
1467 //printf ( "Frame: %d, Time: %f\n", (int)smd->time, ( float ) tval() );
1471 static float calc_voxel_transp(float *result, float *input, int res[3], int *pixel, float *tRay, float correct)
1473 const size_t index = smoke_get_index(pixel[0], res[0], pixel[1], res[1], pixel[2]);
1476 *tRay *= exp(input[index]*correct);
1478 if(result[index] < 0.0f)
1480 #pragma omp critical
1481 result[index] = *tRay;
1487 long long smoke_get_mem_req(int xres, int yres, int zres, int amplify)
1489 int totalCells = xres * yres * zres;
1490 int amplifiedCells = totalCells * amplify * amplify * amplify;
1492 // print out memory requirements
1493 long long int coarseSize = sizeof(float) * totalCells * 22 +
1494 sizeof(unsigned char) * totalCells;
1496 long long int fineSize = sizeof(float) * amplifiedCells * 7 + // big grids
1497 sizeof(float) * totalCells * 8 + // small grids
1498 sizeof(float) * 128 * 128 * 128; // noise tile
1500 long long int totalMB = (coarseSize + fineSize) / (1024 * 1024);
1505 static void bresenham_linie_3D(int x1, int y1, int z1, int x2, int y2, int z2, float *tRay, bresenham_callback cb, float *result, float *input, int res[3], float correct)
1507 int dx, dy, dz, i, l, m, n, x_inc, y_inc, z_inc, err_1, err_2, dx2, dy2, dz2;
1518 x_inc = (dx < 0) ? -1 : 1;
1520 y_inc = (dy < 0) ? -1 : 1;
1522 z_inc = (dz < 0) ? -1 : 1;
1528 if ((l >= m) && (l >= n)) {
1531 for (i = 0; i < l; i++) {
1532 if(cb(result, input, res, pixel, tRay, correct) <= FLT_EPSILON)
1546 } else if ((m >= l) && (m >= n)) {
1549 for (i = 0; i < m; i++) {
1550 if(cb(result, input, res, pixel, tRay, correct) <= FLT_EPSILON)
1567 for (i = 0; i < n; i++) {
1568 if(cb(result, input, res, pixel, tRay, correct) <= FLT_EPSILON)
1583 cb(result, input, res, pixel, tRay, correct);
1586 static void get_cell(float *p0, int res[3], float dx, float *pos, int *cell, int correct)
1590 VECSUB(tmp, pos, p0);
1591 mul_v3_fl(tmp, 1.0 / dx);
1595 cell[0] = MIN2(res[0] - 1, MAX2(0, (int)floor(tmp[0])));
1596 cell[1] = MIN2(res[1] - 1, MAX2(0, (int)floor(tmp[1])));
1597 cell[2] = MIN2(res[2] - 1, MAX2(0, (int)floor(tmp[2])));
1601 cell[0] = (int)floor(tmp[0]);
1602 cell[1] = (int)floor(tmp[1]);
1603 cell[2] = (int)floor(tmp[2]);
1607 static void smoke_calc_transparency(float *result, float *input, float *p0, float *p1, int res[3], float dx, float *light, bresenham_callback cb, float correct)
1610 int a, z, slabsize=res[0]*res[1], size= res[0]*res[1]*res[2];
1612 for(a=0; a<size; a++)
1624 #pragma omp parallel for schedule(static,1)
1625 for(z = 0; z < res[2]; z++)
1627 size_t index = z*slabsize;
1630 for(y = 0; y < res[1]; y++)
1631 for(x = 0; x < res[0]; x++, index++)
1633 float voxelCenter[3];
1638 if(result[index] >= 0.0f)
1640 voxelCenter[0] = p0[0] + dx * x + dx * 0.5;
1641 voxelCenter[1] = p0[1] + dx * y + dx * 0.5;
1642 voxelCenter[2] = p0[2] + dx * z + dx * 0.5;
1644 // get starting position (in voxel coords)
1645 if(BLI_bvhtree_bb_raycast(bv, light, voxelCenter, pos) > FLT_EPSILON)
1648 get_cell(p0, res, dx, pos, cell, 1);
1653 get_cell(p0, res, dx, light, cell, 1);
1656 bresenham_linie_3D(cell[0], cell[1], cell[2], x, y, z, &tRay, cb, result, input, res, correct);
1658 // convention -> from a RGBA float array, use G value for tRay
1659 // #pragma omp critical
1660 result[index] = tRay;
1665 #endif // WITH_SMOKE