svn merge -r 22423:22450 https://svn.blender.org/svnroot/bf-blender/branches/blender2...
[blender.git] / source / blender / render / intern / source / convertblender.c
1 /**
2  * $Id$
3  *
4  * ***** BEGIN GPL LICENSE BLOCK *****
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19  *
20  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
21  * All rights reserved.
22  *
23  * Contributors: 2004/2005/2006 Blender Foundation, full recode
24  *
25  * ***** END GPL LICENSE BLOCK *****
26  */
27
28 #include <math.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <string.h>
32 #include <limits.h>
33
34 #include "MTC_matrixops.h"
35
36 #include "MEM_guardedalloc.h"
37
38 #include "BLI_arithb.h"
39 #include "BLI_blenlib.h"
40 #include "BLI_rand.h"
41 #include "BLI_memarena.h"
42 #include "BLI_ghash.h"
43
44 #include "DNA_armature_types.h"
45 #include "DNA_camera_types.h"
46 #include "DNA_material_types.h"
47 #include "DNA_curve_types.h"
48 #include "DNA_effect_types.h"
49 #include "DNA_group_types.h"
50 #include "DNA_lamp_types.h"
51 #include "DNA_image_types.h"
52 #include "DNA_lattice_types.h"
53 #include "DNA_mesh_types.h"
54 #include "DNA_meshdata_types.h"
55 #include "DNA_meta_types.h"
56 #include "DNA_modifier_types.h"
57 #include "DNA_node_types.h"
58 #include "DNA_object_types.h"
59 #include "DNA_object_force.h"
60 #include "DNA_object_fluidsim.h"
61 #include "DNA_particle_types.h"
62 #include "DNA_scene_types.h"
63 #include "DNA_texture_types.h"
64 #include "DNA_view3d_types.h"
65
66 #include "BKE_anim.h"
67 #include "BKE_armature.h"
68 #include "BKE_action.h"
69 #include "BKE_curve.h"
70 #include "BKE_customdata.h"
71 #include "BKE_colortools.h"
72 #include "BKE_constraint.h"
73 #include "BKE_displist.h"
74 #include "BKE_deform.h"
75 #include "BKE_DerivedMesh.h"
76 #include "BKE_effect.h"
77 #include "BKE_global.h"
78 #include "BKE_group.h"
79 #include "BKE_key.h"
80 #include "BKE_ipo.h"
81 #include "BKE_image.h"
82 #include "BKE_lattice.h"
83 #include "BKE_library.h"
84 #include "BKE_material.h"
85 #include "BKE_main.h"
86 #include "BKE_mball.h"
87 #include "BKE_mesh.h"
88 #include "BKE_modifier.h"
89 #include "BKE_node.h"
90 #include "BKE_object.h"
91 #include "BKE_particle.h"
92 #include "BKE_scene.h"
93 #include "BKE_subsurf.h"
94 #include "BKE_texture.h"
95 #include "BKE_utildefines.h"
96 #include "BKE_world.h"
97
98 #include "PIL_time.h"
99 #include "IMB_imbuf_types.h"
100
101 #include "envmap.h"
102 #include "occlusion.h"
103 #include "pointdensity.h"
104 #include "voxeldata.h"
105 #include "render_types.h"
106 #include "rendercore.h"
107 #include "renderdatabase.h"
108 #include "renderpipeline.h"
109 #include "shadbuf.h"
110 #include "shading.h"
111 #include "strand.h"
112 #include "texture.h"
113 #include "volume_precache.h"
114 #include "sss.h"
115 #include "strand.h"
116 #include "zbuf.h"
117 #include "sunsky.h"
118
119
120 /* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
121 /* or for checking vertex normal flips */
122 #define FLT_EPSILON10 1.19209290e-06F
123
124 /* ------------------------------------------------------------------------- */
125
126 /* Stuff for stars. This sits here because it uses gl-things. Part of
127 this code may move down to the converter.  */
128 /* ------------------------------------------------------------------------- */
129 /* this is a bad beast, since it is misused by the 3d view drawing as well. */
130
131 static HaloRen *initstar(Render *re, ObjectRen *obr, float *vec, float hasize)
132 {
133         HaloRen *har;
134         float hoco[4];
135         
136         projectverto(vec, re->winmat, hoco);
137         
138         har= RE_findOrAddHalo(obr, obr->tothalo++);
139         
140         /* projectvert is done in function zbufvlaggen again, because of parts */
141         VECCOPY(har->co, vec);
142         har->hasize= hasize;
143         
144         har->zd= 0.0;
145         
146         return har;
147 }
148
149 /* there must be a 'fixed' amount of stars generated between
150 *         near and far
151 * all stars must by preference lie on the far and solely
152 *        differ in clarity/color
153 */
154
155 void RE_make_stars(Render *re, Scene *scenev3d, void (*initfunc)(void),
156                                    void (*vertexfunc)(float*),  void (*termfunc)(void))
157 {
158         extern unsigned char hash[512];
159         ObjectRen *obr= NULL;
160         World *wrld= NULL;
161         HaloRen *har;
162         Scene *scene;
163         Camera *camera;
164         double dblrand, hlfrand;
165         float vec[4], fx, fy, fz;
166         float fac, starmindist, clipend;
167         float mat[4][4], stargrid, maxrand, maxjit, force, alpha;
168         int x, y, z, sx, sy, sz, ex, ey, ez, done = 0;
169         
170         if(initfunc) {
171                 scene= scenev3d;
172                 wrld= scene->world;
173         }
174         else {
175                 scene= re->scene;
176                 wrld= &(re->wrld);
177         }
178         
179         stargrid = wrld->stardist;                      /* distance between stars */
180         maxrand = 2.0;                                          /* amount a star can be shifted (in grid units) */
181         maxjit = (wrld->starcolnoise);          /* amount a color is being shifted */
182         
183         /* size of stars */
184         force = ( wrld->starsize );
185         
186         /* minimal free space (starting at camera) */
187         starmindist= wrld->starmindist;
188         
189         if (stargrid <= 0.10) return;
190         
191         if (re) re->flag |= R_HALO;
192         else stargrid *= 1.0;                           /* then it draws fewer */
193         
194         if(re) MTC_Mat4Invert(mat, re->viewmat);
195         else MTC_Mat4One(mat);
196         
197         /* BOUNDING BOX CALCULATION
198                 * bbox goes from z = loc_near_var | loc_far_var,
199                 * x = -z | +z,
200                 * y = -z | +z
201                 */
202         
203         if(scene->camera==NULL)
204                 return;
205         camera = scene->camera->data;
206         clipend = camera->clipend;
207         
208         /* convert to grid coordinates */
209         
210         sx = ((mat[3][0] - clipend) / stargrid) - maxrand;
211         sy = ((mat[3][1] - clipend) / stargrid) - maxrand;
212         sz = ((mat[3][2] - clipend) / stargrid) - maxrand;
213         
214         ex = ((mat[3][0] + clipend) / stargrid) + maxrand;
215         ey = ((mat[3][1] + clipend) / stargrid) + maxrand;
216         ez = ((mat[3][2] + clipend) / stargrid) + maxrand;
217         
218         dblrand = maxrand * stargrid;
219         hlfrand = 2.0 * dblrand;
220         
221         if (initfunc) {
222                 initfunc();     
223         }
224
225         if(re) /* add render object for stars */
226                 obr= RE_addRenderObject(re, NULL, NULL, 0, 0, 0);
227         
228         for (x = sx, fx = sx * stargrid; x <= ex; x++, fx += stargrid) {
229                 for (y = sy, fy = sy * stargrid; y <= ey ; y++, fy += stargrid) {
230                         for (z = sz, fz = sz * stargrid; z <= ez; z++, fz += stargrid) {
231
232                                 BLI_srand((hash[z & 0xff] << 24) + (hash[y & 0xff] << 16) + (hash[x & 0xff] << 8));
233                                 vec[0] = fx + (hlfrand * BLI_drand()) - dblrand;
234                                 vec[1] = fy + (hlfrand * BLI_drand()) - dblrand;
235                                 vec[2] = fz + (hlfrand * BLI_drand()) - dblrand;
236                                 vec[3] = 1.0;
237                                 
238                                 if (vertexfunc) {
239                                         if(done & 1) vertexfunc(vec);
240                                         done++;
241                                 }
242                                 else {
243                                         MTC_Mat4MulVecfl(re->viewmat, vec);
244                                         
245                                         /* in vec are global coordinates
246                                         * calculate distance to camera
247                                         * and using that, define the alpha
248                                         */
249                                         
250                                         {
251                                                 float tx, ty, tz;
252                                                 
253                                                 tx = vec[0];
254                                                 ty = vec[1];
255                                                 tz = vec[2];
256                                                 
257                                                 alpha = sqrt(tx * tx + ty * ty + tz * tz);
258                                                 
259                                                 if (alpha >= clipend) alpha = 0.0;
260                                                 else if (alpha <= starmindist) alpha = 0.0;
261                                                 else if (alpha <= 2.0 * starmindist) {
262                                                         alpha = (alpha - starmindist) / starmindist;
263                                                 } else {
264                                                         alpha -= 2.0 * starmindist;
265                                                         alpha /= (clipend - 2.0 * starmindist);
266                                                         alpha = 1.0 - alpha;
267                                                 }
268                                         }
269                                         
270                                         
271                                         if (alpha != 0.0) {
272                                                 fac = force * BLI_drand();
273                                                 
274                                                 har = initstar(re, obr, vec, fac);
275                                                 
276                                                 if (har) {
277                                                         har->alfa = sqrt(sqrt(alpha));
278                                                         har->add= 255;
279                                                         har->r = har->g = har->b = 1.0;
280                                                         if (maxjit) {
281                                                                 har->r += ((maxjit * BLI_drand()) ) - maxjit;
282                                                                 har->g += ((maxjit * BLI_drand()) ) - maxjit;
283                                                                 har->b += ((maxjit * BLI_drand()) ) - maxjit;
284                                                         }
285                                                         har->hard = 32;
286                                                         har->lay= -1;
287                                                         har->type |= HA_ONLYSKY;
288                                                         done++;
289                                                 }
290                                         }
291                                 }
292                         }
293                         /* do not call blender_test_break() here, since it is used in UI as well, confusing the callback system */
294                         /* main cause is G.afbreek of course, a global again... (ton) */
295                 }
296         }
297         if (termfunc) termfunc();
298
299         if(obr)
300                 re->tothalo += obr->tothalo;
301 }
302
303
304 /* ------------------------------------------------------------------------- */
305 /* tool functions/defines for ad hoc simplification and possible future 
306    cleanup      */
307 /* ------------------------------------------------------------------------- */
308
309 #define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
310 /*
311
312 NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
313         
314 ^       ()----p4----p3----()
315 |       |     |     |     |
316 u       |     |  F1 |  F2 |
317         |     |     |     |
318         ()----p1----p2----()
319                v ->
320 */
321
322 /* ------------------------------------------------------------------------- */
323
324 static void split_v_renderfaces(ObjectRen *obr, int startvlak, int startvert, int usize, int vsize, int uIndex, int cyclu, int cyclv)
325 {
326         int vLen = vsize-1+(!!cyclv);
327         int v;
328
329         for (v=0; v<vLen; v++) {
330                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v);
331                 VertRen *vert = RE_vertren_copy(obr, vlr->v2);
332
333                 if (cyclv) {
334                         vlr->v2 = vert;
335
336                         if (v==vLen-1) {
337                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + 0);
338                                 vlr->v1 = vert;
339                         } else {
340                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
341                                 vlr->v1 = vert;
342                         }
343                 } else {
344                         vlr->v2 = vert;
345
346                         if (v<vLen-1) {
347                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
348                                 vlr->v1 = vert;
349                         }
350
351                         if (v==0) {
352                                 vlr->v1 = RE_vertren_copy(obr, vlr->v1);
353                         } 
354                 }
355         }
356 }
357
358 /* ------------------------------------------------------------------------- */
359
360 static int check_vnormal(float *n, float *veno)
361 {
362         float inp;
363
364         inp=n[0]*veno[0]+n[1]*veno[1]+n[2]*veno[2];
365         if(inp < -FLT_EPSILON10) return 1;
366         return 0;
367 }
368
369 /* ------------------------------------------------------------------------- */
370 /* Stress, tangents and normals                                              */
371 /* ------------------------------------------------------------------------- */
372
373 static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
374 {
375         float len= VecLenf(v1->co, v2->co)/VecLenf(v1->orco, v2->orco);
376         float *acc;
377         
378         acc= accum + 2*v1->index;
379         acc[0]+= len;
380         acc[1]+= 1.0f;
381         
382         acc= accum + 2*v2->index;
383         acc[0]+= len;
384         acc[1]+= 1.0f;
385 }
386
387 static void calc_edge_stress(Render *re, ObjectRen *obr, Mesh *me)
388 {
389         float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
390         int a;
391         
392         if(obr->totvert==0) return;
393         
394         mesh_get_texspace(me, loc, NULL, size);
395         
396         accum= MEM_callocN(2*sizeof(float)*obr->totvert, "temp accum for stress");
397         
398         /* de-normalize orco */
399         for(a=0; a<obr->totvert; a++) {
400                 VertRen *ver= RE_findOrAddVert(obr, a);
401                 if(ver->orco) {
402                         ver->orco[0]= ver->orco[0]*size[0] +loc[0];
403                         ver->orco[1]= ver->orco[1]*size[1] +loc[1];
404                         ver->orco[2]= ver->orco[2]*size[2] +loc[2];
405                 }
406         }
407         
408         /* add stress values */
409         accumoffs= accum;       /* so we can use vertex index */
410         for(a=0; a<obr->totvlak; a++) {
411                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
412
413                 if(vlr->v1->orco && vlr->v4) {
414                         calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
415                         calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
416                         calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
417                         if(vlr->v4) {
418                                 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
419                                 calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
420                                 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
421                         }
422                 }
423         }
424         
425         for(a=0; a<obr->totvert; a++) {
426                 VertRen *ver= RE_findOrAddVert(obr, a);
427                 if(ver->orco) {
428                         /* find stress value */
429                         acc= accumoffs + 2*ver->index;
430                         if(acc[1]!=0.0f)
431                                 acc[0]/= acc[1];
432                         stress= RE_vertren_get_stress(obr, ver, 1);
433                         *stress= *acc;
434                         
435                         /* restore orcos */
436                         ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
437                         ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
438                         ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
439                 }
440         }
441         
442         MEM_freeN(accum);
443 }
444
445 /* gets tangent from tface or orco */
446 static void calc_tangent_vector(ObjectRen *obr, VertexTangent **vtangents, MemArena *arena, VlakRen *vlr, int do_nmap_tangent, int do_tangent)
447 {
448         MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
449         VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
450         float tang[3], *tav;
451         float *uv1, *uv2, *uv3, *uv4;
452         float uv[4][2];
453         
454         if(tface) {
455                 uv1= tface->uv[0];
456                 uv2= tface->uv[1];
457                 uv3= tface->uv[2];
458                 uv4= tface->uv[3];
459         }
460         else if(v1->orco) {
461                 uv1= uv[0]; uv2= uv[1]; uv3= uv[2]; uv4= uv[3];
462                 spheremap(v1->orco[0], v1->orco[1], v1->orco[2], &uv[0][0], &uv[0][1]);
463                 spheremap(v2->orco[0], v2->orco[1], v2->orco[2], &uv[1][0], &uv[1][1]);
464                 spheremap(v3->orco[0], v3->orco[1], v3->orco[2], &uv[2][0], &uv[2][1]);
465                 if(v4)
466                         spheremap(v4->orco[0], v4->orco[1], v4->orco[2], &uv[3][0], &uv[3][1]);
467         }
468         else return;
469
470         tangent_from_uv(uv1, uv2, uv3, v1->co, v2->co, v3->co, vlr->n, tang);
471         
472         if(do_tangent) {
473                 tav= RE_vertren_get_tangent(obr, v1, 1);
474                 VECADD(tav, tav, tang);
475                 tav= RE_vertren_get_tangent(obr, v2, 1);
476                 VECADD(tav, tav, tang);
477                 tav= RE_vertren_get_tangent(obr, v3, 1);
478                 VECADD(tav, tav, tang);
479         }
480         
481         if(do_nmap_tangent) {
482                 sum_or_add_vertex_tangent(arena, &vtangents[v1->index], tang, uv1);
483                 sum_or_add_vertex_tangent(arena, &vtangents[v2->index], tang, uv2);
484                 sum_or_add_vertex_tangent(arena, &vtangents[v3->index], tang, uv3);
485         }
486
487         if(v4) {
488                 tangent_from_uv(uv1, uv3, uv4, v1->co, v3->co, v4->co, vlr->n, tang);
489                 
490                 if(do_tangent) {
491                         tav= RE_vertren_get_tangent(obr, v1, 1);
492                         VECADD(tav, tav, tang);
493                         tav= RE_vertren_get_tangent(obr, v3, 1);
494                         VECADD(tav, tav, tang);
495                         tav= RE_vertren_get_tangent(obr, v4, 1);
496                         VECADD(tav, tav, tang);
497                 }
498
499                 if(do_nmap_tangent) {
500                         sum_or_add_vertex_tangent(arena, &vtangents[v1->index], tang, uv1);
501                         sum_or_add_vertex_tangent(arena, &vtangents[v3->index], tang, uv3);
502                         sum_or_add_vertex_tangent(arena, &vtangents[v4->index], tang, uv4);
503                 }
504         }
505 }
506
507
508 static void calc_vertexnormals(Render *re, ObjectRen *obr, int do_tangent, int do_nmap_tangent)
509 {
510         MemArena *arena= NULL;
511         VertexTangent **vtangents= NULL;
512         int a;
513
514         if(do_nmap_tangent) {
515                 arena= BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE);
516                 BLI_memarena_use_calloc(arena);
517
518                 vtangents= MEM_callocN(sizeof(VertexTangent*)*obr->totvert, "VertexTangent");
519         }
520
521                 /* clear all vertex normals */
522         for(a=0; a<obr->totvert; a++) {
523                 VertRen *ver= RE_findOrAddVert(obr, a);
524                 ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
525         }
526
527                 /* calculate cos of angles and point-masses, use as weight factor to
528                    add face normal to vertex */
529         for(a=0; a<obr->totvlak; a++) {
530                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
531                 if(vlr->flag & ME_SMOOTH) {
532                         VertRen *v1= vlr->v1;
533                         VertRen *v2= vlr->v2;
534                         VertRen *v3= vlr->v3;
535                         VertRen *v4= vlr->v4;
536                         float n1[3], n2[3], n3[3], n4[3];
537                         float fac1, fac2, fac3, fac4=0.0f;
538                         
539                         if(re->flag & R_GLOB_NOPUNOFLIP)
540                                 vlr->flag |= R_NOPUNOFLIP;
541                         
542                         VecSubf(n1, v2->co, v1->co);
543                         Normalize(n1);
544                         VecSubf(n2, v3->co, v2->co);
545                         Normalize(n2);
546                         if(v4==NULL) {
547                                 VecSubf(n3, v1->co, v3->co);
548                                 Normalize(n3);
549
550                                 fac1= saacos(-n1[0]*n3[0]-n1[1]*n3[1]-n1[2]*n3[2]);
551                                 fac2= saacos(-n1[0]*n2[0]-n1[1]*n2[1]-n1[2]*n2[2]);
552                                 fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]);
553                         }
554                         else {
555                                 VecSubf(n3, v4->co, v3->co);
556                                 Normalize(n3);
557                                 VecSubf(n4, v1->co, v4->co);
558                                 Normalize(n4);
559
560                                 fac1= saacos(-n4[0]*n1[0]-n4[1]*n1[1]-n4[2]*n1[2]);
561                                 fac2= saacos(-n1[0]*n2[0]-n1[1]*n2[1]-n1[2]*n2[2]);
562                                 fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]);
563                                 fac4= saacos(-n3[0]*n4[0]-n3[1]*n4[1]-n3[2]*n4[2]);
564
565                                 if(!(vlr->flag & R_NOPUNOFLIP)) {
566                                         if( check_vnormal(vlr->n, v4->n) ) fac4= -fac4;
567                                 }
568
569                                 v4->n[0] +=fac4*vlr->n[0];
570                                 v4->n[1] +=fac4*vlr->n[1];
571                                 v4->n[2] +=fac4*vlr->n[2];
572                         }
573
574                         if(!(vlr->flag & R_NOPUNOFLIP)) {
575                                 if( check_vnormal(vlr->n, v1->n) ) fac1= -fac1;
576                                 if( check_vnormal(vlr->n, v2->n) ) fac2= -fac2;
577                                 if( check_vnormal(vlr->n, v3->n) ) fac3= -fac3;
578                         }
579
580                         v1->n[0] +=fac1*vlr->n[0];
581                         v1->n[1] +=fac1*vlr->n[1];
582                         v1->n[2] +=fac1*vlr->n[2];
583
584                         v2->n[0] +=fac2*vlr->n[0];
585                         v2->n[1] +=fac2*vlr->n[1];
586                         v2->n[2] +=fac2*vlr->n[2];
587
588                         v3->n[0] +=fac3*vlr->n[0];
589                         v3->n[1] +=fac3*vlr->n[1];
590                         v3->n[2] +=fac3*vlr->n[2];
591                         
592                 }
593                 if(do_nmap_tangent || do_tangent) {
594                         /* tangents still need to be calculated for flat faces too */
595                         /* weighting removed, they are not vertexnormals */
596                         calc_tangent_vector(obr, vtangents, arena, vlr, do_nmap_tangent, do_tangent);
597                 }
598         }
599
600                 /* do solid faces */
601         for(a=0; a<obr->totvlak; a++) {
602                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
603                 if((vlr->flag & ME_SMOOTH)==0) {
604                         float *f1= vlr->v1->n;
605                         if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
606                         f1= vlr->v2->n;
607                         if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
608                         f1= vlr->v3->n;
609                         if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
610                         if(vlr->v4) {
611                                 f1= vlr->v4->n;
612                                 if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
613                         }
614                 }
615
616                 if(do_nmap_tangent) {
617                         VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
618                         MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
619
620                         if(tface) {
621                                 float *vtang, *ftang= RE_vlakren_get_nmap_tangent(obr, vlr, 1);
622
623                                 vtang= find_vertex_tangent(vtangents[v1->index], tface->uv[0]);
624                                 VECCOPY(ftang, vtang);
625                                 Normalize(ftang);
626                                 vtang= find_vertex_tangent(vtangents[v2->index], tface->uv[1]);
627                                 VECCOPY(ftang+3, vtang);
628                                 Normalize(ftang+3);
629                                 vtang= find_vertex_tangent(vtangents[v3->index], tface->uv[2]);
630                                 VECCOPY(ftang+6, vtang);
631                                 Normalize(ftang+6);
632                                 if(v4) {
633                                         vtang= find_vertex_tangent(vtangents[v4->index], tface->uv[3]);
634                                         VECCOPY(ftang+9, vtang);
635                                         Normalize(ftang+9);
636                                 }
637                         }
638                 }
639         }
640         
641                 /* normalize vertex normals */
642         for(a=0; a<obr->totvert; a++) {
643                 VertRen *ver= RE_findOrAddVert(obr, a);
644                 Normalize(ver->n);
645                 if(do_tangent) {
646                         float *tav= RE_vertren_get_tangent(obr, ver, 0);
647                         if (tav) {
648                                 /* orthonorm. */
649                                 float tdn = tav[0]*ver->n[0] + tav[1]*ver->n[1] + tav[2]*ver->n[2];
650                                 tav[0] -= ver->n[0]*tdn;
651                                 tav[1] -= ver->n[1]*tdn;
652                                 tav[2] -= ver->n[2]*tdn;
653                                 Normalize(tav);
654                         }
655                 }
656         }
657
658
659         if(arena)
660                 BLI_memarena_free(arena);
661         if(vtangents)
662                 MEM_freeN(vtangents);
663 }
664
665 /* ------------------------------------------------------------------------- */
666 /* Autosmoothing:                                                            */
667 /* ------------------------------------------------------------------------- */
668
669 typedef struct ASvert {
670         int totface;
671         ListBase faces;
672 } ASvert;
673
674 typedef struct ASface {
675         struct ASface *next, *prev;
676         VlakRen *vlr[4];
677         VertRen *nver[4];
678 } ASface;
679
680 static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
681 {
682         ASface *asf;
683         int a;
684         
685         if(v1 == NULL) return;
686         
687         if(asv->faces.first==NULL) {
688                 asf= MEM_callocN(sizeof(ASface), "asface");
689                 BLI_addtail(&asv->faces, asf);
690         }
691         
692         asf= asv->faces.last;
693         for(a=0; a<4; a++) {
694                 if(asf->vlr[a]==NULL) {
695                         asf->vlr[a]= vlr;
696                         asv->totface++;
697                         break;
698                 }
699         }
700         
701         /* new face struct */
702         if(a==4) {
703                 asf= MEM_callocN(sizeof(ASface), "asface");
704                 BLI_addtail(&asv->faces, asf);
705                 asf->vlr[0]= vlr;
706                 asv->totface++;
707         }
708 }
709
710 static int as_testvertex(VlakRen *vlr, VertRen *ver, ASvert *asv, float thresh) 
711 {
712         /* return 1: vertex needs a copy */
713         ASface *asf;
714         float inp;
715         int a;
716         
717         if(vlr==0) return 0;
718         
719         asf= asv->faces.first;
720         while(asf) {
721                 for(a=0; a<4; a++) {
722                         if(asf->vlr[a] && asf->vlr[a]!=vlr) {
723                                 inp= fabs( vlr->n[0]*asf->vlr[a]->n[0] + vlr->n[1]*asf->vlr[a]->n[1] + vlr->n[2]*asf->vlr[a]->n[2] );
724                                 if(inp < thresh) return 1;
725                         }
726                 }
727                 asf= asf->next;
728         }
729         
730         return 0;
731 }
732
733 static VertRen *as_findvertex(VlakRen *vlr, VertRen *ver, ASvert *asv, float thresh) 
734 {
735         /* return when new vertex already was made */
736         ASface *asf;
737         float inp;
738         int a;
739         
740         asf= asv->faces.first;
741         while(asf) {
742                 for(a=0; a<4; a++) {
743                         if(asf->vlr[a] && asf->vlr[a]!=vlr) {
744                                 /* this face already made a copy for this vertex! */
745                                 if(asf->nver[a]) {
746                                         inp= fabs( vlr->n[0]*asf->vlr[a]->n[0] + vlr->n[1]*asf->vlr[a]->n[1] + vlr->n[2]*asf->vlr[a]->n[2] );
747                                         if(inp >= thresh) {
748                                                 return asf->nver[a];
749                                         }
750                                 }
751                         }
752                 }
753                 asf= asf->next;
754         }
755         
756         return NULL;
757 }
758
759 /* note; autosmooth happens in object space still, after applying autosmooth we rotate */
760 /* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
761 static void autosmooth(Render *re, ObjectRen *obr, float mat[][4], int degr)
762 {
763         ASvert *asv, *asverts;
764         ASface *asf;
765         VertRen *ver, *v1;
766         VlakRen *vlr;
767         float thresh;
768         int a, b, totvert;
769         
770         if(obr->totvert==0) return;
771         asverts= MEM_callocN(sizeof(ASvert)*obr->totvert, "all smooth verts");
772         
773         thresh= cos( M_PI*(0.5f+(float)degr)/180.0 );
774         
775         /* step zero: give faces normals of original mesh, if this is provided */
776         
777         
778         /* step one: construct listbase of all vertices and pointers to faces */
779         for(a=0; a<obr->totvlak; a++) {
780                 vlr= RE_findOrAddVlak(obr, a);
781                 /* skip wire faces */
782                 if(vlr->v2 != vlr->v3) {
783                         as_addvert(asverts+vlr->v1->index, vlr->v1, vlr);
784                         as_addvert(asverts+vlr->v2->index, vlr->v2, vlr);
785                         as_addvert(asverts+vlr->v3->index, vlr->v3, vlr);
786                         if(vlr->v4) 
787                                 as_addvert(asverts+vlr->v4->index, vlr->v4, vlr);
788                 }
789         }
790         
791         totvert= obr->totvert;
792         /* we now test all vertices, when faces have a normal too much different: they get a new vertex */
793         for(a=0, asv=asverts; a<totvert; a++, asv++) {
794                 if(asv && asv->totface>1) {
795                         ver= RE_findOrAddVert(obr, a);
796
797                         asf= asv->faces.first;
798                         while(asf) {
799                                 for(b=0; b<4; b++) {
800                                 
801                                         /* is there a reason to make a new vertex? */
802                                         vlr= asf->vlr[b];
803                                         if( as_testvertex(vlr, ver, asv, thresh) ) {
804                                                 
805                                                 /* already made a new vertex within threshold? */
806                                                 v1= as_findvertex(vlr, ver, asv, thresh);
807                                                 if(v1==NULL) {
808                                                         /* make a new vertex */
809                                                         v1= RE_vertren_copy(obr, ver);
810                                                 }
811                                                 asf->nver[b]= v1;
812                                                 if(vlr->v1==ver) vlr->v1= v1;
813                                                 if(vlr->v2==ver) vlr->v2= v1;
814                                                 if(vlr->v3==ver) vlr->v3= v1;
815                                                 if(vlr->v4==ver) vlr->v4= v1;
816                                         }
817                                 }
818                                 asf= asf->next;
819                         }
820                 }
821         }
822         
823         /* free */
824         for(a=0; a<totvert; a++) {
825                 BLI_freelistN(&asverts[a].faces);
826         }
827         MEM_freeN(asverts);
828         
829         /* rotate vertices and calculate normal of faces */
830         for(a=0; a<obr->totvert; a++) {
831                 ver= RE_findOrAddVert(obr, a);
832                 MTC_Mat4MulVecfl(mat, ver->co);
833         }
834         for(a=0; a<obr->totvlak; a++) {
835                 vlr= RE_findOrAddVlak(obr, a);
836                 
837                 /* skip wire faces */
838                 if(vlr->v2 != vlr->v3) {
839                         if(vlr->v4) 
840                                 CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
841                         else 
842                                 CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
843                 }
844         }               
845 }
846
847 /* ------------------------------------------------------------------------- */
848 /* Orco hash and Materials                                                   */
849 /* ------------------------------------------------------------------------- */
850
851 static float *get_object_orco(Render *re, Object *ob)
852 {
853         float *orco;
854         
855         if (!re->orco_hash)
856                 re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp);
857         
858         orco = BLI_ghash_lookup(re->orco_hash, ob);
859         
860         if (!orco) {
861                 if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
862                         orco = make_orco_curve(re->scene, ob);
863                 } else if (ob->type==OB_SURF) {
864                         orco = make_orco_surf(ob);
865                 } else if (ob->type==OB_MBALL) {
866                         orco = make_orco_mball(ob);
867                 }
868                 
869                 if (orco)
870                         BLI_ghash_insert(re->orco_hash, ob, orco);
871         }
872         
873         return orco;
874 }
875
876 static void set_object_orco(Render *re, void *ob, float *orco)
877 {
878         if (!re->orco_hash)
879                 re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp);
880         
881         BLI_ghash_insert(re->orco_hash, ob, orco);
882 }
883
884 static void free_mesh_orco_hash(Render *re) 
885 {
886         if (re->orco_hash) {
887                 BLI_ghash_free(re->orco_hash, NULL, (GHashValFreeFP)MEM_freeN);
888                 re->orco_hash = NULL;
889         }
890 }
891
892 static void flag_render_node_material(Render *re, bNodeTree *ntree)
893 {
894         bNode *node;
895
896         for(node=ntree->nodes.first; node; node= node->next) {
897                 if(node->id) {
898                         if(GS(node->id->name)==ID_MA) {
899                                 Material *ma= (Material *)node->id;
900
901                                 if(ma->mode & MA_ZTRA)
902                                         re->flag |= R_ZTRA;
903
904                                 ma->flag |= MA_IS_USED;
905                         }
906                         else if(node->type==NODE_GROUP)
907                                 flag_render_node_material(re, (bNodeTree *)node->id);
908                 }
909         }
910 }
911
912 static Material *give_render_material(Render *re, Object *ob, int nr)
913 {
914         extern Material defmaterial;    /* material.c */
915         Material *ma;
916         
917         ma= give_current_material(ob, nr);
918         if(ma==NULL) 
919                 ma= &defmaterial;
920         
921         if(re->r.mode & R_SPEED) ma->texco |= NEED_UV;
922         
923         if(ma->mode & MA_ZTRA)
924                 re->flag |= R_ZTRA;
925         
926         /* for light groups */
927         ma->flag |= MA_IS_USED;
928
929         if(ma->nodetree && ma->use_nodes)
930                 flag_render_node_material(re, ma->nodetree);
931         
932         return ma;
933 }
934
935 /* ------------------------------------------------------------------------- */
936 /* Particles                                                                 */
937 /* ------------------------------------------------------------------------- */
938 typedef struct ParticleStrandData
939 {
940         struct MCol *mcol;
941         float *orco, *uvco, *surfnor;
942         float time, adapt_angle, adapt_pix, size;
943         int totuv, totcol;
944         int first, line, adapt, override_uv;
945 }
946 ParticleStrandData;
947 /* future thread problem... */
948 static void static_particle_strand(Render *re, ObjectRen *obr, Material *ma, ParticleStrandData *sd, float *vec, float *vec1)
949 {
950         static VertRen *v1= NULL, *v2= NULL;
951         VlakRen *vlr= NULL;
952         float nor[3], cross[3], crosslen, w, dx, dy, width;
953         static float anor[3], avec[3];
954         int flag, i;
955         static int second=0;
956         
957         VecSubf(nor, vec, vec1);
958         Normalize(nor);         // nor needed as tangent 
959         Crossf(cross, vec, nor);
960
961         /* turn cross in pixelsize */
962         w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
963         dx= re->winx*cross[0]*re->winmat[0][0];
964         dy= re->winy*cross[1]*re->winmat[1][1];
965         w= sqrt(dx*dx + dy*dy)/w;
966         
967         if(w!=0.0f) {
968                 float fac;
969                 if(ma->strand_ease!=0.0f) {
970                         if(ma->strand_ease<0.0f)
971                                 fac= pow(sd->time, 1.0+ma->strand_ease);
972                         else
973                                 fac= pow(sd->time, 1.0/(1.0f-ma->strand_ease));
974                 }
975                 else fac= sd->time;
976
977                 width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
978
979                 /* use actual Blender units for strand width and fall back to minimum width */
980                 if(ma->mode & MA_STR_B_UNITS){
981             crosslen= VecLength(cross);
982             w= 2.0f*crosslen*ma->strand_min/w;
983
984                         if(width < w)
985                                 width= w;
986
987                         /*cross is the radius of the strand so we want it to be half of full width */
988                         VecMulf(cross,0.5/crosslen);
989                 }
990                 else
991                         width/=w;
992
993                 VecMulf(cross, width);
994         }
995         else width= 1.0f;
996         
997         if(ma->mode & MA_TANGENT_STR)
998                 flag= R_SMOOTH|R_NOPUNOFLIP|R_TANGENT;
999         else
1000                 flag= R_SMOOTH;
1001         
1002         /* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
1003         if(ma->strand_sta==1.0f)
1004                 flag |= R_STRAND;
1005         
1006         /* single face line */
1007         if(sd->line) {
1008                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1009                 vlr->flag= flag;
1010                 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1011                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1012                 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1013                 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1014                 
1015                 VECCOPY(vlr->v1->co, vec);
1016                 VecAddf(vlr->v1->co, vlr->v1->co, cross);
1017                 VECCOPY(vlr->v1->n, nor);
1018                 vlr->v1->orco= sd->orco;
1019                 vlr->v1->accum= -1.0f;  // accum abuse for strand texco
1020                 
1021                 VECCOPY(vlr->v2->co, vec);
1022                 VecSubf(vlr->v2->co, vlr->v2->co, cross);
1023                 VECCOPY(vlr->v2->n, nor);
1024                 vlr->v2->orco= sd->orco;
1025                 vlr->v2->accum= vlr->v1->accum;
1026
1027                 VECCOPY(vlr->v4->co, vec1);
1028                 VecAddf(vlr->v4->co, vlr->v4->co, cross);
1029                 VECCOPY(vlr->v4->n, nor);
1030                 vlr->v4->orco= sd->orco;
1031                 vlr->v4->accum= 1.0f;   // accum abuse for strand texco
1032                 
1033                 VECCOPY(vlr->v3->co, vec1);
1034                 VecSubf(vlr->v3->co, vlr->v3->co, cross);
1035                 VECCOPY(vlr->v3->n, nor);
1036                 vlr->v3->orco= sd->orco;
1037                 vlr->v3->accum= vlr->v4->accum;
1038
1039                 CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
1040                 
1041                 vlr->mat= ma;
1042                 vlr->ec= ME_V2V3;
1043
1044                 if(sd->surfnor) {
1045                         float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1046                         VECCOPY(snor, sd->surfnor);
1047                 }
1048
1049                 if(sd->uvco){
1050                         for(i=0; i<sd->totuv; i++){
1051                                 MTFace *mtf;
1052                                 mtf=RE_vlakren_get_tface(obr,vlr,i,NULL,1);
1053                                 mtf->uv[0][0]=mtf->uv[1][0]=
1054                                 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1055                                 mtf->uv[0][1]=mtf->uv[1][1]=
1056                                 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1057                         }
1058                         if(sd->override_uv>=0){
1059                                 MTFace *mtf;
1060                                 mtf=RE_vlakren_get_tface(obr,vlr,sd->override_uv,NULL,0);
1061                                 
1062                                 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1063                                 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1064
1065                                 mtf->uv[0][1]=mtf->uv[1][1]=0.0f;
1066                                 mtf->uv[2][1]=mtf->uv[3][1]=1.0f;
1067                         }
1068                 }
1069                 if(sd->mcol){
1070                         for(i=0; i<sd->totcol; i++){
1071                                 MCol *mc;
1072                                 mc=RE_vlakren_get_mcol(obr,vlr,i,NULL,1);
1073                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1074                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1075                         }
1076                 }
1077         }
1078         /* first two vertices of a strand */
1079         else if(sd->first) {
1080                 if(sd->adapt){
1081                         VECCOPY(anor, nor);
1082                         VECCOPY(avec, vec);
1083                         second=1;
1084                 }
1085
1086                 v1= RE_findOrAddVert(obr, obr->totvert++);
1087                 v2= RE_findOrAddVert(obr, obr->totvert++);
1088                 
1089                 VECCOPY(v1->co, vec);
1090                 VecAddf(v1->co, v1->co, cross);
1091                 VECCOPY(v1->n, nor);
1092                 v1->orco= sd->orco;
1093                 v1->accum= -1.0f;       // accum abuse for strand texco
1094                 
1095                 VECCOPY(v2->co, vec);
1096                 VecSubf(v2->co, v2->co, cross);
1097                 VECCOPY(v2->n, nor);
1098                 v2->orco= sd->orco;
1099                 v2->accum= v1->accum;
1100         }
1101         /* more vertices & faces to strand */
1102         else {
1103                 if(sd->adapt==0 || second){
1104                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1105                         vlr->flag= flag;
1106                         vlr->v1= v1;
1107                         vlr->v2= v2;
1108                         vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1109                         vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1110                         
1111                         v1= vlr->v4; // cycle
1112                         v2= vlr->v3; // cycle
1113
1114                         
1115                         if(sd->adapt){
1116                                 second=0;
1117                                 VECCOPY(anor,nor);
1118                                 VECCOPY(avec,vec);
1119                         }
1120
1121                 }
1122                 else if(sd->adapt){
1123                         float dvec[3],pvec[3];
1124                         VecSubf(dvec,avec,vec);
1125                         Projf(pvec,dvec,vec);
1126                         VecSubf(dvec,dvec,pvec);
1127
1128                         w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1129                         dx= re->winx*dvec[0]*re->winmat[0][0]/w;
1130                         dy= re->winy*dvec[1]*re->winmat[1][1]/w;
1131                         w= sqrt(dx*dx + dy*dy);
1132                         if(Inpf(anor,nor)<sd->adapt_angle && w>sd->adapt_pix){
1133                                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1134                                 vlr->flag= flag;
1135                                 vlr->v1= v1;
1136                                 vlr->v2= v2;
1137                                 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1138                                 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1139                                 
1140                                 v1= vlr->v4; // cycle
1141                                 v2= vlr->v3; // cycle
1142
1143                                 VECCOPY(anor,nor);
1144                                 VECCOPY(avec,vec);
1145                         }
1146                         else{
1147                                 vlr= RE_findOrAddVlak(obr, obr->totvlak-1);
1148                         }
1149                 }
1150         
1151                 VECCOPY(vlr->v4->co, vec);
1152                 VecAddf(vlr->v4->co, vlr->v4->co, cross);
1153                 VECCOPY(vlr->v4->n, nor);
1154                 vlr->v4->orco= sd->orco;
1155                 vlr->v4->accum= -1.0f + 2.0f*sd->time;  // accum abuse for strand texco
1156                 
1157                 VECCOPY(vlr->v3->co, vec);
1158                 VecSubf(vlr->v3->co, vlr->v3->co, cross);
1159                 VECCOPY(vlr->v3->n, nor);
1160                 vlr->v3->orco= sd->orco;
1161                 vlr->v3->accum= vlr->v4->accum;
1162                 
1163                 CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
1164                 
1165                 vlr->mat= ma;
1166                 vlr->ec= ME_V2V3;
1167
1168                 if(sd->surfnor) {
1169                         float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1170                         VECCOPY(snor, sd->surfnor);
1171                 }
1172
1173                 if(sd->uvco){
1174                         for(i=0; i<sd->totuv; i++){
1175                                 MTFace *mtf;
1176                                 mtf=RE_vlakren_get_tface(obr,vlr,i,NULL,1);
1177                                 mtf->uv[0][0]=mtf->uv[1][0]=
1178                                 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1179                                 mtf->uv[0][1]=mtf->uv[1][1]=
1180                                 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1181                         }
1182                         if(sd->override_uv>=0){
1183                                 MTFace *mtf;
1184                                 mtf=RE_vlakren_get_tface(obr,vlr,sd->override_uv,NULL,0);
1185                                 
1186                                 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1187                                 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1188
1189                                 mtf->uv[0][1]=mtf->uv[1][1]=(vlr->v1->accum+1.0f)/2.0f;
1190                                 mtf->uv[2][1]=mtf->uv[3][1]=(vlr->v3->accum+1.0f)/2.0f;
1191                         }
1192                 }
1193                 if(sd->mcol){
1194                         for(i=0; i<sd->totcol; i++){
1195                                 MCol *mc;
1196                                 mc=RE_vlakren_get_mcol(obr,vlr,i,NULL,1);
1197                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1198                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1199                         }
1200                 }
1201         }
1202 }
1203
1204 static void static_particle_wire(ObjectRen *obr, Material *ma, float *vec, float *vec1, int first, int line)
1205 {
1206         VlakRen *vlr;
1207         static VertRen *v1;
1208
1209         if(line) {
1210                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1211                 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1212                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1213                 vlr->v3= vlr->v2;
1214                 vlr->v4= NULL;
1215                 
1216                 VECCOPY(vlr->v1->co, vec);
1217                 VECCOPY(vlr->v2->co, vec1);
1218                 
1219                 VecSubf(vlr->n, vec, vec1);
1220                 Normalize(vlr->n);
1221                 VECCOPY(vlr->v1->n, vlr->n);
1222                 VECCOPY(vlr->v2->n, vlr->n);
1223                 
1224                 vlr->mat= ma;
1225                 vlr->ec= ME_V1V2;
1226
1227         }
1228         else if(first) {
1229                 v1= RE_findOrAddVert(obr, obr->totvert++);
1230                 VECCOPY(v1->co, vec);
1231         }
1232         else {
1233                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1234                 vlr->v1= v1;
1235                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1236                 vlr->v3= vlr->v2;
1237                 vlr->v4= NULL;
1238                 
1239                 v1= vlr->v2; // cycle
1240                 VECCOPY(v1->co, vec);
1241                 
1242                 VecSubf(vlr->n, vec, vec1);
1243                 Normalize(vlr->n);
1244                 VECCOPY(v1->n, vlr->n);
1245                 
1246                 vlr->mat= ma;
1247                 vlr->ec= ME_V1V2;
1248         }
1249
1250 }
1251
1252 static void particle_curve(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, float *loc, float *loc1,  int seed)
1253 {
1254         HaloRen *har=0;
1255
1256         if(ma->material_type == MA_TYPE_WIRE)
1257                 static_particle_wire(obr, ma, loc, loc1, sd->first, sd->line);
1258         else if(ma->material_type == MA_TYPE_HALO) {
1259                 har= RE_inithalo_particle(re, obr, dm, ma, loc, loc1, sd->orco, sd->uvco, sd->size, 1.0, seed);
1260                 if(har) har->lay= obr->ob->lay;
1261         }
1262         else
1263                 static_particle_strand(re, obr, ma, sd, loc, loc1);
1264 }
1265 static void particle_billboard(Render *re, ObjectRen *obr, Material *ma, ParticleBillboardData *bb)
1266 {
1267         VlakRen *vlr;
1268         MTFace *mtf;
1269         float xvec[3], yvec[3], zvec[3], bb_center[3];
1270         float uvx = 0.0f, uvy = 0.0f, uvdx = 1.0f, uvdy = 1.0f, time = 0.0f;
1271
1272         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1273         vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1274         vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1275         vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1276         vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1277
1278         psys_make_billboard(bb, xvec, yvec, zvec, bb_center);
1279
1280         VECADD(vlr->v1->co, bb_center, xvec);
1281         VECADD(vlr->v1->co, vlr->v1->co, yvec);
1282         MTC_Mat4MulVecfl(re->viewmat, vlr->v1->co);
1283
1284         VECSUB(vlr->v2->co, bb_center, xvec);
1285         VECADD(vlr->v2->co, vlr->v2->co, yvec);
1286         MTC_Mat4MulVecfl(re->viewmat, vlr->v2->co);
1287
1288         VECSUB(vlr->v3->co, bb_center, xvec);
1289         VECSUB(vlr->v3->co, vlr->v3->co, yvec);
1290         MTC_Mat4MulVecfl(re->viewmat, vlr->v3->co);
1291
1292         VECADD(vlr->v4->co, bb_center, xvec);
1293         VECSUB(vlr->v4->co, vlr->v4->co, yvec);
1294         MTC_Mat4MulVecfl(re->viewmat, vlr->v4->co);
1295
1296         CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
1297         VECCOPY(vlr->v1->n,vlr->n);
1298         VECCOPY(vlr->v2->n,vlr->n);
1299         VECCOPY(vlr->v3->n,vlr->n);
1300         VECCOPY(vlr->v4->n,vlr->n);
1301         
1302         vlr->mat= ma;
1303         vlr->ec= ME_V2V3;
1304
1305         if(bb->uv_split > 1){
1306                 uvdx = uvdy = 1.0f / (float)bb->uv_split;
1307                 if(bb->anim == PART_BB_ANIM_TIME) {
1308                         if(bb->split_offset == PART_BB_OFF_NONE)
1309                                 time = bb->time;
1310                         else if(bb->split_offset == PART_BB_OFF_LINEAR)
1311                                 time = (float)fmod(bb->time + (float)bb->num / (float)(bb->uv_split * bb->uv_split), 1.0f);
1312                         else /* split_offset==PART_BB_OFF_RANDOM */
1313                                 time = (float)fmod(bb->time + bb->random, 1.0f);
1314
1315                 }
1316                 else if(bb->anim == PART_BB_ANIM_ANGLE) {
1317                         if(bb->align == PART_BB_VIEW) {
1318                                 time = (float)fmod((bb->tilt + 1.0f) / 2.0f, 1.0);
1319                         }
1320                         else{
1321                                 float axis1[3] = {0.0f,0.0f,0.0f};
1322                                 float axis2[3] = {0.0f,0.0f,0.0f};
1323                                 axis1[(bb->align + 1) % 3] = 1.0f;
1324                                 axis2[(bb->align + 2) % 3] = 1.0f;
1325                                 if(bb->lock == 0) {
1326                                         zvec[bb->align] = 0.0f;
1327                                         Normalize(zvec);
1328                                 }
1329                                 time = saacos(Inpf(zvec, axis1)) / (float)M_PI;
1330                                 if(Inpf(zvec, axis2) < 0.0f)
1331                                         time = 1.0f - time / 2.0f;
1332                                 else
1333                                         time = time / 2.0f;
1334                         }
1335                         if(bb->split_offset == PART_BB_OFF_LINEAR)
1336                                 time = (float)fmod(bb->time + (float)bb->num / (float)(bb->uv_split * bb->uv_split), 1.0f);
1337                         else if(bb->split_offset == PART_BB_OFF_RANDOM)
1338                                 time = (float)fmod(bb->time + bb->random, 1.0f);
1339                 }
1340                 else{
1341                         if(bb->split_offset == PART_BB_OFF_NONE)
1342                                 time = 0.0f;
1343                         else if(bb->split_offset == PART_BB_OFF_LINEAR)
1344                                 time = (float)fmod((float)bb->num /(float)(bb->uv_split * bb->uv_split) , 1.0f);
1345                         else /* split_offset==PART_BB_OFF_RANDOM */
1346                                 time = bb->random;
1347                 }
1348                 uvx = uvdx * floor((float)(bb->uv_split * bb->uv_split) * (float)fmod((double)time, (double)uvdx));
1349                 uvy = uvdy * floor((1.0f - time) * (float)bb->uv_split);
1350                 if(fmod(time, 1.0f / bb->uv_split) == 0.0f)
1351                         uvy -= uvdy;
1352         }
1353
1354         /* normal UVs */
1355         if(bb->uv[0] >= 0){
1356                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[0], NULL, 1);
1357                 mtf->uv[0][0] = 1.0f;
1358                 mtf->uv[0][1] = 1.0f;
1359                 mtf->uv[1][0] = 0.0f;
1360                 mtf->uv[1][1] = 1.0f;
1361                 mtf->uv[2][0] = 0.0f;
1362                 mtf->uv[2][1] = 0.0f;
1363                 mtf->uv[3][0] = 1.0f;
1364                 mtf->uv[3][1] = 0.0f;
1365         }
1366
1367         /* time-index UVs */
1368         if(bb->uv[1] >= 0){
1369                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[1], NULL, 1);
1370                 mtf->uv[0][0] = mtf->uv[1][0] = mtf->uv[2][0] = mtf->uv[3][0] = bb->time;
1371                 mtf->uv[0][1] = mtf->uv[1][1] = mtf->uv[2][1] = mtf->uv[3][1] = (float)bb->num/(float)bb->totnum;
1372         }
1373
1374         /* split UVs */
1375         if(bb->uv_split > 1 && bb->uv[2] >= 0){
1376                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[2], NULL, 1);
1377                 mtf->uv[0][0] = uvx + uvdx;
1378                 mtf->uv[0][1] = uvy + uvdy;
1379                 mtf->uv[1][0] = uvx;
1380                 mtf->uv[1][1] = uvy + uvdy;
1381                 mtf->uv[2][0] = uvx;
1382                 mtf->uv[2][1] = uvy;
1383                 mtf->uv[3][0] = uvx + uvdx;
1384                 mtf->uv[3][1] = uvy;
1385         }
1386 }
1387 static void particle_normal_ren(short ren_as, ParticleSettings *part, Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, ParticleBillboardData *bb, ParticleKey *state, int seed, float hasize)
1388 {
1389         float loc[3], loc0[3], loc1[3], vel[3];
1390         
1391         VECCOPY(loc, state->co);
1392
1393         if(ren_as != PART_DRAW_BB)
1394                 MTC_Mat4MulVecfl(re->viewmat, loc);
1395
1396         switch(ren_as) {
1397                 case PART_DRAW_LINE:
1398                         sd->line = 1;
1399                         sd->time = 0.0f;
1400                         sd->size = hasize;
1401
1402                         VECCOPY(vel, state->vel);
1403                         MTC_Mat4Mul3Vecfl(re->viewmat, vel);
1404                         Normalize(vel);
1405
1406                         if(part->draw & PART_DRAW_VEL_LENGTH)
1407                                 VecMulf(vel, VecLength(state->vel));
1408
1409                         VECADDFAC(loc0, loc, vel, -part->draw_line[0]);
1410                         VECADDFAC(loc1, loc, vel, part->draw_line[1]);
1411
1412                         particle_curve(re, obr, dm, ma, sd, loc0, loc1, seed);
1413
1414                         break;
1415
1416                 case PART_DRAW_BB:
1417
1418                         VECCOPY(bb->vec, loc);
1419                         VECCOPY(bb->vel, state->vel);
1420
1421                         particle_billboard(re, obr, ma, bb);
1422
1423                         break;
1424
1425                 default:
1426                 {
1427                         HaloRen *har=0;
1428
1429                         har = RE_inithalo_particle(re, obr, dm, ma, loc, NULL, sd->orco, sd->uvco, hasize, 0.0, seed);
1430                         
1431                         if(har) har->lay= obr->ob->lay;
1432
1433                         break;
1434                 }
1435         }
1436 }
1437 static void get_particle_uvco_mcol(short from, DerivedMesh *dm, float *fuv, int num, ParticleStrandData *sd)
1438 {
1439         int i;
1440
1441         /* get uvco */
1442         if(sd->uvco && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
1443                 for(i=0; i<sd->totuv; i++) {
1444                         if(num != DMCACHE_NOTFOUND) {
1445                                 MFace *mface = dm->getFaceData(dm, num, CD_MFACE);
1446                                 MTFace *mtface = (MTFace*)CustomData_get_layer_n(&dm->faceData, CD_MTFACE, i);
1447                                 mtface += num;
1448                                 
1449                                 psys_interpolate_uvs(mtface, mface->v4, fuv, sd->uvco + 2 * i);
1450                         }
1451                         else {
1452                                 sd->uvco[2*i] = 0.0f;
1453                                 sd->uvco[2*i + 1] = 0.0f;
1454                         }
1455                 }
1456         }
1457
1458         /* get mcol */
1459         if(sd->mcol && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
1460                 for(i=0; i<sd->totcol; i++) {
1461                         if(num != DMCACHE_NOTFOUND) {
1462                                 MFace *mface = dm->getFaceData(dm, num, CD_MFACE);
1463                                 MCol *mc = (MCol*)CustomData_get_layer_n(&dm->faceData, CD_MCOL, i);
1464                                 mc += num * 4;
1465
1466                                 psys_interpolate_mcol(mc, mface->v4, fuv, sd->mcol + i);
1467                         }
1468                         else
1469                                 memset(&sd->mcol[i], 0, sizeof(MCol));
1470                 }
1471         }
1472 }
1473 static int render_new_particle_system(Render *re, ObjectRen *obr, ParticleSystem *psys, int timeoffset)
1474 {
1475         Object *ob= obr->ob;
1476         Object *tob=0;
1477         Material *ma=0;
1478         ParticleSystemModifierData *psmd;
1479         ParticleSystem *tpsys=0;
1480         ParticleSettings *part, *tpart=0;
1481         ParticleData *pars, *pa=0,*tpa=0;
1482         ParticleKey *states=0;
1483         ParticleKey state;
1484         ParticleCacheKey *cache=0;
1485         ParticleBillboardData bb;
1486         ParticleStrandData sd;
1487         StrandBuffer *strandbuf=0;
1488         StrandVert *svert=0;
1489         StrandBound *sbound= 0;
1490         StrandRen *strand=0;
1491         RNG *rng= 0;
1492         float loc[3],loc1[3],loc0[3],mat[4][4],nmat[3][3],co[3],nor[3],time;
1493         float strandlen=0.0f, curlen=0.0f;
1494         float hasize, pa_size, r_tilt, r_length, cfra=bsystem_time(re->scene, ob, (float)re->scene->r.cfra, 0.0);
1495         float pa_time, pa_birthtime, pa_dietime;
1496         float random, simplify[2];
1497         int i, a, k, max_k=0, totpart, dosimplify = 0, dosurfacecache = 0;
1498         int totchild=0;
1499         int seed, path_nbr=0, orco1=0, num;
1500         int totface, *origindex = 0;
1501         char **uv_name=0;
1502
1503 /* 1. check that everything is ok & updated */
1504         if(psys==NULL)
1505                 return 0;
1506         
1507         totchild=psys->totchild;
1508
1509         part=psys->part;
1510         pars=psys->particles;
1511
1512         if(part==NULL || pars==NULL || !psys_check_enabled(ob, psys))
1513                 return 0;
1514         
1515         if(part->ren_as==PART_DRAW_OB || part->ren_as==PART_DRAW_GR || part->ren_as==PART_DRAW_NOT)
1516                 return 1;
1517
1518 /* 2. start initialising things */
1519         if(part->phystype==PART_PHYS_KEYED)
1520                 psys_count_keyed_targets(ob,psys);
1521
1522         /* last possibility to bail out! */
1523         psmd= psys_get_modifier(ob,psys);
1524         if(!(psmd->modifier.mode & eModifierMode_Render))
1525                 return 0;
1526
1527         if(G.rendering == 0) { /* preview render */
1528                 totchild = (int)((float)totchild * (float)part->disp / 100.0f);
1529         }
1530
1531         psys->flag |= PSYS_DRAWING;
1532
1533         rng= rng_new(psys->seed);
1534
1535         totpart=psys->totpart;
1536
1537         memset(&sd, 0, sizeof(ParticleStrandData));
1538         sd.override_uv = -1;
1539
1540 /* 2.1 setup material stff */
1541         ma= give_render_material(re, ob, part->omat);
1542         
1543 #if 0 // XXX old animation system
1544         if(ma->ipo){
1545                 calc_ipo(ma->ipo, cfra);
1546                 execute_ipo((ID *)ma, ma->ipo);
1547         }
1548 #endif // XXX old animation system
1549
1550         hasize = ma->hasize;
1551         seed = ma->seed1;
1552
1553         re->flag |= R_HALO;
1554
1555         RE_set_customdata_names(obr, &psmd->dm->faceData);
1556         sd.totuv = CustomData_number_of_layers(&psmd->dm->faceData, CD_MTFACE);
1557         sd.totcol = CustomData_number_of_layers(&psmd->dm->faceData, CD_MCOL);
1558
1559         if(ma->texco & TEXCO_UV && sd.totuv) {
1560                 sd.uvco = MEM_callocN(sd.totuv * 2 * sizeof(float), "particle_uvs");
1561
1562                 if(ma->strand_uvname[0]) {
1563                         sd.override_uv = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, ma->strand_uvname);
1564                         sd.override_uv -= CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1565                 }
1566         }
1567         else
1568                 sd.uvco = NULL;
1569
1570         if(sd.totcol)
1571                 sd.mcol = MEM_callocN(sd.totcol * sizeof(MCol), "particle_mcols");
1572
1573 /* 2.2 setup billboards */
1574         if(part->ren_as == PART_DRAW_BB) {
1575                 int first_uv = CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1576
1577                 bb.uv[0] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[0]);
1578                 if(bb.uv[0] < 0)
1579                         bb.uv[0] = CustomData_get_active_layer_index(&psmd->dm->faceData, CD_MTFACE);
1580
1581                 bb.uv[1] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[1]);
1582
1583                 bb.uv[2] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[2]);
1584
1585                 if(first_uv >= 0) {
1586                         bb.uv[0] -= first_uv;
1587                         bb.uv[1] -= first_uv;
1588                         bb.uv[2] -= first_uv;
1589                 }
1590
1591                 bb.align = part->bb_align;
1592                 bb.anim = part->bb_anim;
1593                 bb.lock = part->draw & PART_DRAW_BB_LOCK;
1594                 bb.ob = (part->bb_ob ? part->bb_ob : re->scene->camera);
1595                 bb.offset[0] = part->bb_offset[0];
1596                 bb.offset[1] = part->bb_offset[1];
1597                 bb.split_offset = part->bb_split_offset;
1598                 bb.totnum = totpart+totchild;
1599                 bb.uv_split = part->bb_uv_split;
1600         }
1601
1602 #if 0 // XXX old animation system
1603 /* 2.3 setup time */
1604         if(part->flag&PART_ABS_TIME && part->ipo) {
1605                 calc_ipo(part->ipo, cfra);
1606                 execute_ipo((ID *)part, part->ipo);
1607         }
1608
1609         if(part->flag & PART_GLOB_TIME)
1610 #endif // XXX old animation system
1611         cfra = bsystem_time(re->scene, 0, (float)re->scene->r.cfra, 0.0);
1612
1613 /* 2.4 setup reactors */
1614         if(part->type == PART_REACTOR){
1615                 psys_get_reactor_target(ob, psys, &tob, &tpsys);
1616                 if(tpsys && (part->from==PART_FROM_PARTICLE || part->phystype==PART_PHYS_NO)){
1617                         psmd = psys_get_modifier(tob,tpsys);
1618                         tpart = tpsys->part;
1619                 }
1620         }
1621         
1622 /* 2.5 setup matrices */
1623         MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
1624         MTC_Mat4Invert(ob->imat, mat);  /* need to be that way, for imat texture */
1625         Mat3CpyMat4(nmat, ob->imat);
1626         Mat3Transp(nmat);
1627
1628 /* 2.6 setup strand rendering */
1629         if(part->ren_as == PART_DRAW_PATH && psys->pathcache){
1630                 path_nbr=(int)pow(2.0,(double) part->ren_step);
1631
1632                 if(path_nbr) {
1633                         if(!ELEM(ma->material_type, MA_TYPE_HALO, MA_TYPE_WIRE)) {
1634                                 sd.orco = MEM_mallocN(3*sizeof(float)*(totpart+totchild), "particle orcos");
1635                                 set_object_orco(re, psys, sd.orco);
1636                         }
1637                 }
1638
1639                 if(part->draw & PART_DRAW_REN_ADAPT) {
1640                         sd.adapt = 1;
1641                         sd.adapt_pix = (float)part->adapt_pix;
1642                         sd.adapt_angle = cos((float)part->adapt_angle * (float)(M_PI / 180.0));
1643                 }
1644
1645                 if(re->r.renderer==R_INTERN && part->draw&PART_DRAW_REN_STRAND) {
1646                         strandbuf= RE_addStrandBuffer(obr, (totpart+totchild)*(path_nbr+1));
1647                         strandbuf->ma= ma;
1648                         strandbuf->lay= ob->lay;
1649                         Mat4CpyMat4(strandbuf->winmat, re->winmat);
1650                         strandbuf->winx= re->winx;
1651                         strandbuf->winy= re->winy;
1652                         strandbuf->maxdepth= 2;
1653                         strandbuf->adaptcos= cos((float)part->adapt_angle*(float)(M_PI/180.0));
1654                         strandbuf->overrideuv= sd.override_uv;
1655                         strandbuf->minwidth= ma->strand_min;
1656
1657                         if(ma->strand_widthfade == 0.0f)
1658                                 strandbuf->widthfade= 0.0f;
1659                         else if(ma->strand_widthfade >= 1.0f)
1660                                 strandbuf->widthfade= 2.0f - ma->strand_widthfade;
1661                         else
1662                                 strandbuf->widthfade= 1.0f/MAX2(ma->strand_widthfade, 1e-5f);
1663
1664                         if(part->flag & PART_HAIR_BSPLINE)
1665                                 strandbuf->flag |= R_STRAND_BSPLINE;
1666                         if(ma->mode & MA_STR_B_UNITS)
1667                                 strandbuf->flag |= R_STRAND_B_UNITS;
1668
1669                         svert= strandbuf->vert;
1670
1671                         if(re->r.mode & R_SPEED)
1672                                 dosurfacecache= 1;
1673                         else if((re->wrld.mode & WO_AMB_OCC) && (re->wrld.ao_gather_method == WO_AOGATHER_APPROX))
1674                                 if(ma->amb != 0.0f)
1675                                         dosurfacecache= 1;
1676
1677                         totface= psmd->dm->getNumFaces(psmd->dm);
1678                         origindex= psmd->dm->getFaceDataArray(psmd->dm, CD_ORIGINDEX);
1679                         if(origindex) {
1680                                 for(a=0; a<totface; a++)
1681                                         strandbuf->totbound= MAX2(strandbuf->totbound, origindex[a]);
1682                                 strandbuf->totbound++;
1683                         }
1684                         strandbuf->totbound++;
1685                         strandbuf->bound= MEM_callocN(sizeof(StrandBound)*strandbuf->totbound, "StrandBound");
1686                         sbound= strandbuf->bound;
1687                         sbound->start= sbound->end= 0;
1688                 }
1689         }
1690
1691         if(sd.orco == 0) {
1692                 sd.orco = MEM_mallocN(3 * sizeof(float), "particle orco");
1693                 orco1 = 1;
1694         }
1695
1696         if(path_nbr == 0)
1697                 psys->lattice = psys_get_lattice(re->scene, ob, psys);
1698
1699 /* 3. start creating renderable things */
1700         for(a=0,pa=pars; a<totpart+totchild; a++, pa++, seed++) {
1701                 random = rng_getFloat(rng);
1702                 /* setup per particle individual stuff */
1703                 if(a<totpart){
1704                         if(pa->flag & PARS_UNEXIST) continue;
1705
1706                         pa_time=(cfra-pa->time)/pa->lifetime;
1707                         pa_birthtime = pa->time;
1708                         pa_dietime = pa->dietime;
1709 #if 0 // XXX old animation system
1710                         if((part->flag&PART_ABS_TIME) == 0){
1711                                 if(ma->ipo) {
1712                                         /* correction for lifetime */
1713                                         calc_ipo(ma->ipo, 100.0f * pa_time);
1714                                         execute_ipo((ID *)ma, ma->ipo);
1715                                 }
1716                                 if(part->ipo){
1717                                         /* correction for lifetime */
1718                                         calc_ipo(part->ipo, 100.0f*pa_time);
1719                                         execute_ipo((ID *)part, part->ipo);
1720                                 }
1721                         }
1722 #endif // XXX old animation system
1723
1724                         hasize = ma->hasize;
1725
1726                         /* get orco */
1727                         if(tpsys && (part->from==PART_FROM_PARTICLE || part->phystype==PART_PHYS_NO)){
1728                                 tpa=tpsys->particles+pa->num;
1729                                 psys_particle_on_emitter(psmd,tpart->from,tpa->num,pa->num_dmcache,tpa->fuv,tpa->foffset,co,nor,0,0,sd.orco,0);
1730                         }
1731                         else
1732                                 psys_particle_on_emitter(psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,sd.orco,0);
1733
1734                         /* get uvco & mcol */
1735                         num= pa->num_dmcache;
1736
1737                         if(num == DMCACHE_NOTFOUND)
1738                                 if(pa->num < psmd->dm->getNumFaces(psmd->dm))
1739                                         num= pa->num;
1740
1741                         get_particle_uvco_mcol(part->from, psmd->dm, pa->fuv, num, &sd);
1742
1743                         pa_size = pa->size;
1744
1745                         r_tilt = 1.0f + pa->r_ave[0];
1746                         r_length = 0.5f * (1.0f + pa->r_ave[1]);
1747
1748                         if(path_nbr) {
1749                                 cache = psys->pathcache[a];
1750                                 max_k = (int)cache->steps;
1751                         }
1752
1753                         if(totchild && (part->draw&PART_DRAW_PARENT)==0) continue;
1754                 }
1755                 else {
1756                         ChildParticle *cpa= psys->child+a-totpart;
1757
1758                         if(path_nbr) {
1759                                 cache = psys->childcache[a-totpart];
1760
1761                                 if(cache->steps < 0)
1762                                         continue;
1763
1764                                 max_k = (int)cache->steps;
1765                         }
1766                         
1767                         pa_time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
1768
1769 #if 0 // XXX old animation system
1770                         if((part->flag & PART_ABS_TIME) == 0) {
1771                                 if(ma->ipo){
1772                                         /* correction for lifetime */
1773                                         calc_ipo(ma->ipo, 100.0f * pa_time);
1774                                         execute_ipo((ID *)ma, ma->ipo);
1775                                 }
1776                                 if(part->ipo) {
1777                                         /* correction for lifetime */
1778                                         calc_ipo(part->ipo, 100.0f * pa_time);
1779                                         execute_ipo((ID *)part, part->ipo);
1780                                 }
1781                         }
1782 #endif // XXX old animation system
1783
1784                         pa_size = psys_get_child_size(psys, cpa, cfra, &pa_time);
1785
1786                         r_tilt = 2.0f * cpa->rand[2];
1787                         r_length = cpa->rand[1];
1788
1789                         num = cpa->num;
1790
1791                         /* get orco */
1792                         if(part->childtype == PART_CHILD_FACES) {
1793                                 psys_particle_on_emitter(psmd,
1794                                         PART_FROM_FACE, cpa->num,DMCACHE_ISCHILD,
1795                                         cpa->fuv,cpa->foffset,co,nor,0,0,sd.orco,0);
1796                         }
1797                         else {
1798                                 ParticleData *par = psys->particles + cpa->parent;
1799                                 psys_particle_on_emitter(psmd, part->from,
1800                                         par->num,DMCACHE_ISCHILD,par->fuv,
1801                                         par->foffset,co,nor,0,0,sd.orco,0);
1802                         }
1803
1804                         /* get uvco & mcol */
1805                         if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES) {
1806                                 get_particle_uvco_mcol(PART_FROM_FACE, psmd->dm, cpa->fuv, cpa->num, &sd);
1807                         }
1808                         else {
1809                                 ParticleData *parent = psys->particles + cpa->parent;
1810                                 num = parent->num_dmcache;
1811
1812                                 if(num == DMCACHE_NOTFOUND)
1813                                         if(parent->num < psmd->dm->getNumFaces(psmd->dm))
1814                                                 num = parent->num;
1815
1816                                 get_particle_uvco_mcol(part->from, psmd->dm, parent->fuv, num, &sd);
1817                         }
1818
1819                         dosimplify = psys_render_simplify_params(psys, cpa, simplify);
1820
1821                         if(strandbuf) {
1822                                 if(origindex[cpa->num]+1 > sbound - strandbuf->bound) {
1823                                         sbound= strandbuf->bound + origindex[cpa->num]+1;
1824                                         sbound->start= sbound->end= obr->totstrand;
1825                                 }
1826                         }
1827                 }
1828
1829                 /* surface normal shading setup */
1830                 if(ma->mode_l & MA_STR_SURFDIFF) {
1831                         Mat3MulVecfl(nmat, nor);
1832                         sd.surfnor= nor;
1833                 }
1834                 else
1835                         sd.surfnor= NULL;
1836
1837                 /* strand render setup */
1838                 if(strandbuf) {
1839                         strand= RE_findOrAddStrand(obr, obr->totstrand++);
1840                         strand->buffer= strandbuf;
1841                         strand->vert= svert;
1842                         VECCOPY(strand->orco, sd.orco);
1843
1844                         if(dosimplify) {
1845                                 float *ssimplify= RE_strandren_get_simplify(obr, strand, 1);
1846                                 ssimplify[0]= simplify[0];
1847                                 ssimplify[1]= simplify[1];
1848                         }
1849
1850                         if(sd.surfnor) {
1851                                 float *snor= RE_strandren_get_surfnor(obr, strand, 1);
1852                                 VECCOPY(snor, sd.surfnor);
1853                         }
1854
1855                         if(dosurfacecache && num >= 0) {
1856                                 int *facenum= RE_strandren_get_face(obr, strand, 1);
1857                                 *facenum= num;
1858                         }
1859
1860                         if(sd.uvco) {
1861                                 for(i=0; i<sd.totuv; i++) {
1862                                         if(i != sd.override_uv) {
1863                                                 float *uv= RE_strandren_get_uv(obr, strand, i, NULL, 1);
1864
1865                                                 uv[0]= sd.uvco[2*i];
1866                                                 uv[1]= sd.uvco[2*i+1];
1867                                         }
1868                                 }
1869                         }
1870                         if(sd.mcol) {
1871                                 for(i=0; i<sd.totcol; i++) {
1872                                         MCol *mc= RE_strandren_get_mcol(obr, strand, i, NULL, 1);
1873                                         *mc = sd.mcol[i];
1874                                 }
1875                         }
1876
1877                         sbound->end++;
1878                 }
1879
1880                 /* strandco computation setup */
1881                 if(path_nbr) {
1882                         strandlen= 0.0f;
1883                         curlen= 0.0f;
1884                         for(k=1; k<=path_nbr; k++)
1885                                 if(k<=max_k)
1886                                         strandlen += VecLenf((cache+k-1)->co, (cache+k)->co);
1887                 }
1888
1889                 if(path_nbr) {
1890                         /* render strands */
1891                         for(k=0; k<=path_nbr; k++){
1892                                 if(k<=max_k){
1893                                         VECCOPY(state.co,(cache+k)->co);
1894                                         VECCOPY(state.vel,(cache+k)->vel);
1895                                 }
1896                                 else
1897                                         continue;       
1898
1899                                 if(k > 0)
1900                                         curlen += VecLenf((cache+k-1)->co, (cache+k)->co);
1901                                 time= curlen/strandlen;
1902
1903                                 VECCOPY(loc,state.co);
1904                                 MTC_Mat4MulVecfl(re->viewmat,loc);
1905
1906                                 if(strandbuf) {
1907                                         VECCOPY(svert->co, loc);
1908                                         svert->strandco= -1.0f + 2.0f*time;
1909                                         svert++;
1910                                         strand->totvert++;
1911                                 }
1912                                 else{
1913                                         sd.size = hasize;
1914
1915                                         if(k==1){
1916                                                 sd.first = 1;
1917                                                 sd.time = 0.0f;
1918                                                 VECSUB(loc0,loc1,loc);
1919                                                 VECADD(loc0,loc1,loc0);
1920
1921                                                 particle_curve(re, obr, psmd->dm, ma, &sd, loc1, loc0, seed);
1922                                         }
1923
1924                                         sd.first = 0;
1925                                         sd.time = time;
1926
1927                                         if(k)
1928                                                 particle_curve(re, obr, psmd->dm, ma, &sd, loc, loc1, seed);
1929
1930                                         VECCOPY(loc1,loc);
1931                                 }
1932                         }
1933
1934                 }
1935                 else {
1936                         /* render normal particles */
1937                         if(part->trail_count > 1) {
1938                                 float length = part->path_end * (1.0 - part->randlength * r_length);
1939                                 int trail_count = part->trail_count * (1.0 - part->randlength * r_length);
1940                                 float ct = (part->draw & PART_ABS_PATH_TIME) ? cfra : pa_time;
1941                                 float dt = length / (trail_count ? (float)trail_count : 1.0f);
1942
1943                                 for(i=0; i < trail_count; i++, ct -= dt) {
1944                                         if(part->draw & PART_ABS_PATH_TIME) {
1945                                                 if(ct < pa_birthtime || ct > pa_dietime)
1946                                                         continue;
1947                                         }
1948                                         else if(ct < 0.0f || ct > 1.0f)
1949                                                 continue;
1950
1951                                         state.time = (part->draw & PART_ABS_PATH_TIME) ? -ct : ct;
1952                                         psys_get_particle_on_path(re->scene,ob,psys,a,&state,1);
1953
1954                                         if(psys->parent)
1955                                                 Mat4MulVecfl(psys->parent->obmat, state.co);
1956
1957                                         if(part->ren_as == PART_DRAW_BB) {
1958                                                 bb.random = random;
1959                                                 bb.size = pa_size;
1960                                                 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
1961                                                 bb.time = ct;
1962                                                 bb.num = a;
1963                                         }
1964
1965                                         particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize);
1966                                 }
1967                         }
1968                         else {
1969                                 time=0.0f;
1970                                 state.time=cfra;
1971                                 if(psys_get_particle_state(re->scene,ob,psys,a,&state,0)==0)
1972                                         continue;
1973
1974                                 if(psys->parent)
1975                                         Mat4MulVecfl(psys->parent->obmat, state.co);
1976
1977                                 if(part->ren_as == PART_DRAW_BB) {
1978                                         bb.random = random;
1979                                         bb.size = pa_size;
1980                                         bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
1981                                         bb.time = pa_time;
1982                                         bb.num = a;
1983                                 }
1984
1985                                 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize);
1986                         }
1987                 }
1988
1989                 if(orco1==0)
1990                         sd.orco+=3;
1991
1992                 if(re->test_break(re->tbh))
1993                         break;
1994         }
1995
1996         if(dosurfacecache)
1997                 strandbuf->surface= cache_strand_surface(re, obr, psmd->dm, mat, timeoffset);
1998
1999 /* 4. clean up */
2000 #if 0 // XXX old animation system
2001         if(ma) do_mat_ipo(re->scene, ma);
2002 #endif // XXX old animation system
2003         
2004         if(orco1)
2005                 MEM_freeN(sd.orco);
2006
2007         if(sd.uvco)
2008                 MEM_freeN(sd.uvco);
2009         
2010         if(sd.mcol)
2011                 MEM_freeN(sd.mcol);
2012
2013         if(uv_name)
2014                 MEM_freeN(uv_name);
2015
2016         if(states)
2017                 MEM_freeN(states);
2018         
2019         rng_free(rng);
2020
2021         psys->flag &= ~PSYS_DRAWING;
2022
2023         if(psys->lattice){
2024                 end_latt_deform(psys->lattice);
2025                 psys->lattice= NULL;
2026         }
2027
2028         if(path_nbr && (ma->mode_l & MA_TANGENT_STR)==0)
2029                 calc_vertexnormals(re, obr, 0, 0);
2030
2031         return 1;
2032 }
2033
2034 /* ------------------------------------------------------------------------- */
2035 /* Halo's                                                                                                                                */
2036 /* ------------------------------------------------------------------------- */
2037
2038 static void make_render_halos(Render *re, ObjectRen *obr, Mesh *me, int totvert, MVert *mvert, Material *ma, float *orco)
2039 {
2040         Object *ob= obr->ob;
2041         HaloRen *har;
2042         float xn, yn, zn, nor[3], view[3];
2043         float vec[3], hasize, mat[4][4], imat[3][3];
2044         int a, ok, seed= ma->seed1;
2045
2046         MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
2047         MTC_Mat3CpyMat4(imat, ob->imat);
2048
2049         re->flag |= R_HALO;
2050
2051         for(a=0; a<totvert; a++, mvert++) {
2052                 ok= 1;
2053
2054                 if(ok) {
2055                         hasize= ma->hasize;
2056
2057                         VECCOPY(vec, mvert->co);
2058                         MTC_Mat4MulVecfl(mat, vec);
2059
2060                         if(ma->mode & MA_HALOPUNO) {
2061                                 xn= mvert->no[0];
2062                                 yn= mvert->no[1];
2063                                 zn= mvert->no[2];
2064
2065                                 /* transpose ! */
2066                                 nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2067                                 nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2068                                 nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2069                                 Normalize(nor);
2070
2071                                 VECCOPY(view, vec);
2072                                 Normalize(view);
2073
2074                                 zn= nor[0]*view[0]+nor[1]*view[1]+nor[2]*view[2];
2075                                 if(zn>=0.0) hasize= 0.0;
2076                                 else hasize*= zn*zn*zn*zn;
2077                         }
2078
2079                         if(orco) har= RE_inithalo(re, obr, ma, vec, NULL, orco, hasize, 0.0, seed);
2080                         else har= RE_inithalo(re, obr, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
2081                         if(har) har->lay= ob->lay;
2082                 }
2083                 if(orco) orco+= 3;
2084                 seed++;
2085         }
2086 }
2087
2088 static int verghalo(const void *a1, const void *a2)
2089 {
2090         const HaloRen *har1= *(const HaloRen**)a1;
2091         const HaloRen *har2= *(const HaloRen**)a2;
2092         
2093         if(har1->zs < har2->zs) return 1;
2094         else if(har1->zs > har2->zs) return -1;
2095         return 0;
2096 }
2097
2098 static void sort_halos(Render *re, int totsort)
2099 {
2100         ObjectRen *obr;
2101         HaloRen *har= NULL, **haso;
2102         int a;
2103
2104         if(re->tothalo==0) return;
2105
2106         re->sortedhalos= MEM_callocN(sizeof(HaloRen*)*re->tothalo, "sorthalos");
2107         haso= re->sortedhalos;
2108
2109         for(obr=re->objecttable.first; obr; obr=obr->next) {
2110                 for(a=0; a<obr->tothalo; a++) {
2111                         if((a & 255)==0) har= obr->bloha[a>>8];
2112                         else har++;
2113
2114                         *(haso++)= har;
2115                 }
2116         }
2117
2118         qsort(re->sortedhalos, totsort, sizeof(HaloRen*), verghalo);
2119 }
2120
2121 /* ------------------------------------------------------------------------- */
2122 /* Displacement Mapping                                                                                                          */
2123 /* ------------------------------------------------------------------------- */
2124
2125 static short test_for_displace(Render *re, Object *ob)
2126 {
2127         /* return 1 when this object uses displacement textures. */
2128         Material *ma;
2129         int i;
2130         
2131         for (i=1; i<=ob->totcol; i++) {
2132                 ma=give_render_material(re, ob, i);
2133                 /* ma->mapto is ORed total of all mapto channels */
2134                 if(ma && (ma->mapto & MAP_DISPLACE)) return 1;
2135         }
2136         return 0;
2137 }
2138
2139 static void displace_render_vert(Render *re, ObjectRen *obr, ShadeInput *shi, VertRen *vr, int vindex, float *scale, float mat[][4], float imat[][3])
2140 {
2141         MTFace *tface;
2142         short texco= shi->mat->texco;
2143         float sample=0, displace[3];
2144         char *name;
2145         int i;
2146
2147         /* shi->co is current render coord, just make sure at least some vector is here */
2148         VECCOPY(shi->co, vr->co);
2149         /* vertex normal is used for textures type 'col' and 'var' */
2150         VECCOPY(shi->vn, vr->n);
2151
2152         if(mat)
2153                 Mat4MulVecfl(mat, shi->co);
2154
2155         if(imat) {
2156                 shi->vn[0]= imat[0][0]*vr->n[0]+imat[0][1]*vr->n[1]+imat[0][2]*vr->n[2];
2157                 shi->vn[1]= imat[1][0]*vr->n[0]+imat[1][1]*vr->n[1]+imat[1][2]*vr->n[2];
2158                 shi->vn[2]= imat[2][0]*vr->n[0]+imat[2][1]*vr->n[1]+imat[2][2]*vr->n[2];
2159         }
2160
2161         if (texco & TEXCO_UV) {
2162                 shi->totuv= 0;
2163                 shi->actuv= obr->actmtface;
2164
2165                 for (i=0; (tface=RE_vlakren_get_tface(obr, shi->vlr, i, &name, 0)); i++) {
2166                         ShadeInputUV *suv= &shi->uv[i];
2167
2168                         /* shi.uv needs scale correction from tface uv */
2169                         suv->uv[0]= 2*tface->uv[vindex][0]-1.0f;
2170                         suv->uv[1]= 2*tface->uv[vindex][1]-1.0f;
2171                         suv->uv[2]= 0.0f;
2172                         suv->name= name;
2173                         shi->totuv++;
2174                 }
2175         }
2176
2177         /* set all rendercoords, 'texco' is an ORed value for all textures needed */
2178         if ((texco & TEXCO_ORCO) && (vr->orco)) {
2179                 VECCOPY(shi->lo, vr->orco);
2180         }
2181         if (texco & TEXCO_STICKY) {
2182                 float *sticky= RE_vertren_get_sticky(obr, vr, 0);
2183                 if(sticky) {
2184                         shi->sticky[0]= sticky[0];
2185                         shi->sticky[1]= sticky[1];
2186                         shi->sticky[2]= 0.0f;
2187                 }
2188         }
2189         if (texco & TEXCO_GLOB) {
2190                 VECCOPY(shi->gl, shi->co);
2191                 MTC_Mat4MulVecfl(re->viewinv, shi->gl);
2192         }
2193         if (texco & TEXCO_NORM) {
2194                 VECCOPY(shi->orn, shi->vn);
2195         }
2196         if(texco & TEXCO_REFL) {
2197                 /* not (yet?) */
2198         }
2199         
2200         shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
2201         
2202         do_material_tex(shi);
2203         
2204         //printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2], 
2205         //vr->co[0], vr->co[1], vr->co[2]);
2206
2207         displace[0]= shi->displace[0] * scale[0];
2208         displace[1]= shi->displace[1] * scale[1];
2209         displace[2]= shi->displace[2] * scale[2];
2210         
2211         if(mat)
2212                 Mat3MulVecfl(imat, displace);
2213
2214         /* 0.5 could become button once?  */
2215         vr->co[0] += displace[0]; 
2216         vr->co[1] += displace[1];
2217         vr->co[2] += displace[2];
2218         
2219         //printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]); 
2220         
2221         /* we just don't do this vertex again, bad luck for other face using same vertex with
2222                 different material... */
2223         vr->flag |= 1;
2224         
2225         /* Pass sample back so displace_face can decide which way to split the quad */
2226         sample  = shi->displace[0]*shi->displace[0];
2227         sample += shi->displace[1]*shi->displace[1];
2228         sample += shi->displace[2]*shi->displace[2];
2229         
2230         vr->accum=sample; 
2231         /* Should be sqrt(sample), but I'm only looking for "bigger".  Save the cycles. */
2232         return;
2233 }
2234
2235 static void displace_render_face(Render *re, ObjectRen *obr, VlakRen *vlr, float *scale, float mat[][4], float imat[][3])
2236 {
2237         ShadeInput shi;
2238
2239         /* Warning, This is not that nice, and possibly a bit slow,
2240         however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
2241         memset(&shi, 0, sizeof(ShadeInput)); 
2242         /* end warning! - Campbell */
2243         
2244         /* set up shadeinput struct for multitex() */
2245         
2246         /* memset above means we dont need this */
2247         /*shi.osatex= 0;*/              /* signal not to use dx[] and dy[] texture AA vectors */
2248
2249         shi.obr= obr;
2250         shi.vlr= vlr;           /* current render face */
2251         shi.mat= vlr->mat;              /* current input material */
2252         shi.thread= 0;
2253         
2254         /* Displace the verts, flag is set when done */
2255         if (!vlr->v1->flag)
2256                 displace_render_vert(re, obr, &shi, vlr->v1,0,  scale, mat, imat);
2257         
2258         if (!vlr->v2->flag)
2259                 displace_render_vert(re, obr, &shi, vlr->v2, 1, scale, mat, imat);
2260
2261         if (!vlr->v3->flag)
2262                 displace_render_vert(re, obr, &shi, vlr->v3, 2, scale, mat, imat);
2263
2264         if (vlr->v4) {
2265                 if (!vlr->v4->flag)
2266                         displace_render_vert(re, obr, &shi, vlr->v4, 3, scale, mat, imat);
2267
2268                 /*      closest in displace value.  This will help smooth edges.   */ 
2269                 if ( fabs(vlr->v1->accum - vlr->v3->accum) > fabs(vlr->v2->accum - vlr->v4->accum)) 
2270                         vlr->flag |= R_DIVIDE_24;
2271                 else vlr->flag &= ~R_DIVIDE_24;
2272         }
2273         
2274         /* Recalculate the face normal  - if flipped before, flip now */
2275         if(vlr->v4) {
2276                 CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
2277         }       
2278         else {
2279                 CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
2280         }
2281 }
2282
2283 static void do_displacement(Render *re, ObjectRen *obr, float mat[][4], float imat[][3])
2284 {
2285         VertRen *vr;
2286         VlakRen *vlr;
2287 //      float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
2288         float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
2289         int i; //, texflag=0;
2290         Object *obt;
2291                 
2292         /* Object Size with parenting */
2293         obt=obr->ob;
2294         while(obt){
2295                 VecAddf(temp, obt->size, obt->dsize);
2296                 scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
2297                 obt=obt->parent;
2298         }
2299         
2300         /* Clear all flags */
2301         for(i=0; i<obr->totvert; i++){ 
2302                 vr= RE_findOrAddVert(obr, i);
2303                 vr->flag= 0;
2304         }
2305
2306         for(i=0; i<obr->totvlak; i++){
2307                 vlr=RE_findOrAddVlak(obr, i);
2308                 displace_render_face(re, obr, vlr, scale, mat, imat);
2309         }
2310         
2311         /* Recalc vertex normals */
2312         calc_vertexnormals(re, obr, 0, 0);
2313 }
2314
2315 /* ------------------------------------------------------------------------- */
2316 /* Metaball                                                                                                                              */
2317 /* ------------------------------------------------------------------------- */
2318
2319 static void init_render_mball(Render *re, ObjectRen *obr)
2320 {
2321         Object *ob= obr->ob;
2322         DispList *dl;
2323         VertRen *ver;
2324         VlakRen *vlr, *vlr1;
2325         Material *ma;
2326         float *data, *nors, *orco, mat[4][4], imat[3][3], xn, yn, zn;
2327         int a, need_orco, vlakindex, *index;
2328
2329         if (ob!=find_basis_mball(re->scene, ob))
2330                 return;
2331
2332         MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
2333         MTC_Mat4Invert(ob->imat, mat);
2334         MTC_Mat3CpyMat4(imat, ob->imat);
2335
2336         ma= give_render_material(re, ob, 1);
2337
2338         need_orco= 0;
2339         if(ma->texco & TEXCO_ORCO) {
2340                 need_orco= 1;
2341         }
2342         
2343         makeDispListMBall(re->scene, ob);
2344         dl= ob->disp.first;
2345         if(dl==0) return;
2346
2347         data= dl->verts;
2348         nors= dl->nors;
2349         orco= get_object_orco(re, ob);
2350
2351         for(a=0; a<dl->nr; a++, data+=3, nors+=3, orco+=3) {
2352
2353                 ver= RE_findOrAddVert(obr, obr->totvert++);
2354                 VECCOPY(ver->co, data);
2355                 MTC_Mat4MulVecfl(mat, ver->co);
2356
2357                 /* render normals are inverted */
2358                 xn= -nors[0];
2359                 yn= -nors[1];
2360                 zn= -nors[2];
2361
2362                 /* transpose ! */
2363                 ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2364                 ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2365                 ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2366                 Normalize(ver->n);
2367                 //if(ob->transflag & OB_NEG_SCALE) VecMulf(ver->n. -1.0);
2368                 
2369                 if(need_orco) ver->orco= orco;
2370         }
2371
2372         index= dl->index;
2373         for(a=0; a<dl->parts; a++, index+=4) {
2374
2375                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2376                 vlr->v1= RE_findOrAddVert(obr, index[0]);
2377                 vlr->v2= RE_findOrAddVert(obr, index[1]);
2378                 vlr->v3= RE_findOrAddVert(obr, index[2]);
2379                 vlr->v4= 0;
2380
2381                 if(ob->transflag & OB_NEG_SCALE) 
2382                         CalcNormFloat(vlr->v1->co, vlr->v2->co, vlr->v3->co, vlr->n);
2383                 else
2384                         CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
2385
2386                 vlr->mat= ma;
2387                 vlr->flag= ME_SMOOTH+R_NOPUNOFLIP;
2388                 vlr->ec= 0;
2389
2390                 /* mball -too bad- always has triangles, because quads can be non-planar */
2391                 if(index[3] && index[3]!=index[2]) {
2392                         vlr1= RE_findOrAddVlak(obr, obr->totvlak++);
2393                         vlakindex= vlr1->index;
2394                         *vlr1= *vlr;
2395                         vlr1->index= vlakindex;
2396                         vlr1->v2= vlr1->v3;
2397                         vlr1->v3= RE_findOrAddVert(obr, index[3]);
2398                         if(ob->transflag & OB_NEG_SCALE) 
2399                                 CalcNormFloat(vlr1->v1->co, vlr1->v2->co, vlr1->v3->co, vlr1->n);
2400                         else
2401                                 CalcNormFloat(vlr1->v3->co, vlr1->v2->co, vlr1->v1->co, vlr1->n);
2402                 }
2403         }
2404
2405         /* enforce display lists remade */
2406         freedisplist(&ob->disp);
2407         
2408         /* this enforces remake for real, orco displist is small (in scale) */
2409         ob->recalc |= OB_RECALC_DATA;
2410 }
2411
2412 /* ------------------------------------------------------------------------- */
2413 /* Surfaces and Curves                                                                                                           */
2414 /* ------------------------------------------------------------------------- */
2415
2416 /* returns amount of vertices added for orco */
2417 static int dl_surf_to_renderdata(ObjectRen *obr, DispList *dl, Material **matar, float *orco, float mat[4][4])
2418 {
2419         Object *ob= obr->ob;
2420         VertRen *v1, *v2, *v3, *v4, *ver;
2421         VlakRen *vlr, *vlr1, *vlr2, *vlr3;
2422         Curve *cu= ob->data;
2423         float *data, n1[3];
2424         int u, v, orcoret= 0;
2425         int p1, p2, p3, p4, a;
2426         int sizeu, nsizeu, sizev, nsizev;
2427         int startvert, startvlak;
2428         
2429         startvert= obr->totvert;
2430         nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr; 
2431         
2432         data= dl->verts;
2433         for (u = 0; u < sizeu; u++) {
2434                 v1 = RE_findOrAddVert(obr, obr->totvert++); /* save this for possible V wrapping */
2435                 VECCOPY(v1->co, data); data += 3;
2436                 if(orco) {
2437                         v1->orco= orco; orco+= 3; orcoret++;
2438                 }       
2439                 MTC_Mat4MulVecfl(mat, v1->co);
2440                 
2441                 for (v = 1; v < sizev; v++) {
2442                         ver= RE_findOrAddVert(obr, obr->totvert++);
2443                         VECCOPY(ver->co, data); data += 3;
2444                         if(orco) {
2445                                 ver->orco= orco; orco+= 3; orcoret++;
2446                         }       
2447                         MTC_Mat4MulVecfl(mat, ver->co);
2448                 }
2449                 /* if V-cyclic, add extra vertices at end of the row */
2450                 if (dl->flag & DL_CYCL_U) {
2451                         ver= RE_findOrAddVert(obr, obr->totvert++);
2452                         VECCOPY(ver->co, v1->co);
2453                         if(orco) {
2454                                 ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
2455                         }
2456                 }       
2457         }       
2458         
2459         /* Done before next loop to get corner vert */
2460         if (dl->flag & DL_CYCL_U) nsizev++;
2461         if (dl->flag & DL_CYCL_V) nsizeu++;
2462         
2463         /* if U cyclic, add extra row at end of column */
2464         if (dl->flag & DL_CYCL_V) {
2465                 for (v = 0; v < nsizev; v++) {
2466                         v1= RE_findOrAddVert(obr, startvert + v);
2467                         ver= RE_findOrAddVert(obr, obr->totvert++);
2468                         VECCOPY(ver->co, v1->co);
2469                         if(orco) {
2470                                 ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
2471                         }
2472                 }
2473         }
2474         
2475         sizeu = nsizeu;
2476         sizev = nsizev;
2477         
2478         startvlak= obr->totvlak;
2479         
2480         for(u = 0; u < sizeu - 1; u++) {
2481                 p1 = startvert + u * sizev; /* walk through face list */
2482                 p2 = p1 + 1;
2483                 p3 = p2 + sizev;
2484                 p4 = p3 - 1;
2485                 
2486                 for(v = 0; v < sizev - 1; v++) {
2487                         v1= RE_findOrAddVert(obr, p1);
2488                         v2= RE_findOrAddVert(obr, p2);
2489                         v3= RE_findOrAddVert(obr, p3);
2490                         v4= RE_findOrAddVert(obr, p4);
2491                         
2492                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2493                         vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
2494                         
2495                         CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, n1);
2496                         
2497                         VECCOPY(vlr->n, n1);
2498                         
2499                         vlr->mat= matar[ dl->col];
2500                         vlr->ec= ME_V1V2+ME_V2V3;
2501                         vlr->flag= dl->rt;
2502                         if( (cu->flag & CU_NOPUNOFLIP) ) {
2503                                 vlr->flag |= R_NOPUNOFLIP;
2504                         }
2505                         
2506                         VecAddf(v1->n, v1->n, n1);
2507                         VecAddf(v2->n, v2->n, n1);
2508                         VecAddf(v3->n, v3->n, n1);
2509                         VecAddf(v4->n, v4->n, n1);
2510                         
2511                         p1++; p2++; p3++; p4++;
2512                 }
2513         }       
2514         /* fix normals for U resp. V cyclic faces */
2515         sizeu--; sizev--;  /* dec size for face array */
2516         if (dl->flag & DL_CYCL_V) {
2517                 
2518                 for (v = 0; v < sizev; v++)
2519                 {
2520                         /* optimize! :*/
2521                         vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, v));
2522                         vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, v));
2523                         VecAddf(vlr1->v1->n, vlr1->v1->n, vlr->n);
2524                         VecAddf(vlr1->v2->n, vlr1->v2->n, vlr->n);
2525                         VecAddf(vlr->v3->n, vlr->v3->n, vlr1->n);
2526                         VecAddf(vlr->v4->n, vlr->v4->n, vlr1->n);
2527                 }
2528         }
2529         if (dl->flag & DL_CYCL_U) {
2530                 
2531                 for (u = 0; u < sizeu; u++)
2532                 {
2533                         /* optimize! :*/
2534                         vlr= RE_findOrAddVlak(obr, UVTOINDEX(u, 0));
2535                         vlr1= RE_findOrAddVlak(obr, UVTOINDEX(u, sizev-1));
2536                         VecAddf(vlr1->v2->n, vlr1->v2->n, vlr->n);
2537                         VecAddf(vlr1->v3->n, vlr1->v3->n, vlr->n);
2538                         VecAddf(vlr->v1->n, vlr->v1->n, vlr1->n);
2539                         VecAddf(vlr->v4->n, vlr->v4->n, vlr1->n);
2540                 }
2541         }
2542         /* last vertex is an extra case: 
2543                 
2544                 ^       ()----()----()----()
2545                 |       |     |     ||     |
2546                 u       |     |(0,n)||(0,0)|
2547                 |     |     ||     |
2548                 ()====()====[]====()
2549                 |     |     ||     |
2550                 |     |(m,n)||(m,0)|
2551                 |     |     ||     |
2552                 ()----()----()----()
2553                 v ->
2554                 
2555                 vertex [] is no longer shared, therefore distribute
2556                 normals of the surrounding faces to all of the duplicates of []
2557                 */
2558         
2559         if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U))
2560         {
2561                 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m,n) */
2562                 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0,0));  /* (0,0) */
2563                 VecAddf(n1, vlr->n, vlr1->n);
2564                 vlr2= RE_findOrAddVlak(obr, UVTOINDEX(0, sizev-1)); /* (0,n) */
2565                 VecAddf(n1, n1, vlr2->n);
2566                 vlr3= RE_findOrAddVlak(obr, UVTOINDEX(sizeu-1, 0)); /* (m,0) */
2567                 VecAddf(n1, n1, vlr3->n);
2568                 VECCOPY(vlr->v3->n, n1);
2569                 VECCOPY(vlr1->v1->n, n1);
2570                 VECCOPY(vlr2->v2->n, n1);
2571                 VECCOPY(vlr3->v4->n, n1);
2572         }
2573         for(a = startvert; a < obr->totvert; a++) {
2574                 ver= RE_findOrAddVert(obr, a);
2575                 Normalize(ver->n);
2576         }
2577         
2578         
2579         return orcoret;
2580 }
2581
2582 static void init_render_surf(Render *re, ObjectRen *obr)
2583 {
2584         Object *ob= obr->ob;
2585         Nurb *nu=0;
2586         Curve *cu;
2587         ListBase displist;
2588         DispList *dl;
2589         Material **matar;
2590         float *orco=NULL, *orcobase=NULL, mat[4][4];
2591         int a, totmat, need_orco=0;
2592
2593         cu= ob->data;
2594         nu= cu->nurb.first;
2595         if(nu==0) return;
2596
2597         MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
2598         MTC_Mat4Invert(ob->imat, mat);
2599
2600         /* material array */
2601         totmat= ob->totcol+1;
2602         matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2603
2604         for(a=0; a<totmat; a++) {
2605                 matar[a]= give_render_material(re, ob, a+1);
2606
2607                 if(matar[a] && matar[a]->texco & TEXCO_ORCO)
2608                         need_orco= 1;
2609         }
2610
2611         if(ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
2612
2613         if(need_orco) orcobase= orco= get_object_orco(re, ob);
2614
2615         displist.first= displist.last= 0;
2616         makeDispListSurf(re->scene, ob, &displist, 1, 0);
2617
2618         /* walk along displaylist and create rendervertices/-faces */
2619         for(dl=displist.first; dl; dl=dl->next) {
2620                 /* watch out: u ^= y, v ^= x !! */
2621                 if(dl->type==DL_SURF)
2622                         orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
2623         }
2624
2625         freedisplist(&displist);
2626         MEM_freeN(matar);
2627 }
2628
2629 static void init_render_curve(Render *re, ObjectRen *obr, int timeoffset)
2630 {
2631         Object *ob= obr->ob;
2632         Curve *cu;
2633         VertRen *ver;
2634         VlakRen *vlr;
2635         DispList *dl;
2636         ListBase olddl={NULL, NULL};
2637         Material **matar;
2638         float len, *data, *fp, *orco=NULL, *orcobase= NULL;
2639         float n[3], mat[4][4];
2640         int nr, startvert, startvlak, a, b;
2641         int frontside, need_orco=0, totmat;
2642
2643         cu= ob->data;
2644         if(ob->type==OB_FONT && cu->str==NULL) return;
2645         else if(ob->type==OB_CURVE && cu->nurb.first==NULL) return;
2646
2647         /* no modifier call here, is in makedisp */
2648
2649         if(cu->resolu_ren) 
2650                 SWAP(ListBase, olddl, cu->disp);
2651         
2652         /* test displist */
2653         if(cu->disp.first==NULL) 
2654                 makeDispListCurveTypes(re->scene, ob, 0);
2655         dl= cu->disp.first;
2656         if(cu->disp.first==NULL) return;
2657         
2658         MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
2659         MTC_Mat4Invert(ob->imat, mat);
2660
2661         /* material array */
2662         totmat= ob->totcol+1;
2663         matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2664
2665         for(a=0; a<totmat; a++) {
2666                 matar[a]= give_render_material(re, ob, a+1);
2667
2668                 if(matar[a] && matar[a]->texco & TEXCO_ORCO)
2669                         need_orco= 1;
2670         }
2671
2672         if(need_orco) orcobase=orco= get_object_orco(re, ob);
2673
2674         dl= cu->disp.first;
2675         while(dl) {
2676                 if(dl->type==DL_INDEX3) {
2677                         int *index;
2678
2679                         startvert= obr->totvert;
2680                         data= dl->verts;
2681
2682                         n[0]= ob->imat[0][2];
2683                         n[1]= ob->imat[1][2];
2684                         n[2]= ob->imat[2][2];
2685                         Normalize(n);
2686
2687                         for(a=0; a<dl->nr; a++, data+=3) {
2688                                 ver= RE_findOrAddVert(obr, obr->totvert++);
2689                                 VECCOPY(ver->co, data);
2690
2691                                 /* flip normal if face is backfacing, also used in face loop below */
2692                                 if(ver->co[2] < 0.0) {
2693                                         VECCOPY(ver->n, n);
2694                                         ver->flag = 1;
2695                                 }
2696                                 else {
2697                                         ver->n[0]= -n[0]; ver->n[1]= -n[1]; ver->n[2]= -n[2];
2698                                         ver->flag = 0;
2699                                 }
2700
2701                                 MTC_Mat4MulVecfl(mat, ver->co);
2702                                 
2703                                 if (orco) {
2704                                         ver->orco = orco;
2705                                         orco += 3;
2706                                 }
2707                         }
2708                         
2709                         if(timeoffset==0) {
2710                                 startvlak= obr->totvlak;
2711                                 index= dl->index;
2712                                 for(a=0; a<dl->parts; a++, index+=3) {
2713
2714                                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2715                                         vlr->v1= RE_findOrAddVert(obr, startvert+index[0]);
2716                                         vlr->v2= RE_findOrAddVert(obr, startvert+index[1]);
2717                                         vlr->v3= RE_findOrAddVert(obr, startvert+index[2]);
2718                                         vlr->v4= NULL;
2719                                         
2720                                         if(vlr->v1->flag) {
2721                                                 VECCOPY(vlr->n, n);
2722                                         }
2723                                         else {
2724                                                 vlr->n[0]= -n[0]; vlr->n[1]= -n[1]; vlr->n[2]= -n[2];
2725                                         }
2726                                         
2727                                         vlr->mat= matar[ dl->col ];
2728                                         vlr->flag= 0;
2729                                         if( (cu->flag & CU_NOPUNOFLIP) ) {
2730                                                 vlr->flag |= R_NOPUNOFLIP;
2731                                         }
2732                                         vlr->ec= 0;
2733                                 }
2734                         }
2735                 }
2736                 else if (dl->type==DL_SURF) {
2737                         
2738                         /* cyclic U means an extruded full circular curve, we skip bevel splitting then */
2739                         if (dl->flag & DL_CYCL_U) {
2740                                 orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
2741                         }
2742                         else {
2743                                 int p1,p2,p3,p4;
2744
2745                                 fp= dl->verts;
2746                                 startvert= obr->totvert;
2747                                 nr= dl->nr*dl->parts;
2748
2749                                 while(nr--) {
2750                                         ver= RE_findOrAddVert(obr, obr->totvert++);
2751                                                 
2752                                         VECCOPY(ver->co, fp);
2753                                         MTC_Mat4MulVecfl(mat, ver->co);
2754                                         fp+= 3;
2755
2756                                         if (orco) {
2757                                                 ver->orco = orco;
2758                                                 orco += 3;
2759                                         }
2760                                 }
2761
2762                                 if(dl->bevelSplitFlag || timeoffset==0) {
2763                                         startvlak= obr->totvlak;
2764
2765                                         for(a=0; a<dl->parts; a++) {
2766
2767                                                 frontside= (a >= dl->nr/2);
2768                                                 
2769                                                 if (surfindex_displist(dl, a, &b, &p1, &p2, &p3, &p4)==0)
2770                                                         break;
2771                                                 
2772                                                 p1+= startvert;
2773                                                 p2+= startvert;
2774                                                 p3+= startvert;
2775                                                 p4+= startvert;
2776
2777                                                 for(; b<dl->nr; b++) {
2778                                                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2779                                                         vlr->v1= RE_findOrAddVert(obr, p2);
2780                                                         vlr->v2= RE_findOrAddVert(obr, p1);
2781                                                         vlr->v3= RE_findOrAddVert(obr, p3);
2782                                                         vlr->v4= RE_findOrAddVert(obr, p4);
2783                                                         vlr->ec= ME_V2V3+ME_V3V4;
2784                                                         if(a==0) vlr->ec+= ME_V1V2;
2785
2786                                                         vlr->flag= dl->rt;
2787
2788                                                         /* this is not really scientific: the vertices
2789                                                                 * 2, 3 en 4 seem to give better vertexnormals than 1 2 3:
2790                                                                 * front and backside treated different!!
2791                                                                 */
2792
2793                                                         if(frontside)
2794                                                                 CalcNormFloat(vlr->v2->co, vlr->v3->co, vlr->v4->co, vlr->n);
2795                                                         else 
2796                                                                 CalcNormFloat(vlr->v1->co, vlr->v2->co, vlr->v3->co, vlr->n);
2797
2798                                                         vlr->mat= matar[ dl->col ];
2799
2800                                                         p4= p3;
2801                                                         p3++;
2802                                                         p2= p1;
2803                                                         p1++;
2804                                                 }
2805                                         }
2806
2807                                         if (dl->bevelSplitFlag) {
2808                                                 for(a=0; a<dl->parts-1+!!(dl->flag&DL_CYCL_V); a++)
2809                                                         if(dl->bevelSplitFlag[a>>5]&(1<<(a&0x1F)))
2810                                                                 split_v_renderfaces(obr, startvlak, startvert, dl->parts, dl->nr, a, dl->flag&DL_CYCL_V, dl->flag&DL_CYCL_U);
2811                                         }
2812
2813                                         /* vertex normals */
2814                                         for(a= startvlak; a<obr->totvlak; a++) {
2815                                                 vlr= RE_findOrAddVlak(obr, a);
2816
2817                                                 VecAddf(vlr->v1->n, vlr->v1->n, vlr->n);
2818                                                 VecAddf(vlr->v3->n, vlr->v3->n, vlr->n);
2819                                                 VecAddf(vlr->v2->n, vlr->v2->n, vlr->n);
2820                                                 VecAddf(vlr->v4->n, vlr->v4->n, vlr->n);
2821                                         }
2822                                         for(a=startvert; a<obr->totvert; a++) {
2823                                                 ver= RE_findOrAddVert(obr, a);
2824                                                 len= Normalize(ver->n);
2825                                                 if(len==0.0) ver->flag= 1;      /* flag abuse, its only used in zbuf now  */
2826                                                 else ver->flag= 0;
2827                                         }
2828                                         for(a= startvlak; a<obr->totvlak; a++) {
2829                                                 vlr= RE_findOrAddVlak(obr, a);
2830                                                 if(vlr->v1->flag) VECCOPY(vlr->v1->n, vlr->n);
2831                                                 if(vlr->v2->flag) VECCOPY(vlr->v2->n, vlr->n);
2832                                                 if(vlr->v3->flag) VECCOPY(vlr->v3->n, vlr->n);
2833                                                 if(vlr->v4->flag) VECCOPY(vlr->v4->n, vlr->n);
2834                                         }
2835                                 }
2836                         }
2837                 }
2838
2839                 dl= dl->next;
2840         }
2841         
2842         /* not very elegant... but we want original displist in UI */
2843         if(cu->resolu_ren) {
2844                 freedisplist(&cu->disp);
2845                 SWAP(ListBase, olddl, cu->disp);
2846         }
2847
2848         MEM_freeN(matar);
2849 }
2850
2851 /* ------------------------------------------------------------------------- */
2852 /* Mesh                                                                                                                                  */
2853 /* ------------------------------------------------------------------------- */
2854
2855 struct edgesort {
2856         int v1, v2;
2857         int f;
2858         int i1, i2;
2859 };
2860
2861 /* edges have to be added with lowest index first for sorting */
2862 static void to_edgesort(struct edgesort *ed, int i1, int i2, int v1, int v2, int f)
2863 {
2864         if(v1>v2) {
2865                 SWAP(int, v1, v2);
2866                 SWAP(int, i1, i2);
2867         }
2868
2869         ed->v1= v1;
2870         ed->v2= v2;
2871         ed->i1= i1;
2872         ed->i2= i2;
2873         ed->f = f;
2874 }
2875
2876 static int vergedgesort(const void *v1, const void *v2)
2877 {
2878         const struct edgesort *x1=v1, *x2=v2;
2879         
2880         if( x1->v1 > x2->v1) return 1;
2881         else if( x1->v1 < x2->v1) return -1;
2882         else if( x1->v2 > x2->v2) return 1;
2883         else if( x1->v2 < x2->v2) return -1;
2884         
2885         return 0;
2886 }
2887
2888 static struct edgesort *make_mesh_edge_lookup(DerivedMesh *dm, int *totedgesort)
2889 {
2890         MFace *mf, *mface;
2891         MTFace *tface=NULL;
2892         struct edgesort *edsort, *ed;
2893         unsigned int *mcol=NULL;
2894         int a, totedge=0, totface;
2895         
2896         mface= dm->getFaceArray(dm);
2897         totface= dm->getNumFaces(dm);
2898         tface= dm->getFaceDataArray(dm, CD_MTFACE);
2899         mcol= dm->getFaceDataArray(dm, CD_MCOL);
2900