Merging r58464 through r58474 from trunk into soc-2013-depsgraph_mt
[blender.git] / source / blender / blenkernel / intern / armature.c
1 /*
2  * ***** BEGIN GPL LICENSE BLOCK *****
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17  *
18  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
19  * All rights reserved.
20  *
21  * Contributor(s): Full recode, Ton Roosendaal, Crete 2005
22  *
23  * ***** END GPL LICENSE BLOCK *****
24  */
25
26 /** \file blender/blenkernel/intern/armature.c
27  *  \ingroup bke
28  */
29
30
31 #include <ctype.h>
32 #include <stdlib.h>
33 #include <math.h>
34 #include <string.h>
35 #include <stdio.h>
36 #include <float.h>
37
38 #include "MEM_guardedalloc.h"
39
40 #include "BLI_math.h"
41 #include "BLI_blenlib.h"
42 #include "BLI_utildefines.h"
43
44 #include "DNA_anim_types.h"
45 #include "DNA_armature_types.h"
46 #include "DNA_constraint_types.h"
47 #include "DNA_mesh_types.h"
48 #include "DNA_lattice_types.h"
49 #include "DNA_meshdata_types.h"
50 #include "DNA_nla_types.h"
51 #include "DNA_scene_types.h"
52 #include "DNA_object_types.h"
53
54 #include "BKE_animsys.h"
55 #include "BKE_armature.h"
56 #include "BKE_action.h"
57 #include "BKE_anim.h"
58 #include "BKE_constraint.h"
59 #include "BKE_curve.h"
60 #include "BKE_depsgraph.h"
61 #include "BKE_DerivedMesh.h"
62 #include "BKE_deform.h"
63 #include "BKE_displist.h"
64 #include "BKE_global.h"
65 #include "BKE_idprop.h"
66 #include "BKE_library.h"
67 #include "BKE_lattice.h"
68 #include "BKE_main.h"
69 #include "BKE_object.h"
70 #include "BKE_scene.h"
71
72 #include "BIK_api.h"
73 #include "BKE_sketch.h"
74
75 /* **************** Generic Functions, data level *************** */
76
77 bArmature *BKE_armature_add(Main *bmain, const char *name)
78 {
79         bArmature *arm;
80
81         arm = BKE_libblock_alloc(&bmain->armature, ID_AR, name);
82         arm->deformflag = ARM_DEF_VGROUP | ARM_DEF_ENVELOPE;
83         arm->flag = ARM_COL_CUSTOM; /* custom bone-group colors */
84         arm->layer = 1;
85         return arm;
86 }
87
88 bArmature *BKE_armature_from_object(Object *ob)
89 {
90         if (ob->type == OB_ARMATURE)
91                 return (bArmature *)ob->data;
92         return NULL;
93 }
94
95 void BKE_armature_bonelist_free(ListBase *lb)
96 {
97         Bone *bone;
98
99         for (bone = lb->first; bone; bone = bone->next) {
100                 if (bone->prop) {
101                         IDP_FreeProperty(bone->prop);
102                         MEM_freeN(bone->prop);
103                 }
104                 BKE_armature_bonelist_free(&bone->childbase);
105         }
106
107         BLI_freelistN(lb);
108 }
109
110 void BKE_armature_free(bArmature *arm)
111 {
112         if (arm) {
113                 BKE_armature_bonelist_free(&arm->bonebase);
114
115                 /* free editmode data */
116                 if (arm->edbo) {
117                         BLI_freelistN(arm->edbo);
118
119                         MEM_freeN(arm->edbo);
120                         arm->edbo = NULL;
121                 }
122
123                 /* free sketch */
124                 if (arm->sketch) {
125                         freeSketch(arm->sketch);
126                         arm->sketch = NULL;
127                 }
128
129                 /* free animation data */
130                 if (arm->adt) {
131                         BKE_free_animdata(&arm->id);
132                         arm->adt = NULL;
133                 }
134         }
135 }
136
137 void BKE_armature_make_local(bArmature *arm)
138 {
139         Main *bmain = G.main;
140         int is_local = FALSE, is_lib = FALSE;
141         Object *ob;
142
143         if (arm->id.lib == NULL)
144                 return;
145         if (arm->id.us == 1) {
146                 id_clear_lib_data(bmain, &arm->id);
147                 return;
148         }
149
150         for (ob = bmain->object.first; ob && ELEM(0, is_lib, is_local); ob = ob->id.next) {
151                 if (ob->data == arm) {
152                         if (ob->id.lib)
153                                 is_lib = TRUE;
154                         else
155                                 is_local = TRUE;
156                 }
157         }
158
159         if (is_local && is_lib == FALSE) {
160                 id_clear_lib_data(bmain, &arm->id);
161         }
162         else if (is_local && is_lib) {
163                 bArmature *arm_new = BKE_armature_copy(arm);
164                 arm_new->id.us = 0;
165
166                 /* Remap paths of new ID using old library as base. */
167                 BKE_id_lib_local_paths(bmain, arm->id.lib, &arm_new->id);
168
169                 for (ob = bmain->object.first; ob; ob = ob->id.next) {
170                         if (ob->data == arm) {
171                                 if (ob->id.lib == NULL) {
172                                         ob->data = arm_new;
173                                         arm_new->id.us++;
174                                         arm->id.us--;
175                                 }
176                         }
177                 }
178         }
179 }
180
181 static void copy_bonechildren(Bone *newBone, Bone *oldBone, Bone *actBone, Bone **newActBone)
182 {
183         Bone *curBone, *newChildBone;
184
185         if (oldBone == actBone)
186                 *newActBone = newBone;
187
188         if (oldBone->prop)
189                 newBone->prop = IDP_CopyProperty(oldBone->prop);
190
191         /* Copy this bone's list */
192         BLI_duplicatelist(&newBone->childbase, &oldBone->childbase);
193
194         /* For each child in the list, update it's children */
195         newChildBone = newBone->childbase.first;
196         for (curBone = oldBone->childbase.first; curBone; curBone = curBone->next) {
197                 newChildBone->parent = newBone;
198                 copy_bonechildren(newChildBone, curBone, actBone, newActBone);
199                 newChildBone = newChildBone->next;
200         }
201 }
202
203 bArmature *BKE_armature_copy(bArmature *arm)
204 {
205         bArmature *newArm;
206         Bone *oldBone, *newBone;
207         Bone *newActBone = NULL;
208
209         newArm = BKE_libblock_copy(&arm->id);
210         BLI_duplicatelist(&newArm->bonebase, &arm->bonebase);
211
212         /* Duplicate the childrens' lists */
213         newBone = newArm->bonebase.first;
214         for (oldBone = arm->bonebase.first; oldBone; oldBone = oldBone->next) {
215                 newBone->parent = NULL;
216                 copy_bonechildren(newBone, oldBone, arm->act_bone, &newActBone);
217                 newBone = newBone->next;
218         }
219
220         newArm->act_bone = newActBone;
221
222         newArm->edbo = NULL;
223         newArm->act_edbone = NULL;
224         newArm->sketch = NULL;
225
226         return newArm;
227 }
228
229 static Bone *get_named_bone_bonechildren(Bone *bone, const char *name)
230 {
231         Bone *curBone, *rbone;
232
233         if (!strcmp(bone->name, name))
234                 return bone;
235
236         for (curBone = bone->childbase.first; curBone; curBone = curBone->next) {
237                 rbone = get_named_bone_bonechildren(curBone, name);
238                 if (rbone)
239                         return rbone;
240         }
241
242         return NULL;
243 }
244
245
246 /* Walk the list until the bone is found */
247 Bone *BKE_armature_find_bone_name(bArmature *arm, const char *name)
248 {
249         Bone *bone = NULL, *curBone;
250
251         if (!arm)
252                 return NULL;
253
254         for (curBone = arm->bonebase.first; curBone; curBone = curBone->next) {
255                 bone = get_named_bone_bonechildren(curBone, name);
256                 if (bone)
257                         return bone;
258         }
259
260         return bone;
261 }
262
263 /* Finds the best possible extension to the name on a particular axis. (For renaming, check for
264  * unique names afterwards) strip_number: removes number extensions  (TODO: not used)
265  * axis: the axis to name on
266  * head/tail: the head/tail co-ordinate of the bone on the specified axis */
267 int bone_autoside_name(char name[MAXBONENAME], int UNUSED(strip_number), short axis, float head, float tail)
268 {
269         unsigned int len;
270         char basename[MAXBONENAME] = "";
271         char extension[5] = "";
272
273         len = strlen(name);
274         if (len == 0)
275                 return 0;
276         BLI_strncpy(basename, name, sizeof(basename));
277
278         /* Figure out extension to append:
279          *      - The extension to append is based upon the axis that we are working on.
280          *      - If head happens to be on 0, then we must consider the tail position as well to decide
281          *        which side the bone is on
282          *              -> If tail is 0, then it's bone is considered to be on axis, so no extension should be added
283          *              -> Otherwise, extension is added from perspective of object based on which side tail goes to
284          *      - If head is non-zero, extension is added from perspective of object based on side head is on
285          */
286         if (axis == 2) {
287                 /* z-axis - vertical (top/bottom) */
288                 if (IS_EQ(head, 0)) {
289                         if (tail < 0)
290                                 strcpy(extension, "Bot");
291                         else if (tail > 0)
292                                 strcpy(extension, "Top");
293                 }
294                 else {
295                         if (head < 0)
296                                 strcpy(extension, "Bot");
297                         else
298                                 strcpy(extension, "Top");
299                 }
300         }
301         else if (axis == 1) {
302                 /* y-axis - depth (front/back) */
303                 if (IS_EQ(head, 0)) {
304                         if (tail < 0)
305                                 strcpy(extension, "Fr");
306                         else if (tail > 0)
307                                 strcpy(extension, "Bk");
308                 }
309                 else {
310                         if (head < 0)
311                                 strcpy(extension, "Fr");
312                         else
313                                 strcpy(extension, "Bk");
314                 }
315         }
316         else {
317                 /* x-axis - horizontal (left/right) */
318                 if (IS_EQ(head, 0)) {
319                         if (tail < 0)
320                                 strcpy(extension, "R");
321                         else if (tail > 0)
322                                 strcpy(extension, "L");
323                 }
324                 else {
325                         if (head < 0)
326                                 strcpy(extension, "R");
327                         /* XXX Shouldn't this be simple else, as for z and y axes? */
328                         else if (head > 0)
329                                 strcpy(extension, "L");
330                 }
331         }
332
333         /* Simple name truncation
334          *      - truncate if there is an extension and it wouldn't be able to fit
335          *      - otherwise, just append to end
336          */
337         if (extension[0]) {
338                 int change = 1;
339
340                 while (change) { /* remove extensions */
341                         change = 0;
342                         if (len > 2 && basename[len - 2] == '.') {
343                                 if (basename[len - 1] == 'L' || basename[len - 1] == 'R') { /* L R */
344                                         basename[len - 2] = '\0';
345                                         len -= 2;
346                                         change = 1;
347                                 }
348                         }
349                         else if (len > 3 && basename[len - 3] == '.') {
350                                 if ((basename[len - 2] == 'F' && basename[len - 1] == 'r') || /* Fr */
351                                     (basename[len - 2] == 'B' && basename[len - 1] == 'k')) /* Bk */
352                                 {
353                                         basename[len - 3] = '\0';
354                                         len -= 3;
355                                         change = 1;
356                                 }
357                         }
358                         else if (len > 4 && basename[len - 4] == '.') {
359                                 if ((basename[len - 3] == 'T' && basename[len - 2] == 'o' && basename[len - 1] == 'p') || /* Top */
360                                     (basename[len - 3] == 'B' && basename[len - 2] == 'o' && basename[len - 1] == 't')) /* Bot */
361                                 {
362                                         basename[len - 4] = '\0';
363                                         len -= 4;
364                                         change = 1;
365                                 }
366                         }
367                 }
368
369                 if ((MAXBONENAME - len) < strlen(extension) + 1) { /* add 1 for the '.' */
370                         strncpy(name, basename, len - strlen(extension));
371                 }
372
373                 BLI_snprintf(name, MAXBONENAME, "%s.%s", basename, extension);
374
375                 return 1;
376         }
377
378         else
379                 return 0;
380 }
381
382 /* ************* B-Bone support ******************* */
383
384 /* data has MAX_BBONE_SUBDIV+1 interpolated points, will become desired amount with equal distances */
385 static void equalize_bezier(float *data, int desired)
386 {
387         float *fp, totdist, ddist, dist, fac1, fac2;
388         float pdist[MAX_BBONE_SUBDIV + 1];
389         float temp[MAX_BBONE_SUBDIV + 1][4];
390         int a, nr;
391
392         pdist[0] = 0.0f;
393         for (a = 0, fp = data; a < MAX_BBONE_SUBDIV; a++, fp += 4) {
394                 copy_qt_qt(temp[a], fp);
395                 pdist[a + 1] = pdist[a] + len_v3v3(fp, fp + 4);
396         }
397         /* do last point */
398         copy_qt_qt(temp[a], fp);
399         totdist = pdist[a];
400
401         /* go over distances and calculate new points */
402         ddist = totdist / ((float)desired);
403         nr = 1;
404         for (a = 1, fp = data + 4; a < desired; a++, fp += 4) {
405                 dist = ((float)a) * ddist;
406
407                 /* we're looking for location (distance) 'dist' in the array */
408                 while ((dist >= pdist[nr]) && nr < MAX_BBONE_SUBDIV)
409                         nr++;
410
411                 fac1 = pdist[nr] - pdist[nr - 1];
412                 fac2 = pdist[nr] - dist;
413                 fac1 = fac2 / fac1;
414                 fac2 = 1.0f - fac1;
415
416                 fp[0] = fac1 * temp[nr - 1][0] + fac2 * temp[nr][0];
417                 fp[1] = fac1 * temp[nr - 1][1] + fac2 * temp[nr][1];
418                 fp[2] = fac1 * temp[nr - 1][2] + fac2 * temp[nr][2];
419                 fp[3] = fac1 * temp[nr - 1][3] + fac2 * temp[nr][3];
420         }
421         /* set last point, needed for orientation calculus */
422         copy_qt_qt(fp, temp[MAX_BBONE_SUBDIV]);
423 }
424
425 /* returns pointer to static array, filled with desired amount of bone->segments elements */
426 /* this calculation is done  within unit bone space */
427 void b_bone_spline_setup(bPoseChannel *pchan, int rest, Mat4 result_array[MAX_BBONE_SUBDIV])
428 {
429         bPoseChannel *next, *prev;
430         Bone *bone = pchan->bone;
431         float h1[3], h2[3], scale[3], length, hlength1, hlength2, roll1 = 0.0f, roll2;
432         float mat3[3][3], imat[4][4], posemat[4][4], scalemat[4][4], iscalemat[4][4];
433         float data[MAX_BBONE_SUBDIV + 1][4], *fp;
434         int a, do_scale = 0;
435
436         length = bone->length;
437
438         if (!rest) {
439                 /* check if we need to take non-uniform bone scaling into account */
440                 scale[0] = len_v3(pchan->pose_mat[0]);
441                 scale[1] = len_v3(pchan->pose_mat[1]);
442                 scale[2] = len_v3(pchan->pose_mat[2]);
443
444                 if (fabsf(scale[0] - scale[1]) > 1e-6f || fabsf(scale[1] - scale[2]) > 1e-6f) {
445                         unit_m4(scalemat);
446                         scalemat[0][0] = scale[0];
447                         scalemat[1][1] = scale[1];
448                         scalemat[2][2] = scale[2];
449                         invert_m4_m4(iscalemat, scalemat);
450
451                         length *= scale[1];
452                         do_scale = 1;
453                 }
454         }
455
456         hlength1 = bone->ease1 * length * 0.390464f; /* 0.5f * sqrt(2) * kappa, the handle length for near-perfect circles */
457         hlength2 = bone->ease2 * length * 0.390464f;
458
459         /* evaluate next and prev bones */
460         if (bone->flag & BONE_CONNECTED)
461                 prev = pchan->parent;
462         else
463                 prev = NULL;
464
465         next = pchan->child;
466
467         /* find the handle points, since this is inside bone space, the
468          * first point = (0, 0, 0)
469          * last point =  (0, length, 0) */
470         if (rest) {
471                 invert_m4_m4(imat, pchan->bone->arm_mat);
472         }
473         else if (do_scale) {
474                 copy_m4_m4(posemat, pchan->pose_mat);
475                 normalize_m4(posemat);
476                 invert_m4_m4(imat, posemat);
477         }
478         else
479                 invert_m4_m4(imat, pchan->pose_mat);
480
481         if (prev) {
482                 float difmat[4][4], result[3][3], imat3[3][3];
483
484                 /* transform previous point inside this bone space */
485                 if (rest)
486                         copy_v3_v3(h1, prev->bone->arm_head);
487                 else
488                         copy_v3_v3(h1, prev->pose_head);
489                 mul_m4_v3(imat, h1);
490
491                 if (prev->bone->segments > 1) {
492                         /* if previous bone is B-bone too, use average handle direction */
493                         h1[1] -= length;
494                         roll1 = 0.0f;
495                 }
496
497                 normalize_v3(h1);
498                 mul_v3_fl(h1, -hlength1);
499
500                 if (prev->bone->segments == 1) {
501                         /* find the previous roll to interpolate */
502                         if (rest)
503                                 mul_m4_m4m4(difmat, imat, prev->bone->arm_mat);
504                         else
505                                 mul_m4_m4m4(difmat, imat, prev->pose_mat);
506                         copy_m3_m4(result, difmat); /* the desired rotation at beginning of next bone */
507
508                         vec_roll_to_mat3(h1, 0.0f, mat3); /* the result of vec_roll without roll */
509
510                         invert_m3_m3(imat3, mat3);
511                         mul_m3_m3m3(mat3, result, imat3); /* the matrix transforming vec_roll to desired roll */
512
513                         roll1 = (float)atan2(mat3[2][0], mat3[2][2]);
514                 }
515         }
516         else {
517                 h1[0] = 0.0f; h1[1] = hlength1; h1[2] = 0.0f;
518                 roll1 = 0.0f;
519         }
520         if (next) {
521                 float difmat[4][4], result[3][3], imat3[3][3];
522
523                 /* transform next point inside this bone space */
524                 if (rest)
525                         copy_v3_v3(h2, next->bone->arm_tail);
526                 else
527                         copy_v3_v3(h2, next->pose_tail);
528                 mul_m4_v3(imat, h2);
529
530                 /* if next bone is B-bone too, use average handle direction */
531                 if (next->bone->segments > 1) {
532                         /* pass */
533                 }
534                 else {
535                         h2[1] -= length;
536                 }
537                 normalize_v3(h2);
538
539                 /* find the next roll to interpolate as well */
540                 if (rest)
541                         mul_m4_m4m4(difmat, imat, next->bone->arm_mat);
542                 else
543                         mul_m4_m4m4(difmat, imat, next->pose_mat);
544                 copy_m3_m4(result, difmat); /* the desired rotation at beginning of next bone */
545
546                 vec_roll_to_mat3(h2, 0.0f, mat3); /* the result of vec_roll without roll */
547
548                 invert_m3_m3(imat3, mat3);
549                 mul_m3_m3m3(mat3, imat3, result); /* the matrix transforming vec_roll to desired roll */
550
551                 roll2 = (float)atan2(mat3[2][0], mat3[2][2]);
552
553                 /* and only now negate handle */
554                 mul_v3_fl(h2, -hlength2);
555         }
556         else {
557                 h2[0] = 0.0f; h2[1] = -hlength2; h2[2] = 0.0f;
558                 roll2 = 0.0;
559         }
560
561         /* make curve */
562         if (bone->segments > MAX_BBONE_SUBDIV)
563                 bone->segments = MAX_BBONE_SUBDIV;
564
565         BKE_curve_forward_diff_bezier(0.0f,  h1[0],                               h2[0],                               0.0f,   data[0],     MAX_BBONE_SUBDIV, 4 * sizeof(float));
566         BKE_curve_forward_diff_bezier(0.0f,  h1[1],                               length + h2[1],                      length, data[0] + 1, MAX_BBONE_SUBDIV, 4 * sizeof(float));
567         BKE_curve_forward_diff_bezier(0.0f,  h1[2],                               h2[2],                               0.0f,   data[0] + 2, MAX_BBONE_SUBDIV, 4 * sizeof(float));
568         BKE_curve_forward_diff_bezier(roll1, roll1 + 0.390464f * (roll2 - roll1), roll2 - 0.390464f * (roll2 - roll1), roll2,  data[0] + 3, MAX_BBONE_SUBDIV, 4 * sizeof(float));
569
570         equalize_bezier(data[0], bone->segments); /* note: does stride 4! */
571
572         /* make transformation matrices for the segments for drawing */
573         for (a = 0, fp = data[0]; a < bone->segments; a++, fp += 4) {
574                 sub_v3_v3v3(h1, fp + 4, fp);
575                 vec_roll_to_mat3(h1, fp[3], mat3); /* fp[3] is roll */
576
577                 copy_m4_m3(result_array[a].mat, mat3);
578                 copy_v3_v3(result_array[a].mat[3], fp);
579
580                 if (do_scale) {
581                         /* correct for scaling when this matrix is used in scaled space */
582                         mul_serie_m4(result_array[a].mat, iscalemat, result_array[a].mat, scalemat, NULL, NULL, NULL, NULL, NULL);
583                 }
584         }
585 }
586
587 /* ************ Armature Deform ******************* */
588
589 typedef struct bPoseChanDeform {
590         Mat4     *b_bone_mats;
591         DualQuat *dual_quat;
592         DualQuat *b_bone_dual_quats;
593 } bPoseChanDeform;
594
595 static void pchan_b_bone_defmats(bPoseChannel *pchan, bPoseChanDeform *pdef_info, int use_quaternion)
596 {
597         Bone *bone = pchan->bone;
598         Mat4 b_bone[MAX_BBONE_SUBDIV], b_bone_rest[MAX_BBONE_SUBDIV];
599         Mat4 *b_bone_mats;
600         DualQuat *b_bone_dual_quats = NULL;
601         float tmat[4][4] = MAT4_UNITY;
602         int a;
603
604         b_bone_spline_setup(pchan, 0, b_bone);
605         b_bone_spline_setup(pchan, 1, b_bone_rest);
606
607         /* allocate b_bone matrices and dual quats */
608         b_bone_mats = MEM_mallocN((1 + bone->segments) * sizeof(Mat4), "BBone defmats");
609         pdef_info->b_bone_mats = b_bone_mats;
610
611         if (use_quaternion) {
612                 b_bone_dual_quats = MEM_mallocN((bone->segments) * sizeof(DualQuat), "BBone dqs");
613                 pdef_info->b_bone_dual_quats = b_bone_dual_quats;
614         }
615
616         /* first matrix is the inverse arm_mat, to bring points in local bone space
617          * for finding out which segment it belongs to */
618         invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat);
619
620         /* then we make the b_bone_mats:
621          * - first transform to local bone space
622          * - translate over the curve to the bbone mat space
623          * - transform with b_bone matrix
624          * - transform back into global space */
625
626         for (a = 0; a < bone->segments; a++) {
627                 invert_m4_m4(tmat, b_bone_rest[a].mat);
628
629                 mul_serie_m4(b_bone_mats[a + 1].mat, pchan->chan_mat, bone->arm_mat, b_bone[a].mat, tmat, b_bone_mats[0].mat,
630                              NULL, NULL, NULL);
631
632                 if (use_quaternion)
633                         mat4_to_dquat(&b_bone_dual_quats[a], bone->arm_mat, b_bone_mats[a + 1].mat);
634         }
635 }
636
637 static void b_bone_deform(bPoseChanDeform *pdef_info, Bone *bone, float co[3], DualQuat *dq, float defmat[3][3])
638 {
639         Mat4 *b_bone = pdef_info->b_bone_mats;
640         float (*mat)[4] = b_bone[0].mat;
641         float segment, y;
642         int a;
643
644         /* need to transform co back to bonespace, only need y */
645         y = mat[0][1] * co[0] + mat[1][1] * co[1] + mat[2][1] * co[2] + mat[3][1];
646
647         /* now calculate which of the b_bones are deforming this */
648         segment = bone->length / ((float)bone->segments);
649         a = (int)(y / segment);
650
651         /* note; by clamping it extends deform at endpoints, goes best with
652          * straight joints in restpos. */
653         CLAMP(a, 0, bone->segments - 1);
654
655         if (dq) {
656                 copy_dq_dq(dq, &(pdef_info->b_bone_dual_quats)[a]);
657         }
658         else {
659                 mul_m4_v3(b_bone[a + 1].mat, co);
660
661                 if (defmat) {
662                         copy_m3_m4(defmat, b_bone[a + 1].mat);
663                 }
664         }
665 }
666
667 /* using vec with dist to bone b1 - b2 */
668 float distfactor_to_bone(const float vec[3], const float b1[3], const float b2[3], float rad1, float rad2, float rdist)
669 {
670         float dist = 0.0f;
671         float bdelta[3];
672         float pdelta[3];
673         float hsqr, a, l, rad;
674
675         sub_v3_v3v3(bdelta, b2, b1);
676         l = normalize_v3(bdelta);
677
678         sub_v3_v3v3(pdelta, vec, b1);
679
680         a = dot_v3v3(bdelta, pdelta);
681         hsqr = dot_v3v3(pdelta, pdelta);
682
683         if (a < 0.0f) {
684                 /* If we're past the end of the bone, do a spherical field attenuation thing */
685                 dist = len_squared_v3v3(b1, vec);
686                 rad = rad1;
687         }
688         else if (a > l) {
689                 /* If we're past the end of the bone, do a spherical field attenuation thing */
690                 dist = len_squared_v3v3(b2, vec);
691                 rad = rad2;
692         }
693         else {
694                 dist = (hsqr - (a * a));
695
696                 if (l != 0.0f) {
697                         rad = a / l;
698                         rad = rad * rad2 + (1.0f - rad) * rad1;
699                 }
700                 else
701                         rad = rad1;
702         }
703
704         a = rad * rad;
705         if (dist < a)
706                 return 1.0f;
707         else {
708                 l = rad + rdist;
709                 l *= l;
710                 if (rdist == 0.0f || dist >= l)
711                         return 0.0f;
712                 else {
713                         a = sqrtf(dist) - rad;
714                         return 1.0f - (a * a) / (rdist * rdist);
715                 }
716         }
717 }
718
719 static void pchan_deform_mat_add(bPoseChannel *pchan, float weight, float bbonemat[3][3], float mat[3][3])
720 {
721         float wmat[3][3];
722
723         if (pchan->bone->segments > 1)
724                 copy_m3_m3(wmat, bbonemat);
725         else
726                 copy_m3_m4(wmat, pchan->chan_mat);
727
728         mul_m3_fl(wmat, weight);
729         add_m3_m3m3(mat, mat, wmat);
730 }
731
732 static float dist_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float vec[3], DualQuat *dq,
733                               float mat[3][3], const float co[3])
734 {
735         Bone *bone = pchan->bone;
736         float fac, contrib = 0.0;
737         float cop[3], bbonemat[3][3];
738         DualQuat bbonedq;
739
740         if (bone == NULL)
741                 return 0.0f;
742
743         copy_v3_v3(cop, co);
744
745         fac = distfactor_to_bone(cop, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
746
747         if (fac > 0.0f) {
748                 fac *= bone->weight;
749                 contrib = fac;
750                 if (contrib > 0.0f) {
751                         if (vec) {
752                                 if (bone->segments > 1)
753                                         /* applies on cop and bbonemat */
754                                         b_bone_deform(pdef_info, bone, cop, NULL, (mat) ? bbonemat : NULL);
755                                 else
756                                         mul_m4_v3(pchan->chan_mat, cop);
757
758                                 /* Make this a delta from the base position */
759                                 sub_v3_v3(cop, co);
760                                 madd_v3_v3fl(vec, cop, fac);
761
762                                 if (mat)
763                                         pchan_deform_mat_add(pchan, fac, bbonemat, mat);
764                         }
765                         else {
766                                 if (bone->segments > 1) {
767                                         b_bone_deform(pdef_info, bone, cop, &bbonedq, NULL);
768                                         add_weighted_dq_dq(dq, &bbonedq, fac);
769                                 }
770                                 else
771                                         add_weighted_dq_dq(dq, pdef_info->dual_quat, fac);
772                         }
773                 }
774         }
775
776         return contrib;
777 }
778
779 static void pchan_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float weight, float vec[3], DualQuat *dq,
780                               float mat[3][3], const float co[3], float *contrib)
781 {
782         float cop[3], bbonemat[3][3];
783         DualQuat bbonedq;
784
785         if (!weight)
786                 return;
787
788         copy_v3_v3(cop, co);
789
790         if (vec) {
791                 if (pchan->bone->segments > 1)
792                         /* applies on cop and bbonemat */
793                         b_bone_deform(pdef_info, pchan->bone, cop, NULL, (mat) ? bbonemat : NULL);
794                 else
795                         mul_m4_v3(pchan->chan_mat, cop);
796
797                 vec[0] += (cop[0] - co[0]) * weight;
798                 vec[1] += (cop[1] - co[1]) * weight;
799                 vec[2] += (cop[2] - co[2]) * weight;
800
801                 if (mat)
802                         pchan_deform_mat_add(pchan, weight, bbonemat, mat);
803         }
804         else {
805                 if (pchan->bone->segments > 1) {
806                         b_bone_deform(pdef_info, pchan->bone, cop, &bbonedq, NULL);
807                         add_weighted_dq_dq(dq, &bbonedq, weight);
808                 }
809                 else
810                         add_weighted_dq_dq(dq, pdef_info->dual_quat, weight);
811         }
812
813         (*contrib) += weight;
814 }
815
816 void armature_deform_verts(Object *armOb, Object *target, DerivedMesh *dm, float (*vertexCos)[3],
817                            float (*defMats)[3][3], int numVerts, int deformflag,
818                            float (*prevCos)[3], const char *defgrp_name)
819 {
820         bPoseChanDeform *pdef_info_array;
821         bPoseChanDeform *pdef_info = NULL;
822         bArmature *arm = armOb->data;
823         bPoseChannel *pchan, **defnrToPC = NULL;
824         int *defnrToPCIndex = NULL;
825         MDeformVert *dverts = NULL;
826         bDeformGroup *dg;
827         DualQuat *dualquats = NULL;
828         float obinv[4][4], premat[4][4], postmat[4][4];
829         const short use_envelope = deformflag & ARM_DEF_ENVELOPE;
830         const short use_quaternion = deformflag & ARM_DEF_QUATERNION;
831         const short invert_vgroup = deformflag & ARM_DEF_INVERT_VGROUP;
832         int defbase_tot = 0;       /* safety for vertexgroup index overflow */
833         int i, target_totvert = 0; /* safety for vertexgroup overflow */
834         int use_dverts = FALSE;
835         int armature_def_nr;
836         int totchan;
837
838         if (arm->edbo) return;
839
840         invert_m4_m4(obinv, target->obmat);
841         copy_m4_m4(premat, target->obmat);
842         mul_m4_m4m4(postmat, obinv, armOb->obmat);
843         invert_m4_m4(premat, postmat);
844
845         /* bone defmats are already in the channels, chan_mat */
846
847         /* initialize B_bone matrices and dual quaternions */
848         totchan = BLI_countlist(&armOb->pose->chanbase);
849
850         if (use_quaternion) {
851                 dualquats = MEM_callocN(sizeof(DualQuat) * totchan, "dualquats");
852         }
853
854         pdef_info_array = MEM_callocN(sizeof(bPoseChanDeform) * totchan, "bPoseChanDeform");
855
856         totchan = 0;
857         pdef_info = pdef_info_array;
858         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
859                 if (!(pchan->bone->flag & BONE_NO_DEFORM)) {
860                         if (pchan->bone->segments > 1)
861                                 pchan_b_bone_defmats(pchan, pdef_info, use_quaternion);
862
863                         if (use_quaternion) {
864                                 pdef_info->dual_quat = &dualquats[totchan++];
865                                 mat4_to_dquat(pdef_info->dual_quat, pchan->bone->arm_mat, pchan->chan_mat);
866                         }
867                 }
868         }
869
870         /* get the def_nr for the overall armature vertex group if present */
871         armature_def_nr = defgroup_name_index(target, defgrp_name);
872
873         if (ELEM(target->type, OB_MESH, OB_LATTICE)) {
874                 defbase_tot = BLI_countlist(&target->defbase);
875
876                 if (target->type == OB_MESH) {
877                         Mesh *me = target->data;
878                         dverts = me->dvert;
879                         if (dverts)
880                                 target_totvert = me->totvert;
881                 }
882                 else {
883                         Lattice *lt = target->data;
884                         dverts = lt->dvert;
885                         if (dverts)
886                                 target_totvert = lt->pntsu * lt->pntsv * lt->pntsw;
887                 }
888         }
889
890         /* get a vertex-deform-index to posechannel array */
891         if (deformflag & ARM_DEF_VGROUP) {
892                 if (ELEM(target->type, OB_MESH, OB_LATTICE)) {
893                         /* if we have a DerivedMesh, only use dverts if it has them */
894                         if (dm) {
895                                 use_dverts = (dm->getVertData(dm, 0, CD_MDEFORMVERT) != NULL);
896                         }
897                         else if (dverts) {
898                                 use_dverts = TRUE;
899                         }
900
901                         if (use_dverts) {
902                                 defnrToPC = MEM_callocN(sizeof(*defnrToPC) * defbase_tot, "defnrToBone");
903                                 defnrToPCIndex = MEM_callocN(sizeof(*defnrToPCIndex) * defbase_tot, "defnrToIndex");
904                                 for (i = 0, dg = target->defbase.first; dg; i++, dg = dg->next) {
905                                         defnrToPC[i] = BKE_pose_channel_find_name(armOb->pose, dg->name);
906                                         /* exclude non-deforming bones */
907                                         if (defnrToPC[i]) {
908                                                 if (defnrToPC[i]->bone->flag & BONE_NO_DEFORM) {
909                                                         defnrToPC[i] = NULL;
910                                                 }
911                                                 else {
912                                                         defnrToPCIndex[i] = BLI_findindex(&armOb->pose->chanbase, defnrToPC[i]);
913                                                 }
914                                         }
915                                 }
916                         }
917                 }
918         }
919
920         for (i = 0; i < numVerts; i++) {
921                 MDeformVert *dvert;
922                 DualQuat sumdq, *dq = NULL;
923                 float *co, dco[3];
924                 float sumvec[3], summat[3][3];
925                 float *vec = NULL, (*smat)[3] = NULL;
926                 float contrib = 0.0f;
927                 float armature_weight = 1.0f; /* default to 1 if no overall def group */
928                 float prevco_weight = 1.0f;   /* weight for optional cached vertexcos */
929
930                 if (use_quaternion) {
931                         memset(&sumdq, 0, sizeof(DualQuat));
932                         dq = &sumdq;
933                 }
934                 else {
935                         sumvec[0] = sumvec[1] = sumvec[2] = 0.0f;
936                         vec = sumvec;
937
938                         if (defMats) {
939                                 zero_m3(summat);
940                                 smat = summat;
941                         }
942                 }
943
944                 if (use_dverts || armature_def_nr != -1) {
945                         if (dm)
946                                 dvert = dm->getVertData(dm, i, CD_MDEFORMVERT);
947                         else if (dverts && i < target_totvert)
948                                 dvert = dverts + i;
949                         else
950                                 dvert = NULL;
951                 }
952                 else
953                         dvert = NULL;
954
955                 if (armature_def_nr != -1 && dvert) {
956                         armature_weight = defvert_find_weight(dvert, armature_def_nr);
957
958                         if (invert_vgroup)
959                                 armature_weight = 1.0f - armature_weight;
960
961                         /* hackish: the blending factor can be used for blending with prevCos too */
962                         if (prevCos) {
963                                 prevco_weight = armature_weight;
964                                 armature_weight = 1.0f;
965                         }
966                 }
967
968                 /* check if there's any  point in calculating for this vert */
969                 if (armature_weight == 0.0f)
970                         continue;
971
972                 /* get the coord we work on */
973                 co = prevCos ? prevCos[i] : vertexCos[i];
974
975                 /* Apply the object's matrix */
976                 mul_m4_v3(premat, co);
977
978                 if (use_dverts && dvert && dvert->totweight) { /* use weight groups ? */
979                         MDeformWeight *dw = dvert->dw;
980                         int deformed = 0;
981                         unsigned int j;
982
983                         for (j = dvert->totweight; j != 0; j--, dw++) {
984                                 const int index = dw->def_nr;
985                                 if (index >= 0 && index < defbase_tot && (pchan = defnrToPC[index])) {
986                                         float weight = dw->weight;
987                                         Bone *bone = pchan->bone;
988                                         pdef_info = pdef_info_array + defnrToPCIndex[index];
989
990                                         deformed = 1;
991
992                                         if (bone && bone->flag & BONE_MULT_VG_ENV) {
993                                                 weight *= distfactor_to_bone(co, bone->arm_head, bone->arm_tail,
994                                                                              bone->rad_head, bone->rad_tail, bone->dist);
995                                         }
996                                         pchan_bone_deform(pchan, pdef_info, weight, vec, dq, smat, co, &contrib);
997                                 }
998                         }
999                         /* if there are vertexgroups but not groups with bones
1000                          * (like for softbody groups) */
1001                         if (deformed == 0 && use_envelope) {
1002                                 pdef_info = pdef_info_array;
1003                                 for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1004                                         if (!(pchan->bone->flag & BONE_NO_DEFORM))
1005                                                 contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
1006                                 }
1007                         }
1008                 }
1009                 else if (use_envelope) {
1010                         pdef_info = pdef_info_array;
1011                         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1012                                 if (!(pchan->bone->flag & BONE_NO_DEFORM))
1013                                         contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
1014                         }
1015                 }
1016
1017                 /* actually should be EPSILON? weight values and contrib can be like 10e-39 small */
1018                 if (contrib > 0.0001f) {
1019                         if (use_quaternion) {
1020                                 normalize_dq(dq, contrib);
1021
1022                                 if (armature_weight != 1.0f) {
1023                                         copy_v3_v3(dco, co);
1024                                         mul_v3m3_dq(dco, (defMats) ? summat : NULL, dq);
1025                                         sub_v3_v3(dco, co);
1026                                         mul_v3_fl(dco, armature_weight);
1027                                         add_v3_v3(co, dco);
1028                                 }
1029                                 else
1030                                         mul_v3m3_dq(co, (defMats) ? summat : NULL, dq);
1031
1032                                 smat = summat;
1033                         }
1034                         else {
1035                                 mul_v3_fl(vec, armature_weight / contrib);
1036                                 add_v3_v3v3(co, vec, co);
1037                         }
1038
1039                         if (defMats) {
1040                                 float pre[3][3], post[3][3], tmpmat[3][3];
1041
1042                                 copy_m3_m4(pre, premat);
1043                                 copy_m3_m4(post, postmat);
1044                                 copy_m3_m3(tmpmat, defMats[i]);
1045
1046                                 if (!use_quaternion) /* quaternion already is scale corrected */
1047                                         mul_m3_fl(smat, armature_weight / contrib);
1048
1049                                 mul_serie_m3(defMats[i], tmpmat, pre, smat, post, NULL, NULL, NULL, NULL);
1050                         }
1051                 }
1052
1053                 /* always, check above code */
1054                 mul_m4_v3(postmat, co);
1055
1056                 /* interpolate with previous modifier position using weight group */
1057                 if (prevCos) {
1058                         float mw = 1.0f - prevco_weight;
1059                         vertexCos[i][0] = prevco_weight * vertexCos[i][0] + mw * co[0];
1060                         vertexCos[i][1] = prevco_weight * vertexCos[i][1] + mw * co[1];
1061                         vertexCos[i][2] = prevco_weight * vertexCos[i][2] + mw * co[2];
1062                 }
1063         }
1064
1065         if (dualquats)
1066                 MEM_freeN(dualquats);
1067         if (defnrToPC)
1068                 MEM_freeN(defnrToPC);
1069         if (defnrToPCIndex)
1070                 MEM_freeN(defnrToPCIndex);
1071
1072         /* free B_bone matrices */
1073         pdef_info = pdef_info_array;
1074         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1075                 if (pdef_info->b_bone_mats)
1076                         MEM_freeN(pdef_info->b_bone_mats);
1077                 if (pdef_info->b_bone_dual_quats)
1078                         MEM_freeN(pdef_info->b_bone_dual_quats);
1079         }
1080
1081         MEM_freeN(pdef_info_array);
1082 }
1083
1084 /* ************ END Armature Deform ******************* */
1085
1086 void get_objectspace_bone_matrix(struct Bone *bone, float M_accumulatedMatrix[4][4], int UNUSED(root),
1087                                  int UNUSED(posed))
1088 {
1089         copy_m4_m4(M_accumulatedMatrix, bone->arm_mat);
1090 }
1091
1092 /* **************** Space to Space API ****************** */
1093
1094 /* Convert World-Space Matrix to Pose-Space Matrix */
1095 void BKE_armature_mat_world_to_pose(Object *ob, float inmat[4][4], float outmat[4][4])
1096 {
1097         float obmat[4][4];
1098
1099         /* prevent crashes */
1100         if (ob == NULL)
1101                 return;
1102
1103         /* get inverse of (armature) object's matrix  */
1104         invert_m4_m4(obmat, ob->obmat);
1105
1106         /* multiply given matrix by object's-inverse to find pose-space matrix */
1107         mul_m4_m4m4(outmat, inmat, obmat);
1108 }
1109
1110 /* Convert World-Space Location to Pose-Space Location
1111  * NOTE: this cannot be used to convert to pose-space location of the supplied
1112  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1113 void BKE_armature_loc_world_to_pose(Object *ob, const float inloc[3], float outloc[3])
1114 {
1115         float xLocMat[4][4] = MAT4_UNITY;
1116         float nLocMat[4][4];
1117
1118         /* build matrix for location */
1119         copy_v3_v3(xLocMat[3], inloc);
1120
1121         /* get bone-space cursor matrix and extract location */
1122         BKE_armature_mat_world_to_pose(ob, xLocMat, nLocMat);
1123         copy_v3_v3(outloc, nLocMat[3]);
1124 }
1125
1126 /* Simple helper, computes the offset bone matrix.
1127  *     offs_bone = yoffs(b-1) + root(b) + bonemat(b).
1128  * Not exported, as it is only used in this file currently... */
1129 static void get_offset_bone_mat(Bone *bone, float offs_bone[4][4])
1130 {
1131         if (!bone->parent)
1132                 return;
1133
1134         /* Bone transform itself. */
1135         copy_m4_m3(offs_bone, bone->bone_mat);
1136
1137         /* The bone's root offset (is in the parent's coordinate system). */
1138         copy_v3_v3(offs_bone[3], bone->head);
1139
1140         /* Get the length translation of parent (length along y axis). */
1141         offs_bone[3][1] += bone->parent->length;
1142 }
1143
1144 /* Construct the matrices (rot/scale and loc) to apply the PoseChannels into the armature (object) space.
1145  * I.e. (roughly) the "pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)" in the
1146  *     pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
1147  * ...function.
1148  *
1149  * This allows to get the transformations of a bone in its object space, *before* constraints (and IK)
1150  * get applied (used by pose evaluation code).
1151  * And reverse: to find pchan transformations needed to place a bone at a given loc/rot/scale
1152  * in object space (used by interactive transform, and snapping code).
1153  *
1154  * Note that, with the HINGE/NO_SCALE/NO_LOCAL_LOCATION options, the location matrix
1155  * will differ from the rotation/scale matrix...
1156  *
1157  * NOTE: This cannot be used to convert to pose-space transforms of the supplied
1158  *       pose-channel into its local space (i.e. 'visual'-keyframing).
1159  *       (note: I don't understand that, so I keep it :p --mont29).
1160  */
1161 void BKE_pchan_to_pose_mat(bPoseChannel *pchan, float rotscale_mat[4][4], float loc_mat[4][4])
1162 {
1163         Bone *bone, *parbone;
1164         bPoseChannel *parchan;
1165
1166         /* set up variables for quicker access below */
1167         bone = pchan->bone;
1168         parbone = bone->parent;
1169         parchan = pchan->parent;
1170
1171         if (parchan) {
1172                 float offs_bone[4][4];
1173                 /* yoffs(b-1) + root(b) + bonemat(b). */
1174                 get_offset_bone_mat(bone, offs_bone);
1175
1176                 /* Compose the rotscale matrix for this bone. */
1177                 if ((bone->flag & BONE_HINGE) && (bone->flag & BONE_NO_SCALE)) {
1178                         /* Parent rest rotation and scale. */
1179                         mul_m4_m4m4(rotscale_mat, parbone->arm_mat, offs_bone);
1180                 }
1181                 else if (bone->flag & BONE_HINGE) {
1182                         /* Parent rest rotation and pose scale. */
1183                         float tmat[4][4], tscale[3];
1184
1185                         /* Extract the scale of the parent pose matrix. */
1186                         mat4_to_size(tscale, parchan->pose_mat);
1187                         size_to_mat4(tmat, tscale);
1188
1189                         /* Applies the parent pose scale to the rest matrix. */
1190                         mul_m4_m4m4(tmat, tmat, parbone->arm_mat);
1191
1192                         mul_m4_m4m4(rotscale_mat, tmat, offs_bone);
1193                 }
1194                 else if (bone->flag & BONE_NO_SCALE) {
1195                         /* Parent pose rotation and rest scale (i.e. no scaling). */
1196                         float tmat[4][4];
1197                         copy_m4_m4(tmat, parchan->pose_mat);
1198                         normalize_m4(tmat);
1199                         mul_m4_m4m4(rotscale_mat, tmat, offs_bone);
1200                 }
1201                 else
1202                         mul_m4_m4m4(rotscale_mat, parchan->pose_mat, offs_bone);
1203
1204                 /* Compose the loc matrix for this bone. */
1205                 /* NOTE: That version does not modify bone's loc when HINGE/NO_SCALE options are set. */
1206
1207                 /* In this case, use the object's space *orientation*. */
1208                 if (bone->flag & BONE_NO_LOCAL_LOCATION) {
1209                         /* XXX I'm sure that code can be simplified! */
1210                         float bone_loc[4][4], bone_rotscale[3][3], tmat4[4][4], tmat3[3][3];
1211                         unit_m4(bone_loc);
1212                         unit_m4(loc_mat);
1213                         unit_m4(tmat4);
1214
1215                         mul_v3_m4v3(bone_loc[3], parchan->pose_mat, offs_bone[3]);
1216
1217                         unit_m3(bone_rotscale);
1218                         copy_m3_m4(tmat3, parchan->pose_mat);
1219                         mul_m3_m3m3(bone_rotscale, tmat3, bone_rotscale);
1220
1221                         copy_m4_m3(tmat4, bone_rotscale);
1222                         mul_m4_m4m4(loc_mat, bone_loc, tmat4);
1223                 }
1224                 /* Those flags do not affect position, use plain parent transform space! */
1225                 else if (bone->flag & (BONE_HINGE | BONE_NO_SCALE)) {
1226                         mul_m4_m4m4(loc_mat, parchan->pose_mat, offs_bone);
1227                 }
1228                 /* Else (i.e. default, usual case), just use the same matrix for rotation/scaling, and location. */
1229                 else
1230                         copy_m4_m4(loc_mat, rotscale_mat);
1231         }
1232         /* Root bones. */
1233         else {
1234                 /* Rotation/scaling. */
1235                 copy_m4_m4(rotscale_mat, pchan->bone->arm_mat);
1236                 /* Translation. */
1237                 if (pchan->bone->flag & BONE_NO_LOCAL_LOCATION) {
1238                         /* Translation of arm_mat, without the rotation. */
1239                         unit_m4(loc_mat);
1240                         copy_v3_v3(loc_mat[3], pchan->bone->arm_mat[3]);
1241                 }
1242                 else
1243                         copy_m4_m4(loc_mat, rotscale_mat);
1244         }
1245 }
1246
1247 /* Convert Pose-Space Matrix to Bone-Space Matrix.
1248  * NOTE: this cannot be used to convert to pose-space transforms of the supplied
1249  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1250 void BKE_armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[4][4], float outmat[4][4])
1251 {
1252         float rotscale_mat[4][4], loc_mat[4][4], inmat_[4][4];
1253
1254         /* Security, this allows to call with inmat == outmat! */
1255         copy_m4_m4(inmat_, inmat);
1256
1257         BKE_pchan_to_pose_mat(pchan, rotscale_mat, loc_mat);
1258         invert_m4(rotscale_mat);
1259         invert_m4(loc_mat);
1260
1261         mul_m4_m4m4(outmat, rotscale_mat, inmat_);
1262         mul_v3_m4v3(outmat[3], loc_mat, inmat_[3]);
1263 }
1264
1265 /* Convert Bone-Space Matrix to Pose-Space Matrix. */
1266 void BKE_armature_mat_bone_to_pose(bPoseChannel *pchan, float inmat[4][4], float outmat[4][4])
1267 {
1268         float rotscale_mat[4][4], loc_mat[4][4], inmat_[4][4];
1269
1270         /* Security, this allows to call with inmat == outmat! */
1271         copy_m4_m4(inmat_, inmat);
1272
1273         BKE_pchan_to_pose_mat(pchan, rotscale_mat, loc_mat);
1274
1275         mul_m4_m4m4(outmat, rotscale_mat, inmat_);
1276         mul_v3_m4v3(outmat[3], loc_mat, inmat_[3]);
1277 }
1278
1279 /* Convert Pose-Space Location to Bone-Space Location
1280  * NOTE: this cannot be used to convert to pose-space location of the supplied
1281  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1282 void BKE_armature_loc_pose_to_bone(bPoseChannel *pchan, const float inloc[3], float outloc[3])
1283 {
1284         float xLocMat[4][4] = MAT4_UNITY;
1285         float nLocMat[4][4];
1286
1287         /* build matrix for location */
1288         copy_v3_v3(xLocMat[3], inloc);
1289
1290         /* get bone-space cursor matrix and extract location */
1291         BKE_armature_mat_pose_to_bone(pchan, xLocMat, nLocMat);
1292         copy_v3_v3(outloc, nLocMat[3]);
1293 }
1294
1295 void BKE_armature_mat_pose_to_bone_ex(Object *ob, bPoseChannel *pchan, float inmat[4][4], float outmat[4][4])
1296 {
1297         bPoseChannel work_pchan = *pchan;
1298
1299         /* recalculate pose matrix with only parent transformations,
1300          * bone loc/sca/rot is ignored, scene and frame are not used. */
1301         BKE_pose_where_is_bone(NULL, ob, &work_pchan, 0.0f, FALSE);
1302
1303         /* find the matrix, need to remove the bone transforms first so this is
1304          * calculated as a matrix to set rather then a difference ontop of whats
1305          * already there. */
1306         unit_m4(outmat);
1307         BKE_pchan_apply_mat4(&work_pchan, outmat, FALSE);
1308
1309         BKE_armature_mat_pose_to_bone(&work_pchan, inmat, outmat);
1310 }
1311
1312 /* same as BKE_object_mat3_to_rot() */
1313 void BKE_pchan_mat3_to_rot(bPoseChannel *pchan, float mat[3][3], short use_compat)
1314 {
1315         switch (pchan->rotmode) {
1316                 case ROT_MODE_QUAT:
1317                         mat3_to_quat(pchan->quat, mat);
1318                         break;
1319                 case ROT_MODE_AXISANGLE:
1320                         mat3_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat);
1321                         break;
1322                 default: /* euler */
1323                         if (use_compat)
1324                                 mat3_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat);
1325                         else
1326                                 mat3_to_eulO(pchan->eul, pchan->rotmode, mat);
1327                         break;
1328         }
1329 }
1330
1331 /* Apply a 4x4 matrix to the pose bone,
1332  * similar to BKE_object_apply_mat4() */
1333 void BKE_pchan_apply_mat4(bPoseChannel *pchan, float mat[4][4], short use_compat)
1334 {
1335         float rot[3][3];
1336         mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat);
1337         BKE_pchan_mat3_to_rot(pchan, rot, use_compat);
1338 }
1339
1340 /* Remove rest-position effects from pose-transform for obtaining
1341  * 'visual' transformation of pose-channel.
1342  * (used by the Visual-Keyframing stuff) */
1343 void BKE_armature_mat_pose_to_delta(float delta_mat[4][4], float pose_mat[4][4], float arm_mat[4][4])
1344 {
1345         float imat[4][4];
1346
1347         invert_m4_m4(imat, arm_mat);
1348         mul_m4_m4m4(delta_mat, imat, pose_mat);
1349 }
1350
1351 /* **************** Rotation Mode Conversions ****************************** */
1352 /* Used for Objects and Pose Channels, since both can have multiple rotation representations */
1353
1354 /* Called from RNA when rotation mode changes
1355  * - the result should be that the rotations given in the provided pointers have had conversions
1356  *   applied (as appropriate), such that the rotation of the element hasn't 'visually' changed  */
1357 void BKE_rotMode_change_values(float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode)
1358 {
1359         /* check if any change - if so, need to convert data */
1360         if (newMode > 0) { /* to euler */
1361                 if (oldMode == ROT_MODE_AXISANGLE) {
1362                         /* axis-angle to euler */
1363                         axis_angle_to_eulO(eul, newMode, axis, *angle);
1364                 }
1365                 else if (oldMode == ROT_MODE_QUAT) {
1366                         /* quat to euler */
1367                         normalize_qt(quat);
1368                         quat_to_eulO(eul, newMode, quat);
1369                 }
1370                 /* else { no conversion needed } */
1371         }
1372         else if (newMode == ROT_MODE_QUAT) { /* to quat */
1373                 if (oldMode == ROT_MODE_AXISANGLE) {
1374                         /* axis angle to quat */
1375                         axis_angle_to_quat(quat, axis, *angle);
1376                 }
1377                 else if (oldMode > 0) {
1378                         /* euler to quat */
1379                         eulO_to_quat(quat, eul, oldMode);
1380                 }
1381                 /* else { no conversion needed } */
1382         }
1383         else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */
1384                 if (oldMode > 0) {
1385                         /* euler to axis angle */
1386                         eulO_to_axis_angle(axis, angle, eul, oldMode);
1387                 }
1388                 else if (oldMode == ROT_MODE_QUAT) {
1389                         /* quat to axis angle */
1390                         normalize_qt(quat);
1391                         quat_to_axis_angle(axis, angle, quat);
1392                 }
1393
1394                 /* when converting to axis-angle, we need a special exception for the case when there is no axis */
1395                 if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
1396                         /* for now, rotate around y-axis then (so that it simply becomes the roll) */
1397                         axis[1] = 1.0f;
1398                 }
1399         }
1400 }
1401
1402 /* **************** The new & simple (but OK!) armature evaluation ********* */
1403
1404 /* ****************** And how it works! ****************************************
1405  *
1406  * This is the bone transformation trick; they're hierarchical so each bone(b)
1407  * is in the coord system of bone(b-1):
1408  *
1409  * arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)
1410  *
1411  * -> yoffs is just the y axis translation in parent's coord system
1412  * -> d_root is the translation of the bone root, also in parent's coord system
1413  *
1414  * pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
1415  *
1416  * we then - in init deform - store the deform in chan_mat, such that:
1417  *
1418  * pose_mat(b)= arm_mat(b) * chan_mat(b)
1419  *
1420  * *************************************************************************** */
1421 /* Computes vector and roll based on a rotation.
1422  * "mat" must contain only a rotation, and no scaling. */
1423 void mat3_to_vec_roll(float mat[3][3], float r_vec[3], float *r_roll)
1424 {
1425         if (r_vec) {
1426                 copy_v3_v3(r_vec, mat[1]);
1427         }
1428
1429         if (r_roll) {
1430                 float vecmat[3][3], vecmatinv[3][3], rollmat[3][3];
1431
1432                 vec_roll_to_mat3(mat[1], 0.0f, vecmat);
1433                 invert_m3_m3(vecmatinv, vecmat);
1434                 mul_m3_m3m3(rollmat, vecmatinv, mat);
1435
1436                 *r_roll = atan2f(rollmat[2][0], rollmat[2][2]);
1437         }
1438 }
1439
1440 /* Calculates the rest matrix of a bone based
1441  * On its vector and a roll around that vector */
1442 void vec_roll_to_mat3(const float vec[3], const float roll, float mat[3][3])
1443 {
1444         float nor[3], axis[3], target[3] = {0, 1, 0};
1445         float theta;
1446         float rMatrix[3][3], bMatrix[3][3];
1447
1448         normalize_v3_v3(nor, vec);
1449
1450         /* Find Axis & Amount for bone matrix */
1451         cross_v3_v3v3(axis, target, nor);
1452
1453         /* was 0.0000000000001, caused bug [#23954], smaller values give unstable
1454          * roll when toggling editmode.
1455          *
1456          * was 0.00001, causes bug [#27675], with 0.00000495,
1457          * so a value inbetween these is needed.
1458          *
1459          * was 0.000001, causes bug [#30438] (which is same as [#27675, imho).
1460          * Resetting it to org value seems to cause no more [#23954]...
1461          *
1462          * was 0.0000000000001, caused bug [#31333], smaller values give unstable
1463          * roll when toggling editmode again...
1464          * No good value here, trying 0.000000001 as best compromise. :/
1465          */
1466         if (dot_v3v3(axis, axis) > 1.0e-9f) {
1467                 /* if nor is *not* a multiple of target ... */
1468                 normalize_v3(axis);
1469
1470                 theta = angle_normalized_v3v3(target, nor);
1471
1472                 /* Make Bone matrix*/
1473                 axis_angle_normalized_to_mat3(bMatrix, axis, theta);
1474         }
1475         else {
1476                 /* if nor is a multiple of target ... */
1477                 float updown;
1478
1479                 /* point same direction, or opposite? */
1480                 updown = (dot_v3v3(target, nor) > 0) ? 1.0f : -1.0f;
1481
1482                 /* I think this should work... */
1483                 bMatrix[0][0] = updown; bMatrix[0][1] = 0.0;    bMatrix[0][2] = 0.0;
1484                 bMatrix[1][0] = 0.0;    bMatrix[1][1] = updown; bMatrix[1][2] = 0.0;
1485                 bMatrix[2][0] = 0.0;    bMatrix[2][1] = 0.0;    bMatrix[2][2] = 1.0;
1486         }
1487
1488         /* Make Roll matrix */
1489         axis_angle_normalized_to_mat3(rMatrix, nor, roll);
1490
1491         /* Combine and output result */
1492         mul_m3_m3m3(mat, rMatrix, bMatrix);
1493 }
1494
1495
1496 /* recursive part, calculates restposition of entire tree of children */
1497 /* used by exiting editmode too */
1498 void BKE_armature_where_is_bone(Bone *bone, Bone *prevbone)
1499 {
1500         float vec[3];
1501
1502         /* Bone Space */
1503         sub_v3_v3v3(vec, bone->tail, bone->head);
1504         vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);
1505
1506         bone->length = len_v3v3(bone->head, bone->tail);
1507
1508         /* this is called on old file reading too... */
1509         if (bone->xwidth == 0.0f) {
1510                 bone->xwidth = 0.1f;
1511                 bone->zwidth = 0.1f;
1512                 bone->segments = 1;
1513         }
1514
1515         if (prevbone) {
1516                 float offs_bone[4][4];
1517                 /* yoffs(b-1) + root(b) + bonemat(b) */
1518                 get_offset_bone_mat(bone, offs_bone);
1519
1520                 /* Compose the matrix for this bone  */
1521                 mul_m4_m4m4(bone->arm_mat, prevbone->arm_mat, offs_bone);
1522         }
1523         else {
1524                 copy_m4_m3(bone->arm_mat, bone->bone_mat);
1525                 copy_v3_v3(bone->arm_mat[3], bone->head);
1526         }
1527
1528         /* and the kiddies */
1529         prevbone = bone;
1530         for (bone = bone->childbase.first; bone; bone = bone->next) {
1531                 BKE_armature_where_is_bone(bone, prevbone);
1532         }
1533 }
1534
1535 /* updates vectors and matrices on rest-position level, only needed
1536  * after editing armature itself, now only on reading file */
1537 void BKE_armature_where_is(bArmature *arm)
1538 {
1539         Bone *bone;
1540
1541         /* hierarchical from root to children */
1542         for (bone = arm->bonebase.first; bone; bone = bone->next) {
1543                 BKE_armature_where_is_bone(bone, NULL);
1544         }
1545 }
1546
1547 /* if bone layer is protected, copy the data from from->pose
1548  * when used with linked libraries this copies from the linked pose into the local pose */
1549 static void pose_proxy_synchronize(Object *ob, Object *from, int layer_protected)
1550 {
1551         bPose *pose = ob->pose, *frompose = from->pose;
1552         bPoseChannel *pchan, *pchanp;
1553         bConstraint *con;
1554         int error = 0;
1555
1556         if (frompose == NULL)
1557                 return;
1558
1559         /* in some cases when rigs change, we cant synchronize
1560          * to avoid crashing check for possible errors here */
1561         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1562                 if (pchan->bone->layer & layer_protected) {
1563                         if (BKE_pose_channel_find_name(frompose, pchan->name) == NULL) {
1564                                 printf("failed to sync proxy armature because '%s' is missing pose channel '%s'\n",
1565                                        from->id.name, pchan->name);
1566                                 error = 1;
1567                         }
1568                 }
1569         }
1570
1571         if (error)
1572                 return;
1573
1574         /* clear all transformation values from library */
1575         BKE_pose_rest(frompose);
1576
1577         /* copy over all of the proxy's bone groups */
1578         /* TODO for later
1579          * - implement 'local' bone groups as for constraints
1580          * Note: this isn't trivial, as bones reference groups by index not by pointer,
1581          *       so syncing things correctly needs careful attention */
1582         BLI_freelistN(&pose->agroups);
1583         BLI_duplicatelist(&pose->agroups, &frompose->agroups);
1584         pose->active_group = frompose->active_group;
1585
1586         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1587                 pchanp = BKE_pose_channel_find_name(frompose, pchan->name);
1588                 
1589                 if (UNLIKELY(pchanp == NULL)) {
1590                         /* happens for proxies that become invalid because of a missing link
1591                          * for regular cases it shouldn't happen at all */
1592                 }
1593                 else if (pchan->bone->layer & layer_protected) {
1594                         ListBase proxylocal_constraints = {NULL, NULL};
1595                         bPoseChannel pchanw;
1596                         
1597                         /* copy posechannel to temp, but restore important pointers */
1598                         pchanw = *pchanp;
1599                         pchanw.prev = pchan->prev;
1600                         pchanw.next = pchan->next;
1601                         pchanw.parent = pchan->parent;
1602                         pchanw.child = pchan->child;
1603                         
1604                         /* this is freed so copy a copy, else undo crashes */
1605                         if (pchanw.prop) {
1606                                 pchanw.prop = IDP_CopyProperty(pchanw.prop);
1607                                 
1608                                 /* use the values from the the existing props */
1609                                 if (pchan->prop) {
1610                                         IDP_SyncGroupValues(pchanw.prop, pchan->prop);
1611                                 }
1612                         }
1613                         
1614                         /* constraints - proxy constraints are flushed... local ones are added after
1615                          *     1. extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints
1616                          *     2. copy proxy-pchan's constraints on-to new
1617                          *     3. add extracted local constraints back on top
1618                          *
1619                          * Note for BKE_copy_constraints: when copying constraints, disable 'do_extern' otherwise
1620                          *                                we get the libs direct linked in this blend.
1621                          */
1622                         BKE_extract_proxylocal_constraints(&proxylocal_constraints, &pchan->constraints);
1623                         BKE_copy_constraints(&pchanw.constraints, &pchanp->constraints, FALSE);
1624                         BLI_movelisttolist(&pchanw.constraints, &proxylocal_constraints);
1625                         
1626                         /* constraints - set target ob pointer to own object */
1627                         for (con = pchanw.constraints.first; con; con = con->next) {
1628                                 bConstraintTypeInfo *cti = BKE_constraint_get_typeinfo(con);
1629                                 ListBase targets = {NULL, NULL};
1630                                 bConstraintTarget *ct;
1631                                 
1632                                 if (cti && cti->get_constraint_targets) {
1633                                         cti->get_constraint_targets(con, &targets);
1634                                         
1635                                         for (ct = targets.first; ct; ct = ct->next) {
1636                                                 if (ct->tar == from)
1637                                                         ct->tar = ob;
1638                                         }
1639                                         
1640                                         if (cti->flush_constraint_targets)
1641                                                 cti->flush_constraint_targets(con, &targets, 0);
1642                                 }
1643                         }
1644                         
1645                         /* free stuff from current channel */
1646                         BKE_pose_channel_free(pchan);
1647                         
1648                         /* copy data in temp back over to the cleaned-out (but still allocated) original channel */
1649                         *pchan = pchanw;
1650                 }
1651                 else {
1652                         /* always copy custom shape */
1653                         pchan->custom = pchanp->custom;
1654                         if (pchanp->custom_tx)
1655                                 pchan->custom_tx = BKE_pose_channel_find_name(pose, pchanp->custom_tx->name);
1656
1657                         /* ID-Property Syncing */
1658                         {
1659                                 IDProperty *prop_orig = pchan->prop;
1660                                 if (pchanp->prop) {
1661                                         pchan->prop = IDP_CopyProperty(pchanp->prop);
1662                                         if (prop_orig) {
1663                                                 /* copy existing values across when types match */
1664                                                 IDP_SyncGroupValues(pchan->prop, prop_orig);
1665                                         }
1666                                 }
1667                                 else {
1668                                         pchan->prop = NULL;
1669                                 }
1670                                 if (prop_orig) {
1671                                         IDP_FreeProperty(prop_orig);
1672                                         MEM_freeN(prop_orig);
1673                                 }
1674                         }
1675                 }
1676         }
1677 }
1678
1679 static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
1680 {
1681         bPoseChannel *pchan = BKE_pose_channel_verify(pose, bone->name); /* verify checks and/or adds */
1682
1683         pchan->bone = bone;
1684         pchan->parent = parchan;
1685
1686         counter++;
1687
1688         for (bone = bone->childbase.first; bone; bone = bone->next) {
1689                 counter = rebuild_pose_bone(pose, bone, pchan, counter);
1690                 /* for quick detecting of next bone in chain, only b-bone uses it now */
1691                 if (bone->flag & BONE_CONNECTED)
1692                         pchan->child = BKE_pose_channel_find_name(pose, bone->name);
1693         }
1694
1695         return counter;
1696 }
1697
1698 /* only after leave editmode, duplicating, validating older files, library syncing */
1699 /* NOTE: pose->flag is set for it */
1700 void BKE_pose_rebuild(Object *ob, bArmature *arm)
1701 {
1702         Bone *bone;
1703         bPose *pose;
1704         bPoseChannel *pchan, *next;
1705         int counter = 0;
1706
1707         /* only done here */
1708         if (ob->pose == NULL) {
1709                 /* create new pose */
1710                 ob->pose = MEM_callocN(sizeof(bPose), "new pose");
1711
1712                 /* set default settings for animviz */
1713                 animviz_settings_init(&ob->pose->avs);
1714         }
1715         pose = ob->pose;
1716
1717         /* clear */
1718         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1719                 pchan->bone = NULL;
1720                 pchan->child = NULL;
1721         }
1722
1723         /* first step, check if all channels are there */
1724         for (bone = arm->bonebase.first; bone; bone = bone->next) {
1725                 counter = rebuild_pose_bone(pose, bone, NULL, counter);
1726         }
1727
1728         /* and a check for garbage */
1729         for (pchan = pose->chanbase.first; pchan; pchan = next) {
1730                 next = pchan->next;
1731                 if (pchan->bone == NULL) {
1732                         BKE_pose_channel_free(pchan);
1733                         BKE_pose_channels_hash_free(pose);
1734                         BLI_freelinkN(&pose->chanbase, pchan);
1735                 }
1736         }
1737         /* printf("rebuild pose %s, %d bones\n", ob->id.name, counter); */
1738
1739         /* synchronize protected layers with proxy */
1740         if (ob->proxy) {
1741                 BKE_object_copy_proxy_drivers(ob, ob->proxy);
1742                 pose_proxy_synchronize(ob, ob->proxy, arm->layer_protected);
1743         }
1744
1745         BKE_pose_update_constraint_flags(ob->pose); /* for IK detection for example */
1746
1747         /* the sorting */
1748         if (counter > 1)
1749                 DAG_pose_sort(ob);
1750
1751         ob->pose->flag &= ~POSE_RECALC;
1752         ob->pose->flag |= POSE_WAS_REBUILT;
1753
1754         BKE_pose_channels_hash_make(ob->pose);
1755 }
1756
1757
1758 /* ********************** SPLINE IK SOLVER ******************* */
1759
1760 /* Temporary evaluation tree data used for Spline IK */
1761 typedef struct tSplineIK_Tree {
1762         struct tSplineIK_Tree *next, *prev;
1763
1764         int type;                    /* type of IK that this serves (CONSTRAINT_TYPE_KINEMATIC or ..._SPLINEIK) */
1765
1766         short free_points;           /* free the point positions array */
1767         short chainlen;              /* number of bones in the chain */
1768
1769         float *points;               /* parametric positions for the joints along the curve */
1770         bPoseChannel **chain;        /* chain of bones to affect using Spline IK (ordered from the tip) */
1771
1772         bPoseChannel *root;          /* bone that is the root node of the chain */
1773
1774         bConstraint *con;            /* constraint for this chain */
1775         bSplineIKConstraint *ikData; /* constraint settings for this chain */
1776 } tSplineIK_Tree;
1777
1778 /* ----------- */
1779
1780 /* Tag the bones in the chain formed by the given bone for IK */
1781 static void splineik_init_tree_from_pchan(Scene *scene, Object *UNUSED(ob), bPoseChannel *pchan_tip)
1782 {
1783         bPoseChannel *pchan, *pchanRoot = NULL;
1784         bPoseChannel *pchanChain[255];
1785         bConstraint *con = NULL;
1786         bSplineIKConstraint *ikData = NULL;
1787         float boneLengths[255], *jointPoints;
1788         float totLength = 0.0f;
1789         short free_joints = 0;
1790         int segcount = 0;
1791
1792         /* find the SplineIK constraint */
1793         for (con = pchan_tip->constraints.first; con; con = con->next) {
1794                 if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
1795                         ikData = con->data;
1796
1797                         /* target can only be curve */
1798                         if ((ikData->tar == NULL) || (ikData->tar->type != OB_CURVE))
1799                                 continue;
1800                         /* skip if disabled */
1801                         if ((con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)))
1802                                 continue;
1803
1804                         /* otherwise, constraint is ok... */
1805                         break;
1806                 }
1807         }
1808         if (con == NULL)
1809                 return;
1810
1811         /* make sure that the constraint targets are ok
1812          *     - this is a workaround for a depsgraph bug...
1813          */
1814         if (ikData->tar) {
1815                 /* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
1816                  *       currently for paths to work it needs to go through the bevlist/displist system (ton)
1817                  */
1818
1819                 /* only happens on reload file, but violates depsgraph still... fix! */
1820                 if (ELEM3(NULL,  ikData->tar->curve_cache, ikData->tar->curve_cache->path, ikData->tar->curve_cache->path->data)) {
1821                         BKE_displist_make_curveTypes(scene, ikData->tar, 0);
1822                         
1823                         /* path building may fail in EditMode after removing verts [#33268]*/
1824                         if (ELEM(NULL, ikData->tar->curve_cache->path, ikData->tar->curve_cache->path->data)) {
1825                                 /* BLI_assert(cu->path != NULL); */
1826                                 return;
1827                         }
1828                 }
1829         }
1830
1831         /* find the root bone and the chain of bones from the root to the tip
1832          * NOTE: this assumes that the bones are connected, but that may not be true... */
1833         for (pchan = pchan_tip; pchan && (segcount < ikData->chainlen); pchan = pchan->parent, segcount++) {
1834                 /* store this segment in the chain */
1835                 pchanChain[segcount] = pchan;
1836
1837                 /* if performing rebinding, calculate the length of the bone */
1838                 boneLengths[segcount] = pchan->bone->length;
1839                 totLength += boneLengths[segcount];
1840         }
1841
1842         if (segcount == 0)
1843                 return;
1844         else
1845                 pchanRoot = pchanChain[segcount - 1];
1846
1847         /* perform binding step if required */
1848         if ((ikData->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
1849                 float segmentLen = (1.0f / (float)segcount);
1850                 int i;
1851
1852                 /* setup new empty array for the points list */
1853                 if (ikData->points)
1854                         MEM_freeN(ikData->points);
1855                 ikData->numpoints = ikData->chainlen + 1;
1856                 ikData->points = MEM_callocN(sizeof(float) * ikData->numpoints, "Spline IK Binding");
1857
1858                 /* bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint) */
1859                 ikData->points[0] = 1.0f;
1860
1861                 /* perform binding of the joints to parametric positions along the curve based
1862                  * proportion of the total length that each bone occupies
1863                  */
1864                 for (i = 0; i < segcount; i++) {
1865                         /* 'head' joints, traveling towards the root of the chain
1866                          *  - 2 methods; the one chosen depends on whether we've got usable lengths
1867                          */
1868                         if ((ikData->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totLength == 0.0f)) {
1869                                 /* 1) equi-spaced joints */
1870                                 ikData->points[i + 1] = ikData->points[i] - segmentLen;
1871                         }
1872                         else {
1873                                 /* 2) to find this point on the curve, we take a step from the previous joint
1874                                  *    a distance given by the proportion that this bone takes
1875                                  */
1876                                 ikData->points[i + 1] = ikData->points[i] - (boneLengths[i] / totLength);
1877                         }
1878                 }
1879
1880                 /* spline has now been bound */
1881                 ikData->flag |= CONSTRAINT_SPLINEIK_BOUND;
1882         }
1883
1884         /* apply corrections for sensitivity to scaling on a copy of the bind points,
1885          * since it's easier to determine the positions of all the joints beforehand this way
1886          */
1887         if ((ikData->flag & CONSTRAINT_SPLINEIK_SCALE_LIMITED) && (totLength != 0.0f)) {
1888                 float splineLen, maxScale;
1889                 int i;
1890
1891                 /* make a copy of the points array, that we'll store in the tree
1892                  *     - although we could just multiply the points on the fly, this approach means that
1893                  *       we can introduce per-segment stretchiness later if it is necessary
1894                  */
1895                 jointPoints = MEM_dupallocN(ikData->points);
1896                 free_joints = 1;
1897
1898                 /* get the current length of the curve */
1899                 /* NOTE: this is assumed to be correct even after the curve was resized */
1900                 splineLen = ikData->tar->curve_cache->path->totdist;
1901
1902                 /* calculate the scale factor to multiply all the path values by so that the
1903                  * bone chain retains its current length, such that
1904                  *     maxScale * splineLen = totLength
1905                  */
1906                 maxScale = totLength / splineLen;
1907
1908                 /* apply scaling correction to all of the temporary points */
1909                 /* TODO: this is really not adequate enough on really short chains */
1910                 for (i = 0; i < segcount; i++)
1911                         jointPoints[i] *= maxScale;
1912         }
1913         else {
1914                 /* just use the existing points array */
1915                 jointPoints = ikData->points;
1916                 free_joints = 0;
1917         }
1918
1919         /* make a new Spline-IK chain, and store it in the IK chains */
1920         /* TODO: we should check if there is already an IK chain on this, since that would take presidence... */
1921         {
1922                 /* make new tree */
1923                 tSplineIK_Tree *tree = MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree");
1924                 tree->type = CONSTRAINT_TYPE_SPLINEIK;
1925
1926                 tree->chainlen = segcount;
1927
1928                 /* copy over the array of links to bones in the chain (from tip to root) */
1929                 tree->chain = MEM_callocN(sizeof(bPoseChannel *) * segcount, "SplineIK Chain");
1930                 memcpy(tree->chain, pchanChain, sizeof(bPoseChannel *) * segcount);
1931
1932                 /* store reference to joint position array */
1933                 tree->points = jointPoints;
1934                 tree->free_points = free_joints;
1935
1936                 /* store references to different parts of the chain */
1937                 tree->root = pchanRoot;
1938                 tree->con = con;
1939                 tree->ikData = ikData;
1940
1941                 /* AND! link the tree to the root */
1942                 BLI_addtail(&pchanRoot->siktree, tree);
1943         }
1944
1945         /* mark root channel having an IK tree */
1946         pchanRoot->flag |= POSE_IKSPLINE;
1947 }
1948
1949 /* Tag which bones are members of Spline IK chains */
1950 static void splineik_init_tree(Scene *scene, Object *ob, float UNUSED(ctime))
1951 {
1952         bPoseChannel *pchan;
1953
1954         /* find the tips of Spline IK chains, which are simply the bones which have been tagged as such */
1955         for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
1956                 if (pchan->constflag & PCHAN_HAS_SPLINEIK)
1957                         splineik_init_tree_from_pchan(scene, ob, pchan);
1958         }
1959 }
1960
1961 /* ----------- */
1962
1963 /* Evaluate spline IK for a given bone */
1964 static void splineik_evaluate_bone(tSplineIK_Tree *tree, Scene *scene, Object *ob, bPoseChannel *pchan,
1965                                    int index, float ctime)
1966 {
1967         bSplineIKConstraint *ikData = tree->ikData;
1968         float poseHead[3], poseTail[3], poseMat[4][4];
1969         float splineVec[3], scaleFac, radius = 1.0f;
1970
1971         /* firstly, calculate the bone matrix the standard way, since this is needed for roll control */
1972         BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);
1973
1974         copy_v3_v3(poseHead, pchan->pose_head);
1975         copy_v3_v3(poseTail, pchan->pose_tail);
1976
1977         /* step 1: determine the positions for the endpoints of the bone */
1978         {
1979                 float vec[4], dir[3], rad;
1980                 float tailBlendFac = 1.0f;
1981
1982                 /* determine if the bone should still be affected by SplineIK */
1983                 if (tree->points[index + 1] >= 1.0f) {
1984                         /* spline doesn't affect the bone anymore, so done... */
1985                         pchan->flag |= POSE_DONE;
1986                         return;
1987                 }
1988                 else if ((tree->points[index] >= 1.0f) && (tree->points[index + 1] < 1.0f)) {
1989                         /* blending factor depends on the amount of the bone still left on the chain */
1990                         tailBlendFac = (1.0f - tree->points[index + 1]) / (tree->points[index] - tree->points[index + 1]);
1991                 }
1992
1993                 /* tail endpoint */
1994                 if (where_on_path(ikData->tar, tree->points[index], vec, dir, NULL, &rad, NULL)) {
1995                         /* apply curve's object-mode transforms to the position
1996                          * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
1997                          */
1998                         if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
1999                                 mul_m4_v3(ikData->tar->obmat, vec);
2000
2001                         /* convert the position to pose-space, then store it */
2002                         mul_m4_v3(ob->imat, vec);
2003                         interp_v3_v3v3(poseTail, pchan->pose_tail, vec, tailBlendFac);
2004
2005                         /* set the new radius */
2006                         radius = rad;
2007                 }
2008
2009                 /* head endpoint */
2010                 if (where_on_path(ikData->tar, tree->points[index + 1], vec, dir, NULL, &rad, NULL)) {
2011                         /* apply curve's object-mode transforms to the position
2012                          * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
2013                          */
2014                         if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
2015                                 mul_m4_v3(ikData->tar->obmat, vec);
2016
2017                         /* store the position, and convert it to pose space */
2018                         mul_m4_v3(ob->imat, vec);
2019                         copy_v3_v3(poseHead, vec);
2020
2021                         /* set the new radius (it should be the average value) */
2022                         radius = (radius + rad) / 2;
2023                 }
2024         }
2025
2026         /* step 2: determine the implied transform from these endpoints
2027          *     - splineVec: the vector direction that the spline applies on the bone
2028          *     - scaleFac: the factor that the bone length is scaled by to get the desired amount
2029          */
2030         sub_v3_v3v3(splineVec, poseTail, poseHead);
2031         scaleFac = len_v3(splineVec) / pchan->bone->length;
2032
2033         /* step 3: compute the shortest rotation needed to map from the bone rotation to the current axis
2034          *      - this uses the same method as is used for the Damped Track Constraint (see the code there for details)
2035          */
2036         {
2037                 float dmat[3][3], rmat[3][3], tmat[3][3];
2038                 float raxis[3], rangle;
2039
2040                 /* compute the raw rotation matrix from the bone's current matrix by extracting only the
2041                  * orientation-relevant axes, and normalizing them
2042                  */
2043                 copy_v3_v3(rmat[0], pchan->pose_mat[0]);
2044                 copy_v3_v3(rmat[1], pchan->pose_mat[1]);
2045                 copy_v3_v3(rmat[2], pchan->pose_mat[2]);
2046                 normalize_m3(rmat);
2047
2048                 /* also, normalize the orientation imposed by the bone, now that we've extracted the scale factor */
2049                 normalize_v3(splineVec);
2050
2051                 /* calculate smallest axis-angle rotation necessary for getting from the
2052                  * current orientation of the bone, to the spline-imposed direction
2053                  */
2054                 cross_v3_v3v3(raxis, rmat[1], splineVec);
2055
2056                 rangle = dot_v3v3(rmat[1], splineVec);
2057                 CLAMP(rangle, -1.0f, 1.0f);
2058                 rangle = acosf(rangle);
2059
2060                 /* multiply the magnitude of the angle by the influence of the constraint to
2061                  * control the influence of the SplineIK effect
2062                  */
2063                 rangle *= tree->con->enforce;
2064
2065                 /* construct rotation matrix from the axis-angle rotation found above
2066                  *      - this call takes care to make sure that the axis provided is a unit vector first
2067                  */
2068                 axis_angle_to_mat3(dmat, raxis, rangle);
2069
2070                 /* combine these rotations so that the y-axis of the bone is now aligned as the spline dictates,
2071                  * while still maintaining roll control from the existing bone animation
2072                  */
2073                 mul_m3_m3m3(tmat, dmat, rmat); /* m1, m3, m2 */
2074                 normalize_m3(tmat); /* attempt to reduce shearing, though I doubt this'll really help too much now... */
2075                 copy_m4_m3(poseMat, tmat);
2076         }
2077
2078         /* step 4: set the scaling factors for the axes */
2079         {
2080                 /* only multiply the y-axis by the scaling factor to get nice volume-preservation */
2081                 mul_v3_fl(poseMat[1], scaleFac);
2082
2083                 /* set the scaling factors of the x and z axes from... */
2084                 switch (ikData->xzScaleMode) {
2085                         case CONSTRAINT_SPLINEIK_XZS_ORIGINAL:
2086                         {
2087                                 /* original scales get used */
2088                                 float scale;
2089
2090                                 /* x-axis scale */
2091                                 scale = len_v3(pchan->pose_mat[0]);
2092                                 mul_v3_fl(poseMat[0], scale);
2093                                 /* z-axis scale */
2094                                 scale = len_v3(pchan->pose_mat[2]);
2095                                 mul_v3_fl(poseMat[2], scale);
2096                                 break;
2097                         }
2098                         case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC:
2099                         {
2100                                 /* 'volume preservation' */
2101                                 float scale;
2102
2103                                 /* calculate volume preservation factor which is
2104                                  * basically the inverse of the y-scaling factor
2105                                  */
2106                                 if (fabsf(scaleFac) != 0.0f) {
2107                                         scale = 1.0f / fabsf(scaleFac);
2108
2109                                         /* we need to clamp this within sensible values */
2110                                         /* NOTE: these should be fine for now, but should get sanitised in future */
2111                                         CLAMP(scale, 0.0001f, 100000.0f);
2112                                 }
2113                                 else
2114                                         scale = 1.0f;
2115
2116                                 /* apply the scaling */
2117                                 mul_v3_fl(poseMat[0], scale);
2118                                 mul_v3_fl(poseMat[2], scale);
2119                                 break;
2120                         }
2121                 }
2122
2123                 /* finally, multiply the x and z scaling by the radius of the curve too,
2124                  * to allow automatic scales to get tweaked still
2125                  */
2126                 if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
2127                         mul_v3_fl(poseMat[0], radius);
2128                         mul_v3_fl(poseMat[2], radius);
2129                 }
2130         }
2131
2132         /* step 5: set the location of the bone in the matrix */
2133         if (ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
2134                 /* when the 'no-root' option is affected, the chain can retain
2135                  * the shape but be moved elsewhere
2136                  */
2137                 copy_v3_v3(poseHead, pchan->pose_head);
2138         }
2139         else if (tree->con->enforce < 1.0f) {
2140                 /* when the influence is too low
2141                  *      - blend the positions for the 'root' bone
2142                  *      - stick to the parent for any other
2143                  */
2144                 if (pchan->parent) {
2145                         copy_v3_v3(poseHead, pchan->pose_head);
2146                 }
2147                 else {
2148                         /* FIXME: this introduces popping artifacts when we reach 0.0 */
2149                         interp_v3_v3v3(poseHead, pchan->pose_head, poseHead, tree->con->enforce);
2150                 }
2151         }
2152         copy_v3_v3(poseMat[3], poseHead);
2153
2154         /* finally, store the new transform */
2155         copy_m4_m4(pchan->pose_mat, poseMat);
2156         copy_v3_v3(pchan->pose_head, poseHead);
2157
2158         /* recalculate tail, as it's now outdated after the head gets adjusted above! */
2159         BKE_pose_where_is_bone_tail(pchan);
2160
2161         /* done! */
2162         pchan->flag |= POSE_DONE;
2163 }
2164
2165 /* Evaluate the chain starting from the nominated bone */
2166 static void splineik_execute_tree(Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
2167 {
2168         tSplineIK_Tree *tree;
2169
2170         /* for each pose-tree, execute it if it is spline, otherwise just free it */
2171         while ((tree = pchan_root->siktree.first) != NULL) {
2172                 int i;
2173
2174                 /* walk over each bone in the chain, calculating the effects of spline IK
2175                  *     - the chain is traversed in the opposite order to storage order (i.e. parent to children)
2176                  *       so that dependencies are correct
2177                  */
2178                 for (i = tree->chainlen - 1; i >= 0; i--) {
2179                         bPoseChannel *pchan = tree->chain[i];
2180                         splineik_evaluate_bone(tree, scene, ob, pchan, i, ctime);
2181                 }
2182
2183                 /* free the tree info specific to SplineIK trees now */
2184                 if (tree->chain)
2185                         MEM_freeN(tree->chain);
2186                 if (tree->free_points)
2187                         MEM_freeN(tree->points);
2188
2189                 /* free this tree */
2190                 BLI_freelinkN(&pchan_root->siktree, tree);
2191         }
2192 }
2193
2194 /* ********************** THE POSE SOLVER ******************* */
2195
2196 /* loc/rot/size to given mat4 */
2197 void BKE_pchan_to_mat4(bPoseChannel *pchan, float chan_mat[4][4])
2198 {
2199         float smat[3][3];
2200         float rmat[3][3];
2201         float tmat[3][3];
2202
2203         /* get scaling matrix */
2204         size_to_mat3(smat, pchan->size);
2205
2206         /* rotations may either be quats, eulers (with various rotation orders), or axis-angle */
2207         if (pchan->rotmode > 0) {
2208                 /* euler rotations (will cause gimble lock, but this can be alleviated a bit with rotation orders) */
2209                 eulO_to_mat3(rmat, pchan->eul, pchan->rotmode);
2210         }
2211         else if (pchan->rotmode == ROT_MODE_AXISANGLE) {
2212                 /* axis-angle - not really that great for 3D-changing orientations */
2213                 axis_angle_to_mat3(rmat, pchan->rotAxis, pchan->rotAngle);
2214         }
2215         else {
2216                 /* quats are normalized before use to eliminate scaling issues */
2217                 float quat[4];
2218
2219                 /* NOTE: we now don't normalize the stored values anymore, since this was kindof evil in some cases
2220                  * but if this proves to be too problematic, switch back to the old system of operating directly on
2221                  * the stored copy
2222                  */
2223                 normalize_qt_qt(quat, pchan->quat);
2224                 quat_to_mat3(rmat, quat);
2225         }
2226
2227         /* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */
2228         mul_m3_m3m3(tmat, rmat, smat);
2229         copy_m4_m3(chan_mat, tmat);
2230
2231         /* prevent action channels breaking chains */
2232         /* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
2233         if ((pchan->bone == NULL) || !(pchan->bone->flag & BONE_CONNECTED)) {
2234                 copy_v3_v3(chan_mat[3], pchan->loc);
2235         }
2236 }
2237
2238 /* loc/rot/size to mat4 */
2239 /* used in constraint.c too */
2240 void BKE_pchan_calc_mat(bPoseChannel *pchan)
2241 {
2242         /* this is just a wrapper around the copy of this function which calculates the matrix
2243          * and stores the result in any given channel
2244          */
2245         BKE_pchan_to_mat4(pchan, pchan->chan_mat);
2246 }
2247
2248 #if 0 /* XXX OLD ANIMSYS, NLASTRIPS ARE NO LONGER USED */
2249
2250 /* NLA strip modifiers */
2251 static void do_strip_modifiers(Scene *scene, Object *armob, Bone *bone, bPoseChannel *pchan)
2252 {
2253         bActionModifier *amod;
2254         bActionStrip *strip, *strip2;
2255         float scene_cfra = BKE_scene_frame_get(scene);
2256         int do_modif;
2257
2258         for (strip = armob->nlastrips.first; strip; strip = strip->next) {
2259                 do_modif = FALSE;
2260
2261                 if (scene_cfra >= strip->start && scene_cfra <= strip->end)
2262                         do_modif = TRUE;
2263
2264                 if ((scene_cfra > strip->end) && (strip->flag & ACTSTRIP_HOLDLASTFRAME)) {
2265                         do_modif = TRUE;
2266
2267                         /* if there are any other strips active, ignore modifiers for this strip -
2268                          * 'hold' option should only hold action modifiers if there are
2269                          * no other active strips */
2270                         for (strip2 = strip->next; strip2; strip2 = strip2->next) {
2271                                 if (strip2 == strip) continue;
2272
2273                                 if (scene_cfra >= strip2->start && scene_cfra <= strip2->end) {
2274                                         if (!(strip2->flag & ACTSTRIP_MUTE))
2275                                                 do_modif = FALSE;
2276                                 }
2277                         }
2278
2279                         /* if there are any later, activated, strips with 'hold' set, they take precedence,
2280                          * so ignore modifiers for this strip */
2281                         for (strip2 = strip->next; strip2; strip2 = strip2->next) {
2282                                 if (scene_cfra < strip2->start) continue;
2283                                 if ((strip2->flag & ACTSTRIP_HOLDLASTFRAME) && !(strip2->flag & ACTSTRIP_MUTE)) {
2284                                         do_modif = FALSE;
2285                                 }
2286                         }
2287                 }
2288
2289                 if (do_modif) {
2290                         /* temporal solution to prevent 2 strips accumulating */
2291                         if (scene_cfra == strip->end && strip->next && strip->next->start == scene_cfra)
2292                                 continue;
2293
2294                         for (amod = strip->modifiers.first; amod; amod = amod->next) {
2295                                 switch (amod->type) {
2296                                         case ACTSTRIP_MOD_DEFORM:
2297                                         {
2298                                                 /* validate first */
2299                                                 if (amod->ob && amod->ob->type == OB_CURVE && amod->channel[0]) {
2300
2301                                                         if (strcmp(pchan->name, amod->channel) == 0) {
2302                                                                 float mat4[4][4], mat3[3][3];
2303
2304                                                                 curve_deform_vector(scene, amod->ob, armob, bone->arm_mat[3], pchan->pose_mat[3], mat3, amod->no_rot_axis);
2305                                                                 copy_m4_m4(mat4, pchan->pose_mat);
2306                                                                 mul_m4_m3m4(pchan->pose_mat, mat3, mat4);
2307
2308                                                         }
2309                                                 }
2310                                         }
2311                                         break;
2312                                         case ACTSTRIP_MOD_NOISE:
2313                                         {
2314                                                 if (strcmp(pchan->name, amod->channel) == 0) {
2315                                                         float nor[3], loc[3], ofs;
2316                                                         float eul[3], size[3], eulo[3], sizeo[3];
2317
2318                                                         /* calculate turbulance */
2319                                                         ofs = amod->turbul / 200.0f;
2320
2321                                                         /* make a copy of starting conditions */
2322                                                         copy_v3_v3(loc, pchan->pose_mat[3]);
2323                                                         mat4_to_eul(eul, pchan->pose_mat);
2324                                                         mat4_to_size(size, pchan->pose_mat);
2325                                                         copy_v3_v3(eulo, eul);
2326                                                         copy_v3_v3(sizeo, size);
2327
2328                                                         /* apply noise to each set of channels */
2329                                                         if (amod->channels & 4) {
2330                                                                 /* for scaling */
2331                                                                 nor[0] = BLI_gNoise(amod->noisesize, size[0] + ofs, size[1], size[2], 0, 0) - ofs;
2332                                                                 nor[1] = BLI_gNoise(amod->noisesize, size[0], size[1] + ofs, size[2], 0, 0) - ofs;
2333                                                                 nor[2] = BLI_gNoise(amod->noisesize, size[0], size[1], size[2] + ofs, 0, 0) - ofs;
2334                                                                 add_v3_v3(size, nor);
2335
2336                                                                 if (sizeo[0] != 0)
2337                                                                         mul_v3_fl(pchan->pose_mat[0], size[0] / sizeo[0]);
2338                                                                 if (sizeo[1] != 0)
2339                                                                         mul_v3_fl(pchan->pose_mat[1], size[1] / sizeo[1]);
2340                                                                 if (sizeo[2] != 0)
2341                                                                         mul_v3_fl(pchan->pose_mat[2], size[2] / sizeo[2]);
2342                                                         }
2343                                                         if (amod->channels & 2) {
2344                                                                 /* for rotation */
2345                                                                 nor[0] = BLI_gNoise(amod->noisesize, eul[0] + ofs, eul[1], eul[2], 0, 0) - ofs;
2346                                                                 nor[1] = BLI_gNoise(amod->noisesize, eul[0], eul[1] + ofs, eul[2], 0, 0) - ofs;
2347                                                                 nor[2] = BLI_gNoise(amod->noisesize, eul[0], eul[1], eul[2] + ofs, 0, 0) - ofs;
2348
2349                                                                 compatible_eul(nor, eulo);
2350                                                                 add_v3_v3(eul, nor);
2351                                                                 compatible_eul(eul, eulo);
2352
2353                                                                 loc_eul_size_to_mat4(pchan->pose_mat, loc, eul, size);
2354                                                         }
2355                                                         if (amod->channels & 1) {
2356                                                                 /* for location */
2357                                                                 nor[0] = BLI_gNoise(amod->noisesize, loc[0] + ofs, loc[1], loc[2], 0, 0) - ofs;
2358                                                                 nor[1] = BLI_gNoise(amod->noisesize, loc[0], loc[1] + ofs, loc[2], 0, 0) - ofs;
2359                                                                 nor[2] = BLI_gNoise(amod->noisesize, loc[0], loc[1], loc[2] + ofs, 0, 0) - ofs;
2360
2361                                                                 add_v3_v3v3(pchan->pose_mat[3], loc, nor);
2362                                                         }
2363                                                 }
2364                                         }
2365                                         break;
2366                                 }
2367                         }
2368                 }
2369         }
2370 }
2371
2372 #endif
2373
2374 /* calculate tail of posechannel */
2375 void BKE_pose_where_is_bone_tail(bPoseChannel *pchan)
2376 {
2377         float vec[3];
2378
2379         copy_v3_v3(vec, pchan->pose_mat[1]);
2380         mul_v3_fl(vec, pchan->bone->length);
2381         add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec);
2382 }
2383
2384 /* The main armature solver, does all constraints excluding IK */
2385 /* pchan is validated, as having bone and parent pointer
2386  * 'do_extra': when zero skips loc/size/rot, constraints and strip modifiers.
2387  */
2388 void BKE_pose_where_is_bone(Scene *scene, Object *ob, bPoseChannel *pchan, float ctime, int do_extra)
2389 {
2390         /* This gives a chan_mat with actions (ipos) results. */
2391         if (do_extra)
2392                 BKE_pchan_calc_mat(pchan);
2393         else
2394                 unit_m4(pchan->chan_mat);
2395
2396         /* Construct the posemat based on PoseChannels, that we do before applying constraints. */
2397         /* pose_mat(b) = pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
2398         BKE_armature_mat_bone_to_pose(pchan, pchan->chan_mat, pchan->pose_mat);
2399
2400         /* Only rootbones get the cyclic offset (unless user doesn't want that). */
2401         /* XXX That could be a problem for snapping and other "reverse transform" features... */
2402         if (!pchan->parent) {
2403                 if ((pchan->bone->flag & BONE_NO_CYCLICOFFSET) == 0)
2404                         add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset);
2405         }
2406
2407         if (do_extra) {
2408 #if 0   /* XXX OLD ANIMSYS, NLASTRIPS ARE NO LONGER USED */
2409                 /* do NLA strip modifiers - i.e. curve follow */
2410                 do_strip_modifiers(scene, ob, bone, pchan);
2411 #endif
2412
2413                 /* Do constraints */
2414                 if (pchan->constraints.first) {
2415                         bConstraintOb *cob;
2416                         float vec[3];
2417
2418                         /* make a copy of location of PoseChannel for later */
2419                         copy_v3_v3(vec, pchan->pose_mat[3]);
2420
2421                         /* prepare PoseChannel for Constraint solving
2422                          * - makes a copy of matrix, and creates temporary struct to use
2423                          */
2424                         cob = BKE_constraints_make_evalob(scene, ob, pchan, CONSTRAINT_OBTYPE_BONE);
2425
2426                         /* Solve PoseChannel's Constraints */
2427                         BKE_solve_constraints(&pchan->constraints, cob, ctime); /* ctime doesnt alter objects */
2428
2429                         /* cleanup after Constraint Solving
2430                          * - applies matrix back to pchan, and frees temporary struct used
2431                          */
2432                         BKE_constraints_clear_evalob(cob);
2433
2434                         /* prevent constraints breaking a chain */
2435                         if (pchan->bone->flag & BONE_CONNECTED) {
2436                                 copy_v3_v3(pchan->pose_mat[3], vec);
2437                         }
2438                 }
2439         }
2440
2441         /* calculate head */
2442         copy_v3_v3(pchan->pose_head, pchan->pose_mat[3]);
2443         /* calculate tail */
2444         BKE_pose_where_is_bone_tail(pchan);
2445 }
2446
2447 /* This only reads anim data from channels, and writes to channels */
2448 /* This is the only function adding poses */
2449 void BKE_pose_where_is(Scene *scene, Object *ob)
2450 {
2451         bArmature *arm;
2452         Bone *bone;
2453         bPoseChannel *pchan;
2454         float imat[4][4];
2455         float ctime;
2456
2457         if (ob->type != OB_ARMATURE)
2458                 return;
2459         arm = ob->data;
2460
2461         if (ELEM(NULL, arm, scene))
2462                 return;
2463         if ((ob->pose == NULL) || (ob->pose->flag & POSE_RECALC))
2464                 BKE_pose_rebuild(ob, arm);
2465
2466         ctime = BKE_scene_frame_get(scene); /* not accurate... */
2467
2468         /* In editmode or restposition we read the data from the bones */
2469         if (arm->edbo || (arm->flag & ARM_RESTPOS)) {
2470                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2471                         bone = pchan->bone;
2472                         if (bone) {
2473                                 copy_m4_m4(pchan->pose_mat, bone->arm_mat);
2474                                 copy_v3_v3(pchan->pose_head, bone->arm_head);
2475                                 copy_v3_v3(pchan->pose_tail, bone->arm_tail);
2476                         }
2477                 }
2478         }
2479         else {
2480                 invert_m4_m4(ob->imat, ob->obmat); /* imat is needed */
2481
2482                 /* 1. clear flags */
2483                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2484                         pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE);
2485                 }
2486
2487                 /* 2a. construct the IK tree (standard IK) */
2488                 BIK_initialize_tree(scene, ob, ctime);
2489
2490                 /* 2b. construct the Spline IK trees
2491                  *  - this is not integrated as an IK plugin, since it should be able
2492                  *        to function in conjunction with standard IK
2493                  */
2494                 splineik_init_tree(scene, ob, ctime);
2495
2496                 /* 3. the main loop, channels are already hierarchical sorted from root to children */
2497                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2498                         /* 4a. if we find an IK root, we handle it separated */
2499                         if (pchan->flag & POSE_IKTREE) {
2500                                 BIK_execute_tree(scene, ob, pchan, ctime);
2501                         }
2502                         /* 4b. if we find a Spline IK root, we handle it separated too */
2503                         else if (pchan->flag & POSE_IKSPLINE) {
2504                                 splineik_execute_tree(scene, ob, pchan, ctime);
2505                         }
2506                         /* 5. otherwise just call the normal solver */
2507                         else if (!(pchan->flag & POSE_DONE)) {
2508                                 BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);
2509                         }
2510                 }
2511                 /* 6. release the IK tree */
2512                 BIK_release_tree(scene, ob, ctime);
2513         }
2514
2515         /* calculating deform matrices */
2516         for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2517                 if (pchan->bone) {
2518                         invert_m4_m4(imat, pchan->bone->arm_mat);
2519                         mul_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat);
2520                 }
2521         }
2522 }
2523
2524 /************** Bounding box ********************/
2525 static int minmax_armature(Object *ob, float r_min[3], float r_max[3])
2526 {
2527         bPoseChannel *pchan;
2528
2529         /* For now, we assume BKE_pose_where_is has already been called (hence we have valid data in pachan). */
2530         for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2531                 minmax_v3v3_v3(r_min, r_max, pchan->pose_head);
2532                 minmax_v3v3_v3(r_min, r_max, pchan->pose_tail);
2533         }
2534
2535         return (ob->pose->chanbase.first != NULL);
2536 }
2537
2538 static void boundbox_armature(Object *ob, float loc[3], float size[3])
2539 {
2540         BoundBox *bb;
2541         float min[3], max[3];
2542         float mloc[3], msize[3];
2543
2544         if (ob->bb == NULL)
2545                 ob->bb = MEM_callocN(sizeof(BoundBox), "Armature boundbox");
2546         bb = ob->bb;
2547
2548         if (!loc)
2549                 loc = mloc;
2550         if (!size)
2551                 size = msize;
2552
2553         INIT_MINMAX(min, max);
2554         if (!minmax_armature(ob, min, max)) {
2555                 min[0] = min[1] = min[2] = -1.0f;
2556                 max[0] = max[1] = max[2] = 1.0f;
2557         }
2558
2559         mid_v3_v3v3(loc, min, max);
2560
2561         size[0] = (max[0] - min[0]) / 2.0f;
2562         size[1] = (max[1] - min[1]) / 2.0f;
2563         size[2] = (max[2] - min[2]) / 2.0f;
2564
2565         BKE_boundbox_init_from_minmax(bb, min, max);
2566 }
2567
2568 BoundBox *BKE_armature_boundbox_get(Object *ob)
2569 {
2570         boundbox_armature(ob, NULL, NULL);
2571
2572         return ob->bb;
2573 }