svn merge -r 14561:14627 https://svn.blender.org/svnroot/bf-blender/trunk/blender
[blender.git] / source / blender / render / intern / source / shadeoutput.c
1 /**
2 * $Id:
3  *
4  * ***** BEGIN GPL LICENSE BLOCK *****
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19  *
20  * The Original Code is Copyright (C) 2006 Blender Foundation
21  * All rights reserved.
22  *
23  * Contributors: Hos, Robert Wenzlaff.
24  *
25  * ***** END GPL LICENSE BLOCK *****
26  */
27
28 #include <stdio.h>
29 #include <float.h>
30 #include <math.h>
31 #include <string.h>
32
33 #include "MTC_matrixops.h"
34 #include "BLI_arithb.h"
35
36 #include "BKE_colortools.h"
37 #include "BKE_material.h"
38 #include "BKE_texture.h"
39 #include "BKE_utildefines.h"
40
41 #include "DNA_group_types.h"
42 #include "DNA_lamp_types.h"
43 #include "DNA_material_types.h"
44
45 /* local include */
46 #include "occlusion.h"
47 #include "renderpipeline.h"
48 #include "render_types.h"
49 #include "pixelblending.h"
50 #include "rendercore.h"
51 #include "shadbuf.h"
52 #include "sss.h"
53 #include "texture.h"
54
55 /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
56 /* defined in pipeline.c, is hardcopy of active dynamic allocated Render */
57 /* only to be used here in this file, it's for speed */
58 extern struct Render R;
59 /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
60
61 static ListBase *get_lights(ShadeInput *shi)
62 {
63         
64         if(shi->light_override)
65                 return &shi->light_override->gobject;
66         else if(shi->mat && shi->mat->group)
67                 return &shi->mat->group->gobject;
68         else
69                 return &R.lights;
70 }
71
72 #if 0
73 static void fogcolor(float *colf, float *rco, float *view)
74 {
75         float alpha, stepsize, startdist, dist, hor[4], zen[3], vec[3], dview[3];
76         float div=0.0f, distfac;
77         
78         hor[0]= R.wrld.horr; hor[1]= R.wrld.horg; hor[2]= R.wrld.horb;
79         zen[0]= R.wrld.zenr; zen[1]= R.wrld.zeng; zen[2]= R.wrld.zenb;
80         
81         VECCOPY(vec, rco);
82         
83         /* we loop from cur coord to mist start in steps */
84         stepsize= 1.0f;
85         
86         div= ABS(view[2]);
87         dview[0]= view[0]/(stepsize*div);
88         dview[1]= view[1]/(stepsize*div);
89         dview[2]= -stepsize;
90
91         startdist= -rco[2] + BLI_frand();
92         for(dist= startdist; dist>R.wrld.miststa; dist-= stepsize) {
93                 
94                 hor[0]= R.wrld.horr; hor[1]= R.wrld.horg; hor[2]= R.wrld.horb;
95                 alpha= 1.0f;
96                 do_sky_tex(vec, vec, NULL, hor, zen, &alpha);
97                 
98                 distfac= (dist-R.wrld.miststa)/R.wrld.mistdist;
99                 
100                 hor[3]= hor[0]*distfac*distfac;
101                 
102                 /* premul! */
103                 alpha= hor[3];
104                 hor[0]= hor[0]*alpha;
105                 hor[1]= hor[1]*alpha;
106                 hor[2]= hor[2]*alpha;
107                 addAlphaOverFloat(colf, hor);
108                 
109                 VECSUB(vec, vec, dview);
110         }       
111 }
112 #endif
113
114 /* zcor is distance, co the 3d coordinate in eye space, return alpha */
115 float mistfactor(float zcor, float *co) 
116 {
117         float fac, hi;
118         
119         fac= zcor - R.wrld.miststa;     /* zcor is calculated per pixel */
120
121         /* fac= -co[2]-R.wrld.miststa; */
122
123         if(fac>0.0f) {
124                 if(fac< R.wrld.mistdist) {
125                         
126                         fac= (fac/(R.wrld.mistdist));
127                         
128                         if(R.wrld.mistype==0) fac*= fac;
129                         else if(R.wrld.mistype==1);
130                         else fac= sqrt(fac);
131                 }
132                 else fac= 1.0f;
133         }
134         else fac= 0.0f;
135         
136         /* height switched off mist */
137         if(R.wrld.misthi!=0.0f && fac!=0.0f) {
138                 /* at height misthi the mist is completely gone */
139
140                 hi= R.viewinv[0][2]*co[0]+R.viewinv[1][2]*co[1]+R.viewinv[2][2]*co[2]+R.viewinv[3][2];
141                 
142                 if(hi>R.wrld.misthi) fac= 0.0f;
143                 else if(hi>0.0f) {
144                         hi= (R.wrld.misthi-hi)/R.wrld.misthi;
145                         fac*= hi*hi;
146                 }
147         }
148
149         return (1.0f-fac)* (1.0f-R.wrld.misi);  
150 }
151
152 static void spothalo(struct LampRen *lar, ShadeInput *shi, float *intens)
153 {
154         double a, b, c, disc, nray[3], npos[3];
155         float t0, t1 = 0.0f, t2= 0.0f, t3, haint;
156         float p1[3], p2[3], ladist, maxz = 0.0f, maxy = 0.0f;
157         int snijp, doclip=1, use_yco=0;
158         int ok1=0, ok2=0;
159         
160         *intens= 0.0f;
161         haint= lar->haint;
162         
163         if(R.r.mode & R_ORTHO) {
164                 /* camera pos (view vector) cannot be used... */
165                 /* camera position (cox,coy,0) rotate around lamp */
166                 p1[0]= shi->co[0]-lar->co[0];
167                 p1[1]= shi->co[1]-lar->co[1];
168                 p1[2]= -lar->co[2];
169                 MTC_Mat3MulVecfl(lar->imat, p1);
170                 VECCOPY(npos, p1);      // npos is double!
171                 
172                 /* pre-scale */
173                 npos[2]*= lar->sh_zfac;
174         }
175         else {
176                 VECCOPY(npos, lar->sh_invcampos);       /* in initlamp calculated */
177         }
178         
179         /* rotate view */
180         VECCOPY(nray, shi->view);
181         MTC_Mat3MulVecd(lar->imat, nray);
182         
183         if(R.wrld.mode & WO_MIST) {
184                 /* patchy... */
185                 haint *= mistfactor(-lar->co[2], lar->co);
186                 if(haint==0.0f) {
187                         return;
188                 }
189         }
190
191
192         /* rotate maxz */
193         if(shi->co[2]==0.0f) doclip= 0; /* for when halo at sky */
194         else {
195                 p1[0]= shi->co[0]-lar->co[0];
196                 p1[1]= shi->co[1]-lar->co[1];
197                 p1[2]= shi->co[2]-lar->co[2];
198         
199                 maxz= lar->imat[0][2]*p1[0]+lar->imat[1][2]*p1[1]+lar->imat[2][2]*p1[2];
200                 maxz*= lar->sh_zfac;
201                 maxy= lar->imat[0][1]*p1[0]+lar->imat[1][1]*p1[1]+lar->imat[2][1]*p1[2];
202
203                 if( fabs(nray[2]) < DBL_EPSILON ) use_yco= 1;
204         }
205         
206         /* scale z to make sure volume is normalized */ 
207         nray[2]*= lar->sh_zfac;
208         /* nray does not need normalization */
209         
210         ladist= lar->sh_zfac*lar->dist;
211         
212         /* solve */
213         a = nray[0] * nray[0] + nray[1] * nray[1] - nray[2]*nray[2];
214         b = nray[0] * npos[0] + nray[1] * npos[1] - nray[2]*npos[2];
215         c = npos[0] * npos[0] + npos[1] * npos[1] - npos[2]*npos[2];
216
217         snijp= 0;
218         if (fabs(a) < DBL_EPSILON) {
219                 /*
220                  * Only one intersection point...
221                  */
222                 return;
223         }
224         else {
225                 disc = b*b - a*c;
226                 
227                 if(disc==0.0) {
228                         t1=t2= (-b)/ a;
229                         snijp= 2;
230                 }
231                 else if (disc > 0.0) {
232                         disc = sqrt(disc);
233                         t1 = (-b + disc) / a;
234                         t2 = (-b - disc) / a;
235                         snijp= 2;
236                 }
237         }
238         if(snijp==2) {
239                 /* sort */
240                 if(t1>t2) {
241                         a= t1; t1= t2; t2= a;
242                 }
243
244                 /* z of intersection points with diabolo */
245                 p1[2]= npos[2] + t1*nray[2];
246                 p2[2]= npos[2] + t2*nray[2];
247
248                 /* evaluate both points */
249                 if(p1[2]<=0.0f) ok1= 1;
250                 if(p2[2]<=0.0f && t1!=t2) ok2= 1;
251                 
252                 /* at least 1 point with negative z */
253                 if(ok1==0 && ok2==0) return;
254                 
255                 /* intersction point with -ladist, the bottom of the cone */
256                 if(use_yco==0) {
257                         t3= (-ladist-npos[2])/nray[2];
258                                 
259                         /* de we have to replace one of the intersection points? */
260                         if(ok1) {
261                                 if(p1[2]<-ladist) t1= t3;
262                         }
263                         else {
264                                 ok1= 1;
265                                 t1= t3;
266                         }
267                         if(ok2) {
268                                 if(p2[2]<-ladist) t2= t3;
269                         }
270                         else {
271                                 ok2= 1;
272                                 t2= t3;
273                         }
274                 }
275                 else if(ok1==0 || ok2==0) return;
276                 
277                 /* at least 1 visible interesction point */
278                 if(t1<0.0f && t2<0.0f) return;
279                 
280                 if(t1<0.0f) t1= 0.0f;
281                 if(t2<0.0f) t2= 0.0f;
282                 
283                 if(t1==t2) return;
284                 
285                 /* sort again to be sure */
286                 if(t1>t2) {
287                         a= t1; t1= t2; t2= a;
288                 }
289                 
290                 /* calculate t0: is the maximum visible z (when halo is intersected by face) */ 
291                 if(doclip) {
292                         if(use_yco==0) t0= (maxz-npos[2])/nray[2];
293                         else t0= (maxy-npos[1])/nray[1];
294
295                         if(t0<t1) return;
296                         if(t0<t2) t2= t0;
297                 }
298
299                 /* calc points */
300                 p1[0]= npos[0] + t1*nray[0];
301                 p1[1]= npos[1] + t1*nray[1];
302                 p1[2]= npos[2] + t1*nray[2];
303                 p2[0]= npos[0] + t2*nray[0];
304                 p2[1]= npos[1] + t2*nray[1];
305                 p2[2]= npos[2] + t2*nray[2];
306                 
307                         
308                 /* now we have 2 points, make three lengths with it */
309                 
310                 a= sqrt(p1[0]*p1[0]+p1[1]*p1[1]+p1[2]*p1[2]);
311                 b= sqrt(p2[0]*p2[0]+p2[1]*p2[1]+p2[2]*p2[2]);
312                 c= VecLenf(p1, p2);
313                 
314                 a/= ladist;
315                 a= sqrt(a);
316                 b/= ladist; 
317                 b= sqrt(b);
318                 c/= ladist;
319                 
320                 *intens= c*( (1.0-a)+(1.0-b) );
321
322                 /* WATCH IT: do not clip a,b en c at 1.0, this gives nasty little overflows
323                         at the edges (especially with narrow halos) */
324                 if(*intens<=0.0f) return;
325
326                 /* soft area */
327                 /* not needed because t0 has been used for p1/p2 as well */
328                 /* if(doclip && t0<t2) { */
329                 /*      *intens *= (t0-t1)/(t2-t1); */
330                 /* } */
331                 
332                 *intens *= haint;
333                 
334                 if(lar->shb && lar->shb->shadhalostep) {
335                         *intens *= shadow_halo(lar, p1, p2);
336                 }
337                 
338         }
339 }
340
341 void renderspothalo(ShadeInput *shi, float *col, float alpha)
342 {
343         ListBase *lights;
344         GroupObject *go;
345         LampRen *lar;
346         float i;
347         
348         if(alpha==0.0f) return;
349         
350         lights= get_lights(shi);
351         for(go=lights->first; go; go= go->next) {
352                 lar= go->lampren;
353                 if(lar==NULL) continue;
354                 
355                 if(lar->type==LA_SPOT && (lar->mode & LA_HALO) && lar->haint>0) {
356                         
357                         if(lar->mode & LA_LAYER) 
358                                 if(shi->vlr && (lar->lay & shi->obi->lay)==0) 
359                                         continue;
360                         if((lar->lay & shi->lay)==0) 
361                                 continue;
362                         
363                         spothalo(lar, shi, &i);
364                         if(i>0.0f) {
365                                 col[3]+= i*alpha;                       // all premul
366                                 col[0]+= i*lar->r*alpha;
367                                 col[1]+= i*lar->g*alpha;
368                                 col[2]+= i*lar->b*alpha;        
369                         }
370                 }
371         }
372         /* clip alpha, is needed for unified 'alpha threshold' (vanillaRenderPipe.c) */
373         if(col[3]>1.0f) col[3]= 1.0f;
374 }
375
376
377
378 /* ---------------- shaders ----------------------- */
379
380 static double Normalize_d(double *n)
381 {
382         double d;
383         
384         d= n[0]*n[0]+n[1]*n[1]+n[2]*n[2];
385
386         if(d>0.00000000000000001) {
387                 d= sqrt(d);
388
389                 n[0]/=d; 
390                 n[1]/=d; 
391                 n[2]/=d;
392         } else {
393                 n[0]=n[1]=n[2]= 0.0;
394                 d= 0.0;
395         }
396         return d;
397 }
398
399 /* mix of 'real' fresnel and allowing control. grad defines blending gradient */
400 float fresnel_fac(float *view, float *vn, float grad, float fac)
401 {
402         float t1, t2;
403         
404         if(fac==0.0f) return 1.0f;
405         
406         t1= (view[0]*vn[0] + view[1]*vn[1] + view[2]*vn[2]);
407         if(t1>0.0f)  t2= 1.0f+t1;
408         else t2= 1.0f-t1;
409         
410         t2= grad + (1.0f-grad)*pow(t2, fac);
411         
412         if(t2<0.0f) return 0.0f;
413         else if(t2>1.0f) return 1.0f;
414         return t2;
415 }
416
417 static double saacos_d(double fac)
418 {
419         if(fac<= -1.0f) return M_PI;
420         else if(fac>=1.0f) return 0.0;
421         else return acos(fac);
422 }
423
424 /* Stoke's form factor. Need doubles here for extreme small area sizes */
425 static float area_lamp_energy(float (*area)[3], float *co, float *vn)
426 {
427         double fac;
428         double vec[4][3];       /* vectors of rendered co to vertices lamp */
429         double cross[4][3];     /* cross products of this */
430         double rad[4];          /* angles between vecs */
431
432         VECSUB(vec[0], co, area[0]);
433         VECSUB(vec[1], co, area[1]);
434         VECSUB(vec[2], co, area[2]);
435         VECSUB(vec[3], co, area[3]);
436         
437         Normalize_d(vec[0]);
438         Normalize_d(vec[1]);
439         Normalize_d(vec[2]);
440         Normalize_d(vec[3]);
441
442         /* cross product */
443         CROSS(cross[0], vec[0], vec[1]);
444         CROSS(cross[1], vec[1], vec[2]);
445         CROSS(cross[2], vec[2], vec[3]);
446         CROSS(cross[3], vec[3], vec[0]);
447
448         Normalize_d(cross[0]);
449         Normalize_d(cross[1]);
450         Normalize_d(cross[2]);
451         Normalize_d(cross[3]);
452
453         /* angles */
454         rad[0]= vec[0][0]*vec[1][0]+ vec[0][1]*vec[1][1]+ vec[0][2]*vec[1][2];
455         rad[1]= vec[1][0]*vec[2][0]+ vec[1][1]*vec[2][1]+ vec[1][2]*vec[2][2];
456         rad[2]= vec[2][0]*vec[3][0]+ vec[2][1]*vec[3][1]+ vec[2][2]*vec[3][2];
457         rad[3]= vec[3][0]*vec[0][0]+ vec[3][1]*vec[0][1]+ vec[3][2]*vec[0][2];
458
459         rad[0]= saacos_d(rad[0]);
460         rad[1]= saacos_d(rad[1]);
461         rad[2]= saacos_d(rad[2]);
462         rad[3]= saacos_d(rad[3]);
463
464         /* Stoke formula */
465         fac=  rad[0]*(vn[0]*cross[0][0]+ vn[1]*cross[0][1]+ vn[2]*cross[0][2]);
466         fac+= rad[1]*(vn[0]*cross[1][0]+ vn[1]*cross[1][1]+ vn[2]*cross[1][2]);
467         fac+= rad[2]*(vn[0]*cross[2][0]+ vn[1]*cross[2][1]+ vn[2]*cross[2][2]);
468         fac+= rad[3]*(vn[0]*cross[3][0]+ vn[1]*cross[3][1]+ vn[2]*cross[3][2]);
469
470         if(fac<=0.0) return 0.0;
471         return fac;
472 }
473
474 static float area_lamp_energy_multisample(LampRen *lar, float *co, float *vn)
475 {
476         /* corner vectors are moved around according lamp jitter */
477         float *jitlamp= lar->jitter, vec[3];
478         float area[4][3], intens= 0.0f;
479         int a= lar->ray_totsamp;
480         
481         
482         while(a--) {
483                 vec[0]= jitlamp[0];
484                 vec[1]= jitlamp[1];
485                 vec[2]= 0.0f;
486                 Mat3MulVecfl(lar->mat, vec);
487                 
488                 VECADD(area[0], lar->area[0], vec);
489                 VECADD(area[1], lar->area[1], vec);
490                 VECADD(area[2], lar->area[2], vec);
491                 VECADD(area[3], lar->area[3], vec);
492                 
493                 intens+= area_lamp_energy(area, co, vn);
494                 
495                 jitlamp+= 2;
496         }
497         intens /= (float)lar->ray_totsamp;
498         
499         return pow(intens*lar->areasize, lar->k);       // corrected for buttons size and lar->dist^2
500 }
501
502 static float spec(float inp, int hard)  
503 {
504         float b1;
505         
506         if(inp>=1.0f) return 1.0f;
507         else if (inp<=0.0f) return 0.0f;
508         
509         b1= inp*inp;
510         /* avoid FPE */
511         if(b1<0.01f) b1= 0.01f; 
512         
513         if((hard & 1)==0)  inp= 1.0f;
514         if(hard & 2)  inp*= b1;
515         b1*= b1;
516         if(hard & 4)  inp*= b1;
517         b1*= b1;
518         if(hard & 8)  inp*= b1;
519         b1*= b1;
520         if(hard & 16) inp*= b1;
521         b1*= b1;
522
523         /* avoid FPE */
524         if(b1<0.001f) b1= 0.0f; 
525
526         if(hard & 32) inp*= b1;
527         b1*= b1;
528         if(hard & 64) inp*=b1;
529         b1*= b1;
530         if(hard & 128) inp*=b1;
531
532         if(b1<0.001f) b1= 0.0f; 
533
534         if(hard & 256) {
535                 b1*= b1;
536                 inp*=b1;
537         }
538
539         return inp;
540 }
541
542 static float Phong_Spec( float *n, float *l, float *v, int hard, int tangent )
543 {
544         float h[3];
545         float rslt;
546         
547         h[0] = l[0] + v[0];
548         h[1] = l[1] + v[1];
549         h[2] = l[2] + v[2];
550         Normalize(h);
551         
552         rslt = h[0]*n[0] + h[1]*n[1] + h[2]*n[2];
553         if(tangent) rslt= sasqrt(1.0f - rslt*rslt);
554                 
555         if( rslt > 0.0f ) rslt= spec(rslt, hard);
556         else rslt = 0.0f;
557         
558         return rslt;
559 }
560
561
562 /* reduced cook torrance spec (for off-specular peak) */
563 static float CookTorr_Spec(float *n, float *l, float *v, int hard, int tangent)
564 {
565         float i, nh, nv, h[3];
566
567         h[0]= v[0]+l[0];
568         h[1]= v[1]+l[1];
569         h[2]= v[2]+l[2];
570         Normalize(h);
571
572         nh= n[0]*h[0]+n[1]*h[1]+n[2]*h[2];
573         if(tangent) nh= sasqrt(1.0f - nh*nh);
574         else if(nh<0.0f) return 0.0f;
575         
576         nv= n[0]*v[0]+n[1]*v[1]+n[2]*v[2];
577         if(tangent) nv= sasqrt(1.0f - nv*nv);
578         else if(nv<0.0f) nv= 0.0f;
579
580         i= spec(nh, hard);
581
582         i= i/(0.1+nv);
583         return i;
584 }
585
586 /* Blinn spec */
587 static float Blinn_Spec(float *n, float *l, float *v, float refrac, float spec_power, int tangent)
588 {
589         float i, nh, nv, nl, vh, h[3];
590         float a, b, c, g=0.0f, p, f, ang;
591
592         if(refrac < 1.0f) return 0.0f;
593         if(spec_power == 0.0f) return 0.0f;
594         
595         /* conversion from 'hardness' (1-255) to 'spec_power' (50 maps at 0.1) */
596         if(spec_power<100.0f)
597                 spec_power= sqrt(1.0f/spec_power);
598         else spec_power= 10.0f/spec_power;
599         
600         h[0]= v[0]+l[0];
601         h[1]= v[1]+l[1];
602         h[2]= v[2]+l[2];
603         Normalize(h);
604
605         nh= n[0]*h[0]+n[1]*h[1]+n[2]*h[2]; /* Dot product between surface normal and half-way vector */
606         if(tangent) nh= sasqrt(1.0f - nh*nh);
607         else if(nh<0.0f) return 0.0f;
608
609         nv= n[0]*v[0]+n[1]*v[1]+n[2]*v[2]; /* Dot product between surface normal and view vector */
610         if(tangent) nv= sasqrt(1.0f - nv*nv);
611         if(nv<=0.01f) nv= 0.01f;                                /* hrms... */
612
613         nl= n[0]*l[0]+n[1]*l[1]+n[2]*l[2]; /* Dot product between surface normal and light vector */
614         if(tangent) nl= sasqrt(1.0f - nl*nl);
615         if(nl<=0.01f) {
616                 return 0.0f;
617         }
618
619         vh= v[0]*h[0]+v[1]*h[1]+v[2]*h[2]; /* Dot product between view vector and half-way vector */
620         if(vh<=0.0f) vh= 0.01f;
621
622         a = 1.0f;
623         b = (2.0f*nh*nv)/vh;
624         c = (2.0f*nh*nl)/vh;
625
626         if( a < b && a < c ) g = a;
627         else if( b < a && b < c ) g = b;
628         else if( c < a && c < b ) g = c;
629
630         p = sqrt( (double)((refrac * refrac)+(vh*vh)-1.0f) );
631         f = (((p-vh)*(p-vh))/((p+vh)*(p+vh)))*(1+((((vh*(p+vh))-1.0f)*((vh*(p+vh))-1.0f))/(((vh*(p-vh))+1.0f)*((vh*(p-vh))+1.0f))));
632         ang = saacos(nh);
633
634         i= f * g * exp((double)(-(ang*ang) / (2.0f*spec_power*spec_power)));
635         if(i<0.0f) i= 0.0f;
636         
637         return i;
638 }
639
640 /* cartoon render spec */
641 static float Toon_Spec( float *n, float *l, float *v, float size, float smooth, int tangent)
642 {
643         float h[3];
644         float ang;
645         float rslt;
646         
647         h[0] = l[0] + v[0];
648         h[1] = l[1] + v[1];
649         h[2] = l[2] + v[2];
650         Normalize(h);
651         
652         rslt = h[0]*n[0] + h[1]*n[1] + h[2]*n[2];
653         if(tangent) rslt = sasqrt(1.0f - rslt*rslt);
654         
655         ang = saacos( rslt ); 
656         
657         if( ang < size ) rslt = 1.0f;
658         else if( ang >= (size + smooth) || smooth == 0.0f ) rslt = 0.0f;
659         else rslt = 1.0f - ((ang - size) / smooth);
660         
661         return rslt;
662 }
663
664 /* Ward isotropic gaussian spec */
665 static float WardIso_Spec( float *n, float *l, float *v, float rms, int tangent)
666 {
667         float i, nh, nv, nl, h[3], angle, alpha;
668
669
670         /* half-way vector */
671         h[0] = l[0] + v[0];
672         h[1] = l[1] + v[1];
673         h[2] = l[2] + v[2];
674         Normalize(h);
675
676         nh = n[0]*h[0]+n[1]*h[1]+n[2]*h[2]; /* Dot product between surface normal and half-way vector */
677         if(tangent) nh = sasqrt(1.0f - nh*nh);
678         if(nh<=0.0f) nh = 0.001f;
679         
680         nv = n[0]*v[0]+n[1]*v[1]+n[2]*v[2]; /* Dot product between surface normal and view vector */
681         if(tangent) nv = sasqrt(1.0f - nv*nv);
682         if(nv<=0.0f) nv = 0.001f;
683
684         nl = n[0]*l[0]+n[1]*l[1]+n[2]*l[2]; /* Dot product between surface normal and light vector */
685         if(tangent) nl = sasqrt(1.0f - nl*nl);
686         if(nl<=0.0f) nl = 0.001f;
687
688         angle = tan(saacos(nh));
689         alpha = MAX2(rms, 0.001f);
690
691         i= nl * (1.0f/(4.0f*M_PI*alpha*alpha)) * (exp( -(angle*angle)/(alpha*alpha))/(sqrt(nv*nl)));
692
693         return i;
694 }
695
696 /* cartoon render diffuse */
697 static float Toon_Diff( float *n, float *l, float *v, float size, float smooth )
698 {
699         float rslt, ang;
700
701         rslt = n[0]*l[0] + n[1]*l[1] + n[2]*l[2];
702
703         ang = saacos( (double)(rslt) );
704
705         if( ang < size ) rslt = 1.0f;
706         else if( ang >= (size + smooth) || smooth == 0.0f ) rslt = 0.0f;
707         else rslt = 1.0f - ((ang - size) / smooth);
708
709         return rslt;
710 }
711
712 /* Oren Nayar diffuse */
713
714 /* 'nl' is either dot product, or return value of area light */
715 /* in latter case, only last multiplication uses 'nl' */
716 static float OrenNayar_Diff(float nl, float *n, float *l, float *v, float rough )
717 {
718         float i, nh, nv, vh, realnl, h[3];
719         float a, b, t, A, B;
720         float Lit_A, View_A, Lit_B[3], View_B[3];
721         
722         h[0]= v[0]+l[0];
723         h[1]= v[1]+l[1];
724         h[2]= v[2]+l[2];
725         Normalize(h);
726         
727         nh= n[0]*h[0]+n[1]*h[1]+n[2]*h[2]; /* Dot product between surface normal and half-way vector */
728         if(nh<0.0f) nh = 0.0f;
729         
730         nv= n[0]*v[0]+n[1]*v[1]+n[2]*v[2]; /* Dot product between surface normal and view vector */
731         if(nv<=0.0f) nv= 0.0f;
732         
733         realnl= n[0]*l[0]+n[1]*l[1]+n[2]*l[2]; /* Dot product between surface normal and light vector */
734         if(realnl<=0.0f) return 0.0f;
735         if(nl<0.0f) return 0.0f;                /* value from area light */
736         
737         vh= v[0]*h[0]+v[1]*h[1]+v[2]*h[2]; /* Dot product between view vector and halfway vector */
738         if(vh<=0.0f) vh= 0.0f;
739         
740         Lit_A = saacos(realnl);
741         View_A = saacos( nv );
742         
743         Lit_B[0] = l[0] - (realnl * n[0]);
744         Lit_B[1] = l[1] - (realnl * n[1]);
745         Lit_B[2] = l[2] - (realnl * n[2]);
746         Normalize( Lit_B );
747         
748         View_B[0] = v[0] - (nv * n[0]);
749         View_B[1] = v[1] - (nv * n[1]);
750         View_B[2] = v[2] - (nv * n[2]);
751         Normalize( View_B );
752         
753         t = Lit_B[0]*View_B[0] + Lit_B[1]*View_B[1] + Lit_B[2]*View_B[2];
754         if( t < 0 ) t = 0;
755         
756         if( Lit_A > View_A ) {
757                 a = Lit_A;
758                 b = View_A;
759         }
760         else {
761                 a = View_A;
762                 b = Lit_A;
763         }
764         
765         A = 1.0f - (0.5f * ((rough * rough) / ((rough * rough) + 0.33f)));
766         B = 0.45f * ((rough * rough) / ((rough * rough) + 0.09f));
767         
768         b*= 0.95f;      /* prevent tangens from shooting to inf, 'nl' can be not a dot product here. */
769                                 /* overflow only happens with extreme size area light, and higher roughness */
770         i = nl * ( A + ( B * t * sin(a) * tan(b) ) );
771         
772         return i;
773 }
774
775 /* Minnaert diffuse */
776 static float Minnaert_Diff(float nl, float *n, float *v, float darkness)
777 {
778
779         float i, nv;
780
781         /* nl = dot product between surface normal and light vector */
782         if (nl <= 0.0f)
783                 return 0.0f;
784
785         /* nv = dot product between surface normal and view vector */
786         nv = n[0]*v[0]+n[1]*v[1]+n[2]*v[2];
787         if (nv < 0.0f)
788                 nv = 0.0f;
789
790         if (darkness <= 1.0f)
791                 i = nl * pow(MAX2(nv*nl, 0.1f), (darkness - 1.0f) ); /*The Real model*/
792         else
793                 i = nl * pow( (1.001f - nv), (darkness  - 1.0f) ); /*Nvidia model*/
794
795         return i;
796 }
797
798 static float Fresnel_Diff(float *vn, float *lv, float *view, float fac_i, float fac)
799 {
800         return fresnel_fac(lv, vn, fac_i, fac);
801 }
802
803 /* --------------------------------------------- */
804 /* also called from texture.c */
805 void calc_R_ref(ShadeInput *shi)
806 {
807         float i;
808
809         /* shi->vn dot shi->view */
810         i= -2*(shi->vn[0]*shi->view[0]+shi->vn[1]*shi->view[1]+shi->vn[2]*shi->view[2]);
811
812         shi->ref[0]= (shi->view[0]+i*shi->vn[0]);
813         shi->ref[1]= (shi->view[1]+i*shi->vn[1]);
814         shi->ref[2]= (shi->view[2]+i*shi->vn[2]);
815         if(shi->osatex) {
816                 if(shi->vlr->flag & R_SMOOTH) {
817                         i= -2*( (shi->vn[0]+shi->dxno[0])*(shi->view[0]+shi->dxview) +
818                                 (shi->vn[1]+shi->dxno[1])*shi->view[1]+ (shi->vn[2]+shi->dxno[2])*shi->view[2] );
819
820                         shi->dxref[0]= shi->ref[0]- ( shi->view[0]+shi->dxview+i*(shi->vn[0]+shi->dxno[0]));
821                         shi->dxref[1]= shi->ref[1]- (shi->view[1]+ i*(shi->vn[1]+shi->dxno[1]));
822                         shi->dxref[2]= shi->ref[2]- (shi->view[2]+ i*(shi->vn[2]+shi->dxno[2]));
823
824                         i= -2*( (shi->vn[0]+shi->dyno[0])*shi->view[0]+
825                                 (shi->vn[1]+shi->dyno[1])*(shi->view[1]+shi->dyview)+ (shi->vn[2]+shi->dyno[2])*shi->view[2] );
826
827                         shi->dyref[0]= shi->ref[0]- (shi->view[0]+ i*(shi->vn[0]+shi->dyno[0]));
828                         shi->dyref[1]= shi->ref[1]- (shi->view[1]+shi->dyview+i*(shi->vn[1]+shi->dyno[1]));
829                         shi->dyref[2]= shi->ref[2]- (shi->view[2]+ i*(shi->vn[2]+shi->dyno[2]));
830
831                 }
832                 else {
833
834                         i= -2*( shi->vn[0]*(shi->view[0]+shi->dxview) +
835                                 shi->vn[1]*shi->view[1]+ shi->vn[2]*shi->view[2] );
836
837                         shi->dxref[0]= shi->ref[0]- (shi->view[0]+shi->dxview+i*shi->vn[0]);
838                         shi->dxref[1]= shi->ref[1]- (shi->view[1]+ i*shi->vn[1]);
839                         shi->dxref[2]= shi->ref[2]- (shi->view[2]+ i*shi->vn[2]);
840
841                         i= -2*( shi->vn[0]*shi->view[0]+
842                                 shi->vn[1]*(shi->view[1]+shi->dyview)+ shi->vn[2]*shi->view[2] );
843
844                         shi->dyref[0]= shi->ref[0]- (shi->view[0]+ i*shi->vn[0]);
845                         shi->dyref[1]= shi->ref[1]- (shi->view[1]+shi->dyview+i*shi->vn[1]);
846                         shi->dyref[2]= shi->ref[2]- (shi->view[2]+ i*shi->vn[2]);
847                 }
848         }
849
850 }
851
852 /* called from ray.c */
853 void shade_color(ShadeInput *shi, ShadeResult *shr)
854 {
855         Material *ma= shi->mat;
856
857         if(ma->mode & (MA_VERTEXCOLP|MA_FACETEXTURE)) {
858                 shi->r= shi->vcol[0];
859                 shi->g= shi->vcol[1];
860                 shi->b= shi->vcol[2];
861                 if(ma->mode & (MA_FACETEXTURE_ALPHA))
862                         shi->alpha= shi->vcol[3];
863         }
864         
865         if(ma->texco)
866                 do_material_tex(shi);
867
868         if(ma->fresnel_tra!=0.0f) 
869                 shi->alpha*= fresnel_fac(shi->view, shi->vn, ma->fresnel_tra_i, ma->fresnel_tra);
870
871         shr->diff[0]= shi->r;
872         shr->diff[1]= shi->g;
873         shr->diff[2]= shi->b;
874         shr->alpha= shi->alpha;
875 }
876
877 /* ramp for at end of shade */
878 static void ramp_diffuse_result(float *diff, ShadeInput *shi)
879 {
880         Material *ma= shi->mat;
881         float col[4], fac=0;
882
883         if(ma->ramp_col) {
884                 if(ma->rampin_col==MA_RAMP_IN_RESULT) {
885                         
886                         fac= 0.3*diff[0] + 0.58*diff[1] + 0.12*diff[2];
887                         do_colorband(ma->ramp_col, fac, col);
888                         
889                         /* blending method */
890                         fac= col[3]*ma->rampfac_col;
891                         
892                         ramp_blend(ma->rampblend_col, diff, diff+1, diff+2, fac, col);
893                 }
894         }
895 }
896
897 /* r,g,b denote energy, ramp is used with different values to make new material color */
898 static void add_to_diffuse(float *diff, ShadeInput *shi, float is, float r, float g, float b)
899 {
900         Material *ma= shi->mat;
901         float col[4], colt[3], fac=0;
902         
903         if(ma->ramp_col && (ma->mode & MA_RAMP_COL)) {
904                 
905                 /* MA_RAMP_IN_RESULT is exceptional */
906                 if(ma->rampin_col==MA_RAMP_IN_RESULT) {
907                         // normal add
908                         diff[0] += r * shi->r;
909                         diff[1] += g * shi->g;
910                         diff[2] += b * shi->b;
911                 }
912                 else {
913                         /* input */
914                         switch(ma->rampin_col) {
915                         case MA_RAMP_IN_ENERGY:
916                                 fac= 0.3*r + 0.58*g + 0.12*b;
917                                 break;
918                         case MA_RAMP_IN_SHADER:
919                                 fac= is;
920                                 break;
921                         case MA_RAMP_IN_NOR:
922                                 fac= shi->view[0]*shi->vn[0] + shi->view[1]*shi->vn[1] + shi->view[2]*shi->vn[2];
923                                 break;
924                         }
925         
926                         do_colorband(ma->ramp_col, fac, col);
927                         
928                         /* blending method */
929                         fac= col[3]*ma->rampfac_col;
930                         colt[0]= shi->r;
931                         colt[1]= shi->g;
932                         colt[2]= shi->b;
933
934                         ramp_blend(ma->rampblend_col, colt, colt+1, colt+2, fac, col);
935
936                         /* output to */
937                         diff[0] += r * colt[0];
938                         diff[1] += g * colt[1];
939                         diff[2] += b * colt[2];
940                 }
941         }
942         else {
943                 diff[0] += r * shi->r;
944                 diff[1] += g * shi->g;
945                 diff[2] += b * shi->b;
946         }
947 }
948
949 static void ramp_spec_result(float *specr, float *specg, float *specb, ShadeInput *shi)
950 {
951         Material *ma= shi->mat;
952         float col[4];
953         float fac;
954         
955         if(ma->ramp_spec && (ma->rampin_spec==MA_RAMP_IN_RESULT)) {
956                 fac= 0.3*(*specr) + 0.58*(*specg) + 0.12*(*specb);
957                 do_colorband(ma->ramp_spec, fac, col);
958                 
959                 /* blending method */
960                 fac= col[3]*ma->rampfac_spec;
961                 
962                 ramp_blend(ma->rampblend_spec, specr, specg, specb, fac, col);
963                 
964         }
965 }
966
967 /* is = dot product shade, t = spec energy */
968 static void do_specular_ramp(ShadeInput *shi, float is, float t, float *spec)
969 {
970         Material *ma= shi->mat;
971         float col[4];
972         float fac=0.0f;
973         
974         spec[0]= shi->specr;
975         spec[1]= shi->specg;
976         spec[2]= shi->specb;
977
978         /* MA_RAMP_IN_RESULT is exception */
979         if(ma->ramp_spec && (ma->rampin_spec!=MA_RAMP_IN_RESULT)) {
980                 
981                 /* input */
982                 switch(ma->rampin_spec) {
983                 case MA_RAMP_IN_ENERGY:
984                         fac= t;
985                         break;
986                 case MA_RAMP_IN_SHADER:
987                         fac= is;
988                         break;
989                 case MA_RAMP_IN_NOR:
990                         fac= shi->view[0]*shi->vn[0] + shi->view[1]*shi->vn[1] + shi->view[2]*shi->vn[2];
991                         break;
992                 }
993                 
994                 do_colorband(ma->ramp_spec, fac, col);
995                 
996                 /* blending method */
997                 fac= col[3]*ma->rampfac_spec;
998                 
999                 ramp_blend(ma->rampblend_spec, spec, spec+1, spec+2, fac, col);
1000         }
1001 }
1002
1003 /* pure AO, check for raytrace and world should have been done */
1004 void ambient_occlusion(ShadeInput *shi)
1005 {
1006         if((R.wrld.ao_gather_method == WO_AOGATHER_APPROX) && shi->mat->amb!=0.0f)
1007                 sample_occ(&R, shi);
1008         else if((R.r.mode & R_RAYTRACE) && shi->mat->amb!=0.0f)
1009                 ray_ao(shi, shi->ao);
1010         else
1011                 shi->ao[0]= shi->ao[1]= shi->ao[2]= 1.0f;
1012 }
1013
1014
1015 /* wrld mode was checked for */
1016 void ambient_occlusion_to_diffuse(ShadeInput *shi, float *diff)
1017 {
1018         if((R.r.mode & R_RAYTRACE) || R.wrld.ao_gather_method == WO_AOGATHER_APPROX) {
1019                 if(shi->mat->amb!=0.0f) {
1020                         float f= R.wrld.aoenergy*shi->mat->amb;
1021
1022                         if (R.wrld.aomix==WO_AOADDSUB) {
1023                                 diff[0] = 2.0f*shi->ao[0]-1.0f;
1024                                 diff[1] = 2.0f*shi->ao[1]-1.0f;
1025                                 diff[2] = 2.0f*shi->ao[2]-1.0f;
1026                         }
1027                         else if (R.wrld.aomix==WO_AOSUB) {
1028                                 diff[0] = shi->ao[0]-1.0f;
1029                                 diff[1] = shi->ao[1]-1.0f;
1030                                 diff[2] = shi->ao[2]-1.0f;
1031                         }
1032                         else {
1033                                 VECCOPY(diff, shi->ao);
1034                         }
1035                         
1036                         VECMUL(diff, f);
1037                 }
1038                 else
1039                         diff[0]= diff[1]= diff[2]= 0.0f;
1040         }
1041         else
1042                 diff[0]= diff[1]= diff[2]= 0.0f;
1043 }
1044
1045 /* result written in shadfac */
1046 void lamp_get_shadow(LampRen *lar, ShadeInput *shi, float inp, float *shadfac, int do_real)
1047 {
1048         LampShadowSubSample *lss= &(lar->shadsamp[shi->thread].s[shi->sample]);
1049         
1050         if(do_real || lss->samplenr!=shi->samplenr) {
1051                 
1052                 shadfac[0]= shadfac[1]= shadfac[2]= shadfac[3]= 1.0f;
1053                 
1054                 if(lar->shb) {
1055                         if(lar->buftype==LA_SHADBUF_IRREGULAR)
1056                                 shadfac[3]= ISB_getshadow(shi, lar->shb);
1057                         else
1058                                 shadfac[3] = testshadowbuf(&R, lar->shb, shi->co, shi->dxco, shi->dyco, inp, shi->mat->lbias);
1059                 }
1060                 else if(lar->mode & LA_SHAD_RAY) {
1061                         ray_shadow(shi, lar, shadfac);
1062                 }
1063                 
1064                 if(shi->depth==0) {
1065                         QUATCOPY(lss->shadfac, shadfac);
1066                         lss->samplenr= shi->samplenr;
1067                 }
1068         }
1069         else {
1070                 QUATCOPY(shadfac, lss->shadfac);
1071         }
1072 }
1073
1074 /* lampdistance and spot angle, writes in lv and dist */
1075 float lamp_get_visibility(LampRen *lar, float *co, float *lv, float *dist)
1076 {
1077         if(lar->type==LA_SUN || lar->type==LA_HEMI) {
1078                 *dist= 1.0f;
1079                 VECCOPY(lv, lar->vec);
1080                 return 1.0f;
1081         }
1082         else {
1083                 float visifac= 1.0f, t;
1084                 
1085                 VECSUB(lv, co, lar->co);
1086                 *dist= sqrt( INPR(lv, lv));
1087                 t= 1.0f/dist[0];
1088                 VECMUL(lv, t);
1089                 
1090                 /* area type has no quad or sphere option */
1091                 if(lar->type==LA_AREA) {
1092                         /* area is single sided */
1093                         //if(INPR(lv, lar->vec) > 0.0f)
1094                         //      visifac= 1.0f;
1095                         //else
1096                         //      visifac= 0.0f;
1097                 }
1098                 else {
1099                         switch(lar->falloff_type)
1100                         {
1101                                 case LA_FALLOFF_CONSTANT:
1102                                         visifac = 1.0f;
1103                                         break;
1104                                 case LA_FALLOFF_INVLINEAR:
1105                                         visifac = lar->dist/(lar->dist + dist[0]);
1106                                         break;
1107                                 case LA_FALLOFF_INVSQUARE:
1108                                         visifac = lar->dist / (lar->dist + dist[0]*dist[0]);
1109                                         break;
1110                                 case LA_FALLOFF_SLIDERS:
1111                                         if(lar->ld1>0.0f)
1112                                                 visifac= lar->dist/(lar->dist+lar->ld1*dist[0]);
1113                                         if(lar->ld2>0.0f)
1114                                                 visifac*= lar->distkw/(lar->distkw+lar->ld2*dist[0]*dist[0]);
1115                                         break;
1116                                 case LA_FALLOFF_CURVE:
1117                                         visifac = curvemapping_evaluateF(lar->curfalloff, 0, dist[0]/lar->dist);
1118                                         break;
1119                         }
1120                         
1121                         if(lar->mode & LA_SPHERE) {
1122                                 float t= lar->dist - dist[0];
1123                                 if(t<=0.0f) 
1124                                         visifac= 0.0f;
1125                                 else
1126                                         visifac*= t/lar->dist;
1127                         }
1128                         
1129                         if(visifac > 0.0f) {
1130                                 if(lar->type==LA_SPOT) {
1131                                         float inpr;
1132                                         
1133                                         if(lar->mode & LA_SQUARE) {
1134                                                 if(lv[0]*lar->vec[0]+lv[1]*lar->vec[1]+lv[2]*lar->vec[2]>0.0f) {
1135                                                         float lvrot[3], x;
1136                                                         
1137                                                         /* rotate view to lampspace */
1138                                                         VECCOPY(lvrot, lv);
1139                                                         MTC_Mat3MulVecfl(lar->imat, lvrot);
1140                                                         
1141                                                         x= MAX2(fabs(lvrot[0]/lvrot[2]) , fabs(lvrot[1]/lvrot[2]));
1142                                                         /* 1.0f/(sqrt(1+x*x)) is equivalent to cos(atan(x)) */
1143                                                         
1144                                                         inpr= 1.0f/(sqrt(1.0f+x*x));
1145                                                 }
1146                                                 else inpr= 0.0f;
1147                                         }
1148                                         else {
1149                                                 inpr= lv[0]*lar->vec[0]+lv[1]*lar->vec[1]+lv[2]*lar->vec[2];
1150                                         }
1151                                         
1152                                         t= lar->spotsi;
1153                                         if(inpr<=t) 
1154                                                 visifac= 0.0f;
1155                                         else {
1156                                                 t= inpr-t;
1157                                                 if(t<lar->spotbl && lar->spotbl!=0.0f) {
1158                                                         /* soft area */
1159                                                         float i= t/lar->spotbl;
1160                                                         t= i*i;
1161                                                         inpr*= (3.0f*t-2.0f*t*i);
1162                                                 }
1163                                                 visifac*= inpr;
1164                                         }
1165                                 }
1166                         }
1167                 }
1168                 if (visifac <= 0.001) visifac = 0.0f;
1169                 return visifac;
1170         }
1171 }
1172
1173 /* function returns raw diff, spec and full shadowed diff in the 'shad' pass */
1174 static void shade_one_light(LampRen *lar, ShadeInput *shi, ShadeResult *shr, int passflag)
1175 {
1176         Material *ma= shi->mat;
1177         VlakRen *vlr= shi->vlr;
1178         float lv[3], lampdist, lacol[3], shadfac[4];
1179         float i, is, i_noshad, inp, *vn, *view, vnor[3], phongcorr=1.0f;
1180         float visifac;
1181         
1182         vn= shi->vn;
1183         view= shi->view;
1184         
1185         
1186         if (lar->energy == 0.0) return;
1187         /* only shadow lamps shouldn't affect shadow-less materials at all */
1188         if ((lar->mode & LA_ONLYSHADOW) && (!(ma->mode & MA_SHADOW) || !(R.r.mode & R_SHADOW)))
1189                 return;
1190         /* optimisation, don't render fully black lamps */
1191         if (!(lar->mode & LA_TEXTURE) && (lar->r + lar->g + lar->b == 0.0f))
1192                 return;
1193         
1194         /* lampdist, spot angle, area side, ... */
1195         visifac= lamp_get_visibility(lar, shi->co, lv, &lampdist);
1196         if(visifac==0.0f)
1197                 return;
1198         
1199         if(lar->type==LA_SPOT) {
1200                 if(lar->mode & LA_OSATEX) {
1201                         shi->osatex= 1; /* signal for multitex() */
1202                         
1203                         shi->dxlv[0]= lv[0] - (shi->co[0]-lar->co[0]+shi->dxco[0])/lampdist;
1204                         shi->dxlv[1]= lv[1] - (shi->co[1]-lar->co[1]+shi->dxco[1])/lampdist;
1205                         shi->dxlv[2]= lv[2] - (shi->co[2]-lar->co[2]+shi->dxco[2])/lampdist;
1206                         
1207                         shi->dylv[0]= lv[0] - (shi->co[0]-lar->co[0]+shi->dyco[0])/lampdist;
1208                         shi->dylv[1]= lv[1] - (shi->co[1]-lar->co[1]+shi->dyco[1])/lampdist;
1209                         shi->dylv[2]= lv[2] - (shi->co[2]-lar->co[2]+shi->dyco[2])/lampdist;
1210                 }
1211         }
1212         
1213         /* lamp color texture */
1214         lacol[0]= lar->r;
1215         lacol[1]= lar->g;
1216         lacol[2]= lar->b;
1217         
1218         if(lar->mode & LA_TEXTURE)  do_lamp_tex(lar, lv, shi, lacol);
1219
1220                 /* tangent case; calculate fake face normal, aligned with lampvector */ 
1221                 /* note, vnor==vn is used as tangent trigger for buffer shadow */
1222         if(vlr->flag & R_TANGENT) {
1223                 float cross[3], nstrand[3], blend;
1224
1225                 if(ma->mode & MA_STR_SURFDIFF) {
1226                         Crossf(cross, shi->surfnor, vn);
1227                         Crossf(nstrand, vn, cross);
1228
1229                         blend= INPR(nstrand, shi->surfnor);
1230                         blend= 1.0f - blend;
1231                         CLAMP(blend, 0.0f, 1.0f);
1232
1233                         VecLerpf(vnor, nstrand, shi->surfnor, blend);
1234                         Normalize(vnor);
1235                 }
1236                 else {
1237                         Crossf(cross, lv, vn);
1238                         Crossf(vnor, cross, vn);
1239                         Normalize(vnor);
1240                 }
1241
1242                 if(ma->strand_surfnor > 0.0f) {
1243                         if(ma->strand_surfnor > shi->surfdist) {
1244                                 blend= (ma->strand_surfnor - shi->surfdist)/ma->strand_surfnor;
1245                                 VecLerpf(vnor, vnor, shi->surfnor, blend);
1246                                 Normalize(vnor);
1247                         }
1248                 }
1249
1250                 vnor[0]= -vnor[0];vnor[1]= -vnor[1];vnor[2]= -vnor[2];
1251                 vn= vnor;
1252         }
1253         else if (ma->mode & MA_TANGENT_V) {
1254                 float cross[3];
1255                 Crossf(cross, lv, shi->tang);
1256                 Crossf(vnor, cross, shi->tang);
1257                 Normalize(vnor);
1258                 vnor[0]= -vnor[0];vnor[1]= -vnor[1];vnor[2]= -vnor[2];
1259                 vn= vnor;
1260         }
1261         
1262         /* dot product and reflectivity */
1263         /* inp = dotproduct, is = shader result, i = lamp energy (with shadow), i_noshad = i without shadow */
1264         inp= vn[0]*lv[0] + vn[1]*lv[1] + vn[2]*lv[2];
1265         
1266         /* phong threshold to prevent backfacing faces having artefacts on ray shadow (terminator problem) */
1267         /* this complex construction screams for a nicer implementation! (ton) */
1268         if(R.r.mode & R_SHADOW) {
1269                 if(ma->mode & MA_SHADOW) {
1270                         if(lar->type==LA_HEMI || lar->type==LA_AREA);
1271                         else if((ma->mode & MA_RAYBIAS) && (lar->mode & LA_SHAD_RAY) && (vlr->flag & R_SMOOTH)) {
1272                                 float thresh= shi->obr->ob->smoothresh;
1273                                 if(inp>thresh)
1274                                         phongcorr= (inp-thresh)/(inp*(1.0f-thresh));
1275                                 else
1276                                         phongcorr= 0.0f;
1277                         }
1278                         else if(ma->sbias!=0.0f && ((lar->mode & LA_SHAD_RAY) || lar->shb)) {
1279                                 if(inp>ma->sbias)
1280                                         phongcorr= (inp-ma->sbias)/(inp*(1.0f-ma->sbias));
1281                                 else
1282                                         phongcorr= 0.0f;
1283                         }
1284                 }
1285         }
1286         
1287         /* diffuse shaders */
1288         if(lar->mode & LA_NO_DIFF) {
1289                 is= 0.0f;       // skip shaders
1290         }
1291         else if(lar->type==LA_HEMI) {
1292                 is= 0.5f*inp + 0.5f;
1293         }
1294         else {
1295                 
1296                 if(lar->type==LA_AREA)
1297                         inp= area_lamp_energy_multisample(lar, shi->co, vn);
1298                 
1299                 /* diffuse shaders (oren nayer gets inp from area light) */
1300                 if(ma->diff_shader==MA_DIFF_ORENNAYAR) is= OrenNayar_Diff(inp, vn, lv, view, ma->roughness);
1301                 else if(ma->diff_shader==MA_DIFF_TOON) is= Toon_Diff(vn, lv, view, ma->param[0], ma->param[1]);
1302                 else if(ma->diff_shader==MA_DIFF_MINNAERT) is= Minnaert_Diff(inp, vn, view, ma->darkness);
1303                 else if(ma->diff_shader==MA_DIFF_FRESNEL) is= Fresnel_Diff(vn, lv, view, ma->param[0], ma->param[1]);
1304                 else is= inp;   // Lambert
1305         }
1306         
1307         /* 'is' is diffuse */
1308         if((ma->shade_flag & MA_CUBIC) && is>0.0f && is<1.0f)
1309                 is= 3.0*is*is - 2.0*is*is*is;   // nicer termination of shades
1310
1311         i= is*phongcorr;
1312         
1313         if(i>0.0f) {
1314                 i*= visifac*shi->refl;
1315         }
1316         i_noshad= i;
1317         
1318         vn= shi->vn;    // bring back original vector, we use special specular shaders for tangent
1319         if(ma->mode & MA_TANGENT_V)
1320                 vn= shi->tang;
1321         
1322         /* init transp shadow */
1323         shadfac[0]= shadfac[1]= shadfac[2]= shadfac[3]= 1.0f;
1324         
1325         /* shadow and spec, (visifac==0 outside spot) */
1326         if(visifac> 0.0f) {
1327                 
1328                 if((R.r.mode & R_SHADOW)) {
1329                         if(ma->mode & MA_SHADOW) {
1330                                 if(lar->shb || (lar->mode & LA_SHAD_RAY)) {
1331                                         
1332                                         if(vn==vnor)    /* tangent trigger */
1333                                                 lamp_get_shadow(lar, shi, INPR(shi->vn, lv), shadfac, shi->depth);
1334                                         else
1335                                                 lamp_get_shadow(lar, shi, inp, shadfac, shi->depth);
1336                                                 
1337                                         /* warning, here it skips the loop */
1338                                         if((lar->mode & LA_ONLYSHADOW) && i>0.0) {
1339                                                 
1340                                                 shadfac[3]= i*lar->energy*(1.0f-shadfac[3]);
1341                                                 shr->shad[0] -= shadfac[3]*shi->r;
1342                                                 shr->shad[1] -= shadfac[3]*shi->g;
1343                                                 shr->shad[2] -= shadfac[3]*shi->b;
1344                                                 
1345                                                 shr->spec[0] -= shadfac[3]*shi->specr;
1346                                                 shr->spec[1] -= shadfac[3]*shi->specg;
1347                                                 shr->spec[2] -= shadfac[3]*shi->specb;
1348                                                 
1349                                                 return;
1350                                         }
1351                                         
1352                                         i*= shadfac[3];
1353                                 }
1354                         }
1355                 }
1356                 
1357                 /* in case 'no diffuse' we still do most calculus, spec can be in shadow.*/
1358                 if(!(lar->mode & LA_NO_DIFF)) {
1359                         if(i>0.0f) {
1360                                 if(ma->mode & MA_SHADOW_TRA)
1361                                         add_to_diffuse(shr->shad, shi, is, i*shadfac[0]*lacol[0], i*shadfac[1]*lacol[1], i*shadfac[2]*lacol[2]);
1362                                 else
1363                                         add_to_diffuse(shr->shad, shi, is, i*lacol[0], i*lacol[1], i*lacol[2]);
1364                         }
1365                         if(i_noshad>0.0f) {
1366                                 if(passflag & (SCE_PASS_DIFFUSE|SCE_PASS_SHADOW)) {
1367                                         if(ma->mode & MA_SHADOW_TRA)
1368                                                 add_to_diffuse(shr->diff, shi, is, i_noshad*shadfac[0]*lacol[0], i_noshad*shadfac[1]*lacol[1], i_noshad*shadfac[2]*lacol[2]);
1369                                         else
1370                                                 add_to_diffuse(shr->diff, shi, is, i_noshad*lacol[0], i_noshad*lacol[1], i_noshad*lacol[2]);
1371                                 }
1372                                 else
1373                                         VECCOPY(shr->diff, shr->shad);
1374                         }
1375                 }
1376                 
1377                 /* specularity */
1378                 if(shadfac[3]>0.0f && shi->spec!=0.0f && !(lar->mode & LA_NO_SPEC) && !(lar->mode & LA_ONLYSHADOW)) {
1379                         
1380                         if(!(passflag & (SCE_PASS_COMBINED|SCE_PASS_SPEC)));
1381                         else if(lar->type==LA_HEMI) {
1382                                 float t;
1383                                 /* hemi uses no spec shaders (yet) */
1384                                 
1385                                 lv[0]+= view[0];
1386                                 lv[1]+= view[1];
1387                                 lv[2]+= view[2];
1388                                 
1389                                 Normalize(lv);
1390                                 
1391                                 t= vn[0]*lv[0]+vn[1]*lv[1]+vn[2]*lv[2];
1392                                 
1393                                 if(lar->type==LA_HEMI) {
1394                                         t= 0.5*t+0.5;
1395                                 }
1396                                 
1397                                 t= shadfac[3]*shi->spec*spec(t, shi->har);
1398                                 
1399                                 shr->spec[0]+= t*(lacol[0] * shi->specr);
1400                                 shr->spec[1]+= t*(lacol[1] * shi->specg);
1401                                 shr->spec[2]+= t*(lacol[2] * shi->specb);
1402                         }
1403                         else {
1404                                 /* specular shaders */
1405                                 float specfac, t;
1406                                 
1407                                 if(ma->spec_shader==MA_SPEC_PHONG) 
1408                                         specfac= Phong_Spec(vn, lv, view, shi->har, (vlr->flag & R_TANGENT) || (ma->mode & MA_TANGENT_V));
1409                                 else if(ma->spec_shader==MA_SPEC_COOKTORR) 
1410                                         specfac= CookTorr_Spec(vn, lv, view, shi->har, (vlr->flag & R_TANGENT) || (ma->mode & MA_TANGENT_V));
1411                                 else if(ma->spec_shader==MA_SPEC_BLINN) 
1412                                         specfac= Blinn_Spec(vn, lv, view, ma->refrac, (float)shi->har, (vlr->flag & R_TANGENT) || (ma->mode & MA_TANGENT_V));
1413                                 else if(ma->spec_shader==MA_SPEC_WARDISO)
1414                                         specfac= WardIso_Spec( vn, lv, view, ma->rms, (vlr->flag & R_TANGENT) || (ma->mode & MA_TANGENT_V));
1415                                 else 
1416                                         specfac= Toon_Spec(vn, lv, view, ma->param[2], ma->param[3], (vlr->flag & R_TANGENT) || (ma->mode & MA_TANGENT_V));
1417                                 
1418                                 /* area lamp correction */
1419                                 if(lar->type==LA_AREA) specfac*= inp;
1420                                 
1421                                 t= shadfac[3]*shi->spec*visifac*specfac;
1422                                 
1423                                 if(ma->mode & MA_RAMP_SPEC) {
1424                                         float spec[3];
1425                                         do_specular_ramp(shi, specfac, t, spec);
1426                                         shr->spec[0]+= t*(lacol[0] * spec[0]);
1427                                         shr->spec[1]+= t*(lacol[1] * spec[1]);
1428                                         shr->spec[2]+= t*(lacol[2] * spec[2]);
1429                                 }
1430                                 else {
1431                                         shr->spec[0]+= t*(lacol[0] * shi->specr);
1432                                         shr->spec[1]+= t*(lacol[1] * shi->specg);
1433                                         shr->spec[2]+= t*(lacol[2] * shi->specb);
1434                                 }
1435                         }
1436                 }
1437         }
1438 }
1439
1440 static void shade_lamp_loop_only_shadow(ShadeInput *shi, ShadeResult *shr)
1441 {
1442         
1443         if(R.r.mode & R_SHADOW) {
1444                 ListBase *lights;
1445                 LampRen *lar;
1446                 GroupObject *go;
1447                 float inpr, lv[3];
1448                 float *vn, *view, shadfac[4];
1449                 float ir, accum, visifac, lampdist;
1450                 
1451                 vn= shi->vn;
1452                 view= shi->view;
1453
1454                 accum= ir= 0.0f;
1455                 
1456                 lights= get_lights(shi);
1457                 for(go=lights->first; go; go= go->next) {
1458                         lar= go->lampren;
1459                         if(lar==NULL) continue;
1460                         
1461                         /* yafray: ignore shading by photonlights, not used in Blender */
1462                         if (lar->type==LA_YF_PHOTON) continue;
1463                         
1464                         if(lar->mode & LA_LAYER) if((lar->lay & shi->obi->lay)==0) continue;
1465                         if((lar->lay & shi->lay)==0) continue;
1466                         
1467                         if(lar->shb || (lar->mode & LA_SHAD_RAY)) {
1468                                 visifac= lamp_get_visibility(lar, shi->co, lv, &lampdist);
1469                                 if(visifac <= 0.0f) {
1470                                         ir+= 1.0f;
1471                                         accum+= 1.0f;
1472                                         continue;
1473                                 }
1474                                 inpr= INPR(shi->vn, lv);
1475                                 if(inpr <= 0.0f) {
1476                                         ir+= 1.0f;
1477                                         accum+= 1.0f;
1478                                         continue;
1479                                 }                               
1480                                 lamp_get_shadow(lar, shi, inpr, shadfac, shi->depth);
1481
1482                                 ir+= 1.0f;
1483                                 accum+= (1.0f-visifac) + (visifac)*shadfac[3];
1484                         }
1485                 }
1486                 if(ir>0.0f) {
1487                         accum/= ir;
1488                         shr->alpha= (shi->mat->alpha)*(1.0f-accum);
1489                 }
1490                 else shr->alpha= shi->mat->alpha;
1491         }
1492         
1493         /* quite disputable this...  also note it doesn't mirror-raytrace */    
1494         if((R.wrld.mode & WO_AMB_OCC) && shi->amb!=0.0f) {
1495                 float f;
1496                 
1497                 f= 1.0f - shi->ao[0];
1498                 f= R.wrld.aoenergy*f*shi->amb;
1499                 
1500                 if(R.wrld.aomix==WO_AOADD) {
1501                         shr->alpha += f;
1502                         shr->alpha *= f;
1503                 }
1504                 else if(R.wrld.aomix==WO_AOSUB) {
1505                         shr->alpha += f;
1506                 }
1507                 else {
1508                         shr->alpha *= f;
1509                         shr->alpha += f;
1510                 }
1511         }
1512 }
1513
1514 /* let's map negative light as if it mirrors positive light, otherwise negative values disappear */
1515 static void wrld_exposure_correct(float *diff)
1516 {
1517         
1518         diff[0]= R.wrld.linfac*(1.0f-exp( diff[0]*R.wrld.logfac) );
1519         diff[1]= R.wrld.linfac*(1.0f-exp( diff[1]*R.wrld.logfac) );
1520         diff[2]= R.wrld.linfac*(1.0f-exp( diff[2]*R.wrld.logfac) );
1521 }
1522
1523 void shade_lamp_loop(ShadeInput *shi, ShadeResult *shr)
1524 {
1525         Material *ma= shi->mat;
1526         int passflag= shi->passflag;
1527         
1528         memset(shr, 0, sizeof(ShadeResult));
1529         
1530         /* separate loop */
1531         if(ma->mode & MA_ONLYSHADOW) {
1532                 shade_lamp_loop_only_shadow(shi, shr);
1533                 return;
1534         }
1535         
1536         /* envmap hack, always reset */
1537         shi->refcol[0]= shi->refcol[1]= shi->refcol[2]= shi->refcol[3]= 0.0f;
1538         
1539         /* material color itself */
1540         if(passflag & (SCE_PASS_COMBINED|SCE_PASS_RGBA)) {
1541                 if(ma->mode & (MA_VERTEXCOLP|MA_FACETEXTURE)) {
1542                         shi->r= shi->vcol[0];
1543                         shi->g= shi->vcol[1];
1544                         shi->b= shi->vcol[2];
1545                         if(ma->mode & (MA_FACETEXTURE_ALPHA))
1546                                 shi->alpha= shi->vcol[3];
1547                 }
1548                 if(ma->texco)
1549                         do_material_tex(shi);
1550                 
1551                 shr->col[0]= shi->r*shi->alpha;
1552                 shr->col[1]= shi->g*shi->alpha;
1553                 shr->col[2]= shi->b*shi->alpha;
1554                 shr->col[3]= shi->alpha;
1555
1556                 if((ma->sss_flag & MA_DIFF_SSS) && !has_sss_tree(&R, ma)) {
1557                         if(ma->sss_texfac == 0.0f) {
1558                                 shi->r= shi->g= shi->b= shi->alpha= 1.0f;
1559                                 shr->col[0]= shr->col[1]= shr->col[2]= shr->col[3]= 1.0f;
1560                         }
1561                         else {
1562                                 shi->r= pow(shi->r, ma->sss_texfac);
1563                                 shi->g= pow(shi->g, ma->sss_texfac);
1564                                 shi->b= pow(shi->b, ma->sss_texfac);
1565                                 shi->alpha= pow(shi->alpha, ma->sss_texfac);
1566                                 
1567                                 shr->col[0]= pow(shr->col[0], ma->sss_texfac);
1568                                 shr->col[1]= pow(shr->col[1], ma->sss_texfac);
1569                                 shr->col[2]= pow(shr->col[2], ma->sss_texfac);
1570                                 shr->col[3]= pow(shr->col[3], ma->sss_texfac);
1571                         }
1572                 }
1573         }
1574         
1575         if(ma->mode & MA_SHLESS) {
1576                 shr->combined[0]= shi->r;
1577                 shr->combined[1]= shi->g;
1578                 shr->combined[2]= shi->b;
1579                 shr->alpha= shi->alpha;
1580                 return;
1581         }
1582
1583         if( (ma->mode & (MA_VERTEXCOL|MA_VERTEXCOLP))== MA_VERTEXCOL ) {        // vertexcolor light
1584                 shr->diff[0]= shi->r*(shi->emit+shi->vcol[0]);
1585                 shr->diff[1]= shi->g*(shi->emit+shi->vcol[1]);
1586                 shr->diff[2]= shi->b*(shi->emit+shi->vcol[2]);
1587         }
1588         else {
1589                 shr->diff[0]= shi->r*shi->emit;
1590                 shr->diff[1]= shi->g*shi->emit;
1591                 shr->diff[2]= shi->b*shi->emit;
1592         }
1593         VECCOPY(shr->shad, shr->diff);
1594         
1595         /* AO pass */
1596         if(R.wrld.mode & WO_AMB_OCC) {
1597                 if(((passflag & SCE_PASS_COMBINED) && (shi->combinedflag & SCE_PASS_AO))
1598                         || (passflag & SCE_PASS_AO)) {
1599                         /* AO was calculated for scanline already */
1600                         if(shi->depth)
1601                                 ambient_occlusion(shi);
1602                         VECCOPY(shr->ao, shi->ao);
1603                 }
1604         }
1605         
1606         /* lighting pass */
1607         if(passflag & (SCE_PASS_COMBINED|SCE_PASS_DIFFUSE|SCE_PASS_SPEC|SCE_PASS_SHADOW)) {
1608                 GroupObject *go;
1609                 ListBase *lights;
1610                 LampRen *lar;
1611                 
1612                 lights= get_lights(shi);
1613                 for(go=lights->first; go; go= go->next) {
1614                         lar= go->lampren;
1615                         if(lar==NULL) continue;
1616                         
1617                         /* yafray: ignore shading by photonlights, not used in Blender */
1618                         if (lar->type==LA_YF_PHOTON) continue;
1619                         
1620                         /* test for lamp layer */
1621                         if(lar->mode & LA_LAYER) if((lar->lay & shi->obi->lay)==0) continue;
1622                         if((lar->lay & shi->lay)==0) continue;
1623                         
1624                         /* accumulates in shr->diff and shr->spec and shr->shad (diffuse with shadow!) */
1625                         shade_one_light(lar, shi, shr, passflag);
1626                 }
1627
1628                 /*this check is to prevent only shadow lamps from producing negative
1629                   colors.*/
1630                 if (shr->spec[0] < 0) shr->spec[0] = 0;
1631                 if (shr->spec[1] < 0) shr->spec[1] = 0;
1632                 if (shr->spec[2] < 0) shr->spec[2] = 0;
1633
1634                 if (shr->shad[0] < 0) shr->shad[0] = 0;
1635                 if (shr->shad[1] < 0) shr->shad[1] = 0;
1636                 if (shr->shad[2] < 0) shr->shad[2] = 0;
1637                                                 
1638                 if(ma->sss_flag & MA_DIFF_SSS) {
1639                         float sss[3], col[3], invalpha, texfac= ma->sss_texfac;
1640
1641                         /* this will return false in the preprocess stage */
1642                         if(sample_sss(&R, ma, shi->co, sss)) {
1643                                 invalpha= (shr->col[3] > FLT_EPSILON)? 1.0f/shr->col[3]: 1.0f;
1644
1645                                 if(texfac==0.0f) {
1646                                         VECCOPY(col, shr->col);
1647                                         VecMulf(col, invalpha);
1648                                 }
1649                                 else if(texfac==1.0f) {
1650                                         col[0]= col[1]= col[2]= 1.0f;
1651                                         VecMulf(col, invalpha);
1652                                 }
1653                                 else {
1654                                         VECCOPY(col, shr->col);
1655                                         VecMulf(col, invalpha);
1656                                         col[0]= pow(col[0], 1.0f-texfac);
1657                                         col[1]= pow(col[1], 1.0f-texfac);
1658                                         col[2]= pow(col[2], 1.0f-texfac);
1659                                 }
1660
1661                                 shr->diff[0]= sss[0]*col[0];
1662                                 shr->diff[1]= sss[1]*col[1];
1663                                 shr->diff[2]= sss[2]*col[2];
1664
1665                                 if(shi->combinedflag & SCE_PASS_SHADOW) {
1666                                         shr->shad[0]= shr->diff[0];
1667                                         shr->shad[1]= shr->diff[1];
1668                                         shr->shad[2]= shr->diff[2];
1669                                 }
1670                         }
1671                 }
1672                 
1673                 if(shi->combinedflag & SCE_PASS_SHADOW) 
1674                         VECCOPY(shr->combined, shr->shad)       /* note, no ';' ! */
1675                 else
1676                         VECCOPY(shr->combined, shr->diff);
1677                         
1678                 /* calculate shadow pass, we use a multiplication mask */
1679                 if(passflag & SCE_PASS_SHADOW) {
1680                         if(shr->diff[0]!=0.0f) shr->shad[0]= shr->shad[0]/shr->diff[0];
1681                         if(shr->diff[1]!=0.0f) shr->shad[1]= shr->shad[1]/shr->diff[1];
1682                         if(shr->diff[2]!=0.0f) shr->shad[2]= shr->shad[2]/shr->diff[2];
1683                 }
1684                 
1685                 /* exposure correction */
1686                 if((R.wrld.exp!=0.0f || R.wrld.range!=1.0f) && !R.sss_points) {
1687                         wrld_exposure_correct(shr->combined);   /* has no spec! */
1688                         wrld_exposure_correct(shr->spec);
1689                 }
1690         }
1691         
1692         /* alpha in end, spec can influence it */
1693         if(passflag & (SCE_PASS_COMBINED)) {
1694                 if(ma->fresnel_tra!=0.0f) 
1695                         shi->alpha*= fresnel_fac(shi->view, shi->vn, ma->fresnel_tra_i, ma->fresnel_tra);
1696                         
1697                 /* note: shi->mode! */
1698                 if(shi->mode & (MA_ZTRA|MA_RAYTRANSP)) {
1699                         if(shi->spectra!=0.0f) {
1700                                 float t = MAX3(shr->spec[0], shr->spec[1], shr->spec[2]);
1701                                 t *= shi->spectra;
1702                                 if(t>1.0f) t= 1.0f;
1703                                 shi->alpha= (1.0f-t)*shi->alpha+t;
1704                         }
1705                 }
1706         }
1707         shr->alpha= shi->alpha;
1708         
1709         /* from now stuff everything in shr->combined: ambient, AO, radio, ramps, exposure */
1710         if(!(ma->sss_flag & MA_DIFF_SSS) || !has_sss_tree(&R, ma)) {
1711                 shr->combined[0]+= shi->ambr;
1712                 shr->combined[1]+= shi->ambg;
1713                 shr->combined[2]+= shi->ambb;
1714
1715                 if(shi->combinedflag & SCE_PASS_RADIO) {
1716                         shr->combined[0]+= shi->r*shi->amb*shi->rad[0];
1717                         shr->combined[1]+= shi->g*shi->amb*shi->rad[1];
1718                         shr->combined[2]+= shi->b*shi->amb*shi->rad[2];
1719                 }
1720                 
1721                 /* add AO in combined? */
1722                 if(R.wrld.mode & WO_AMB_OCC) {
1723                         if(shi->combinedflag & SCE_PASS_AO) {
1724                                 float aodiff[3];
1725                                 ambient_occlusion_to_diffuse(shi, aodiff);
1726                                 
1727                                 shr->combined[0] += shi->r*aodiff[0];
1728                                 shr->combined[1] += shi->g*aodiff[1];
1729                                 shr->combined[2] += shi->b*aodiff[2];
1730                         }
1731                 }
1732                 
1733                 if(ma->mode & MA_RAMP_COL) ramp_diffuse_result(shr->combined, shi);
1734         }
1735
1736         if(ma->mode & MA_RAMP_SPEC) ramp_spec_result(shr->spec, shr->spec+1, shr->spec+2, shi);
1737         
1738         /* refcol is for envmap only */
1739         if(shi->refcol[0]!=0.0f) {
1740                 float result[3];
1741                 
1742                 result[0]= shi->mirr*shi->refcol[1] + (1.0f - shi->mirr*shi->refcol[0])*shr->combined[0];
1743                 result[1]= shi->mirg*shi->refcol[2] + (1.0f - shi->mirg*shi->refcol[0])*shr->combined[1];
1744                 result[2]= shi->mirb*shi->refcol[3] + (1.0f - shi->mirb*shi->refcol[0])*shr->combined[2];
1745                 
1746                 if(passflag & SCE_PASS_REFLECT)
1747                         VECSUB(shr->refl, result, shr->combined);
1748                 
1749                 if(shi->combinedflag & SCE_PASS_REFLECT)
1750                         VECCOPY(shr->combined, result);
1751                         
1752         }
1753         
1754         /* and add spec */
1755         if(shi->combinedflag & SCE_PASS_SPEC)
1756                 VECADD(shr->combined, shr->combined, shr->spec);
1757
1758         shr->combined[3]= shr->alpha;
1759 }
1760
1761