Correct own error in recent BVH nearest ray
[blender.git] / extern / bullet2 / src / BulletCollision / CollisionDispatch / btCollisionWorld.h
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2013 Erwin Coumans  http://bulletphysics.org
4
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose, 
8 including commercial applications, and to alter it and redistribute it freely, 
9 subject to the following restrictions:
10
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15
16
17 /**
18  * @page Bullet Documentation
19  *
20  * @section intro_sec Introduction
21  * Bullet is a Collision Detection and Rigid Body Dynamics Library. The Library is Open Source and free for commercial use, under the ZLib license ( http://opensource.org/licenses/zlib-license.php ).
22  *
23  * The main documentation is Bullet_User_Manual.pdf, included in the source code distribution.
24  * There is the Physics Forum for feedback and general Collision Detection and Physics discussions.
25  * Please visit http://www.bulletphysics.org
26  *
27  * @section install_sec Installation
28  *
29  * @subsection step1 Step 1: Download
30  * You can download the Bullet Physics Library from the Google Code repository: http://code.google.com/p/bullet/downloads/list
31  *
32  * @subsection step2 Step 2: Building
33  * Bullet has multiple build systems, including premake, cmake and autotools. Premake and cmake support all platforms.
34  * Premake is included in the Bullet/build folder for Windows, Mac OSX and Linux. 
35  * Under Windows you can click on Bullet/build/vs2010.bat to create Microsoft Visual Studio projects. 
36  * On Mac OSX and Linux you can open a terminal and generate Makefile, codeblocks or Xcode4 projects:
37  * cd Bullet/build
38  * ./premake4_osx gmake or ./premake4_linux gmake or ./premake4_linux64 gmake or (for Mac) ./premake4_osx xcode4
39  * cd Bullet/build/gmake
40  * make
41  * 
42  * An alternative to premake is cmake. You can download cmake from http://www.cmake.org
43  * cmake can autogenerate projectfiles for Microsoft Visual Studio, Apple Xcode, KDevelop and Unix Makefiles.
44  * The easiest is to run the CMake cmake-gui graphical user interface and choose the options and generate projectfiles.
45  * You can also use cmake in the command-line. Here are some examples for various platforms:
46  * cmake . -G "Visual Studio 9 2008"
47  * cmake . -G Xcode
48  * cmake . -G "Unix Makefiles"
49  * Although cmake is recommended, you can also use autotools for UNIX: ./autogen.sh ./configure to create a Makefile and then run make.
50  * 
51  * @subsection step3 Step 3: Testing demos
52  * Try to run and experiment with BasicDemo executable as a starting point.
53  * Bullet can be used in several ways, as Full Rigid Body simulation, as Collision Detector Library or Low Level / Snippets like the GJK Closest Point calculation.
54  * The Dependencies can be seen in this documentation under Directories
55  * 
56  * @subsection step4 Step 4: Integrating in your application, full Rigid Body and Soft Body simulation
57  * Check out BasicDemo how to create a btDynamicsWorld, btRigidBody and btCollisionShape, Stepping the simulation and synchronizing your graphics object transform.
58  * Check out SoftDemo how to use soft body dynamics, using btSoftRigidDynamicsWorld.
59  * @subsection step5 Step 5 : Integrate the Collision Detection Library (without Dynamics and other Extras)
60  * Bullet Collision Detection can also be used without the Dynamics/Extras.
61  * Check out btCollisionWorld and btCollisionObject, and the CollisionInterfaceDemo.
62  * @subsection step6 Step 6 : Use Snippets like the GJK Closest Point calculation.
63  * Bullet has been designed in a modular way keeping dependencies to a minimum. The ConvexHullDistance demo demonstrates direct use of btGjkPairDetector.
64  *
65  * @section copyright Copyright
66  * For up-to-data information and copyright and contributors list check out the Bullet_User_Manual.pdf
67  * 
68  */
69  
70  
71
72 #ifndef BT_COLLISION_WORLD_H
73 #define BT_COLLISION_WORLD_H
74
75 class btCollisionShape;
76 class btConvexShape;
77 class btBroadphaseInterface;
78 class btSerializer;
79
80 #include "LinearMath/btVector3.h"
81 #include "LinearMath/btTransform.h"
82 #include "btCollisionObject.h"
83 #include "btCollisionDispatcher.h"
84 #include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h"
85 #include "LinearMath/btAlignedObjectArray.h"
86
87 ///CollisionWorld is interface and container for the collision detection
88 class btCollisionWorld
89 {
90
91         
92 protected:
93
94         btAlignedObjectArray<btCollisionObject*>        m_collisionObjects;
95         
96         btDispatcher*   m_dispatcher1;
97
98         btDispatcherInfo        m_dispatchInfo;
99
100         btBroadphaseInterface*  m_broadphasePairCache;
101
102         btIDebugDraw*   m_debugDrawer;
103
104         ///m_forceUpdateAllAabbs can be set to false as an optimization to only update active object AABBs
105         ///it is true by default, because it is error-prone (setting the position of static objects wouldn't update their AABB)
106         bool m_forceUpdateAllAabbs;
107
108         void    serializeCollisionObjects(btSerializer* serializer);
109
110 public:
111
112         //this constructor doesn't own the dispatcher and paircache/broadphase
113         btCollisionWorld(btDispatcher* dispatcher,btBroadphaseInterface* broadphasePairCache, btCollisionConfiguration* collisionConfiguration);
114
115         virtual ~btCollisionWorld();
116
117         void    setBroadphase(btBroadphaseInterface*    pairCache)
118         {
119                 m_broadphasePairCache = pairCache;
120         }
121
122         const btBroadphaseInterface*    getBroadphase() const
123         {
124                 return m_broadphasePairCache;
125         }
126
127         btBroadphaseInterface*  getBroadphase()
128         {
129                 return m_broadphasePairCache;
130         }
131
132         btOverlappingPairCache* getPairCache()
133         {
134                 return m_broadphasePairCache->getOverlappingPairCache();
135         }
136
137
138         btDispatcher*   getDispatcher()
139         {
140                 return m_dispatcher1;
141         }
142
143         const btDispatcher*     getDispatcher() const
144         {
145                 return m_dispatcher1;
146         }
147
148         void    updateSingleAabb(btCollisionObject* colObj);
149
150         virtual void    updateAabbs();
151
152         ///the computeOverlappingPairs is usually already called by performDiscreteCollisionDetection (or stepSimulation)
153         ///it can be useful to use if you perform ray tests without collision detection/simulation
154         virtual void    computeOverlappingPairs();
155
156         
157         virtual void    setDebugDrawer(btIDebugDraw*    debugDrawer)
158         {
159                         m_debugDrawer = debugDrawer;
160         }
161
162         virtual btIDebugDraw*   getDebugDrawer()
163         {
164                 return m_debugDrawer;
165         }
166
167         virtual void    debugDrawWorld();
168
169         virtual void debugDrawObject(const btTransform& worldTransform, const btCollisionShape* shape, const btVector3& color);
170
171
172         ///LocalShapeInfo gives extra information for complex shapes
173         ///Currently, only btTriangleMeshShape is available, so it just contains triangleIndex and subpart
174         struct  LocalShapeInfo
175         {
176                 int     m_shapePart;
177                 int     m_triangleIndex;
178                 
179                 //const btCollisionShape*       m_shapeTemp;
180                 //const btTransform*    m_shapeLocalTransform;
181         };
182
183         struct  LocalRayResult
184         {
185                 LocalRayResult(const btCollisionObject* collisionObject, 
186                         LocalShapeInfo* localShapeInfo,
187                         const btVector3&                hitNormalLocal,
188                         btScalar hitFraction)
189                 :m_collisionObject(collisionObject),
190                 m_localShapeInfo(localShapeInfo),
191                 m_hitNormalLocal(hitNormalLocal),
192                 m_hitFraction(hitFraction)
193                 {
194                 }
195
196                 const btCollisionObject*                m_collisionObject;
197                 LocalShapeInfo*                 m_localShapeInfo;
198                 btVector3                               m_hitNormalLocal;
199                 btScalar                                m_hitFraction;
200
201         };
202
203         ///RayResultCallback is used to report new raycast results
204         struct  RayResultCallback
205         {
206                 btScalar        m_closestHitFraction;
207                 const btCollisionObject*                m_collisionObject;
208                 short int       m_collisionFilterGroup;
209                 short int       m_collisionFilterMask;
210                 //@BP Mod - Custom flags, currently used to enable backface culling on tri-meshes, see btRaycastCallback.h. Apply any of the EFlags defined there on m_flags here to invoke.
211                 unsigned int m_flags;
212
213                 virtual ~RayResultCallback()
214                 {
215                 }
216                 bool    hasHit() const
217                 {
218                         return (m_collisionObject != 0);
219                 }
220
221                 RayResultCallback()
222                         :m_closestHitFraction(btScalar(1.)),
223                         m_collisionObject(0),
224                         m_collisionFilterGroup(btBroadphaseProxy::DefaultFilter),
225                         m_collisionFilterMask(btBroadphaseProxy::AllFilter),
226                         //@BP Mod
227                         m_flags(0)
228                 {
229                 }
230
231                 virtual bool needsCollision(btBroadphaseProxy* proxy0) const
232                 {
233                         bool collides = (proxy0->m_collisionFilterGroup & m_collisionFilterMask) != 0;
234                         collides = collides && (m_collisionFilterGroup & proxy0->m_collisionFilterMask);
235                         return collides;
236                 }
237
238
239                 virtual btScalar        addSingleResult(LocalRayResult& rayResult,bool normalInWorldSpace) = 0;
240         };
241
242         struct  ClosestRayResultCallback : public RayResultCallback
243         {
244                 ClosestRayResultCallback(const btVector3&       rayFromWorld,const btVector3&   rayToWorld)
245                 :m_rayFromWorld(rayFromWorld),
246                 m_rayToWorld(rayToWorld)
247                 {
248                 }
249
250                 btVector3       m_rayFromWorld;//used to calculate hitPointWorld from hitFraction
251                 btVector3       m_rayToWorld;
252
253                 btVector3       m_hitNormalWorld;
254                 btVector3       m_hitPointWorld;
255                         
256                 virtual btScalar        addSingleResult(LocalRayResult& rayResult,bool normalInWorldSpace)
257                 {
258                         //caller already does the filter on the m_closestHitFraction
259                         btAssert(rayResult.m_hitFraction <= m_closestHitFraction);
260                         
261                         m_closestHitFraction = rayResult.m_hitFraction;
262                         m_collisionObject = rayResult.m_collisionObject;
263                         if (normalInWorldSpace)
264                         {
265                                 m_hitNormalWorld = rayResult.m_hitNormalLocal;
266                         } else
267                         {
268                                 ///need to transform normal into worldspace
269                                 m_hitNormalWorld = m_collisionObject->getWorldTransform().getBasis()*rayResult.m_hitNormalLocal;
270                         }
271                         m_hitPointWorld.setInterpolate3(m_rayFromWorld,m_rayToWorld,rayResult.m_hitFraction);
272                         return rayResult.m_hitFraction;
273                 }
274         };
275
276         struct  AllHitsRayResultCallback : public RayResultCallback
277         {
278                 AllHitsRayResultCallback(const btVector3&       rayFromWorld,const btVector3&   rayToWorld)
279                 :m_rayFromWorld(rayFromWorld),
280                 m_rayToWorld(rayToWorld)
281                 {
282                 }
283
284                 btAlignedObjectArray<const btCollisionObject*>          m_collisionObjects;
285
286                 btVector3       m_rayFromWorld;//used to calculate hitPointWorld from hitFraction
287                 btVector3       m_rayToWorld;
288
289                 btAlignedObjectArray<btVector3> m_hitNormalWorld;
290                 btAlignedObjectArray<btVector3> m_hitPointWorld;
291                 btAlignedObjectArray<btScalar> m_hitFractions;
292                         
293                 virtual btScalar        addSingleResult(LocalRayResult& rayResult,bool normalInWorldSpace)
294                 {
295                         m_collisionObject = rayResult.m_collisionObject;
296                         m_collisionObjects.push_back(rayResult.m_collisionObject);
297                         btVector3 hitNormalWorld;
298                         if (normalInWorldSpace)
299                         {
300                                 hitNormalWorld = rayResult.m_hitNormalLocal;
301                         } else
302                         {
303                                 ///need to transform normal into worldspace
304                                 hitNormalWorld = m_collisionObject->getWorldTransform().getBasis()*rayResult.m_hitNormalLocal;
305                         }
306                         m_hitNormalWorld.push_back(hitNormalWorld);
307                         btVector3 hitPointWorld;
308                         hitPointWorld.setInterpolate3(m_rayFromWorld,m_rayToWorld,rayResult.m_hitFraction);
309                         m_hitPointWorld.push_back(hitPointWorld);
310                         m_hitFractions.push_back(rayResult.m_hitFraction);
311                         return m_closestHitFraction;
312                 }
313         };
314
315
316         struct LocalConvexResult
317         {
318                 LocalConvexResult(const btCollisionObject*      hitCollisionObject, 
319                         LocalShapeInfo* localShapeInfo,
320                         const btVector3&                hitNormalLocal,
321                         const btVector3&                hitPointLocal,
322                         btScalar hitFraction
323                         )
324                 :m_hitCollisionObject(hitCollisionObject),
325                 m_localShapeInfo(localShapeInfo),
326                 m_hitNormalLocal(hitNormalLocal),
327                 m_hitPointLocal(hitPointLocal),
328                 m_hitFraction(hitFraction)
329                 {
330                 }
331
332                 const btCollisionObject*                m_hitCollisionObject;
333                 LocalShapeInfo*                 m_localShapeInfo;
334                 btVector3                               m_hitNormalLocal;
335                 btVector3                               m_hitPointLocal;
336                 btScalar                                m_hitFraction;
337         };
338
339         ///RayResultCallback is used to report new raycast results
340         struct  ConvexResultCallback
341         {
342                 btScalar        m_closestHitFraction;
343                 short int       m_collisionFilterGroup;
344                 short int       m_collisionFilterMask;
345                 
346                 ConvexResultCallback()
347                         :m_closestHitFraction(btScalar(1.)),
348                         m_collisionFilterGroup(btBroadphaseProxy::DefaultFilter),
349                         m_collisionFilterMask(btBroadphaseProxy::AllFilter)
350                 {
351                 }
352
353                 virtual ~ConvexResultCallback()
354                 {
355                 }
356                 
357                 bool    hasHit() const
358                 {
359                         return (m_closestHitFraction < btScalar(1.));
360                 }
361
362                 
363
364                 virtual bool needsCollision(btBroadphaseProxy* proxy0) const
365                 {
366                         bool collides = (proxy0->m_collisionFilterGroup & m_collisionFilterMask) != 0;
367                         collides = collides && (m_collisionFilterGroup & proxy0->m_collisionFilterMask);
368                         return collides;
369                 }
370
371                 virtual btScalar        addSingleResult(LocalConvexResult& convexResult,bool normalInWorldSpace) = 0;
372         };
373
374         struct  ClosestConvexResultCallback : public ConvexResultCallback
375         {
376                 ClosestConvexResultCallback(const btVector3&    convexFromWorld,const btVector3&        convexToWorld)
377                 :m_convexFromWorld(convexFromWorld),
378                 m_convexToWorld(convexToWorld),
379                 m_hitCollisionObject(0)
380                 {
381                 }
382
383                 btVector3       m_convexFromWorld;//used to calculate hitPointWorld from hitFraction
384                 btVector3       m_convexToWorld;
385
386                 btVector3       m_hitNormalWorld;
387                 btVector3       m_hitPointWorld;
388                 const btCollisionObject*        m_hitCollisionObject;
389                 
390                 virtual btScalar        addSingleResult(LocalConvexResult& convexResult,bool normalInWorldSpace)
391                 {
392 //caller already does the filter on the m_closestHitFraction
393                         btAssert(convexResult.m_hitFraction <= m_closestHitFraction);
394                                                 
395                         m_closestHitFraction = convexResult.m_hitFraction;
396                         m_hitCollisionObject = convexResult.m_hitCollisionObject;
397                         if (normalInWorldSpace)
398                         {
399                                 m_hitNormalWorld = convexResult.m_hitNormalLocal;
400                         } else
401                         {
402                                 ///need to transform normal into worldspace
403                                 m_hitNormalWorld = m_hitCollisionObject->getWorldTransform().getBasis()*convexResult.m_hitNormalLocal;
404                         }
405                         m_hitPointWorld = convexResult.m_hitPointLocal;
406                         return convexResult.m_hitFraction;
407                 }
408         };
409
410         ///ContactResultCallback is used to report contact points
411         struct  ContactResultCallback
412         {
413                 short int       m_collisionFilterGroup;
414                 short int       m_collisionFilterMask;
415                 
416                 ContactResultCallback()
417                         :m_collisionFilterGroup(btBroadphaseProxy::DefaultFilter),
418                         m_collisionFilterMask(btBroadphaseProxy::AllFilter)
419                 {
420                 }
421
422                 virtual ~ContactResultCallback()
423                 {
424                 }
425                 
426                 virtual bool needsCollision(btBroadphaseProxy* proxy0) const
427                 {
428                         bool collides = (proxy0->m_collisionFilterGroup & m_collisionFilterMask) != 0;
429                         collides = collides && (m_collisionFilterGroup & proxy0->m_collisionFilterMask);
430                         return collides;
431                 }
432
433                 virtual btScalar        addSingleResult(btManifoldPoint& cp,    const btCollisionObjectWrapper* colObj0Wrap,int partId0,int index0,const btCollisionObjectWrapper* colObj1Wrap,int partId1,int index1) = 0;
434         };
435
436
437
438         int     getNumCollisionObjects() const
439         {
440                 return int(m_collisionObjects.size());
441         }
442
443         /// rayTest performs a raycast on all objects in the btCollisionWorld, and calls the resultCallback
444         /// This allows for several queries: first hit, all hits, any hit, dependent on the value returned by the callback.
445         virtual void rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const; 
446
447         /// convexTest performs a swept convex cast on all objects in the btCollisionWorld, and calls the resultCallback
448         /// This allows for several queries: first hit, all hits, any hit, dependent on the value return by the callback.
449         void    convexSweepTest (const btConvexShape* castShape, const btTransform& from, const btTransform& to, ConvexResultCallback& resultCallback,  btScalar allowedCcdPenetration = btScalar(0.)) const;
450
451         ///contactTest performs a discrete collision test between colObj against all objects in the btCollisionWorld, and calls the resultCallback.
452         ///it reports one or more contact points for every overlapping object (including the one with deepest penetration)
453         void    contactTest(btCollisionObject* colObj, ContactResultCallback& resultCallback);
454
455         ///contactTest performs a discrete collision test between two collision objects and calls the resultCallback if overlap if detected.
456         ///it reports one or more contact points (including the one with deepest penetration)
457         void    contactPairTest(btCollisionObject* colObjA, btCollisionObject* colObjB, ContactResultCallback& resultCallback);
458
459
460         /// rayTestSingle performs a raycast call and calls the resultCallback. It is used internally by rayTest.
461         /// In a future implementation, we consider moving the ray test as a virtual method in btCollisionShape.
462         /// This allows more customization.
463         static void     rayTestSingle(const btTransform& rayFromTrans,const btTransform& rayToTrans,
464                                           btCollisionObject* collisionObject,
465                                           const btCollisionShape* collisionShape,
466                                           const btTransform& colObjWorldTransform,
467                                           RayResultCallback& resultCallback);
468
469         static void     rayTestSingleInternal(const btTransform& rayFromTrans,const btTransform& rayToTrans,
470                                           const btCollisionObjectWrapper* collisionObjectWrap,
471                                           RayResultCallback& resultCallback);
472
473         /// objectQuerySingle performs a collision detection query and calls the resultCallback. It is used internally by rayTest.
474         static void     objectQuerySingle(const btConvexShape* castShape, const btTransform& rayFromTrans,const btTransform& rayToTrans,
475                                           btCollisionObject* collisionObject,
476                                           const btCollisionShape* collisionShape,
477                                           const btTransform& colObjWorldTransform,
478                                           ConvexResultCallback& resultCallback, btScalar        allowedPenetration);
479
480         static void     objectQuerySingleInternal(const btConvexShape* castShape,const btTransform& convexFromTrans,const btTransform& convexToTrans,
481                                                                                         const btCollisionObjectWrapper* colObjWrap,
482                                                                                         ConvexResultCallback& resultCallback, btScalar allowedPenetration);
483
484         virtual void    addCollisionObject(btCollisionObject* collisionObject,short int collisionFilterGroup=btBroadphaseProxy::DefaultFilter,short int collisionFilterMask=btBroadphaseProxy::AllFilter);
485
486         btCollisionObjectArray& getCollisionObjectArray()
487         {
488                 return m_collisionObjects;
489         }
490
491         const btCollisionObjectArray& getCollisionObjectArray() const
492         {
493                 return m_collisionObjects;
494         }
495
496
497         virtual void    removeCollisionObject(btCollisionObject* collisionObject);
498
499         virtual void    performDiscreteCollisionDetection();
500
501         btDispatcherInfo& getDispatchInfo()
502         {
503                 return m_dispatchInfo;
504         }
505
506         const btDispatcherInfo& getDispatchInfo() const
507         {
508                 return m_dispatchInfo;
509         }
510         
511         bool    getForceUpdateAllAabbs() const
512         {
513                 return m_forceUpdateAllAabbs;
514         }
515         void setForceUpdateAllAabbs( bool forceUpdateAllAabbs)
516         {
517                 m_forceUpdateAllAabbs = forceUpdateAllAabbs;
518         }
519
520         ///Preliminary serialization test for Bullet 2.76. Loading those files requires a separate parser (Bullet/Demos/SerializeDemo)
521         virtual void    serialize(btSerializer* serializer);
522
523 };
524
525
526 #endif //BT_COLLISION_WORLD_H