use 'const char *' by default with RNA functions except when the value is flagged...
[blender.git] / source / blender / blenkernel / intern / armature.c
1 /**
2  * $Id$
3  *
4  * ***** BEGIN GPL LICENSE BLOCK *****
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version. 
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19  *
20  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
21  * All rights reserved.
22  *
23  * Contributor(s): Full recode, Ton Roosendaal, Crete 2005
24  *
25  * ***** END GPL LICENSE BLOCK *****
26  */
27
28 #include <ctype.h>
29 #include <stdlib.h>
30 #include <math.h>
31 #include <string.h>
32 #include <stdio.h>
33 #include <float.h>
34
35 #include "MEM_guardedalloc.h"
36
37 #include "BLI_math.h"
38 #include "BLI_blenlib.h"
39
40 #include "DNA_anim_types.h"
41 #include "DNA_armature_types.h"
42 #include "DNA_constraint_types.h"
43 #include "DNA_mesh_types.h"
44 #include "DNA_lattice_types.h"
45 #include "DNA_meshdata_types.h"
46 #include "DNA_nla_types.h"
47 #include "DNA_scene_types.h"
48 #include "DNA_object_types.h"
49
50 #include "BKE_animsys.h"
51 #include "BKE_armature.h"
52 #include "BKE_action.h"
53 #include "BKE_anim.h"
54 #include "BKE_constraint.h"
55 #include "BKE_curve.h"
56 #include "BKE_depsgraph.h"
57 #include "BKE_DerivedMesh.h"
58 #include "BKE_deform.h"
59 #include "BKE_displist.h"
60 #include "BKE_global.h"
61 #include "BKE_idprop.h"
62 #include "BKE_library.h"
63 #include "BKE_lattice.h"
64 #include "BKE_main.h"
65 #include "BKE_object.h"
66 #include "BKE_utildefines.h"
67 #include "BIK_api.h"
68 #include "BKE_sketch.h"
69
70 /*      **************** Generic Functions, data level *************** */
71
72 bArmature *add_armature(const char *name)
73 {
74         bArmature *arm;
75         
76         arm= alloc_libblock (&G.main->armature, ID_AR, name);
77         arm->deformflag = ARM_DEF_VGROUP|ARM_DEF_ENVELOPE;
78         arm->flag = ARM_COL_CUSTOM; /* custom bone-group colors */
79         arm->layer= 1;
80         return arm;
81 }
82
83 bArmature *get_armature(Object *ob)
84 {
85         if(ob->type==OB_ARMATURE)
86                 return (bArmature *)ob->data;
87         return NULL;
88 }
89
90 void free_bonelist (ListBase *lb)
91 {
92         Bone *bone;
93
94         for(bone=lb->first; bone; bone=bone->next) {
95                 if(bone->prop) {
96                         IDP_FreeProperty(bone->prop);
97                         MEM_freeN(bone->prop);
98                 }
99                 free_bonelist(&bone->childbase);
100         }
101         
102         BLI_freelistN(lb);
103 }
104
105 void free_armature(bArmature *arm)
106 {
107         if (arm) {
108                 free_bonelist(&arm->bonebase);
109                 
110                 /* free editmode data */
111                 if (arm->edbo) {
112                         BLI_freelistN(arm->edbo);
113                         
114                         MEM_freeN(arm->edbo);
115                         arm->edbo= NULL;
116                 }
117
118                 /* free sketch */
119                 if (arm->sketch) {
120                         freeSketch(arm->sketch);
121                         arm->sketch = NULL;
122                 }
123                 
124                 /* free animation data */
125                 if (arm->adt) {
126                         BKE_free_animdata(&arm->id);
127                         arm->adt= NULL;
128                 }
129         }
130 }
131
132 void make_local_armature(bArmature *arm)
133 {
134         int local=0, lib=0;
135         Object *ob;
136         bArmature *newArm;
137         
138         if (arm->id.lib==0)
139                 return;
140         if (arm->id.us==1) {
141                 arm->id.lib= 0;
142                 arm->id.flag= LIB_LOCAL;
143                 new_id(0, (ID*)arm, 0);
144                 return;
145         }
146         
147         if(local && lib==0) {
148                 arm->id.lib= 0;
149                 arm->id.flag= LIB_LOCAL;
150                 new_id(0, (ID *)arm, 0);
151         }
152         else if(local && lib) {
153                 newArm= copy_armature(arm);
154                 newArm->id.us= 0;
155                 
156                 ob= G.main->object.first;
157                 while(ob) {
158                         if(ob->data==arm) {
159                                 
160                                 if(ob->id.lib==0) {
161                                         ob->data= newArm;
162                                         newArm->id.us++;
163                                         arm->id.us--;
164                                 }
165                         }
166                         ob= ob->id.next;
167                 }
168         }
169 }
170
171 static void     copy_bonechildren (Bone* newBone, Bone* oldBone, Bone* actBone, Bone **newActBone)
172 {
173         Bone    *curBone, *newChildBone;
174         
175         if(oldBone == actBone)
176                 *newActBone= newBone;
177
178         if(oldBone->prop)
179                 newBone->prop= IDP_CopyProperty(oldBone->prop);
180
181         /*      Copy this bone's list*/
182         BLI_duplicatelist(&newBone->childbase, &oldBone->childbase);
183         
184         /*      For each child in the list, update it's children*/
185         newChildBone=newBone->childbase.first;
186         for (curBone=oldBone->childbase.first;curBone;curBone=curBone->next){
187                 newChildBone->parent=newBone;
188                 copy_bonechildren(newChildBone, curBone, actBone, newActBone);
189                 newChildBone=newChildBone->next;
190         }
191 }
192
193 bArmature *copy_armature(bArmature *arm)
194 {
195         bArmature *newArm;
196         Bone            *oldBone, *newBone;
197         Bone            *newActBone= NULL;
198         
199         newArm= copy_libblock (arm);
200         BLI_duplicatelist(&newArm->bonebase, &arm->bonebase);
201         
202         /*      Duplicate the childrens' lists*/
203         newBone=newArm->bonebase.first;
204         for (oldBone=arm->bonebase.first;oldBone;oldBone=oldBone->next){
205                 newBone->parent=NULL;
206                 copy_bonechildren (newBone, oldBone, arm->act_bone, &newActBone);
207                 newBone=newBone->next;
208         };
209         
210         newArm->act_bone= newActBone;
211         return newArm;
212 }
213
214 static Bone *get_named_bone_bonechildren (Bone *bone, const char *name)
215 {
216         Bone *curBone, *rbone;
217         
218         if (!strcmp (bone->name, name))
219                 return bone;
220         
221         for (curBone=bone->childbase.first; curBone; curBone=curBone->next){
222                 rbone=get_named_bone_bonechildren (curBone, name);
223                 if (rbone)
224                         return rbone;
225         }
226         
227         return NULL;
228 }
229
230
231 Bone *get_named_bone (bArmature *arm, const char *name)
232 /*
233         Walk the list until the bone is found
234  */
235 {
236         Bone *bone=NULL, *curBone;
237         
238         if (!arm) return NULL;
239         
240         for (curBone=arm->bonebase.first; curBone; curBone=curBone->next){
241                 bone = get_named_bone_bonechildren (curBone, name);
242                 if (bone)
243                         return bone;
244         }
245         
246         return bone;
247 }
248
249 /* Finds the best possible extension to the name on a particular axis. (For renaming, check for unique names afterwards)
250  * This assumes that bone names are at most 32 chars long!
251  *      strip_number: removes number extensions  (TODO: not used)
252  *      axis: the axis to name on
253  *      head/tail: the head/tail co-ordinate of the bone on the specified axis
254  */
255 int bone_autoside_name (char *name, int UNUSED(strip_number), short axis, float head, float tail)
256 {
257         unsigned int len;
258         char    basename[32]={""};
259         char    extension[5]={""};
260
261         len= strlen(name);
262         if (len == 0) return 0;
263         BLI_strncpy(basename, name, sizeof(basename));
264         
265         /* Figure out extension to append: 
266          *      - The extension to append is based upon the axis that we are working on.
267          *      - If head happens to be on 0, then we must consider the tail position as well to decide
268          *        which side the bone is on
269          *              -> If tail is 0, then it's bone is considered to be on axis, so no extension should be added
270          *              -> Otherwise, extension is added from perspective of object based on which side tail goes to
271          *      - If head is non-zero, extension is added from perspective of object based on side head is on
272          */
273         if (axis == 2) {
274                 /* z-axis - vertical (top/bottom) */
275                 if (IS_EQ(head, 0)) {
276                         if (tail < 0)
277                                 strcpy(extension, "Bot");
278                         else if (tail > 0)
279                                 strcpy(extension, "Top");
280                 }
281                 else {
282                         if (head < 0)
283                                 strcpy(extension, "Bot");
284                         else
285                                 strcpy(extension, "Top");
286                 }
287         }
288         else if (axis == 1) {
289                 /* y-axis - depth (front/back) */
290                 if (IS_EQ(head, 0)) {
291                         if (tail < 0)
292                                 strcpy(extension, "Fr");
293                         else if (tail > 0)
294                                 strcpy(extension, "Bk");
295                 }
296                 else {
297                         if (head < 0)
298                                 strcpy(extension, "Fr");
299                         else
300                                 strcpy(extension, "Bk");
301                 }
302         }
303         else {
304                 /* x-axis - horizontal (left/right) */
305                 if (IS_EQ(head, 0)) {
306                         if (tail < 0)
307                                 strcpy(extension, "R");
308                         else if (tail > 0)
309                                 strcpy(extension, "L");
310                 }
311                 else {
312                         if (head < 0)
313                                 strcpy(extension, "R");
314                         else if (head > 0)
315                                 strcpy(extension, "L");
316                 }
317         }
318
319         /* Simple name truncation 
320          *      - truncate if there is an extension and it wouldn't be able to fit
321          *      - otherwise, just append to end
322          */
323         if (extension[0]) {
324                 int change = 1;
325                 
326                 while (change) { /* remove extensions */
327                         change = 0;
328                         if (len > 2 && basename[len-2]=='.') {
329                                 if (basename[len-1]=='L' || basename[len-1] == 'R' ) { /* L R */
330                                         basename[len-2] = '\0';
331                                         len-=2;
332                                         change= 1;
333                                 }
334                         } else if (len > 3 && basename[len-3]=='.') {
335                                 if (    (basename[len-2]=='F' && basename[len-1] == 'r') ||     /* Fr */
336                                                 (basename[len-2]=='B' && basename[len-1] == 'k')        /* Bk */
337                                 ) {
338                                         basename[len-3] = '\0';
339                                         len-=3;
340                                         change= 1;
341                                 }
342                         } else if (len > 4 && basename[len-4]=='.') {
343                                 if (    (basename[len-3]=='T' && basename[len-2]=='o' && basename[len-1] == 'p') ||     /* Top */
344                                                 (basename[len-3]=='B' && basename[len-2]=='o' && basename[len-1] == 't')        /* Bot */
345                                 ) {
346                                         basename[len-4] = '\0';
347                                         len-=4;
348                                         change= 1;
349                                 }
350                         }
351                 }
352                 
353                 if ((32 - len) < strlen(extension) + 1) { /* add 1 for the '.' */
354                         strncpy(name, basename, len-strlen(extension));
355                 }
356                 
357                 sprintf(name, "%s.%s", basename, extension);
358                 
359                 return 1;
360         }
361
362         else {
363                 return 0;
364         }
365 }
366
367 /* ************* B-Bone support ******************* */
368
369 #define MAX_BBONE_SUBDIV        32
370
371 /* data has MAX_BBONE_SUBDIV+1 interpolated points, will become desired amount with equal distances */
372 static void equalize_bezier(float *data, int desired)
373 {
374         float *fp, totdist, ddist, dist, fac1, fac2;
375         float pdist[MAX_BBONE_SUBDIV+1];
376         float temp[MAX_BBONE_SUBDIV+1][4];
377         int a, nr;
378         
379         pdist[0]= 0.0f;
380         for(a=0, fp= data; a<MAX_BBONE_SUBDIV; a++, fp+=4) {
381                 QUATCOPY(temp[a], fp);
382                 pdist[a+1]= pdist[a]+len_v3v3(fp, fp+4);
383         }
384         /* do last point */
385         QUATCOPY(temp[a], fp);
386         totdist= pdist[a];
387         
388         /* go over distances and calculate new points */
389         ddist= totdist/((float)desired);
390         nr= 1;
391         for(a=1, fp= data+4; a<desired; a++, fp+=4) {
392                 
393                 dist= ((float)a)*ddist;
394                 
395                 /* we're looking for location (distance) 'dist' in the array */
396                 while((dist>= pdist[nr]) && nr<MAX_BBONE_SUBDIV) {
397                         nr++;
398                 }
399                 
400                 fac1= pdist[nr]- pdist[nr-1];
401                 fac2= pdist[nr]-dist;
402                 fac1= fac2/fac1;
403                 fac2= 1.0f-fac1;
404                 
405                 fp[0]= fac1*temp[nr-1][0]+ fac2*temp[nr][0];
406                 fp[1]= fac1*temp[nr-1][1]+ fac2*temp[nr][1];
407                 fp[2]= fac1*temp[nr-1][2]+ fac2*temp[nr][2];
408                 fp[3]= fac1*temp[nr-1][3]+ fac2*temp[nr][3];
409         }
410         /* set last point, needed for orientation calculus */
411         QUATCOPY(fp, temp[MAX_BBONE_SUBDIV]);
412 }
413
414 /* returns pointer to static array, filled with desired amount of bone->segments elements */
415 /* this calculation is done  within unit bone space */
416 Mat4 *b_bone_spline_setup(bPoseChannel *pchan, int rest)
417 {
418         static Mat4 bbone_array[MAX_BBONE_SUBDIV];
419         static Mat4 bbone_rest_array[MAX_BBONE_SUBDIV];
420         Mat4 *result_array= (rest)? bbone_rest_array: bbone_array;
421         bPoseChannel *next, *prev;
422         Bone *bone= pchan->bone;
423         float h1[3], h2[3], scale[3], length, hlength1, hlength2, roll1=0.0f, roll2;
424         float mat3[3][3], imat[4][4], posemat[4][4], scalemat[4][4], iscalemat[4][4];
425         float data[MAX_BBONE_SUBDIV+1][4], *fp;
426         int a, doscale= 0;
427
428         length= bone->length;
429
430         if(!rest) {
431                 /* check if we need to take non-uniform bone scaling into account */
432                 scale[0]= len_v3(pchan->pose_mat[0]);
433                 scale[1]= len_v3(pchan->pose_mat[1]);
434                 scale[2]= len_v3(pchan->pose_mat[2]);
435
436                 if(fabs(scale[0] - scale[1]) > 1e-6f || fabs(scale[1] - scale[2]) > 1e-6f) {
437                         unit_m4(scalemat);
438                         scalemat[0][0]= scale[0];
439                         scalemat[1][1]= scale[1];
440                         scalemat[2][2]= scale[2];
441                         invert_m4_m4(iscalemat, scalemat);
442
443                         length *= scale[1];
444                         doscale = 1;
445                 }
446         }
447         
448         hlength1= bone->ease1*length*0.390464f;         // 0.5*sqrt(2)*kappa, the handle length for near-perfect circles
449         hlength2= bone->ease2*length*0.390464f;
450         
451         /* evaluate next and prev bones */
452         if(bone->flag & BONE_CONNECTED)
453                 prev= pchan->parent;
454         else
455                 prev= NULL;
456         
457         next= pchan->child;
458         
459         /* find the handle points, since this is inside bone space, the 
460                 first point = (0,0,0)
461                 last point =  (0, length, 0) */
462         
463         if(rest) {
464                 invert_m4_m4(imat, pchan->bone->arm_mat);
465         }
466         else if(doscale) {
467                 copy_m4_m4(posemat, pchan->pose_mat);
468                 normalize_m4(posemat);
469                 invert_m4_m4(imat, posemat);
470         }
471         else
472                 invert_m4_m4(imat, pchan->pose_mat);
473         
474         if(prev) {
475                 float difmat[4][4], result[3][3], imat3[3][3];
476
477                 /* transform previous point inside this bone space */
478                 if(rest)
479                         VECCOPY(h1, prev->bone->arm_head)
480                 else
481                         VECCOPY(h1, prev->pose_head)
482                 mul_m4_v3(imat, h1);
483
484                 if(prev->bone->segments>1) {
485                         /* if previous bone is B-bone too, use average handle direction */
486                         h1[1]-= length;
487                         roll1= 0.0f;
488                 }
489
490                 normalize_v3(h1);
491                 mul_v3_fl(h1, -hlength1);
492
493                 if(prev->bone->segments==1) {
494                         /* find the previous roll to interpolate */
495                         if(rest)
496                                 mul_m4_m4m4(difmat, prev->bone->arm_mat, imat);
497                         else
498                                 mul_m4_m4m4(difmat, prev->pose_mat, imat);
499                         copy_m3_m4(result, difmat);                             // the desired rotation at beginning of next bone
500                         
501                         vec_roll_to_mat3(h1, 0.0f, mat3);                       // the result of vec_roll without roll
502                         
503                         invert_m3_m3(imat3, mat3);
504                         mul_m3_m3m3(mat3, result, imat3);                       // the matrix transforming vec_roll to desired roll
505                         
506                         roll1= (float)atan2(mat3[2][0], mat3[2][2]);
507                 }
508         }
509         else {
510                 h1[0]= 0.0f; h1[1]= hlength1; h1[2]= 0.0f;
511                 roll1= 0.0f;
512         }
513         if(next) {
514                 float difmat[4][4], result[3][3], imat3[3][3];
515                 
516                 /* transform next point inside this bone space */
517                 if(rest)
518                         VECCOPY(h2, next->bone->arm_tail)
519                 else
520                         VECCOPY(h2, next->pose_tail)
521                 mul_m4_v3(imat, h2);
522                 /* if next bone is B-bone too, use average handle direction */
523                 if(next->bone->segments>1);
524                 else h2[1]-= length;
525                 normalize_v3(h2);
526                 
527                 /* find the next roll to interpolate as well */
528                 if(rest)
529                         mul_m4_m4m4(difmat, next->bone->arm_mat, imat);
530                 else
531                         mul_m4_m4m4(difmat, next->pose_mat, imat);
532                 copy_m3_m4(result, difmat);                             // the desired rotation at beginning of next bone
533                 
534                 vec_roll_to_mat3(h2, 0.0f, mat3);                       // the result of vec_roll without roll
535                 
536                 invert_m3_m3(imat3, mat3);
537                 mul_m3_m3m3(mat3, imat3, result);                       // the matrix transforming vec_roll to desired roll
538                 
539                 roll2= (float)atan2(mat3[2][0], mat3[2][2]);
540                 
541                 /* and only now negate handle */
542                 mul_v3_fl(h2, -hlength2);
543         }
544         else {
545                 h2[0]= 0.0f; h2[1]= -hlength2; h2[2]= 0.0f;
546                 roll2= 0.0;
547         }
548
549         /* make curve */
550         if(bone->segments > MAX_BBONE_SUBDIV)
551                 bone->segments= MAX_BBONE_SUBDIV;
552         
553         forward_diff_bezier(0.0, h1[0],         h2[0],                  0.0,            data[0],        MAX_BBONE_SUBDIV, 4*sizeof(float));
554         forward_diff_bezier(0.0, h1[1],         length + h2[1], length,         data[0]+1,      MAX_BBONE_SUBDIV, 4*sizeof(float));
555         forward_diff_bezier(0.0, h1[2],         h2[2],                  0.0,            data[0]+2,      MAX_BBONE_SUBDIV, 4*sizeof(float));
556         forward_diff_bezier(roll1, roll1 + 0.390464f*(roll2-roll1), roll2 - 0.390464f*(roll2-roll1),    roll2,  data[0]+3,      MAX_BBONE_SUBDIV, 4*sizeof(float));
557         
558         equalize_bezier(data[0], bone->segments);       // note: does stride 4!
559         
560         /* make transformation matrices for the segments for drawing */
561         for(a=0, fp= data[0]; a<bone->segments; a++, fp+=4) {
562                 sub_v3_v3v3(h1, fp+4, fp);
563                 vec_roll_to_mat3(h1, fp[3], mat3);              // fp[3] is roll
564
565                 copy_m4_m3(result_array[a].mat, mat3);
566                 VECCOPY(result_array[a].mat[3], fp);
567
568                 if(doscale) {
569                         /* correct for scaling when this matrix is used in scaled space */
570                         mul_serie_m4(result_array[a].mat, iscalemat, result_array[a].mat,
571                                 scalemat, NULL, NULL, NULL, NULL, NULL);
572                 }
573         }
574         
575         return result_array;
576 }
577
578 /* ************ Armature Deform ******************* */
579
580 typedef struct bPoseChanDeform {
581         Mat4            *b_bone_mats;   
582         DualQuat        *dual_quat;
583         DualQuat        *b_bone_dual_quats;
584 } bPoseChanDeform;
585
586 static void pchan_b_bone_defmats(bPoseChannel *pchan, bPoseChanDeform *pdef_info, int use_quaternion)
587 {
588         Bone *bone= pchan->bone;
589         Mat4 *b_bone= b_bone_spline_setup(pchan, 0);
590         Mat4 *b_bone_rest= b_bone_spline_setup(pchan, 1);
591         Mat4 *b_bone_mats;
592         DualQuat *b_bone_dual_quats= NULL;
593         float tmat[4][4];
594         int a;
595         
596         /* allocate b_bone matrices and dual quats */
597         b_bone_mats= MEM_mallocN((1+bone->segments)*sizeof(Mat4), "BBone defmats");
598         pdef_info->b_bone_mats= b_bone_mats;
599
600         if(use_quaternion) {
601                 b_bone_dual_quats= MEM_mallocN((bone->segments)*sizeof(DualQuat), "BBone dqs");
602                 pdef_info->b_bone_dual_quats= b_bone_dual_quats;
603         }
604         
605         /* first matrix is the inverse arm_mat, to bring points in local bone space
606            for finding out which segment it belongs to */
607         invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat);
608
609         /* then we make the b_bone_mats:
610                 - first transform to local bone space
611                 - translate over the curve to the bbone mat space
612                 - transform with b_bone matrix
613                 - transform back into global space */
614         unit_m4(tmat);
615
616         for(a=0; a<bone->segments; a++) {
617                 invert_m4_m4(tmat, b_bone_rest[a].mat);
618
619                 mul_serie_m4(b_bone_mats[a+1].mat, pchan->chan_mat, bone->arm_mat,
620                         b_bone[a].mat, tmat, b_bone_mats[0].mat, NULL, NULL, NULL);
621
622                 if(use_quaternion)
623                         mat4_to_dquat( &b_bone_dual_quats[a],bone->arm_mat, b_bone_mats[a+1].mat);
624         }
625 }
626
627 static void b_bone_deform(bPoseChanDeform *pdef_info, Bone *bone, float *co, DualQuat *dq, float defmat[][3])
628 {
629         Mat4 *b_bone= pdef_info->b_bone_mats;
630         float (*mat)[4]= b_bone[0].mat;
631         float segment, y;
632         int a;
633         
634         /* need to transform co back to bonespace, only need y */
635         y= mat[0][1]*co[0] + mat[1][1]*co[1] + mat[2][1]*co[2] + mat[3][1];
636         
637         /* now calculate which of the b_bones are deforming this */
638         segment= bone->length/((float)bone->segments);
639         a= (int)(y/segment);
640         
641         /* note; by clamping it extends deform at endpoints, goes best with
642            straight joints in restpos. */
643         CLAMP(a, 0, bone->segments-1);
644
645         if(dq) {
646                 copy_dq_dq(dq, &(pdef_info->b_bone_dual_quats)[a]);
647         }
648         else {
649                 mul_m4_v3(b_bone[a+1].mat, co);
650
651                 if(defmat)
652                         copy_m3_m4(defmat, b_bone[a+1].mat);
653         }
654 }
655
656 /* using vec with dist to bone b1 - b2 */
657 float distfactor_to_bone (float vec[3], float b1[3], float b2[3], float rad1, float rad2, float rdist)
658 {
659         float dist=0.0f; 
660         float bdelta[3];
661         float pdelta[3];
662         float hsqr, a, l, rad;
663         
664         sub_v3_v3v3(bdelta, b2, b1);
665         l = normalize_v3(bdelta);
666         
667         sub_v3_v3v3(pdelta, vec, b1);
668         
669         a = bdelta[0]*pdelta[0] + bdelta[1]*pdelta[1] + bdelta[2]*pdelta[2];
670         hsqr = ((pdelta[0]*pdelta[0]) + (pdelta[1]*pdelta[1]) + (pdelta[2]*pdelta[2]));
671         
672         if (a < 0.0F){
673                 /* If we're past the end of the bone, do a spherical field attenuation thing */
674                 dist= ((b1[0]-vec[0])*(b1[0]-vec[0]) +(b1[1]-vec[1])*(b1[1]-vec[1]) +(b1[2]-vec[2])*(b1[2]-vec[2])) ;
675                 rad= rad1;
676         }
677         else if (a > l){
678                 /* If we're past the end of the bone, do a spherical field attenuation thing */
679                 dist= ((b2[0]-vec[0])*(b2[0]-vec[0]) +(b2[1]-vec[1])*(b2[1]-vec[1]) +(b2[2]-vec[2])*(b2[2]-vec[2])) ;
680                 rad= rad2;
681         }
682         else {
683                 dist= (hsqr - (a*a));
684                 
685                 if(l!=0.0f) {
686                         rad= a/l;
687                         rad= rad*rad2 + (1.0f-rad)*rad1;
688                 }
689                 else rad= rad1;
690         }
691         
692         a= rad*rad;
693         if(dist < a) 
694                 return 1.0f;
695         else {
696                 l= rad+rdist;
697                 l*= l;
698                 if(rdist==0.0f || dist >= l) 
699                         return 0.0f;
700                 else {
701                         a= (float)sqrt(dist)-rad;
702                         return 1.0f-( a*a )/( rdist*rdist );
703                 }
704         }
705 }
706
707 static void pchan_deform_mat_add(bPoseChannel *pchan, float weight, float bbonemat[][3], float mat[][3])
708 {
709         float wmat[3][3];
710
711         if(pchan->bone->segments>1)
712                 copy_m3_m3(wmat, bbonemat);
713         else
714                 copy_m3_m4(wmat, pchan->chan_mat);
715
716         mul_m3_fl(wmat, weight);
717         add_m3_m3m3(mat, mat, wmat);
718 }
719
720 static float dist_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float *vec, DualQuat *dq, float mat[][3], float *co)
721 {
722         Bone *bone= pchan->bone;
723         float fac, contrib=0.0;
724         float cop[3], bbonemat[3][3];
725         DualQuat bbonedq;
726
727         if(bone==NULL) return 0.0f;
728         
729         VECCOPY (cop, co);
730
731         fac= distfactor_to_bone(cop, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
732         
733         if (fac>0.0) {
734                 
735                 fac*=bone->weight;
736                 contrib= fac;
737                 if(contrib>0.0) {
738                         if(vec) {
739                                 if(bone->segments>1)
740                                         // applies on cop and bbonemat
741                                         b_bone_deform(pdef_info, bone, cop, NULL, (mat)?bbonemat:NULL);
742                                 else
743                                         mul_m4_v3(pchan->chan_mat, cop);
744
745                                 //      Make this a delta from the base position
746                                 sub_v3_v3(cop, co);
747                                 madd_v3_v3fl(vec, cop, fac);
748
749                                 if(mat)
750                                         pchan_deform_mat_add(pchan, fac, bbonemat, mat);
751                         }
752                         else {
753                                 if(bone->segments>1) {
754                                         b_bone_deform(pdef_info, bone, cop, &bbonedq, NULL);
755                                         add_weighted_dq_dq(dq, &bbonedq, fac);
756                                 }
757                                 else
758                                         add_weighted_dq_dq(dq, pdef_info->dual_quat, fac);
759                         }
760                 }
761         }
762         
763         return contrib;
764 }
765
766 static void pchan_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float weight, float *vec, DualQuat *dq, float mat[][3], float *co, float *contrib)
767 {
768         float cop[3], bbonemat[3][3];
769         DualQuat bbonedq;
770
771         if (!weight)
772                 return;
773
774         VECCOPY(cop, co);
775
776         if(vec) {
777                 if(pchan->bone->segments>1)
778                         // applies on cop and bbonemat
779                         b_bone_deform(pdef_info, pchan->bone, cop, NULL, (mat)?bbonemat:NULL);
780                 else
781                         mul_m4_v3(pchan->chan_mat, cop);
782                 
783                 vec[0]+=(cop[0]-co[0])*weight;
784                 vec[1]+=(cop[1]-co[1])*weight;
785                 vec[2]+=(cop[2]-co[2])*weight;
786
787                 if(mat)
788                         pchan_deform_mat_add(pchan, weight, bbonemat, mat);
789         }
790         else {
791                 if(pchan->bone->segments>1) {
792                         b_bone_deform(pdef_info, pchan->bone, cop, &bbonedq, NULL);
793                         add_weighted_dq_dq(dq, &bbonedq, weight);
794                 }
795                 else
796                         add_weighted_dq_dq(dq, pdef_info->dual_quat, weight);
797         }
798
799         (*contrib)+=weight;
800 }
801
802 void armature_deform_verts(Object *armOb, Object *target, DerivedMesh *dm,
803                                                    float (*vertexCos)[3], float (*defMats)[3][3],
804                                                    int numVerts, int deformflag, 
805                                                    float (*prevCos)[3], const char *defgrp_name)
806 {
807         bPoseChanDeform *pdef_info_array;
808         bPoseChanDeform *pdef_info= NULL;
809         bArmature *arm= armOb->data;
810         bPoseChannel *pchan, **defnrToPC = NULL;
811         int *defnrToPCIndex= NULL;
812         MDeformVert *dverts = NULL;
813         bDeformGroup *dg;
814         DualQuat *dualquats= NULL;
815         float obinv[4][4], premat[4][4], postmat[4][4];
816         const short use_envelope = deformflag & ARM_DEF_ENVELOPE;
817         const short use_quaternion = deformflag & ARM_DEF_QUATERNION;
818         const short invert_vgroup= deformflag & ARM_DEF_INVERT_VGROUP;
819         int numGroups = 0;              /* safety for vertexgroup index overflow */
820         int i, target_totvert = 0;      /* safety for vertexgroup overflow */
821         int use_dverts = 0;
822         int armature_def_nr;
823         int totchan;
824
825         if(arm->edbo) return;
826         
827         invert_m4_m4(obinv, target->obmat);
828         copy_m4_m4(premat, target->obmat);
829         mul_m4_m4m4(postmat, armOb->obmat, obinv);
830         invert_m4_m4(premat, postmat);
831
832         /* bone defmats are already in the channels, chan_mat */
833         
834         /* initialize B_bone matrices and dual quaternions */
835         totchan= BLI_countlist(&armOb->pose->chanbase);
836
837         if(use_quaternion) {
838                 dualquats= MEM_callocN(sizeof(DualQuat)*totchan, "dualquats");
839         }
840         
841         pdef_info_array= MEM_callocN(sizeof(bPoseChanDeform)*totchan, "bPoseChanDeform");
842
843         totchan= 0;
844         pdef_info= pdef_info_array;
845         for(pchan= armOb->pose->chanbase.first; pchan; pchan= pchan->next, pdef_info++) {
846                 if(!(pchan->bone->flag & BONE_NO_DEFORM)) {
847                         if(pchan->bone->segments > 1)
848                                 pchan_b_bone_defmats(pchan, pdef_info, use_quaternion);
849
850                         if(use_quaternion) {
851                                 pdef_info->dual_quat= &dualquats[totchan++];
852                                 mat4_to_dquat( pdef_info->dual_quat,pchan->bone->arm_mat, pchan->chan_mat);
853                         }
854                 }
855         }
856
857         /* get the def_nr for the overall armature vertex group if present */
858         armature_def_nr= defgroup_name_index(target, defgrp_name);
859         
860         if(ELEM(target->type, OB_MESH, OB_LATTICE)) {
861                 numGroups = BLI_countlist(&target->defbase);
862                 
863                 if(target->type==OB_MESH) {
864                         Mesh *me= target->data;
865                         dverts = me->dvert;
866                         if(dverts)
867                                 target_totvert = me->totvert;
868                 }
869                 else {
870                         Lattice *lt= target->data;
871                         dverts = lt->dvert;
872                         if(dverts)
873                                 target_totvert = lt->pntsu*lt->pntsv*lt->pntsw;
874                 }
875         }
876         
877         /* get a vertex-deform-index to posechannel array */
878         if(deformflag & ARM_DEF_VGROUP) {
879                 if(ELEM(target->type, OB_MESH, OB_LATTICE)) {
880                         /* if we have a DerivedMesh, only use dverts if it has them */
881                         if(dm)
882                                 if(dm->getVertData(dm, 0, CD_MDEFORMVERT))
883                                         use_dverts = 1;
884                                 else use_dverts = 0;
885                         else if(dverts) use_dverts = 1;
886
887                         if(use_dverts) {
888                                 defnrToPC = MEM_callocN(sizeof(*defnrToPC) * numGroups, "defnrToBone");
889                                 defnrToPCIndex = MEM_callocN(sizeof(*defnrToPCIndex) * numGroups, "defnrToIndex");
890                                 for(i = 0, dg = target->defbase.first; dg;
891                                         i++, dg = dg->next) {
892                                         defnrToPC[i] = get_pose_channel(armOb->pose, dg->name);
893                                         /* exclude non-deforming bones */
894                                         if(defnrToPC[i]) {
895                                                 if(defnrToPC[i]->bone->flag & BONE_NO_DEFORM) {
896                                                         defnrToPC[i]= NULL;
897                                                 }
898                                                 else {
899                                                         defnrToPCIndex[i]= BLI_findindex(&armOb->pose->chanbase, defnrToPC[i]);
900                                                 }
901                                         }
902                                 }
903                         }
904                 }
905         }
906
907         for(i = 0; i < numVerts; i++) {
908                 MDeformVert *dvert;
909                 DualQuat sumdq, *dq = NULL;
910                 float *co, dco[3];
911                 float sumvec[3], summat[3][3];
912                 float *vec = NULL, (*smat)[3] = NULL;
913                 float contrib = 0.0f;
914                 float armature_weight = 1.0f;   /* default to 1 if no overall def group */
915                 float prevco_weight = 1.0f;             /* weight for optional cached vertexcos */
916                 int       j;
917
918                 if(use_quaternion) {
919                         memset(&sumdq, 0, sizeof(DualQuat));
920                         dq= &sumdq;
921                 }
922                 else {
923                         sumvec[0] = sumvec[1] = sumvec[2] = 0.0f;
924                         vec= sumvec;
925
926                         if(defMats) {
927                                 zero_m3(summat);
928                                 smat = summat;
929                         }
930                 }
931
932                 if(use_dverts || armature_def_nr >= 0) {
933                         if(dm) dvert = dm->getVertData(dm, i, CD_MDEFORMVERT);
934                         else if(dverts && i < target_totvert) dvert = dverts + i;
935                         else dvert = NULL;
936                 } else
937                         dvert = NULL;
938
939                 if(armature_def_nr >= 0 && dvert) {
940                         armature_weight = 0.0f; /* a def group was given, so default to 0 */
941                         for(j = 0; j < dvert->totweight; j++) {
942                                 if(dvert->dw[j].def_nr == armature_def_nr) {
943                                         armature_weight = dvert->dw[j].weight;
944                                         break;
945                                 }
946                         }
947                         /* hackish: the blending factor can be used for blending with prevCos too */
948                         if(prevCos) {
949                                 if(invert_vgroup)
950                                         prevco_weight= 1.0f-armature_weight;
951                                 else
952                                         prevco_weight= armature_weight;
953                                 armature_weight= 1.0f;
954                         }
955                 }
956
957                 /* check if there's any  point in calculating for this vert */
958                 if(armature_weight == 0.0f) continue;
959                 
960                 /* get the coord we work on */
961                 co= prevCos?prevCos[i]:vertexCos[i];
962                 
963                 /* Apply the object's matrix */
964                 mul_m4_v3(premat, co);
965                 
966                 if(use_dverts && dvert && dvert->totweight) { // use weight groups ?
967                         int deformed = 0;
968                         
969                         for(j = 0; j < dvert->totweight; j++){
970                                 int index = dvert->dw[j].def_nr;
971                                 if(index < numGroups && (pchan= defnrToPC[index])) {
972                                         float weight = dvert->dw[j].weight;
973                                         Bone *bone= pchan->bone;
974                                         pdef_info= pdef_info_array + defnrToPCIndex[index];
975
976                                         deformed = 1;
977                                         
978                                         if(bone && bone->flag & BONE_MULT_VG_ENV) {
979                                                 weight *= distfactor_to_bone(co, bone->arm_head,
980                                                                                                          bone->arm_tail,
981                                                                                                          bone->rad_head,
982                                                                                                          bone->rad_tail,
983                                                                                                          bone->dist);
984                                         }
985                                         pchan_bone_deform(pchan, pdef_info, weight, vec, dq, smat, co, &contrib);
986                                 }
987                         }
988                         /* if there are vertexgroups but not groups with bones
989                          * (like for softbody groups)
990                          */
991                         if(deformed == 0 && use_envelope) {
992                                 pdef_info= pdef_info_array;
993                                 for(pchan= armOb->pose->chanbase.first; pchan;
994                                         pchan= pchan->next, pdef_info++) {
995                                         if(!(pchan->bone->flag & BONE_NO_DEFORM))
996                                                 contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
997                                 }
998                         }
999                 }
1000                 else if(use_envelope) {
1001                         pdef_info= pdef_info_array;
1002                         for(pchan = armOb->pose->chanbase.first; pchan;
1003                                 pchan = pchan->next, pdef_info++) {
1004                                 if(!(pchan->bone->flag & BONE_NO_DEFORM))
1005                                         contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
1006                         }
1007                 }
1008
1009                 /* actually should be EPSILON? weight values and contrib can be like 10e-39 small */
1010                 if(contrib > 0.0001f) {
1011                         if(use_quaternion) {
1012                                 normalize_dq(dq, contrib);
1013
1014                                 if(armature_weight != 1.0f) {
1015                                         VECCOPY(dco, co);
1016                                         mul_v3m3_dq( dco, (defMats)? summat: NULL,dq);
1017                                         sub_v3_v3(dco, co);
1018                                         mul_v3_fl(dco, armature_weight);
1019                                         add_v3_v3(co, dco);
1020                                 }
1021                                 else
1022                                         mul_v3m3_dq( co, (defMats)? summat: NULL,dq);
1023
1024                                 smat = summat;
1025                         }
1026                         else {
1027                                 mul_v3_fl(vec, armature_weight/contrib);
1028                                 add_v3_v3v3(co, vec, co);
1029                         }
1030
1031                         if(defMats) {
1032                                 float pre[3][3], post[3][3], tmpmat[3][3];
1033
1034                                 copy_m3_m4(pre, premat);
1035                                 copy_m3_m4(post, postmat);
1036                                 copy_m3_m3(tmpmat, defMats[i]);
1037
1038                                 if(!use_quaternion) /* quaternion already is scale corrected */
1039                                         mul_m3_fl(smat, armature_weight/contrib);
1040
1041                                 mul_serie_m3(defMats[i], tmpmat, pre, smat, post,
1042                                         NULL, NULL, NULL, NULL);
1043                         }
1044                 }
1045                 
1046                 /* always, check above code */
1047                 mul_m4_v3(postmat, co);
1048                 
1049                 
1050                 /* interpolate with previous modifier position using weight group */
1051                 if(prevCos) {
1052                         float mw= 1.0f - prevco_weight;
1053                         vertexCos[i][0]= prevco_weight*vertexCos[i][0] + mw*co[0];
1054                         vertexCos[i][1]= prevco_weight*vertexCos[i][1] + mw*co[1];
1055                         vertexCos[i][2]= prevco_weight*vertexCos[i][2] + mw*co[2];
1056                 }
1057         }
1058
1059         if(dualquats) MEM_freeN(dualquats);
1060         if(defnrToPC) MEM_freeN(defnrToPC);
1061         if(defnrToPCIndex) MEM_freeN(defnrToPCIndex);
1062
1063         /* free B_bone matrices */
1064         pdef_info= pdef_info_array;
1065         for(pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1066                 if(pdef_info->b_bone_mats) {
1067                         MEM_freeN(pdef_info->b_bone_mats);
1068                 }
1069                 if(pdef_info->b_bone_dual_quats) {
1070                         MEM_freeN(pdef_info->b_bone_dual_quats);
1071                 }
1072         }
1073
1074         MEM_freeN(pdef_info_array);
1075 }
1076
1077 /* ************ END Armature Deform ******************* */
1078
1079 void get_objectspace_bone_matrix (struct Bone* bone, float M_accumulatedMatrix[][4], int UNUSED(root), int UNUSED(posed))
1080 {
1081         copy_m4_m4(M_accumulatedMatrix, bone->arm_mat);
1082 }
1083
1084 /* **************** Space to Space API ****************** */
1085
1086 /* Convert World-Space Matrix to Pose-Space Matrix */
1087 void armature_mat_world_to_pose(Object *ob, float inmat[][4], float outmat[][4]) 
1088 {
1089         float obmat[4][4];
1090         
1091         /* prevent crashes */
1092         if (ob==NULL) return;
1093         
1094         /* get inverse of (armature) object's matrix  */
1095         invert_m4_m4(obmat, ob->obmat);
1096         
1097         /* multiply given matrix by object's-inverse to find pose-space matrix */
1098         mul_m4_m4m4(outmat, obmat, inmat);
1099 }
1100
1101 /* Convert Wolrd-Space Location to Pose-Space Location
1102  * NOTE: this cannot be used to convert to pose-space location of the supplied
1103  *              pose-channel into its local space (i.e. 'visual'-keyframing) 
1104  */
1105 void armature_loc_world_to_pose(Object *ob, float *inloc, float *outloc) 
1106 {
1107         float xLocMat[4][4];
1108         float nLocMat[4][4];
1109         
1110         /* build matrix for location */
1111         unit_m4(xLocMat);
1112         VECCOPY(xLocMat[3], inloc);
1113
1114         /* get bone-space cursor matrix and extract location */
1115         armature_mat_world_to_pose(ob, xLocMat, nLocMat);
1116         VECCOPY(outloc, nLocMat[3]);
1117 }
1118
1119 /* Convert Pose-Space Matrix to Bone-Space Matrix 
1120  * NOTE: this cannot be used to convert to pose-space transforms of the supplied
1121  *              pose-channel into its local space (i.e. 'visual'-keyframing)
1122  */
1123 void armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[][4], float outmat[][4])
1124 {
1125         float pc_trans[4][4], inv_trans[4][4];
1126         float pc_posemat[4][4], inv_posemat[4][4];
1127         float pose_mat[4][4];
1128
1129         /* paranoia: prevent crashes with no pose-channel supplied */
1130         if (pchan==NULL) return;
1131
1132         /* default flag */
1133         if((pchan->bone->flag & BONE_NO_LOCAL_LOCATION)==0) {
1134                 /* get the inverse matrix of the pchan's transforms */
1135                 switch(pchan->rotmode) {
1136                 case ROT_MODE_QUAT:
1137                         loc_quat_size_to_mat4(pc_trans, pchan->loc, pchan->quat, pchan->size);
1138                         break;
1139                 case ROT_MODE_AXISANGLE:
1140                         loc_axisangle_size_to_mat4(pc_trans, pchan->loc, pchan->rotAxis, pchan->rotAngle, pchan->size);
1141                         break;
1142                 default: /* euler */
1143                         loc_eul_size_to_mat4(pc_trans, pchan->loc, pchan->eul, pchan->size);
1144                 }
1145
1146                 copy_m4_m4(pose_mat, pchan->pose_mat);
1147         }
1148         else {
1149                 /* local location, this is not default, different calculation
1150                  * note: only tested for location with pose bone snapping.
1151                  * If this is not useful in other cases the BONE_NO_LOCAL_LOCATION
1152                  * case may have to be split into its own function. */
1153                 unit_m4(pc_trans);
1154                 copy_v3_v3(pc_trans[3], pchan->loc);
1155
1156                 /* use parents rotation/scale space + own absolute position */
1157                 if(pchan->parent)       copy_m4_m4(pose_mat, pchan->parent->pose_mat);
1158                 else                            unit_m4(pose_mat);
1159
1160                 copy_v3_v3(pose_mat[3], pchan->pose_mat[3]);
1161         }
1162
1163
1164         invert_m4_m4(inv_trans, pc_trans);
1165         
1166         /* Remove the pchan's transforms from it's pose_mat.
1167          * This should leave behind the effects of restpose + 
1168          * parenting + constraints
1169          */
1170         mul_m4_m4m4(pc_posemat, inv_trans, pose_mat);
1171         
1172         /* get the inverse of the leftovers so that we can remove 
1173          * that component from the supplied matrix
1174          */
1175         invert_m4_m4(inv_posemat, pc_posemat);
1176         
1177         /* get the new matrix */
1178         mul_m4_m4m4(outmat, inmat, inv_posemat);
1179 }
1180
1181 /* Convert Pose-Space Location to Bone-Space Location
1182  * NOTE: this cannot be used to convert to pose-space location of the supplied
1183  *              pose-channel into its local space (i.e. 'visual'-keyframing) 
1184  */
1185 void armature_loc_pose_to_bone(bPoseChannel *pchan, float *inloc, float *outloc) 
1186 {
1187         float xLocMat[4][4];
1188         float nLocMat[4][4];
1189         
1190         /* build matrix for location */
1191         unit_m4(xLocMat);
1192         VECCOPY(xLocMat[3], inloc);
1193
1194         /* get bone-space cursor matrix and extract location */
1195         armature_mat_pose_to_bone(pchan, xLocMat, nLocMat);
1196         VECCOPY(outloc, nLocMat[3]);
1197 }
1198
1199 /* same as object_mat3_to_rot() */
1200 void pchan_mat3_to_rot(bPoseChannel *pchan, float mat[][3], short use_compat)
1201 {
1202         switch(pchan->rotmode) {
1203         case ROT_MODE_QUAT:
1204                 mat3_to_quat(pchan->quat, mat);
1205                 break;
1206         case ROT_MODE_AXISANGLE:
1207                 mat3_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat);
1208                 break;
1209         default: /* euler */
1210                 if(use_compat)  mat3_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat);
1211                 else                    mat3_to_eulO(pchan->eul, pchan->rotmode, mat);
1212         }
1213 }
1214
1215 /* Apply a 4x4 matrix to the pose bone,
1216  * similar to object_apply_mat4()
1217  */
1218 void pchan_apply_mat4(bPoseChannel *pchan, float mat[][4], short use_compat)
1219 {
1220         float rot[3][3];
1221         mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat);
1222         pchan_mat3_to_rot(pchan, rot, use_compat);
1223 }
1224
1225 /* Remove rest-position effects from pose-transform for obtaining
1226  * 'visual' transformation of pose-channel.
1227  * (used by the Visual-Keyframing stuff)
1228  */
1229 void armature_mat_pose_to_delta(float delta_mat[][4], float pose_mat[][4], float arm_mat[][4])
1230 {
1231          float imat[4][4];
1232  
1233          invert_m4_m4(imat, arm_mat);
1234          mul_m4_m4m4(delta_mat, pose_mat, imat);
1235 }
1236
1237 /* **************** Rotation Mode Conversions ****************************** */
1238 /* Used for Objects and Pose Channels, since both can have multiple rotation representations */
1239
1240 /* Called from RNA when rotation mode changes 
1241  *      - the result should be that the rotations given in the provided pointers have had conversions 
1242  *        applied (as appropriate), such that the rotation of the element hasn't 'visually' changed 
1243  */
1244 void BKE_rotMode_change_values (float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode)
1245 {
1246         /* check if any change - if so, need to convert data */
1247         if (newMode > 0) { /* to euler */
1248                 if (oldMode == ROT_MODE_AXISANGLE) {
1249                         /* axis-angle to euler */
1250                         axis_angle_to_eulO( eul, newMode,axis, *angle);
1251                 }
1252                 else if (oldMode == ROT_MODE_QUAT) {
1253                         /* quat to euler */
1254                         quat_to_eulO( eul, newMode,quat);
1255                 }
1256                 /* else { no conversion needed } */
1257         }
1258         else if (newMode == ROT_MODE_QUAT) { /* to quat */
1259                 if (oldMode == ROT_MODE_AXISANGLE) {
1260                         /* axis angle to quat */
1261                         axis_angle_to_quat(quat, axis, *angle);
1262                 }
1263                 else if (oldMode > 0) {
1264                         /* euler to quat */
1265                         eulO_to_quat( quat,eul, oldMode);
1266                 }
1267                 /* else { no conversion needed } */
1268         }
1269         else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */
1270                 if (oldMode > 0) {
1271                         /* euler to axis angle */
1272                         eulO_to_axis_angle( axis, angle,eul, oldMode);
1273                 }
1274                 else if (oldMode == ROT_MODE_QUAT) {
1275                         /* quat to axis angle */
1276                         quat_to_axis_angle( axis, angle,quat);
1277                 }
1278                 
1279                 /* when converting to axis-angle, we need a special exception for the case when there is no axis */
1280                 if (IS_EQ(axis[0], axis[1]) && IS_EQ(axis[1], axis[2])) {
1281                         /* for now, rotate around y-axis then (so that it simply becomes the roll) */
1282                         axis[1]= 1.0f;
1283                 }
1284         }
1285 }
1286
1287 /* **************** The new & simple (but OK!) armature evaluation ********* */ 
1288
1289 /*  ****************** And how it works! ****************************************
1290
1291   This is the bone transformation trick; they're hierarchical so each bone(b)
1292   is in the coord system of bone(b-1):
1293
1294   arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) 
1295   
1296   -> yoffs is just the y axis translation in parent's coord system
1297   -> d_root is the translation of the bone root, also in parent's coord system
1298
1299   pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
1300
1301   we then - in init deform - store the deform in chan_mat, such that:
1302
1303   pose_mat(b)= arm_mat(b) * chan_mat(b)
1304   
1305   *************************************************************************** */
1306 /*  Computes vector and roll based on a rotation. "mat" must
1307          contain only a rotation, and no scaling. */ 
1308 void mat3_to_vec_roll(float mat[][3], float *vec, float *roll) 
1309 {
1310         if (vec)
1311                 copy_v3_v3(vec, mat[1]);
1312
1313         if (roll) {
1314                 float vecmat[3][3], vecmatinv[3][3], rollmat[3][3];
1315
1316                 vec_roll_to_mat3(mat[1], 0.0f, vecmat);
1317                 invert_m3_m3(vecmatinv, vecmat);
1318                 mul_m3_m3m3(rollmat, vecmatinv, mat);
1319
1320                 *roll= (float)atan2(rollmat[2][0], rollmat[2][2]);
1321         }
1322 }
1323
1324 /*      Calculates the rest matrix of a bone based
1325         On its vector and a roll around that vector */
1326 void vec_roll_to_mat3(float *vec, float roll, float mat[][3])
1327 {
1328         float   nor[3], axis[3], target[3]={0,1,0};
1329         float   theta;
1330         float   rMatrix[3][3], bMatrix[3][3];
1331
1332         normalize_v3_v3(nor, vec);
1333         
1334         /*      Find Axis & Amount for bone matrix*/
1335         cross_v3_v3v3(axis,target,nor);
1336
1337         /* was 0.0000000000001, caused bug [#23954], smaller values give unstable
1338          * roll when toggling editmode */
1339         if (dot_v3v3(axis,axis) > 0.00001) {
1340                 /* if nor is *not* a multiple of target ... */
1341                 normalize_v3(axis);
1342                 
1343                 theta= angle_normalized_v3v3(target, nor);
1344                 
1345                 /*      Make Bone matrix*/
1346                 vec_rot_to_mat3( bMatrix,axis, theta);
1347         }
1348         else {
1349                 /* if nor is a multiple of target ... */
1350                 float updown;
1351                 
1352                 /* point same direction, or opposite? */
1353                 updown = ( dot_v3v3(target,nor) > 0 ) ? 1.0f : -1.0f;
1354                 
1355                 /* I think this should work ... */
1356                 bMatrix[0][0]=updown; bMatrix[0][1]=0.0;    bMatrix[0][2]=0.0;
1357                 bMatrix[1][0]=0.0;    bMatrix[1][1]=updown; bMatrix[1][2]=0.0;
1358                 bMatrix[2][0]=0.0;    bMatrix[2][1]=0.0;    bMatrix[2][2]=1.0;
1359         }
1360         
1361         /*      Make Roll matrix*/
1362         vec_rot_to_mat3( rMatrix,nor, roll);
1363         
1364         /*      Combine and output result*/
1365         mul_m3_m3m3(mat, rMatrix, bMatrix);
1366 }
1367
1368
1369 /* recursive part, calculates restposition of entire tree of children */
1370 /* used by exiting editmode too */
1371 void where_is_armature_bone(Bone *bone, Bone *prevbone)
1372 {
1373         float vec[3];
1374         
1375         /* Bone Space */
1376         sub_v3_v3v3(vec, bone->tail, bone->head);
1377         vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);
1378
1379         bone->length= len_v3v3(bone->head, bone->tail);
1380         
1381         /* this is called on old file reading too... */
1382         if(bone->xwidth==0.0) {
1383                 bone->xwidth= 0.1f;
1384                 bone->zwidth= 0.1f;
1385                 bone->segments= 1;
1386         }
1387         
1388         if(prevbone) {
1389                 float offs_bone[4][4];  // yoffs(b-1) + root(b) + bonemat(b)
1390                 
1391                 /* bone transform itself */
1392                 copy_m4_m3(offs_bone, bone->bone_mat);
1393                                 
1394                 /* The bone's root offset (is in the parent's coordinate system) */
1395                 VECCOPY(offs_bone[3], bone->head);
1396
1397                 /* Get the length translation of parent (length along y axis) */
1398                 offs_bone[3][1]+= prevbone->length;
1399                 
1400                 /* Compose the matrix for this bone  */
1401                 mul_m4_m4m4(bone->arm_mat, offs_bone, prevbone->arm_mat);
1402         }
1403         else {
1404                 copy_m4_m3(bone->arm_mat, bone->bone_mat);
1405                 VECCOPY(bone->arm_mat[3], bone->head);
1406         }
1407         
1408         /* head */
1409         VECCOPY(bone->arm_head, bone->arm_mat[3]);
1410         /* tail is in current local coord system */
1411         VECCOPY(vec, bone->arm_mat[1]);
1412         mul_v3_fl(vec, bone->length);
1413         add_v3_v3v3(bone->arm_tail, bone->arm_head, vec);
1414         
1415         /* and the kiddies */
1416         prevbone= bone;
1417         for(bone= bone->childbase.first; bone; bone= bone->next) {
1418                 where_is_armature_bone(bone, prevbone);
1419         }
1420 }
1421
1422 /* updates vectors and matrices on rest-position level, only needed 
1423    after editing armature itself, now only on reading file */
1424 void where_is_armature (bArmature *arm)
1425 {
1426         Bone *bone;
1427         
1428         /* hierarchical from root to children */
1429         for(bone= arm->bonebase.first; bone; bone= bone->next) {
1430                 where_is_armature_bone(bone, NULL);
1431         }
1432 }
1433
1434 /* if bone layer is protected, copy the data from from->pose
1435  * when used with linked libraries this copies from the linked pose into the local pose */
1436 static void pose_proxy_synchronize(Object *ob, Object *from, int layer_protected)
1437 {
1438         bPose *pose= ob->pose, *frompose= from->pose;
1439         bPoseChannel *pchan, *pchanp, pchanw;
1440         bConstraint *con;
1441         int error = 0;
1442         
1443         if (frompose==NULL) return;
1444
1445         /* in some cases when rigs change, we cant synchronize
1446          * to avoid crashing check for possible errors here */
1447         for (pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
1448                 if (pchan->bone->layer & layer_protected) {
1449                         if(get_pose_channel(frompose, pchan->name) == NULL) {
1450                                 printf("failed to sync proxy armature because '%s' is missing pose channel '%s'\n", from->id.name, pchan->name);
1451                                 error = 1;
1452                         }
1453                 }
1454         }
1455
1456         if(error)
1457                 return;
1458         
1459         /* exception, armature local layer should be proxied too */
1460         if (pose->proxy_layer)
1461                 ((bArmature *)ob->data)->layer= pose->proxy_layer;
1462         
1463         /* clear all transformation values from library */
1464         rest_pose(frompose);
1465         
1466         /* copy over all of the proxy's bone groups */
1467                 /* TODO for later - implement 'local' bone groups as for constraints
1468                  *      Note: this isn't trivial, as bones reference groups by index not by pointer, 
1469                  *               so syncing things correctly needs careful attention
1470                  */
1471         BLI_freelistN(&pose->agroups);
1472         BLI_duplicatelist(&pose->agroups, &frompose->agroups);
1473         pose->active_group= frompose->active_group;
1474         
1475         for (pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
1476                 pchanp= get_pose_channel(frompose, pchan->name);
1477
1478                 if (pchan->bone->layer & layer_protected) {
1479                         ListBase proxylocal_constraints = {NULL, NULL};
1480                         
1481                         /* copy posechannel to temp, but restore important pointers */
1482                         pchanw= *pchanp;
1483                         pchanw.prev= pchan->prev;
1484                         pchanw.next= pchan->next;
1485                         pchanw.parent= pchan->parent;
1486                         pchanw.child= pchan->child;
1487                         pchanw.path= NULL;
1488                         
1489                         /* this is freed so copy a copy, else undo crashes */
1490                         if(pchanw.prop) {
1491                                 pchanw.prop= IDP_CopyProperty(pchanw.prop);
1492
1493                                 /* use the values from the the existing props */
1494                                 if(pchan->prop) {
1495                                         IDP_SyncGroupValues(pchanw.prop, pchan->prop);
1496                                 }
1497                         }
1498
1499                         /* constraints - proxy constraints are flushed... local ones are added after 
1500                          *      1. extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints
1501                          *      2. copy proxy-pchan's constraints on-to new
1502                          *      3. add extracted local constraints back on top 
1503                          *
1504                          *  note for copy_constraints: when copying constraints, disable 'do_extern' otherwise we get the libs direct linked in this blend.
1505                          */
1506                         extract_proxylocal_constraints(&proxylocal_constraints, &pchan->constraints);
1507                         copy_constraints(&pchanw.constraints, &pchanp->constraints, FALSE);
1508                         addlisttolist(&pchanw.constraints, &proxylocal_constraints);
1509                         
1510                         /* constraints - set target ob pointer to own object */
1511                         for (con= pchanw.constraints.first; con; con= con->next) {
1512                                 bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
1513                                 ListBase targets = {NULL, NULL};
1514                                 bConstraintTarget *ct;
1515                                 
1516                                 if (cti && cti->get_constraint_targets) {
1517                                         cti->get_constraint_targets(con, &targets);
1518                                         
1519                                         for (ct= targets.first; ct; ct= ct->next) {
1520                                                 if (ct->tar == from)
1521                                                         ct->tar = ob;
1522                                         }
1523                                         
1524                                         if (cti->flush_constraint_targets)
1525                                                 cti->flush_constraint_targets(con, &targets, 0);
1526                                 }
1527                         }
1528                         
1529                         /* free stuff from current channel */
1530                         free_pose_channel(pchan);
1531                         
1532                         /* the final copy */
1533                         *pchan= pchanw;
1534                 }
1535                 else {
1536                         /* always copy custom shape */
1537                         pchan->custom= pchanp->custom;
1538                         pchan->custom_tx= pchanp->custom_tx;
1539
1540                         /* ID-Property Syncing */
1541                         {
1542                                 IDProperty *prop_orig= pchan->prop;
1543                                 if(pchanp->prop) {
1544                                         pchan->prop= IDP_CopyProperty(pchanp->prop);
1545                                         if(prop_orig) {
1546                                                 /* copy existing values across when types match */
1547                                                 IDP_SyncGroupValues(pchan->prop, prop_orig);
1548                                         }
1549                                 }
1550                                 else {
1551                                         pchan->prop= NULL;
1552                                 }
1553                                 if (prop_orig) {
1554                                         IDP_FreeProperty(prop_orig);
1555                                         MEM_freeN(prop_orig);
1556                                 }
1557                         }
1558                 }
1559         }
1560 }
1561
1562 static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
1563 {
1564         bPoseChannel *pchan = verify_pose_channel (pose, bone->name);   // verify checks and/or adds
1565
1566         pchan->bone= bone;
1567         pchan->parent= parchan;
1568         
1569         counter++;
1570         
1571         for(bone= bone->childbase.first; bone; bone= bone->next) {
1572                 counter= rebuild_pose_bone(pose, bone, pchan, counter);
1573                 /* for quick detecting of next bone in chain, only b-bone uses it now */
1574                 if(bone->flag & BONE_CONNECTED)
1575                         pchan->child= get_pose_channel(pose, bone->name);
1576         }
1577         
1578         return counter;
1579 }
1580
1581 /* only after leave editmode, duplicating, validating older files, library syncing */
1582 /* NOTE: pose->flag is set for it */
1583 void armature_rebuild_pose(Object *ob, bArmature *arm)
1584 {
1585         Bone *bone;
1586         bPose *pose;
1587         bPoseChannel *pchan, *next;
1588         int counter=0;
1589                 
1590         /* only done here */
1591         if(ob->pose==NULL) {
1592                 /* create new pose */
1593                 ob->pose= MEM_callocN(sizeof(bPose), "new pose");
1594                 
1595                 /* set default settings for animviz */
1596                 animviz_settings_init(&ob->pose->avs);
1597         }
1598         pose= ob->pose;
1599         
1600         /* clear */
1601         for(pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
1602                 pchan->bone= NULL;
1603                 pchan->child= NULL;
1604         }
1605         
1606         /* first step, check if all channels are there */
1607         for(bone= arm->bonebase.first; bone; bone= bone->next) {
1608                 counter= rebuild_pose_bone(pose, bone, NULL, counter);
1609         }
1610
1611         /* and a check for garbage */
1612         for(pchan= pose->chanbase.first; pchan; pchan= next) {
1613                 next= pchan->next;
1614                 if(pchan->bone==NULL) {
1615                         free_pose_channel(pchan);
1616                         free_pose_channels_hash(pose);
1617                         BLI_freelinkN(&pose->chanbase, pchan);
1618                 }
1619         }
1620         // printf("rebuild pose %s, %d bones\n", ob->id.name, counter);
1621         
1622         /* synchronize protected layers with proxy */
1623         if(ob->proxy) {
1624                 object_copy_proxy_drivers(ob, ob->proxy);
1625                 pose_proxy_synchronize(ob, ob->proxy, arm->layer_protected);
1626         }
1627         
1628         update_pose_constraint_flags(ob->pose); // for IK detection for example
1629         
1630         /* the sorting */
1631         if(counter>1)
1632                 DAG_pose_sort(ob);
1633         
1634         ob->pose->flag &= ~POSE_RECALC;
1635         ob->pose->flag |= POSE_WAS_REBUILT;
1636
1637         make_pose_channels_hash(ob->pose);
1638 }
1639
1640
1641 /* ********************** SPLINE IK SOLVER ******************* */
1642
1643 /* Temporary evaluation tree data used for Spline IK */
1644 typedef struct tSplineIK_Tree {
1645         struct tSplineIK_Tree *next, *prev;
1646         
1647         int     type;                                   /* type of IK that this serves (CONSTRAINT_TYPE_KINEMATIC or ..._SPLINEIK) */
1648         
1649         short free_points;                              /* free the point positions array */
1650         short chainlen;                                 /* number of bones in the chain */
1651         
1652         float *points;                                  /* parametric positions for the joints along the curve */
1653         bPoseChannel **chain;                   /* chain of bones to affect using Spline IK (ordered from the tip) */
1654         
1655         bPoseChannel *root;                             /* bone that is the root node of the chain */
1656         
1657         bConstraint *con;                               /* constraint for this chain */
1658         bSplineIKConstraint *ikData;    /* constraint settings for this chain */
1659 } tSplineIK_Tree;
1660
1661 /* ----------- */
1662
1663 /* Tag the bones in the chain formed by the given bone for IK */
1664 static void splineik_init_tree_from_pchan(Scene *scene, Object *UNUSED(ob), bPoseChannel *pchan_tip)
1665 {
1666         bPoseChannel *pchan, *pchanRoot=NULL;
1667         bPoseChannel *pchanChain[255];
1668         bConstraint *con = NULL;
1669         bSplineIKConstraint *ikData = NULL;
1670         float boneLengths[255], *jointPoints;
1671         float totLength = 0.0f;
1672         short free_joints = 0;
1673         int segcount = 0;
1674         
1675         /* find the SplineIK constraint */
1676         for (con= pchan_tip->constraints.first; con; con= con->next) {
1677                 if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
1678                         ikData= con->data;
1679                         
1680                         /* target can only be curve */
1681                         if ((ikData->tar == NULL) || (ikData->tar->type != OB_CURVE))  
1682                                 continue;
1683                         /* skip if disabled */
1684                         if ( (con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE|CONSTRAINT_OFF)) )
1685                                 continue;
1686                         
1687                         /* otherwise, constraint is ok... */
1688                         break;
1689                 }
1690         }
1691         if (con == NULL)
1692                 return;
1693                 
1694         /* make sure that the constraint targets are ok 
1695          *      - this is a workaround for a depsgraph bug...
1696          */
1697         if (ikData->tar) {
1698                 Curve *cu= ikData->tar->data;
1699                 
1700                 /* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
1701                  *              currently for paths to work it needs to go through the bevlist/displist system (ton) 
1702                  */
1703                 
1704                 /* only happens on reload file, but violates depsgraph still... fix! */
1705                 if ((cu->path==NULL) || (cu->path->data==NULL))
1706                         makeDispListCurveTypes(scene, ikData->tar, 0);
1707         }
1708         
1709         /* find the root bone and the chain of bones from the root to the tip 
1710          * NOTE: this assumes that the bones are connected, but that may not be true...
1711          */
1712         for (pchan= pchan_tip; pchan && (segcount < ikData->chainlen); pchan= pchan->parent, segcount++) {
1713                 /* store this segment in the chain */
1714                 pchanChain[segcount]= pchan;
1715                 
1716                 /* if performing rebinding, calculate the length of the bone */
1717                 boneLengths[segcount]= pchan->bone->length;
1718                 totLength += boneLengths[segcount];
1719         }
1720         
1721         if (segcount == 0)
1722                 return;
1723         else
1724                 pchanRoot= pchanChain[segcount-1];
1725         
1726         /* perform binding step if required */
1727         if ((ikData->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
1728                 float segmentLen= (1.0f / (float)segcount);
1729                 int i;
1730                 
1731                 /* setup new empty array for the points list */
1732                 if (ikData->points) 
1733                         MEM_freeN(ikData->points);
1734                 ikData->numpoints= ikData->chainlen+1; 
1735                 ikData->points= MEM_callocN(sizeof(float)*ikData->numpoints, "Spline IK Binding");
1736                 
1737                 /* perform binding of the joints to parametric positions along the curve based 
1738                  * proportion of the total length that each bone occupies
1739                  */
1740                 for (i = 0; i < segcount; i++) {
1741                         if (i != 0) {
1742                                 /* 'head' joints 
1743                                  *      - 2 methods; the one chosen depends on whether we've got usable lengths
1744                                  */
1745                                 if ((ikData->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totLength == 0.0f)) {
1746                                         /* 1) equi-spaced joints */
1747                                         ikData->points[i]= ikData->points[i-1] - segmentLen;
1748                                 }
1749                                 else {
1750                                          /*     2) to find this point on the curve, we take a step from the previous joint
1751                                           *       a distance given by the proportion that this bone takes
1752                                           */
1753                                         ikData->points[i]= ikData->points[i-1] - (boneLengths[i] / totLength);
1754                                 }
1755                         }
1756                         else {
1757                                 /* 'tip' of chain, special exception for the first joint */
1758                                 ikData->points[0]= 1.0f;
1759                         }
1760                 }
1761                 
1762                 /* spline has now been bound */
1763                 ikData->flag |= CONSTRAINT_SPLINEIK_BOUND;
1764         }
1765         
1766         /* apply corrections for sensitivity to scaling on a copy of the bind points,
1767          * since it's easier to determine the positions of all the joints beforehand this way
1768          */
1769         if ((ikData->flag & CONSTRAINT_SPLINEIK_SCALE_LIMITED) && (totLength != 0.0f)) {
1770                 Curve *cu= (Curve *)ikData->tar->data;
1771                 float splineLen, maxScale;
1772                 int i;
1773                 
1774                 /* make a copy of the points array, that we'll store in the tree 
1775                  *      - although we could just multiply the points on the fly, this approach means that
1776                  *        we can introduce per-segment stretchiness later if it is necessary
1777                  */
1778                 jointPoints= MEM_dupallocN(ikData->points);
1779                 free_joints= 1;
1780                 
1781                 /* get the current length of the curve */
1782                 // NOTE: this is assumed to be correct even after the curve was resized
1783                 splineLen= cu->path->totdist;
1784                 
1785                 /* calculate the scale factor to multiply all the path values by so that the 
1786                  * bone chain retains its current length, such that
1787                  *      maxScale * splineLen = totLength
1788                  */
1789                 maxScale = totLength / splineLen;
1790                 
1791                 /* apply scaling correction to all of the temporary points */
1792                 // TODO: this is really not adequate enough on really short chains
1793                 for (i = 0; i < segcount; i++)
1794                         jointPoints[i] *= maxScale;
1795         }
1796         else {
1797                 /* just use the existing points array */
1798                 jointPoints= ikData->points;
1799                 free_joints= 0;
1800         }
1801         
1802         /* make a new Spline-IK chain, and store it in the IK chains */
1803         // TODO: we should check if there is already an IK chain on this, since that would take presidence...
1804         {
1805                 /* make new tree */
1806                 tSplineIK_Tree *tree= MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree");
1807                 tree->type= CONSTRAINT_TYPE_SPLINEIK;
1808                 
1809                 tree->chainlen= segcount;
1810                 
1811                 /* copy over the array of links to bones in the chain (from tip to root) */
1812                 tree->chain= MEM_callocN(sizeof(bPoseChannel*)*segcount, "SplineIK Chain");
1813                 memcpy(tree->chain, pchanChain, sizeof(bPoseChannel*)*segcount);
1814                 
1815                 /* store reference to joint position array */
1816                 tree->points= jointPoints;
1817                 tree->free_points= free_joints;
1818                 
1819                 /* store references to different parts of the chain */
1820                 tree->root= pchanRoot;
1821                 tree->con= con;
1822                 tree->ikData= ikData;
1823                 
1824                 /* AND! link the tree to the root */
1825                 BLI_addtail(&pchanRoot->iktree, tree);
1826         }
1827         
1828         /* mark root channel having an IK tree */
1829         pchanRoot->flag |= POSE_IKSPLINE;
1830 }
1831
1832 /* Tag which bones are members of Spline IK chains */
1833 static void splineik_init_tree(Scene *scene, Object *ob, float UNUSED(ctime))
1834 {
1835         bPoseChannel *pchan;
1836         
1837         /* find the tips of Spline IK chains, which are simply the bones which have been tagged as such */
1838         for (pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
1839                 if (pchan->constflag & PCHAN_HAS_SPLINEIK)
1840                         splineik_init_tree_from_pchan(scene, ob, pchan);
1841         }
1842 }
1843
1844 /* ----------- */
1845
1846 /* Evaluate spline IK for a given bone */
1847 static void splineik_evaluate_bone(tSplineIK_Tree *tree, Scene *scene, Object *ob, bPoseChannel *pchan, int index, float ctime)
1848 {
1849         bSplineIKConstraint *ikData= tree->ikData;
1850         float poseHead[3], poseTail[3], poseMat[4][4]; 
1851         float splineVec[3], scaleFac, radius=1.0f;
1852         
1853         /* firstly, calculate the bone matrix the standard way, since this is needed for roll control */
1854         where_is_pose_bone(scene, ob, pchan, ctime, 1);
1855         
1856         VECCOPY(poseHead, pchan->pose_head);
1857         VECCOPY(poseTail, pchan->pose_tail);
1858         
1859         /* step 1: determine the positions for the endpoints of the bone */
1860         {
1861                 float vec[4], dir[3], rad;
1862                 float tailBlendFac= 1.0f;
1863                 
1864                 /* determine if the bone should still be affected by SplineIK */
1865                 if (tree->points[index+1] >= 1.0f) {
1866                         /* spline doesn't affect the bone anymore, so done... */
1867                         pchan->flag |= POSE_DONE;
1868                         return;
1869                 }
1870                 else if ((tree->points[index] >= 1.0f) && (tree->points[index+1] < 1.0f)) {
1871                         /* blending factor depends on the amount of the bone still left on the chain */
1872                         tailBlendFac= (1.0f - tree->points[index+1]) / (tree->points[index] - tree->points[index+1]);
1873                 }
1874                 
1875                 /* tail endpoint */
1876                 if ( where_on_path(ikData->tar, tree->points[index], vec, dir, NULL, &rad, NULL) ) {
1877                         /* apply curve's object-mode transforms to the position 
1878                          * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
1879                          */
1880                         if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
1881                                 mul_m4_v3(ikData->tar->obmat, vec);
1882                         
1883                         /* convert the position to pose-space, then store it */
1884                         mul_m4_v3(ob->imat, vec);
1885                         interp_v3_v3v3(poseTail, pchan->pose_tail, vec, tailBlendFac);
1886                         
1887                         /* set the new radius */
1888                         radius= rad;
1889                 }
1890                 
1891                 /* head endpoint */
1892                 if ( where_on_path(ikData->tar, tree->points[index+1], vec, dir, NULL, &rad, NULL) ) {
1893                         /* apply curve's object-mode transforms to the position 
1894                          * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
1895                          */
1896                         if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
1897                                 mul_m4_v3(ikData->tar->obmat, vec);
1898                         
1899                         /* store the position, and convert it to pose space */
1900                         mul_m4_v3(ob->imat, vec);
1901                         VECCOPY(poseHead, vec);
1902                         
1903                         /* set the new radius (it should be the average value) */
1904                         radius = (radius+rad) / 2;
1905                 }
1906         }
1907         
1908         /* step 2: determine the implied transform from these endpoints 
1909          *      - splineVec: the vector direction that the spline applies on the bone
1910          *      - scaleFac: the factor that the bone length is scaled by to get the desired amount
1911          */
1912         sub_v3_v3v3(splineVec, poseTail, poseHead);
1913         scaleFac= len_v3(splineVec) / pchan->bone->length;
1914         
1915         /* step 3: compute the shortest rotation needed to map from the bone rotation to the current axis 
1916          *      - this uses the same method as is used for the Damped Track Constraint (see the code there for details)
1917          */
1918         {
1919                 float dmat[3][3], rmat[3][3], tmat[3][3];
1920                 float raxis[3], rangle;
1921                 
1922                 /* compute the raw rotation matrix from the bone's current matrix by extracting only the
1923                  * orientation-relevant axes, and normalising them
1924                  */
1925                 VECCOPY(rmat[0], pchan->pose_mat[0]);
1926                 VECCOPY(rmat[1], pchan->pose_mat[1]);
1927                 VECCOPY(rmat[2], pchan->pose_mat[2]);
1928                 normalize_m3(rmat);
1929                 
1930                 /* also, normalise the orientation imposed by the bone, now that we've extracted the scale factor */
1931                 normalize_v3(splineVec);
1932                 
1933                 /* calculate smallest axis-angle rotation necessary for getting from the
1934                  * current orientation of the bone, to the spline-imposed direction
1935                  */
1936                 cross_v3_v3v3(raxis, rmat[1], splineVec);
1937                 
1938                 rangle= dot_v3v3(rmat[1], splineVec);
1939                 rangle= acos( MAX2(-1.0f, MIN2(1.0f, rangle)) );
1940                 
1941                 /* multiply the magnitude of the angle by the influence of the constraint to 
1942                  * control the influence of the SplineIK effect 
1943                  */
1944                 rangle *= tree->con->enforce;
1945                 
1946                 /* construct rotation matrix from the axis-angle rotation found above 
1947                  *      - this call takes care to make sure that the axis provided is a unit vector first
1948                  */
1949                 axis_angle_to_mat3(dmat, raxis, rangle);
1950                 
1951                 /* combine these rotations so that the y-axis of the bone is now aligned as the spline dictates,
1952                  * while still maintaining roll control from the existing bone animation
1953                  */
1954                 mul_m3_m3m3(tmat, dmat, rmat); // m1, m3, m2
1955                 normalize_m3(tmat); /* attempt to reduce shearing, though I doubt this'll really help too much now... */
1956                 copy_m4_m3(poseMat, tmat);
1957         }
1958         
1959         /* step 4: set the scaling factors for the axes */
1960         {
1961                 /* only multiply the y-axis by the scaling factor to get nice volume-preservation */
1962                 mul_v3_fl(poseMat[1], scaleFac);
1963                 
1964                 /* set the scaling factors of the x and z axes from... */
1965                 switch (ikData->xzScaleMode) {
1966                         case CONSTRAINT_SPLINEIK_XZS_ORIGINAL:
1967                         {
1968                                 /* original scales get used */
1969                                 float scale;
1970                                 
1971                                 /* x-axis scale */
1972                                 scale= len_v3(pchan->pose_mat[0]);
1973                                 mul_v3_fl(poseMat[0], scale);
1974                                 /* z-axis scale */
1975                                 scale= len_v3(pchan->pose_mat[2]);
1976                                 mul_v3_fl(poseMat[2], scale);
1977                         }
1978                                 break;
1979                         case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC:
1980                         {
1981                                 /* 'volume preservation' */
1982                                 float scale;
1983                                 
1984                                 /* calculate volume preservation factor which is 
1985                                  * basically the inverse of the y-scaling factor 
1986                                  */
1987                                 if (fabs(scaleFac) != 0.0f) {
1988                                         scale= 1.0 / fabs(scaleFac);
1989                                         
1990                                         /* we need to clamp this within sensible values */
1991                                         // NOTE: these should be fine for now, but should get sanitised in future
1992                                         scale= MIN2(MAX2(scale, 0.0001) , 100000);
1993                                 }
1994                                 else
1995                                         scale= 1.0f;
1996                                 
1997                                 /* apply the scaling */
1998                                 mul_v3_fl(poseMat[0], scale);
1999                                 mul_v3_fl(poseMat[2], scale);
2000                         }
2001                                 break;
2002                 }
2003                 
2004                 /* finally, multiply the x and z scaling by the radius of the curve too, 
2005                  * to allow automatic scales to get tweaked still
2006                  */
2007                 if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
2008                         mul_v3_fl(poseMat[0], radius);
2009                         mul_v3_fl(poseMat[2], radius);
2010                 }
2011         }
2012         
2013         /* step 5: set the location of the bone in the matrix */
2014         if (ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
2015                 /* when the 'no-root' option is affected, the chain can retain
2016                  * the shape but be moved elsewhere
2017                  */
2018                 VECCOPY(poseHead, pchan->pose_head);
2019         }
2020         else if (tree->con->enforce < 1.0f) {
2021                 /* when the influence is too low
2022                  *      - blend the positions for the 'root' bone
2023                  *      - stick to the parent for any other
2024                  */
2025                 if (pchan->parent) {
2026                         VECCOPY(poseHead, pchan->pose_head);
2027                 }
2028                 else {
2029                         // FIXME: this introduces popping artifacts when we reach 0.0
2030                         interp_v3_v3v3(poseHead, pchan->pose_head, poseHead, tree->con->enforce);
2031                 }
2032         }
2033         VECCOPY(poseMat[3], poseHead);
2034         
2035         /* finally, store the new transform */
2036         copy_m4_m4(pchan->pose_mat, poseMat);
2037         VECCOPY(pchan->pose_head, poseHead);
2038         
2039         /* recalculate tail, as it's now outdated after the head gets adjusted above! */
2040         where_is_pose_bone_tail(pchan);
2041         
2042         /* done! */
2043         pchan->flag |= POSE_DONE;
2044 }
2045
2046 /* Evaluate the chain starting from the nominated bone */
2047 static void splineik_execute_tree(Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
2048 {
2049         tSplineIK_Tree *tree;
2050         
2051         /* for each pose-tree, execute it if it is spline, otherwise just free it */
2052         for (tree= pchan_root->iktree.first; tree; tree= pchan_root->iktree.first) {
2053                 /* only evaluate if tagged for Spline IK */
2054                 if (tree->type == CONSTRAINT_TYPE_SPLINEIK) {
2055                         int i;
2056                         
2057                         /* walk over each bone in the chain, calculating the effects of spline IK
2058                          *      - the chain is traversed in the opposite order to storage order (i.e. parent to children)
2059                          *        so that dependencies are correct
2060                          */
2061                         for (i= tree->chainlen-1; i >= 0; i--) {
2062                                 bPoseChannel *pchan= tree->chain[i];
2063                                 splineik_evaluate_bone(tree, scene, ob, pchan, i, ctime);
2064                         }
2065                         
2066                         /* free the tree info specific to SplineIK trees now */
2067                         if (tree->chain) MEM_freeN(tree->chain);
2068                         if (tree->free_points) MEM_freeN(tree->points);
2069                 }
2070                 
2071                 /* free this tree */
2072                 BLI_freelinkN(&pchan_root->iktree, tree);
2073         }
2074 }
2075
2076 /* ********************** THE POSE SOLVER ******************* */
2077
2078 /* loc/rot/size to given mat4 */
2079 void pchan_to_mat4(bPoseChannel *pchan, float chan_mat[4][4])
2080 {
2081         float smat[3][3];
2082         float rmat[3][3];
2083         float tmat[3][3];
2084         
2085         /* get scaling matrix */
2086         size_to_mat3(smat, pchan->size);
2087         
2088         /* rotations may either be quats, eulers (with various rotation orders), or axis-angle */
2089         if (pchan->rotmode > 0) {
2090                 /* euler rotations (will cause gimble lock, but this can be alleviated a bit with rotation orders) */
2091                 eulO_to_mat3(rmat, pchan->eul, pchan->rotmode);
2092         }
2093         else if (pchan->rotmode == ROT_MODE_AXISANGLE) {
2094                 /* axis-angle - not really that great for 3D-changing orientations */
2095                 axis_angle_to_mat3(rmat, pchan->rotAxis, pchan->rotAngle);
2096         }
2097         else {
2098                 /* quats are normalised before use to eliminate scaling issues */
2099                 float quat[4];
2100                 
2101                 /* NOTE: we now don't normalise the stored values anymore, since this was kindof evil in some cases
2102                  * but if this proves to be too problematic, switch back to the old system of operating directly on 
2103                  * the stored copy
2104                  */
2105                 QUATCOPY(quat, pchan->quat);
2106                 normalize_qt(quat);
2107                 quat_to_mat3(rmat, quat);
2108         }
2109         
2110         /* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */
2111         mul_m3_m3m3(tmat, rmat, smat);
2112         copy_m4_m3(chan_mat, tmat);
2113         
2114         /* prevent action channels breaking chains */
2115         /* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
2116         if ((pchan->bone==NULL) || !(pchan->bone->flag & BONE_CONNECTED)) {
2117                 VECCOPY(chan_mat[3], pchan->loc);
2118         }
2119 }
2120
2121 /* loc/rot/size to mat4 */
2122 /* used in constraint.c too */
2123 void chan_calc_mat(bPoseChannel *pchan)
2124 {
2125         /* this is just a wrapper around the copy of this function which calculates the matrix 
2126          * and stores the result in any given channel
2127          */
2128         pchan_to_mat4(pchan, pchan->chan_mat);
2129 }
2130
2131 /* NLA strip modifiers */
2132 static void do_strip_modifiers(Scene *scene, Object *armob, Bone *bone, bPoseChannel *pchan)
2133 {
2134         bActionModifier *amod;
2135         bActionStrip *strip, *strip2;
2136         float scene_cfra= (float)scene->r.cfra;
2137         int do_modif;
2138
2139         for (strip=armob->nlastrips.first; strip; strip=strip->next) {
2140                 do_modif=0;
2141                 
2142                 if (scene_cfra>=strip->start && scene_cfra<=strip->end)
2143                         do_modif=1;
2144                 
2145                 if ((scene_cfra > strip->end) && (strip->flag & ACTSTRIP_HOLDLASTFRAME)) {
2146                         do_modif=1;
2147                         
2148                         /* if there are any other strips active, ignore modifiers for this strip - 
2149                          * 'hold' option should only hold action modifiers if there are 
2150                          * no other active strips */
2151                         for (strip2=strip->next; strip2; strip2=strip2->next) {
2152                                 if (strip2 == strip) continue;
2153                                 
2154                                 if (scene_cfra>=strip2->start && scene_cfra<=strip2->end) {
2155                                         if (!(strip2->flag & ACTSTRIP_MUTE))
2156                                                 do_modif=0;
2157                                 }
2158                         }
2159                         
2160                         /* if there are any later, activated, strips with 'hold' set, they take precedence, 
2161                          * so ignore modifiers for this strip */
2162                         for (strip2=strip->next; strip2; strip2=strip2->next) {
2163                                 if (scene_cfra < strip2->start) continue;
2164                                 if ((strip2->flag & ACTSTRIP_HOLDLASTFRAME) && !(strip2->flag & ACTSTRIP_MUTE)) {
2165                                         do_modif=0;
2166                                 }
2167                         }
2168                 }
2169                 
2170                 if (do_modif) {
2171                         /* temporal solution to prevent 2 strips accumulating */
2172                         if(scene_cfra==strip->end && strip->next && strip->next->start==scene_cfra)
2173                                 continue;
2174                         
2175                         for(amod= strip->modifiers.first; amod; amod= amod->next) {
2176                                 switch (amod->type) {
2177                                 case ACTSTRIP_MOD_DEFORM:
2178                                 {
2179                                         /* validate first */
2180                                         if(amod->ob && amod->ob->type==OB_CURVE && amod->channel[0]) {
2181                                                 
2182                                                 if( strcmp(pchan->name, amod->channel)==0 ) {
2183                                                         float mat4[4][4], mat3[3][3];
2184                                                         
2185                                                         curve_deform_vector(scene, amod->ob, armob, bone->arm_mat[3], pchan->pose_mat[3], mat3, amod->no_rot_axis);
2186                                                         copy_m4_m4(mat4, pchan->pose_mat);
2187                                                         mul_m4_m3m4(pchan->pose_mat, mat3, mat4);
2188                                                         
2189                                                 }
2190                                         }
2191                                 }
2192                                         break;
2193                                 case ACTSTRIP_MOD_NOISE:        
2194                                 {
2195                                         if( strcmp(pchan->name, amod->channel)==0 ) {
2196                                                 float nor[3], loc[3], ofs;
2197                                                 float eul[3], size[3], eulo[3], sizeo[3];
2198                                                 
2199                                                 /* calculate turbulance */
2200                                                 ofs = amod->turbul / 200.0f;
2201                                                 
2202                                                 /* make a copy of starting conditions */
2203                                                 VECCOPY(loc, pchan->pose_mat[3]);
2204                                                 mat4_to_eul( eul,pchan->pose_mat);
2205                                                 mat4_to_size( size,pchan->pose_mat);
2206                                                 VECCOPY(eulo, eul);
2207                                                 VECCOPY(sizeo, size);
2208                                                 
2209                                                 /* apply noise to each set of channels */
2210                                                 if (amod->channels & 4) {
2211                                                         /* for scaling */
2212                                                         nor[0] = BLI_gNoise(amod->noisesize, size[0]+ofs, size[1], size[2], 0, 0) - ofs;
2213                                                         nor[1] = BLI_gNoise(amod->noisesize, size[0], size[1]+ofs, size[2], 0, 0) - ofs;        
2214                                                         nor[2] = BLI_gNoise(amod->noisesize, size[0], size[1], size[2]+ofs, 0, 0) - ofs;
2215                                                         add_v3_v3(size, nor);
2216                                                         
2217                                                         if (sizeo[0] != 0)
2218                                                                 mul_v3_fl(pchan->pose_mat[0], size[0] / sizeo[0]);
2219                                                         if (sizeo[1] != 0)
2220                                                                 mul_v3_fl(pchan->pose_mat[1], size[1] / sizeo[1]);
2221                                                         if (sizeo[2] != 0)
2222                                                                 mul_v3_fl(pchan->pose_mat[2], size[2] / sizeo[2]);
2223                                                 }
2224                                                 if (amod->channels & 2) {
2225                                                         /* for rotation */
2226                                                         nor[0] = BLI_gNoise(amod->noisesize, eul[0]+ofs, eul[1], eul[2], 0, 0) - ofs;
2227                                                         nor[1] = BLI_gNoise(amod->noisesize, eul[0], eul[1]+ofs, eul[2], 0, 0) - ofs;   
2228                                                         nor[2] = BLI_gNoise(amod->noisesize, eul[0], eul[1], eul[2]+ofs, 0, 0) - ofs;
2229                                                         
2230                                                         compatible_eul(nor, eulo);
2231                                                         add_v3_v3(eul, nor);
2232                                                         compatible_eul(eul, eulo);
2233                                                         
2234                                                         loc_eul_size_to_mat4(pchan->pose_mat, loc, eul, size);
2235                                                 }
2236                                                 if (amod->channels & 1) {
2237                                                         /* for location */
2238                                                         nor[0] = BLI_gNoise(amod->noisesize, loc[0]+ofs, loc[1], loc[2], 0, 0) - ofs;
2239                                                         nor[1] = BLI_gNoise(amod->noisesize, loc[0], loc[1]+ofs, loc[2], 0, 0) - ofs;   
2240                                                         nor[2] = BLI_gNoise(amod->noisesize, loc[0], loc[1], loc[2]+ofs, 0, 0) - ofs;
2241                                                         
2242                                                         add_v3_v3v3(pchan->pose_mat[3], loc, nor);
2243                                                 }
2244                                         }
2245                                 }
2246                                         break;
2247                                 }
2248                         }
2249                 }
2250         }
2251 }
2252
2253 /* calculate tail of posechannel */
2254 void where_is_pose_bone_tail(bPoseChannel *pchan)
2255 {
2256         float vec[3];
2257         
2258         VECCOPY(vec, pchan->pose_mat[1]);
2259         mul_v3_fl(vec, pchan->bone->length);
2260         add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec);
2261 }
2262
2263 /* The main armature solver, does all constraints excluding IK */
2264 /* pchan is validated, as having bone and parent pointer
2265  * 'do_extra': when zero skips loc/size/rot, constraints and strip modifiers.
2266  */
2267 void where_is_pose_bone(Scene *scene, Object *ob, bPoseChannel *pchan, float ctime, int do_extra)
2268 {
2269         Bone *bone, *parbone;
2270         bPoseChannel *parchan;
2271         float vec[3];
2272         
2273         /* set up variables for quicker access below */
2274         bone= pchan->bone;
2275         parbone= bone->parent;
2276         parchan= pchan->parent;
2277         
2278         /* this gives a chan_mat with actions (ipos) results */
2279         if(do_extra)    chan_calc_mat(pchan);
2280         else                    unit_m4(pchan->chan_mat);
2281
2282         /* construct the posemat based on PoseChannels, that we do before applying constraints */
2283         /* pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
2284         
2285         if(parchan) {
2286                 float offs_bone[4][4];  // yoffs(b-1) + root(b) + bonemat(b)
2287                 
2288                 /* bone transform itself */
2289                 copy_m4_m3(offs_bone, bone->bone_mat);
2290                 
2291                 /* The bone's root offset (is in the parent's coordinate system) */
2292                 VECCOPY(offs_bone[3], bone->head);
2293                 
2294                 /* Get the length translation of parent (length along y axis) */
2295                 offs_bone[3][1]+= parbone->length;
2296                 
2297                 /* Compose the matrix for this bone  */
2298                 if((bone->flag & BONE_HINGE) && (bone->flag & BONE_NO_SCALE)) { // uses restposition rotation, but actual position
2299                         float tmat[4][4];
2300                         /* the rotation of the parent restposition */
2301                         copy_m4_m4(tmat, parbone->arm_mat);
2302                         mul_serie_m4(pchan->pose_mat, tmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
2303                 }
2304                 else if(bone->flag & BONE_HINGE) {      // same as above but apply parent scale
2305                         float tmat[4][4];
2306
2307                         /* apply the parent matrix scale */
2308                         float tsmat[4][4], tscale[3];
2309
2310                         /* the rotation of the parent restposition */
2311                         copy_m4_m4(tmat, parbone->arm_mat);
2312
2313                         /* extract the scale of the parent matrix */
2314                         mat4_to_size(tscale, parchan->pose_mat);
2315                         size_to_mat4(tsmat, tscale);
2316                         mul_m4_m4m4(tmat, tmat, tsmat);
2317
2318                         mul_serie_m4(pchan->pose_mat, tmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
2319                 }
2320                 else if(bone->flag & BONE_NO_SCALE) {
2321                         float orthmat[4][4];
2322                         
2323                         /* do transform, with an ortho-parent matrix */
2324                         copy_m4_m4(orthmat, parchan->pose_mat);
2325                         normalize_m4(orthmat);
2326                         mul_serie_m4(pchan->pose_mat, orthmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
2327                 }
2328                 else
2329                         mul_serie_m4(pchan->pose_mat, parchan->pose_mat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
2330                 
2331                 /* in these cases we need to compute location separately */
2332                 if(bone->flag & (BONE_HINGE|BONE_NO_SCALE|BONE_NO_LOCAL_LOCATION)) {
2333                         float bone_loc[3], chan_loc[3];
2334
2335                         mul_v3_m4v3(bone_loc, parchan->pose_mat, offs_bone[3]);
2336                         copy_v3_v3(chan_loc, pchan->chan_mat[3]);
2337
2338                         /* no local location is not transformed by bone matrix */
2339                         if(!(bone->flag & BONE_NO_LOCAL_LOCATION))
2340                                 mul_mat3_m4_v3(offs_bone, chan_loc);
2341
2342                         /* for hinge we use armature instead of pose mat */
2343                         if(bone->flag & BONE_HINGE) mul_mat3_m4_v3(parbone->arm_mat, chan_loc);
2344                         else mul_mat3_m4_v3(parchan->pose_mat, chan_loc);
2345
2346                         add_v3_v3v3(pchan->pose_mat[3], bone_loc, chan_loc);
2347                 }
2348         }
2349         else {
2350                 mul_m4_m4m4(pchan->pose_mat, pchan->chan_mat, bone->arm_mat);
2351
2352                 /* optional location without arm_mat rotation */
2353                 if(bone->flag & BONE_NO_LOCAL_LOCATION)
2354                         add_v3_v3v3(pchan->pose_mat[3], bone->arm_mat[3], pchan->chan_mat[3]);
2355                 
2356                 /* only rootbones get the cyclic offset (unless user doesn't want that) */
2357                 if ((bone->flag & BONE_NO_CYCLICOFFSET) == 0)
2358                         add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset);
2359         }
2360         
2361         if(do_extra) {
2362                 /* do NLA strip modifiers - i.e. curve follow */
2363                 do_strip_modifiers(scene, ob, bone, pchan);
2364                 
2365                 /* Do constraints */
2366                 if (pchan->constraints.first) {
2367                         bConstraintOb *cob;
2368
2369                         /* make a copy of location of PoseChannel for later */
2370                         VECCOPY(vec, pchan->pose_mat[3]);
2371
2372                         /* prepare PoseChannel for Constraint solving
2373                          * - makes a copy of matrix, and creates temporary struct to use
2374                          */
2375                         cob= constraints_make_evalob(scene, ob, pchan, CONSTRAINT_OBTYPE_BONE);
2376
2377                         /* Solve PoseChannel's Constraints */
2378                         solve_constraints(&pchan->constraints, cob, ctime);     // ctime doesnt alter objects
2379
2380                         /* cleanup after Constraint Solving
2381                          * - applies matrix back to pchan, and frees temporary struct used
2382                          */
2383                         constraints_clear_evalob(cob);
2384
2385                         /* prevent constraints breaking a chain */
2386                         if(pchan->bone->flag & BONE_CONNECTED) {
2387                                 VECCOPY(pchan->pose_mat[3], vec);
2388                         }
2389                 }
2390         }
2391         
2392         /* calculate head */
2393         VECCOPY(pchan->pose_head, pchan->pose_mat[3]);
2394         /* calculate tail */
2395         where_is_pose_bone_tail(pchan);
2396 }
2397
2398 /* This only reads anim data from channels, and writes to channels */
2399 /* This is the only function adding poses */
2400 void where_is_pose (Scene *scene, Object *ob)
2401 {
2402         bArmature *arm;
2403         Bone *bone;
2404         bPoseChannel *pchan;
2405         float imat[4][4];
2406         float ctime;
2407         
2408         if(ob->type!=OB_ARMATURE) return;
2409         arm = ob->data;
2410         
2411         if(ELEM(NULL, arm, scene)) return;
2412         if((ob->pose==NULL) || (ob->pose->flag & POSE_RECALC)) 
2413            armature_rebuild_pose(ob, arm);
2414            
2415         ctime= bsystem_time(scene, ob, (float)scene->r.cfra, 0.0);      /* not accurate... */
2416         
2417         /* In editmode or restposition we read the data from the bones */
2418         if(arm->edbo || (arm->flag & ARM_RESTPOS)) {
2419                 
2420                 for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
2421                         bone= pchan->bone;
2422                         if(bone) {
2423                                 copy_m4_m4(pchan->pose_mat, bone->arm_mat);
2424                                 VECCOPY(pchan->pose_head, bone->arm_head);
2425                                 VECCOPY(pchan->pose_tail, bone->arm_tail);
2426                         }
2427                 }
2428         }
2429         else {
2430                 invert_m4_m4(ob->imat, ob->obmat);      // imat is needed 
2431                 
2432                 /* 1. clear flags */
2433                 for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
2434                         pchan->flag &= ~(POSE_DONE|POSE_CHAIN|POSE_IKTREE|POSE_IKSPLINE);
2435                 }
2436                 
2437                 /* 2a. construct the IK tree (standard IK) */
2438                 BIK_initialize_tree(scene, ob, ctime);
2439                 
2440                 /* 2b. construct the Spline IK trees 
2441                  *  - this is not integrated as an IK plugin, since it should be able
2442                  *        to function in conjunction with standard IK
2443                  */
2444                 splineik_init_tree(scene, ob, ctime);
2445                 
2446                 /* 3. the main loop, channels are already hierarchical sorted from root to children */
2447                 for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
2448                         /* 4a. if we find an IK root, we handle it separated */
2449                         if(pchan->flag & POSE_IKTREE) {
2450                                 BIK_execute_tree(scene, ob, pchan, ctime);
2451                         }
2452                         /* 4b. if we find a Spline IK root, we handle it separated too */
2453                         else if(pchan->flag & POSE_IKSPLINE) {
2454                                 splineik_execute_tree(scene, ob, pchan, ctime);
2455                         }
2456                         /* 5. otherwise just call the normal solver */
2457                         else if(!(pchan->flag & POSE_DONE)) {
2458                                 where_is_pose_bone(scene, ob, pchan, ctime, 1);
2459                         }
2460                 }
2461                 /* 6. release the IK tree */
2462                 BIK_release_tree(scene, ob, ctime);
2463         }
2464                 
2465         /* calculating deform matrices */
2466         for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
2467                 if(pchan->bone) {
2468                         invert_m4_m4(imat, pchan->bone->arm_mat);
2469                         mul_m4_m4m4(pchan->chan_mat, imat, pchan->pose_mat);
2470                 }
2471         }
2472 }