code cleanup: use const float and define array size
[blender.git] / source / blender / render / intern / source / convertblender.c
1 /*
2  * ***** BEGIN GPL LICENSE BLOCK *****
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17  *
18  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
19  * All rights reserved.
20  *
21  * Contributors: 2004/2005/2006 Blender Foundation, full recode
22  *
23  * ***** END GPL LICENSE BLOCK *****
24  */
25
26 /** \file blender/render/intern/source/convertblender.c
27  *  \ingroup render
28  */
29
30
31 #include <math.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <string.h>
35 #include <limits.h>
36
37 #include "MEM_guardedalloc.h"
38
39 #include "BLI_math.h"
40 #include "BLI_blenlib.h"
41 #include "BLI_utildefines.h"
42 #include "BLI_rand.h"
43 #include "BLI_memarena.h"
44 #include "BLI_ghash.h"
45
46 #include "DNA_armature_types.h"
47 #include "DNA_camera_types.h"
48 #include "DNA_material_types.h"
49 #include "DNA_curve_types.h"
50 #include "DNA_effect_types.h"
51 #include "DNA_group_types.h"
52 #include "DNA_lamp_types.h"
53 #include "DNA_image_types.h"
54 #include "DNA_lattice_types.h"
55 #include "DNA_mesh_types.h"
56 #include "DNA_meshdata_types.h"
57 #include "DNA_meta_types.h"
58 #include "DNA_modifier_types.h"
59 #include "DNA_node_types.h"
60 #include "DNA_object_types.h"
61 #include "DNA_object_force.h"
62 #include "DNA_object_fluidsim.h"
63 #include "DNA_particle_types.h"
64 #include "DNA_scene_types.h"
65 #include "DNA_texture_types.h"
66 #include "DNA_view3d_types.h"
67
68 #include "BKE_anim.h"
69 #include "BKE_armature.h"
70 #include "BKE_action.h"
71 #include "BKE_curve.h"
72 #include "BKE_customdata.h"
73 #include "BKE_colortools.h"
74 #include "BKE_constraint.h"
75 #include "BKE_displist.h"
76 #include "BKE_deform.h"
77 #include "BKE_DerivedMesh.h"
78 #include "BKE_effect.h"
79 #include "BKE_global.h"
80 #include "BKE_group.h"
81 #include "BKE_key.h"
82 #include "BKE_ipo.h"
83 #include "BKE_image.h"
84 #include "BKE_lattice.h"
85 #include "BKE_library.h"
86 #include "BKE_material.h"
87 #include "BKE_main.h"
88 #include "BKE_mball.h"
89 #include "BKE_mesh.h"
90 #include "BKE_modifier.h"
91 #include "BKE_node.h"
92 #include "BKE_object.h"
93 #include "BKE_particle.h"
94 #include "BKE_scene.h"
95 #include "BKE_subsurf.h"
96 #include "BKE_texture.h"
97
98 #include "BKE_world.h"
99
100 #include "PIL_time.h"
101 #include "IMB_imbuf_types.h"
102
103 #include "envmap.h"
104 #include "occlusion.h"
105 #include "pointdensity.h"
106 #include "voxeldata.h"
107 #include "render_types.h"
108 #include "rendercore.h"
109 #include "renderdatabase.h"
110 #include "renderpipeline.h"
111 #include "shadbuf.h"
112 #include "shading.h"
113 #include "strand.h"
114 #include "texture.h"
115 #include "volume_precache.h"
116 #include "sss.h"
117 #include "strand.h"
118 #include "zbuf.h"
119 #include "sunsky.h"
120
121
122 /* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
123 /* or for checking vertex normal flips */
124 #define FLT_EPSILON10 1.19209290e-06F
125
126 /* ------------------------------------------------------------------------- */
127
128 /* Stuff for stars. This sits here because it uses gl-things. Part of
129  * this code may move down to the converter.  */
130 /* ------------------------------------------------------------------------- */
131 /* this is a bad beast, since it is misused by the 3d view drawing as well. */
132
133 static HaloRen *initstar(Render *re, ObjectRen *obr, const float vec[3], float hasize)
134 {
135         HaloRen *har;
136         float hoco[4];
137         
138         projectverto(vec, re->winmat, hoco);
139         
140         har= RE_findOrAddHalo(obr, obr->tothalo++);
141         
142         /* projectvert is done in function zbufvlaggen again, because of parts */
143         copy_v3_v3(har->co, vec);
144         har->hasize= hasize;
145         
146         har->zd= 0.0;
147         
148         return har;
149 }
150
151 /* there must be a 'fixed' amount of stars generated between
152  *         near and far
153  * all stars must by preference lie on the far and solely
154  *        differ in clarity/color
155  */
156
157 void RE_make_stars(Render *re, Scene *scenev3d, void (*initfunc)(void),
158                                    void (*vertexfunc)(float*),  void (*termfunc)(void))
159 {
160         extern unsigned char hash[512];
161         ObjectRen *obr= NULL;
162         World *wrld= NULL;
163         HaloRen *har;
164         Scene *scene;
165         Object *camera;
166         Camera *cam;
167         double dblrand, hlfrand;
168         float vec[4], fx, fy, fz;
169         float fac, starmindist, clipend;
170         float mat[4][4], stargrid, maxrand, maxjit, force, alpha;
171         int x, y, z, sx, sy, sz, ex, ey, ez, done = FALSE;
172         unsigned int totstar= 0;
173         
174         if (initfunc) {
175                 scene= scenev3d;
176                 wrld= scene->world;
177         }
178         else {
179                 scene= re->scene;
180                 wrld= &(re->wrld);
181         }
182
183         stargrid = wrld->stardist;                      /* distance between stars */
184         maxrand = 2.0;                                          /* amount a star can be shifted (in grid units) */
185         maxjit = (wrld->starcolnoise);          /* amount a color is being shifted */
186         
187         /* size of stars */
188         force = ( wrld->starsize );
189         
190         /* minimal free space (starting at camera) */
191         starmindist= wrld->starmindist;
192         
193         if (stargrid <= 0.10f) return;
194         
195         if (re) re->flag |= R_HALO;
196         else stargrid *= 1.0f;                          /* then it draws fewer */
197         
198         if (re) invert_m4_m4(mat, re->viewmat);
199         else unit_m4(mat);
200         
201         /* BOUNDING BOX CALCULATION
202          * bbox goes from z = loc_near_var | loc_far_var,
203          * x = -z | +z,
204          * y = -z | +z
205          */
206
207         camera= re ? RE_GetCamera(re) : scene->camera;
208
209         if (camera==NULL || camera->type != OB_CAMERA)
210                 return;
211
212         cam = camera->data;
213         clipend = cam->clipend;
214         
215         /* convert to grid coordinates */
216         
217         sx = ((mat[3][0] - clipend) / stargrid) - maxrand;
218         sy = ((mat[3][1] - clipend) / stargrid) - maxrand;
219         sz = ((mat[3][2] - clipend) / stargrid) - maxrand;
220         
221         ex = ((mat[3][0] + clipend) / stargrid) + maxrand;
222         ey = ((mat[3][1] + clipend) / stargrid) + maxrand;
223         ez = ((mat[3][2] + clipend) / stargrid) + maxrand;
224         
225         dblrand = maxrand * stargrid;
226         hlfrand = 2.0 * dblrand;
227         
228         if (initfunc) {
229                 initfunc();     
230         }
231
232         if (re) /* add render object for stars */
233                 obr= RE_addRenderObject(re, NULL, NULL, 0, 0, 0);
234         
235         for (x = sx, fx = sx * stargrid; x <= ex; x++, fx += stargrid) {
236                 for (y = sy, fy = sy * stargrid; y <= ey ; y++, fy += stargrid) {
237                         for (z = sz, fz = sz * stargrid; z <= ez; z++, fz += stargrid) {
238
239                                 BLI_srand((hash[z & 0xff] << 24) + (hash[y & 0xff] << 16) + (hash[x & 0xff] << 8));
240                                 vec[0] = fx + (hlfrand * BLI_drand()) - dblrand;
241                                 vec[1] = fy + (hlfrand * BLI_drand()) - dblrand;
242                                 vec[2] = fz + (hlfrand * BLI_drand()) - dblrand;
243                                 vec[3] = 1.0;
244                                 
245                                 if (vertexfunc) {
246                                         if (done & 1) vertexfunc(vec);
247                                         done++;
248                                 }
249                                 else {
250                                         mul_m4_v3(re->viewmat, vec);
251                                         
252                                         /* in vec are global coordinates
253                                          * calculate distance to camera
254                                          * and using that, define the alpha
255                                          */
256                                         
257                                         {
258                                                 float tx, ty, tz;
259                                                 
260                                                 tx = vec[0];
261                                                 ty = vec[1];
262                                                 tz = vec[2];
263                                                 
264                                                 alpha = sqrt(tx * tx + ty * ty + tz * tz);
265                                                 
266                                                 if (alpha >= clipend) alpha = 0.0;
267                                                 else if (alpha <= starmindist) alpha = 0.0;
268                                                 else if (alpha <= 2.0f * starmindist) {
269                                                         alpha = (alpha - starmindist) / starmindist;
270                                                 }
271                                                 else {
272                                                         alpha -= 2.0f * starmindist;
273                                                         alpha /= (clipend - 2.0f * starmindist);
274                                                         alpha = 1.0f - alpha;
275                                                 }
276                                         }
277                                         
278                                         
279                                         if (alpha != 0.0f) {
280                                                 fac = force * BLI_drand();
281                                                 
282                                                 har = initstar(re, obr, vec, fac);
283                                                 
284                                                 if (har) {
285                                                         har->alfa = sqrt(sqrt(alpha));
286                                                         har->add= 255;
287                                                         har->r = har->g = har->b = 1.0;
288                                                         if (maxjit) {
289                                                                 har->r += ((maxjit * BLI_drand()) ) - maxjit;
290                                                                 har->g += ((maxjit * BLI_drand()) ) - maxjit;
291                                                                 har->b += ((maxjit * BLI_drand()) ) - maxjit;
292                                                         }
293                                                         har->hard = 32;
294                                                         har->lay= -1;
295                                                         har->type |= HA_ONLYSKY;
296                                                         done++;
297                                                 }
298                                         }
299                                 }
300
301                                 /* break out of the loop if generating stars takes too long */
302                                 if (re && !(totstar % 1000000)) {
303                                         if (re->test_break(re->tbh)) {
304                                                 x= ex + 1;
305                                                 y= ey + 1;
306                                                 z= ez + 1;
307                                         }
308                                 }
309                                 
310                                 totstar++;
311                         }
312                         /* do not call blender_test_break() here, since it is used in UI as well, confusing the callback system */
313                         /* main cause is G.afbreek of course, a global again... (ton) */
314                 }
315         }
316         if (termfunc) termfunc();
317
318         if (obr)
319                 re->tothalo += obr->tothalo;
320 }
321
322
323 /* ------------------------------------------------------------------------- */
324 /* tool functions/defines for ad hoc simplification and possible future 
325  * cleanup      */
326 /* ------------------------------------------------------------------------- */
327
328 #define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
329 /*
330
331 NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
332         
333 ^       ()----p4----p3----()
334 |       |     |     |     |
335 u       |     |  F1 |  F2 |
336         |     |     |     |
337         ()----p1----p2----()
338                    v ->
339 */
340
341 /* ------------------------------------------------------------------------- */
342
343 static void split_v_renderfaces(ObjectRen *obr, int startvlak, int UNUSED(startvert), int UNUSED(usize), int vsize, int uIndex, int UNUSED(cyclu), int cyclv)
344 {
345         int vLen = vsize-1+(!!cyclv);
346         int v;
347
348         for (v=0; v<vLen; v++) {
349                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v);
350                 VertRen *vert = RE_vertren_copy(obr, vlr->v2);
351
352                 if (cyclv) {
353                         vlr->v2 = vert;
354
355                         if (v==vLen-1) {
356                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + 0);
357                                 vlr->v1 = vert;
358                         }
359                         else {
360                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
361                                 vlr->v1 = vert;
362                         }
363                 }
364                 else {
365                         vlr->v2 = vert;
366
367                         if (v<vLen-1) {
368                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
369                                 vlr->v1 = vert;
370                         }
371
372                         if (v==0) {
373                                 vlr->v1 = RE_vertren_copy(obr, vlr->v1);
374                         } 
375                 }
376         }
377 }
378
379 /* ------------------------------------------------------------------------- */
380 /* Stress, tangents and normals                                              */
381 /* ------------------------------------------------------------------------- */
382
383 static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
384 {
385         float len= len_v3v3(v1->co, v2->co)/len_v3v3(v1->orco, v2->orco);
386         float *acc;
387         
388         acc= accum + 2*v1->index;
389         acc[0]+= len;
390         acc[1]+= 1.0f;
391         
392         acc= accum + 2*v2->index;
393         acc[0]+= len;
394         acc[1]+= 1.0f;
395 }
396
397 static void calc_edge_stress(Render *UNUSED(re), ObjectRen *obr, Mesh *me)
398 {
399         float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
400         int a;
401         
402         if (obr->totvert==0) return;
403         
404         BKE_mesh_texspace_get(me, loc, NULL, size);
405         
406         accum= MEM_callocN(2*sizeof(float)*obr->totvert, "temp accum for stress");
407         
408         /* de-normalize orco */
409         for (a=0; a<obr->totvert; a++) {
410                 VertRen *ver= RE_findOrAddVert(obr, a);
411                 if (ver->orco) {
412                         ver->orco[0]= ver->orco[0]*size[0] +loc[0];
413                         ver->orco[1]= ver->orco[1]*size[1] +loc[1];
414                         ver->orco[2]= ver->orco[2]*size[2] +loc[2];
415                 }
416         }
417         
418         /* add stress values */
419         accumoffs= accum;       /* so we can use vertex index */
420         for (a=0; a<obr->totvlak; a++) {
421                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
422
423                 if (vlr->v1->orco && vlr->v4) {
424                         calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
425                         calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
426                         calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
427                         if (vlr->v4) {
428                                 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
429                                 calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
430                                 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
431                         }
432                 }
433         }
434         
435         for (a=0; a<obr->totvert; a++) {
436                 VertRen *ver= RE_findOrAddVert(obr, a);
437                 if (ver->orco) {
438                         /* find stress value */
439                         acc= accumoffs + 2*ver->index;
440                         if (acc[1]!=0.0f)
441                                 acc[0]/= acc[1];
442                         stress= RE_vertren_get_stress(obr, ver, 1);
443                         *stress= *acc;
444                         
445                         /* restore orcos */
446                         ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
447                         ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
448                         ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
449                 }
450         }
451         
452         MEM_freeN(accum);
453 }
454
455 /* gets tangent from tface or orco */
456 static void calc_tangent_vector(ObjectRen *obr, VertexTangent **vtangents, MemArena *arena, VlakRen *vlr, int do_nmap_tangent, int do_tangent)
457 {
458         MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
459         VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
460         float tang[3], *tav;
461         float *uv1, *uv2, *uv3, *uv4;
462         float uv[4][2];
463         
464         if (tface) {
465                 uv1= tface->uv[0];
466                 uv2= tface->uv[1];
467                 uv3= tface->uv[2];
468                 uv4= tface->uv[3];
469         }
470         else if (v1->orco) {
471                 uv1= uv[0]; uv2= uv[1]; uv3= uv[2]; uv4= uv[3];
472                 map_to_sphere(&uv[0][0], &uv[0][1], v1->orco[0], v1->orco[1], v1->orco[2]);
473                 map_to_sphere(&uv[1][0], &uv[1][1], v2->orco[0], v2->orco[1], v2->orco[2]);
474                 map_to_sphere(&uv[2][0], &uv[2][1], v3->orco[0], v3->orco[1], v3->orco[2]);
475                 if (v4)
476                         map_to_sphere(&uv[3][0], &uv[3][1], v4->orco[0], v4->orco[1], v4->orco[2]);
477         }
478         else return;
479
480         tangent_from_uv(uv1, uv2, uv3, v1->co, v2->co, v3->co, vlr->n, tang);
481         
482         if (do_tangent) {
483                 tav= RE_vertren_get_tangent(obr, v1, 1);
484                 add_v3_v3(tav, tang);
485                 tav= RE_vertren_get_tangent(obr, v2, 1);
486                 add_v3_v3(tav, tang);
487                 tav= RE_vertren_get_tangent(obr, v3, 1);
488                 add_v3_v3(tav, tang);
489         }
490         
491         if (do_nmap_tangent) {
492                 sum_or_add_vertex_tangent(arena, &vtangents[v1->index], tang, uv1);
493                 sum_or_add_vertex_tangent(arena, &vtangents[v2->index], tang, uv2);
494                 sum_or_add_vertex_tangent(arena, &vtangents[v3->index], tang, uv3);
495         }
496
497         if (v4) {
498                 tangent_from_uv(uv1, uv3, uv4, v1->co, v3->co, v4->co, vlr->n, tang);
499                 
500                 if (do_tangent) {
501                         tav= RE_vertren_get_tangent(obr, v1, 1);
502                         add_v3_v3(tav, tang);
503                         tav= RE_vertren_get_tangent(obr, v3, 1);
504                         add_v3_v3(tav, tang);
505                         tav= RE_vertren_get_tangent(obr, v4, 1);
506                         add_v3_v3(tav, tang);
507                 }
508
509                 if (do_nmap_tangent) {
510                         sum_or_add_vertex_tangent(arena, &vtangents[v1->index], tang, uv1);
511                         sum_or_add_vertex_tangent(arena, &vtangents[v3->index], tang, uv3);
512                         sum_or_add_vertex_tangent(arena, &vtangents[v4->index], tang, uv4);
513                 }
514         }
515 }
516
517
518
519 /****************************************************************
520  ************ tangent space generation interface ****************
521  ****************************************************************/
522
523 typedef struct
524 {
525         ObjectRen *obr;
526
527 } SRenderMeshToTangent;
528
529 // interface
530 #include "mikktspace.h"
531
532 static int GetNumFaces(const SMikkTSpaceContext * pContext)
533 {
534         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
535         return pMesh->obr->totvlak;
536 }
537
538 static int GetNumVertsOfFace(const SMikkTSpaceContext * pContext, const int face_num)
539 {
540         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
541         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
542         return vlr->v4!=NULL ? 4 : 3;
543 }
544
545 static void GetPosition(const SMikkTSpaceContext * pContext, float fPos[], const int face_num, const int vert_index)
546 {
547         //assert(vert_index>=0 && vert_index<4);
548         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
549         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
550         const float *co= (&vlr->v1)[vert_index]->co;
551         copy_v3_v3(fPos, co);
552 }
553
554 static void GetTextureCoordinate(const SMikkTSpaceContext * pContext, float fUV[], const int face_num, const int vert_index)
555 {
556         //assert(vert_index>=0 && vert_index<4);
557         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
558         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
559         MTFace *tface= RE_vlakren_get_tface(pMesh->obr, vlr, pMesh->obr->actmtface, NULL, 0);
560         const float *coord;
561         
562         if (tface != NULL) {
563                 coord= tface->uv[vert_index];
564                 fUV[0]= coord[0]; fUV[1]= coord[1];
565         }
566         else if ((coord= (&vlr->v1)[vert_index]->orco)) {
567                 map_to_sphere(&fUV[0], &fUV[1], coord[0], coord[1], coord[2]);
568         }
569         else { /* else we get un-initialized value, 0.0 ok default? */
570                 fUV[0]= fUV[1]= 0.0f;
571         }
572 }
573
574 static void GetNormal(const SMikkTSpaceContext * pContext, float fNorm[], const int face_num, const int vert_index)
575 {
576         //assert(vert_index>=0 && vert_index<4);
577         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
578         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
579         const float *n= (&vlr->v1)[vert_index]->n;
580         copy_v3_v3(fNorm, n);
581 }
582 static void SetTSpace(const SMikkTSpaceContext * pContext, const float fvTangent[], const float fSign, const int face_num, const int iVert)
583 {
584         //assert(vert_index>=0 && vert_index<4);
585         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
586         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
587         float * ftang= RE_vlakren_get_nmap_tangent(pMesh->obr, vlr, 1);
588         if (ftang!=NULL) {
589                 copy_v3_v3(&ftang[iVert*4+0], fvTangent);
590                 ftang[iVert*4+3]=fSign;
591         }
592 }
593
594 static void calc_vertexnormals(Render *UNUSED(re), ObjectRen *obr, int do_tangent, int do_nmap_tangent)
595 {
596         MemArena *arena= NULL;
597         VertexTangent **vtangents= NULL;
598         int a;
599
600         if (do_nmap_tangent) {
601                 arena= BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "nmap tangent arena");
602                 BLI_memarena_use_calloc(arena);
603
604                 vtangents= MEM_callocN(sizeof(VertexTangent*)*obr->totvert, "VertexTangent");
605         }
606
607                 /* clear all vertex normals */
608         for (a=0; a<obr->totvert; a++) {
609                 VertRen *ver= RE_findOrAddVert(obr, a);
610                 ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
611         }
612
613                 /* calculate cos of angles and point-masses, use as weight factor to
614                  * add face normal to vertex */
615         for (a=0; a<obr->totvlak; a++) {
616                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
617                 if (vlr->flag & ME_SMOOTH) {
618                         float *n4= (vlr->v4)? vlr->v4->n: NULL;
619                         float *c4= (vlr->v4)? vlr->v4->co: NULL;
620
621                         accumulate_vertex_normals(vlr->v1->n, vlr->v2->n, vlr->v3->n, n4,
622                                 vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co, c4);
623                 }
624                 if (do_nmap_tangent || do_tangent) {
625                         /* tangents still need to be calculated for flat faces too */
626                         /* weighting removed, they are not vertexnormals */
627                         calc_tangent_vector(obr, vtangents, arena, vlr, do_nmap_tangent, do_tangent);
628                 }
629         }
630
631                 /* do solid faces */
632         for (a=0; a<obr->totvlak; a++) {
633                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
634
635                 if ((vlr->flag & ME_SMOOTH)==0) {
636                         if (is_zero_v3(vlr->v1->n)) copy_v3_v3(vlr->v1->n, vlr->n);
637                         if (is_zero_v3(vlr->v2->n)) copy_v3_v3(vlr->v2->n, vlr->n);
638                         if (is_zero_v3(vlr->v3->n)) copy_v3_v3(vlr->v3->n, vlr->n);
639                         if (vlr->v4 && is_zero_v3(vlr->v4->n)) copy_v3_v3(vlr->v4->n, vlr->n);
640                 }
641
642                 if (do_nmap_tangent) {
643                         VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
644                         MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
645
646                         if (tface) {
647                                 int k=0;
648                                 float *vtang, *ftang= RE_vlakren_get_nmap_tangent(obr, vlr, 1);
649
650                                 vtang= find_vertex_tangent(vtangents[v1->index], tface->uv[0]);
651                                 copy_v3_v3(ftang, vtang);
652                                 normalize_v3(ftang);
653                                 vtang= find_vertex_tangent(vtangents[v2->index], tface->uv[1]);
654                                 copy_v3_v3(ftang+4, vtang);
655                                 normalize_v3(ftang+4);
656                                 vtang= find_vertex_tangent(vtangents[v3->index], tface->uv[2]);
657                                 copy_v3_v3(ftang+8, vtang);
658                                 normalize_v3(ftang+8);
659                                 if (v4) {
660                                         vtang= find_vertex_tangent(vtangents[v4->index], tface->uv[3]);
661                                         copy_v3_v3(ftang+12, vtang);
662                                         normalize_v3(ftang+12);
663                                 }
664                                 for (k=0; k<4; k++) ftang[4*k+3]=1;
665                         }
666                 }
667         }
668         
669         /* normalize vertex normals */
670         for (a=0; a<obr->totvert; a++) {
671                 VertRen *ver= RE_findOrAddVert(obr, a);
672                 normalize_v3(ver->n);
673                 if (do_tangent) {
674                         float *tav= RE_vertren_get_tangent(obr, ver, 0);
675                         if (tav) {
676                                 /* orthonorm. */
677                                 const float tdn = dot_v3v3(tav, ver->n);
678                                 tav[0] -= ver->n[0]*tdn;
679                                 tav[1] -= ver->n[1]*tdn;
680                                 tav[2] -= ver->n[2]*tdn;
681                                 normalize_v3(tav);
682                         }
683                 }
684         }
685
686         if (do_nmap_tangent != FALSE) {
687                 SRenderMeshToTangent mesh2tangent;
688                 SMikkTSpaceContext sContext;
689                 SMikkTSpaceInterface sInterface;
690                 memset(&mesh2tangent, 0, sizeof(SRenderMeshToTangent));
691                 memset(&sContext, 0, sizeof(SMikkTSpaceContext));
692                 memset(&sInterface, 0, sizeof(SMikkTSpaceInterface));
693
694                 mesh2tangent.obr = obr;
695
696                 sContext.m_pUserData = &mesh2tangent;
697                 sContext.m_pInterface = &sInterface;
698                 sInterface.m_getNumFaces = GetNumFaces;
699                 sInterface.m_getNumVerticesOfFace = GetNumVertsOfFace;
700                 sInterface.m_getPosition = GetPosition;
701                 sInterface.m_getTexCoord = GetTextureCoordinate;
702                 sInterface.m_getNormal = GetNormal;
703                 sInterface.m_setTSpaceBasic = SetTSpace;
704
705                 genTangSpaceDefault(&sContext);
706         }
707
708         if (arena)
709                 BLI_memarena_free(arena);
710         if (vtangents)
711                 MEM_freeN(vtangents);
712 }
713
714 /* ------------------------------------------------------------------------- */
715 /* Autosmoothing:                                                            */
716 /* ------------------------------------------------------------------------- */
717
718 typedef struct ASvert {
719         int totface;
720         ListBase faces;
721 } ASvert;
722
723 typedef struct ASface {
724         struct ASface *next, *prev;
725         VlakRen *vlr[4];
726         VertRen *nver[4];
727 } ASface;
728
729 static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
730 {
731         ASface *asf;
732         int a;
733         
734         if (v1 == NULL) return;
735         
736         if (asv->faces.first==NULL) {
737                 asf= MEM_callocN(sizeof(ASface), "asface");
738                 BLI_addtail(&asv->faces, asf);
739         }
740         
741         asf= asv->faces.last;
742         for (a=0; a<4; a++) {
743                 if (asf->vlr[a]==NULL) {
744                         asf->vlr[a]= vlr;
745                         asv->totface++;
746                         break;
747                 }
748         }
749         
750         /* new face struct */
751         if (a==4) {
752                 asf= MEM_callocN(sizeof(ASface), "asface");
753                 BLI_addtail(&asv->faces, asf);
754                 asf->vlr[0]= vlr;
755                 asv->totface++;
756         }
757 }
758
759 static int as_testvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
760 {
761         /* return 1: vertex needs a copy */
762         ASface *asf;
763         float inp;
764         int a;
765         
766         if (vlr==0) return 0;
767         
768         asf= asv->faces.first;
769         while (asf) {
770                 for (a=0; a<4; a++) {
771                         if (asf->vlr[a] && asf->vlr[a]!=vlr) {
772                                 inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
773                                 if (inp < thresh) return 1;
774                         }
775                 }
776                 asf= asf->next;
777         }
778         
779         return 0;
780 }
781
782 static VertRen *as_findvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
783 {
784         /* return when new vertex already was made */
785         ASface *asf;
786         float inp;
787         int a;
788         
789         asf= asv->faces.first;
790         while (asf) {
791                 for (a=0; a<4; a++) {
792                         if (asf->vlr[a] && asf->vlr[a]!=vlr) {
793                                 /* this face already made a copy for this vertex! */
794                                 if (asf->nver[a]) {
795                                         inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
796                                         if (inp >= thresh) {
797                                                 return asf->nver[a];
798                                         }
799                                 }
800                         }
801                 }
802                 asf= asf->next;
803         }
804         
805         return NULL;
806 }
807
808 /* note; autosmooth happens in object space still, after applying autosmooth we rotate */
809 /* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
810 static void autosmooth(Render *UNUSED(re), ObjectRen *obr, float mat[][4], int degr)
811 {
812         ASvert *asv, *asverts;
813         ASface *asf;
814         VertRen *ver, *v1;
815         VlakRen *vlr;
816         float thresh;
817         int a, b, totvert;
818         
819         if (obr->totvert==0) return;
820         asverts= MEM_callocN(sizeof(ASvert)*obr->totvert, "all smooth verts");
821         
822         thresh= cosf(DEG2RADF((0.5f + (float)degr)));
823         
824         /* step zero: give faces normals of original mesh, if this is provided */
825         
826         
827         /* step one: construct listbase of all vertices and pointers to faces */
828         for (a=0; a<obr->totvlak; a++) {
829                 vlr= RE_findOrAddVlak(obr, a);
830                 /* skip wire faces */
831                 if (vlr->v2 != vlr->v3) {
832                         as_addvert(asverts+vlr->v1->index, vlr->v1, vlr);
833                         as_addvert(asverts+vlr->v2->index, vlr->v2, vlr);
834                         as_addvert(asverts+vlr->v3->index, vlr->v3, vlr);
835                         if (vlr->v4)
836                                 as_addvert(asverts+vlr->v4->index, vlr->v4, vlr);
837                 }
838         }
839         
840         totvert= obr->totvert;
841         /* we now test all vertices, when faces have a normal too much different: they get a new vertex */
842         for (a=0, asv=asverts; a<totvert; a++, asv++) {
843                 if (asv && asv->totface>1) {
844                         ver= RE_findOrAddVert(obr, a);
845
846                         asf= asv->faces.first;
847                         while (asf) {
848                                 for (b=0; b<4; b++) {
849                                 
850                                         /* is there a reason to make a new vertex? */
851                                         vlr= asf->vlr[b];
852                                         if ( as_testvertex(vlr, ver, asv, thresh) ) {
853                                                 
854                                                 /* already made a new vertex within threshold? */
855                                                 v1= as_findvertex(vlr, ver, asv, thresh);
856                                                 if (v1==NULL) {
857                                                         /* make a new vertex */
858                                                         v1= RE_vertren_copy(obr, ver);
859                                                 }
860                                                 asf->nver[b]= v1;
861                                                 if (vlr->v1==ver) vlr->v1= v1;
862                                                 if (vlr->v2==ver) vlr->v2= v1;
863                                                 if (vlr->v3==ver) vlr->v3= v1;
864                                                 if (vlr->v4==ver) vlr->v4= v1;
865                                         }
866                                 }
867                                 asf= asf->next;
868                         }
869                 }
870         }
871         
872         /* free */
873         for (a=0; a<totvert; a++) {
874                 BLI_freelistN(&asverts[a].faces);
875         }
876         MEM_freeN(asverts);
877         
878         /* rotate vertices and calculate normal of faces */
879         for (a=0; a<obr->totvert; a++) {
880                 ver= RE_findOrAddVert(obr, a);
881                 mul_m4_v3(mat, ver->co);
882         }
883         for (a=0; a<obr->totvlak; a++) {
884                 vlr= RE_findOrAddVlak(obr, a);
885                 
886                 /* skip wire faces */
887                 if (vlr->v2 != vlr->v3) {
888                         if (vlr->v4)
889                                 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
890                         else 
891                                 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
892                 }
893         }               
894 }
895
896 /* ------------------------------------------------------------------------- */
897 /* Orco hash and Materials                                                   */
898 /* ------------------------------------------------------------------------- */
899
900 static float *get_object_orco(Render *re, Object *ob)
901 {
902         float *orco;
903
904         if (!re->orco_hash)
905                 re->orco_hash = BLI_ghash_ptr_new("get_object_orco gh");
906
907         orco = BLI_ghash_lookup(re->orco_hash, ob);
908
909         if (!orco) {
910                 if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
911                         orco = BKE_curve_make_orco(re->scene, ob);
912                 }
913                 else if (ob->type==OB_SURF) {
914                         orco = BKE_curve_surf_make_orco(ob);
915                 }
916
917                 if (orco)
918                         BLI_ghash_insert(re->orco_hash, ob, orco);
919         }
920
921         return orco;
922 }
923
924 static void set_object_orco(Render *re, void *ob, float *orco)
925 {
926         if (!re->orco_hash)
927                 re->orco_hash = BLI_ghash_ptr_new("set_object_orco gh");
928         
929         BLI_ghash_insert(re->orco_hash, ob, orco);
930 }
931
932 static void free_mesh_orco_hash(Render *re) 
933 {
934         if (re->orco_hash) {
935                 BLI_ghash_free(re->orco_hash, NULL, (GHashValFreeFP)MEM_freeN);
936                 re->orco_hash = NULL;
937         }
938 }
939
940 static void check_material_mapto(Material *ma)
941 {
942         int a;
943         ma->mapto_textured = 0;
944         
945         /* cache which inputs are actually textured.
946          * this can avoid a bit of time spent iterating through all the texture slots, map inputs and map tos
947          * every time a property which may or may not be textured is accessed */
948         
949         for (a=0; a<MAX_MTEX; a++) {
950                 if (ma->mtex[a] && ma->mtex[a]->tex) {
951                         /* currently used only in volume render, so we'll check for those flags */
952                         if (ma->mtex[a]->mapto & MAP_DENSITY) ma->mapto_textured |= MAP_DENSITY;
953                         if (ma->mtex[a]->mapto & MAP_EMISSION) ma->mapto_textured |= MAP_EMISSION;
954                         if (ma->mtex[a]->mapto & MAP_EMISSION_COL) ma->mapto_textured |= MAP_EMISSION_COL;
955                         if (ma->mtex[a]->mapto & MAP_SCATTERING) ma->mapto_textured |= MAP_SCATTERING;
956                         if (ma->mtex[a]->mapto & MAP_TRANSMISSION_COL) ma->mapto_textured |= MAP_TRANSMISSION_COL;
957                         if (ma->mtex[a]->mapto & MAP_REFLECTION) ma->mapto_textured |= MAP_REFLECTION;
958                         if (ma->mtex[a]->mapto & MAP_REFLECTION_COL) ma->mapto_textured |= MAP_REFLECTION_COL;
959                 }
960         }
961 }
962 static void flag_render_node_material(Render *re, bNodeTree *ntree)
963 {
964         bNode *node;
965
966         for (node=ntree->nodes.first; node; node= node->next) {
967                 if (node->id) {
968                         if (GS(node->id->name)==ID_MA) {
969                                 Material *ma= (Material *)node->id;
970
971                                 if ((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
972                                         re->flag |= R_ZTRA;
973
974                                 ma->flag |= MA_IS_USED;
975                         }
976                         else if (node->type==NODE_GROUP)
977                                 flag_render_node_material(re, (bNodeTree *)node->id);
978                 }
979         }
980 }
981
982 static Material *give_render_material(Render *re, Object *ob, short nr)
983 {
984         extern Material defmaterial;    /* material.c */
985         Material *ma;
986         
987         ma= give_current_material(ob, nr);
988         if (ma==NULL)
989                 ma= &defmaterial;
990         
991         if (re->r.mode & R_SPEED) ma->texco |= NEED_UV;
992         
993         if (ma->material_type == MA_TYPE_VOLUME) {
994                 ma->mode |= MA_TRANSP;
995                 ma->mode &= ~MA_SHADBUF;
996         }
997         if ((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
998                 re->flag |= R_ZTRA;
999         
1000         /* for light groups and SSS */
1001         ma->flag |= MA_IS_USED;
1002
1003         if (ma->nodetree && ma->use_nodes)
1004                 flag_render_node_material(re, ma->nodetree);
1005         
1006         check_material_mapto(ma);
1007         
1008         return ma;
1009 }
1010
1011 /* ------------------------------------------------------------------------- */
1012 /* Particles                                                                 */
1013 /* ------------------------------------------------------------------------- */
1014 typedef struct ParticleStrandData
1015 {
1016         struct MCol *mcol;
1017         float *orco, *uvco, *surfnor;
1018         float time, adapt_angle, adapt_pix, size;
1019         int totuv, totcol;
1020         int first, line, adapt, override_uv;
1021 }
1022 ParticleStrandData;
1023 /* future thread problem... */
1024 static void static_particle_strand(Render *re, ObjectRen *obr, Material *ma, ParticleStrandData *sd, const float vec[3], const float vec1[3])
1025 {
1026         static VertRen *v1= NULL, *v2= NULL;
1027         VlakRen *vlr= NULL;
1028         float nor[3], cross[3], crosslen, w, dx, dy, width;
1029         static float anor[3], avec[3];
1030         int flag, i;
1031         static int second=0;
1032         
1033         sub_v3_v3v3(nor, vec, vec1);
1034         normalize_v3(nor);              // nor needed as tangent 
1035         cross_v3_v3v3(cross, vec, nor);
1036
1037         /* turn cross in pixelsize */
1038         w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1039         dx= re->winx*cross[0]*re->winmat[0][0];
1040         dy= re->winy*cross[1]*re->winmat[1][1];
1041         w= sqrt(dx*dx + dy*dy)/w;
1042         
1043         if (w!=0.0f) {
1044                 float fac;
1045                 if (ma->strand_ease!=0.0f) {
1046                         if (ma->strand_ease<0.0f)
1047                                 fac= pow(sd->time, 1.0f+ma->strand_ease);
1048                         else
1049                                 fac= pow(sd->time, 1.0f/(1.0f-ma->strand_ease));
1050                 }
1051                 else fac= sd->time;
1052
1053                 width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
1054
1055                 /* use actual Blender units for strand width and fall back to minimum width */
1056                 if (ma->mode & MA_STR_B_UNITS) {
1057                         crosslen= len_v3(cross);
1058                         w= 2.0f*crosslen*ma->strand_min/w;
1059
1060                         if (width < w)
1061                                 width= w;
1062
1063                         /*cross is the radius of the strand so we want it to be half of full width */
1064                         mul_v3_fl(cross, 0.5f/crosslen);
1065                 }
1066                 else
1067                         width/=w;
1068
1069                 mul_v3_fl(cross, width);
1070         }
1071         
1072         if (ma->mode & MA_TANGENT_STR)
1073                 flag= R_SMOOTH|R_TANGENT;
1074         else
1075                 flag= R_SMOOTH;
1076         
1077         /* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
1078         if (ma->strand_sta==1.0f)
1079                 flag |= R_STRAND;
1080         
1081         /* single face line */
1082         if (sd->line) {
1083                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1084                 vlr->flag= flag;
1085                 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1086                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1087                 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1088                 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1089                 
1090                 copy_v3_v3(vlr->v1->co, vec);
1091                 add_v3_v3(vlr->v1->co, cross);
1092                 copy_v3_v3(vlr->v1->n, nor);
1093                 vlr->v1->orco= sd->orco;
1094                 vlr->v1->accum= -1.0f;  // accum abuse for strand texco
1095                 
1096                 copy_v3_v3(vlr->v2->co, vec);
1097                 sub_v3_v3v3(vlr->v2->co, vlr->v2->co, cross);
1098                 copy_v3_v3(vlr->v2->n, nor);
1099                 vlr->v2->orco= sd->orco;
1100                 vlr->v2->accum= vlr->v1->accum;
1101
1102                 copy_v3_v3(vlr->v4->co, vec1);
1103                 add_v3_v3(vlr->v4->co, cross);
1104                 copy_v3_v3(vlr->v4->n, nor);
1105                 vlr->v4->orco= sd->orco;
1106                 vlr->v4->accum= 1.0f;   // accum abuse for strand texco
1107                 
1108                 copy_v3_v3(vlr->v3->co, vec1);
1109                 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1110                 copy_v3_v3(vlr->v3->n, nor);
1111                 vlr->v3->orco= sd->orco;
1112                 vlr->v3->accum= vlr->v4->accum;
1113
1114                 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1115                 
1116                 vlr->mat= ma;
1117                 vlr->ec= ME_V2V3;
1118
1119                 if (sd->surfnor) {
1120                         float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1121                         copy_v3_v3(snor, sd->surfnor);
1122                 }
1123
1124                 if (sd->uvco) {
1125                         for (i=0; i<sd->totuv; i++) {
1126                                 MTFace *mtf;
1127                                 mtf=RE_vlakren_get_tface(obr, vlr, i, NULL, 1);
1128                                 mtf->uv[0][0]=mtf->uv[1][0]=
1129                                 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1130                                 mtf->uv[0][1]=mtf->uv[1][1]=
1131                                 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1132                         }
1133                         if (sd->override_uv>=0) {
1134                                 MTFace *mtf;
1135                                 mtf=RE_vlakren_get_tface(obr, vlr, sd->override_uv, NULL, 0);
1136                                 
1137                                 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1138                                 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1139
1140                                 mtf->uv[0][1]=mtf->uv[1][1]=0.0f;
1141                                 mtf->uv[2][1]=mtf->uv[3][1]=1.0f;
1142                         }
1143                 }
1144                 if (sd->mcol) {
1145                         for (i=0; i<sd->totcol; i++) {
1146                                 MCol *mc;
1147                                 mc=RE_vlakren_get_mcol(obr, vlr, i, NULL, 1);
1148                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1149                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1150                         }
1151                 }
1152         }
1153         /* first two vertices of a strand */
1154         else if (sd->first) {
1155                 if (sd->adapt) {
1156                         copy_v3_v3(anor, nor);
1157                         copy_v3_v3(avec, vec);
1158                         second=1;
1159                 }
1160
1161                 v1= RE_findOrAddVert(obr, obr->totvert++);
1162                 v2= RE_findOrAddVert(obr, obr->totvert++);
1163                 
1164                 copy_v3_v3(v1->co, vec);
1165                 add_v3_v3(v1->co, cross);
1166                 copy_v3_v3(v1->n, nor);
1167                 v1->orco= sd->orco;
1168                 v1->accum= -1.0f;       // accum abuse for strand texco
1169                 
1170                 copy_v3_v3(v2->co, vec);
1171                 sub_v3_v3v3(v2->co, v2->co, cross);
1172                 copy_v3_v3(v2->n, nor);
1173                 v2->orco= sd->orco;
1174                 v2->accum= v1->accum;
1175         }
1176         /* more vertices & faces to strand */
1177         else {
1178                 if (sd->adapt==0 || second) {
1179                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1180                         vlr->flag= flag;
1181                         vlr->v1= v1;
1182                         vlr->v2= v2;
1183                         vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1184                         vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1185                         
1186                         v1= vlr->v4; // cycle
1187                         v2= vlr->v3; // cycle
1188
1189                         
1190                         if (sd->adapt) {
1191                                 second=0;
1192                                 copy_v3_v3(anor, nor);
1193                                 copy_v3_v3(avec, vec);
1194                         }
1195
1196                 }
1197                 else if (sd->adapt) {
1198                         float dvec[3], pvec[3];
1199                         sub_v3_v3v3(dvec, avec, vec);
1200                         project_v3_v3v3(pvec, dvec, vec);
1201                         sub_v3_v3v3(dvec, dvec, pvec);
1202
1203                         w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1204                         dx= re->winx*dvec[0]*re->winmat[0][0]/w;
1205                         dy= re->winy*dvec[1]*re->winmat[1][1]/w;
1206                         w= sqrt(dx*dx + dy*dy);
1207                         if (dot_v3v3(anor, nor)<sd->adapt_angle && w>sd->adapt_pix) {
1208                                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1209                                 vlr->flag= flag;
1210                                 vlr->v1= v1;
1211                                 vlr->v2= v2;
1212                                 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1213                                 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1214                                 
1215                                 v1= vlr->v4; // cycle
1216                                 v2= vlr->v3; // cycle
1217
1218                                 copy_v3_v3(anor, nor);
1219                                 copy_v3_v3(avec, vec);
1220                         }
1221                         else {
1222                                 vlr= RE_findOrAddVlak(obr, obr->totvlak-1);
1223                         }
1224                 }
1225         
1226                 copy_v3_v3(vlr->v4->co, vec);
1227                 add_v3_v3(vlr->v4->co, cross);
1228                 copy_v3_v3(vlr->v4->n, nor);
1229                 vlr->v4->orco= sd->orco;
1230                 vlr->v4->accum= -1.0f + 2.0f*sd->time;  // accum abuse for strand texco
1231                 
1232                 copy_v3_v3(vlr->v3->co, vec);
1233                 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1234                 copy_v3_v3(vlr->v3->n, nor);
1235                 vlr->v3->orco= sd->orco;
1236                 vlr->v3->accum= vlr->v4->accum;
1237                 
1238                 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1239                 
1240                 vlr->mat= ma;
1241                 vlr->ec= ME_V2V3;
1242
1243                 if (sd->surfnor) {
1244                         float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1245                         copy_v3_v3(snor, sd->surfnor);
1246                 }
1247
1248                 if (sd->uvco) {
1249                         for (i=0; i<sd->totuv; i++) {
1250                                 MTFace *mtf;
1251                                 mtf=RE_vlakren_get_tface(obr, vlr, i, NULL, 1);
1252                                 mtf->uv[0][0]=mtf->uv[1][0]=
1253                                 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1254                                 mtf->uv[0][1]=mtf->uv[1][1]=
1255                                 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1256                         }
1257                         if (sd->override_uv>=0) {
1258                                 MTFace *mtf;
1259                                 mtf=RE_vlakren_get_tface(obr, vlr, sd->override_uv, NULL, 0);
1260                                 
1261                                 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1262                                 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1263
1264                                 mtf->uv[0][1]=mtf->uv[1][1]=(vlr->v1->accum+1.0f)/2.0f;
1265                                 mtf->uv[2][1]=mtf->uv[3][1]=(vlr->v3->accum+1.0f)/2.0f;
1266                         }
1267                 }
1268                 if (sd->mcol) {
1269                         for (i=0; i<sd->totcol; i++) {
1270                                 MCol *mc;
1271                                 mc=RE_vlakren_get_mcol(obr, vlr, i, NULL, 1);
1272                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1273                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1274                         }
1275                 }
1276         }
1277 }
1278
1279 static void static_particle_wire(ObjectRen *obr, Material *ma, const float vec[3], const float vec1[3], int first, int line)
1280 {
1281         VlakRen *vlr;
1282         static VertRen *v1;
1283
1284         if (line) {
1285                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1286                 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1287                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1288                 vlr->v3= vlr->v2;
1289                 vlr->v4= NULL;
1290                 
1291                 copy_v3_v3(vlr->v1->co, vec);
1292                 copy_v3_v3(vlr->v2->co, vec1);
1293                 
1294                 sub_v3_v3v3(vlr->n, vec, vec1);
1295                 normalize_v3(vlr->n);
1296                 copy_v3_v3(vlr->v1->n, vlr->n);
1297                 copy_v3_v3(vlr->v2->n, vlr->n);
1298                 
1299                 vlr->mat= ma;
1300                 vlr->ec= ME_V1V2;
1301
1302         }
1303         else if (first) {
1304                 v1= RE_findOrAddVert(obr, obr->totvert++);
1305                 copy_v3_v3(v1->co, vec);
1306         }
1307         else {
1308                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1309                 vlr->v1= v1;
1310                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1311                 vlr->v3= vlr->v2;
1312                 vlr->v4= NULL;
1313                 
1314                 v1= vlr->v2; // cycle
1315                 copy_v3_v3(v1->co, vec);
1316                 
1317                 sub_v3_v3v3(vlr->n, vec, vec1);
1318                 normalize_v3(vlr->n);
1319                 copy_v3_v3(v1->n, vlr->n);
1320                 
1321                 vlr->mat= ma;
1322                 vlr->ec= ME_V1V2;
1323         }
1324
1325 }
1326
1327 static void particle_curve(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd,
1328                            const float loc[3], const float loc1[3], int seed, float *pa_co)
1329 {
1330         HaloRen *har=0;
1331
1332         if (ma->material_type == MA_TYPE_WIRE)
1333                 static_particle_wire(obr, ma, loc, loc1, sd->first, sd->line);
1334         else if (ma->material_type == MA_TYPE_HALO) {
1335                 har= RE_inithalo_particle(re, obr, dm, ma, loc, loc1, sd->orco, sd->uvco, sd->size, 1.0, seed, pa_co);
1336                 if (har) har->lay= obr->ob->lay;
1337         }
1338         else
1339                 static_particle_strand(re, obr, ma, sd, loc, loc1);
1340 }
1341 static void particle_billboard(Render *re, ObjectRen *obr, Material *ma, ParticleBillboardData *bb)
1342 {
1343         VlakRen *vlr;
1344         MTFace *mtf;
1345         float xvec[3], yvec[3], zvec[3], bb_center[3];
1346         /* Number of tiles */
1347         int totsplit = bb->uv_split * bb->uv_split;
1348         int tile, x, y;
1349         /* Tile offsets */
1350         float uvx = 0.0f, uvy = 0.0f, uvdx = 1.0f, uvdy = 1.0f, time = 0.0f;
1351
1352         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1353         vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1354         vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1355         vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1356         vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1357
1358         psys_make_billboard(bb, xvec, yvec, zvec, bb_center);
1359
1360         add_v3_v3v3(vlr->v1->co, bb_center, xvec);
1361         add_v3_v3(vlr->v1->co, yvec);
1362         mul_m4_v3(re->viewmat, vlr->v1->co);
1363
1364         sub_v3_v3v3(vlr->v2->co, bb_center, xvec);
1365         add_v3_v3(vlr->v2->co, yvec);
1366         mul_m4_v3(re->viewmat, vlr->v2->co);
1367
1368         sub_v3_v3v3(vlr->v3->co, bb_center, xvec);
1369         sub_v3_v3v3(vlr->v3->co, vlr->v3->co, yvec);
1370         mul_m4_v3(re->viewmat, vlr->v3->co);
1371
1372         add_v3_v3v3(vlr->v4->co, bb_center, xvec);
1373         sub_v3_v3(vlr->v4->co, yvec);
1374         mul_m4_v3(re->viewmat, vlr->v4->co);
1375
1376         normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1377         copy_v3_v3(vlr->v1->n, vlr->n);
1378         copy_v3_v3(vlr->v2->n, vlr->n);
1379         copy_v3_v3(vlr->v3->n, vlr->n);
1380         copy_v3_v3(vlr->v4->n, vlr->n);
1381         
1382         vlr->mat= ma;
1383         vlr->ec= ME_V2V3;
1384
1385         if (bb->uv_split > 1) {
1386                 uvdx = uvdy = 1.0f / (float)bb->uv_split;
1387
1388                 if (ELEM(bb->anim, PART_BB_ANIM_AGE, PART_BB_ANIM_FRAME)) {
1389                         if (bb->anim == PART_BB_ANIM_FRAME)
1390                                 time = ((int)(bb->time * bb->lifetime) % totsplit)/(float)totsplit;
1391                         else
1392                                 time = bb->time;
1393                 }
1394                 else if (bb->anim == PART_BB_ANIM_ANGLE) {
1395                         if (bb->align == PART_BB_VIEW) {
1396                                 time = (float)fmod((bb->tilt + 1.0f) / 2.0f, 1.0);
1397                         }
1398                         else {
1399                                 float axis1[3] = {0.0f, 0.0f, 0.0f};
1400                                 float axis2[3] = {0.0f, 0.0f, 0.0f};
1401
1402                                 axis1[(bb->align + 1) % 3] = 1.0f;
1403                                 axis2[(bb->align + 2) % 3] = 1.0f;
1404
1405                                 if (bb->lock == 0) {
1406                                         zvec[bb->align] = 0.0f;
1407                                         normalize_v3(zvec);
1408                                 }
1409                                 
1410                                 time = saacos(dot_v3v3(zvec, axis1)) / (float)M_PI;
1411                                 
1412                                 if (dot_v3v3(zvec, axis2) < 0.0f)
1413                                         time = 1.0f - time / 2.0f;
1414                                 else
1415                                         time /= 2.0f;
1416                         }
1417                 }
1418
1419                 if (bb->split_offset == PART_BB_OFF_LINEAR)
1420                         time = (float)fmod(time + (float)bb->num / (float)totsplit, 1.0f);
1421                 else if (bb->split_offset==PART_BB_OFF_RANDOM)
1422                         time = (float)fmod(time + bb->random, 1.0f);
1423
1424                 /* Find the coordinates in tile space (integer), then convert to UV
1425                  * space (float). Note that Y is flipped. */
1426                 tile = (int)((time + FLT_EPSILON10) * totsplit);
1427                 x = tile % bb->uv_split;
1428                 y = tile / bb->uv_split;
1429                 y = (bb->uv_split - 1) - y;
1430                 uvx = uvdx * x;
1431                 uvy = uvdy * y;
1432         }
1433
1434         /* normal UVs */
1435         if (bb->uv[0] >= 0) {
1436                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[0], NULL, 1);
1437                 mtf->uv[0][0] = 1.0f;
1438                 mtf->uv[0][1] = 1.0f;
1439                 mtf->uv[1][0] = 0.0f;
1440                 mtf->uv[1][1] = 1.0f;
1441                 mtf->uv[2][0] = 0.0f;
1442                 mtf->uv[2][1] = 0.0f;
1443                 mtf->uv[3][0] = 1.0f;
1444                 mtf->uv[3][1] = 0.0f;
1445         }
1446
1447         /* time-index UVs */
1448         if (bb->uv[1] >= 0) {
1449                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[1], NULL, 1);
1450                 mtf->uv[0][0] = mtf->uv[1][0] = mtf->uv[2][0] = mtf->uv[3][0] = bb->time;
1451                 mtf->uv[0][1] = mtf->uv[1][1] = mtf->uv[2][1] = mtf->uv[3][1] = (float)bb->num/(float)bb->totnum;
1452         }
1453
1454         /* split UVs */
1455         if (bb->uv_split > 1 && bb->uv[2] >= 0) {
1456                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[2], NULL, 1);
1457                 mtf->uv[0][0] = uvx + uvdx;
1458                 mtf->uv[0][1] = uvy + uvdy;
1459                 mtf->uv[1][0] = uvx;
1460                 mtf->uv[1][1] = uvy + uvdy;
1461                 mtf->uv[2][0] = uvx;
1462                 mtf->uv[2][1] = uvy;
1463                 mtf->uv[3][0] = uvx + uvdx;
1464                 mtf->uv[3][1] = uvy;
1465         }
1466 }
1467 static void particle_normal_ren(short ren_as, ParticleSettings *part, Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, ParticleBillboardData *bb, ParticleKey *state, int seed, float hasize, float *pa_co)
1468 {
1469         float loc[3], loc0[3], loc1[3], vel[3];
1470         
1471         copy_v3_v3(loc, state->co);
1472
1473         if (ren_as != PART_DRAW_BB)
1474                 mul_m4_v3(re->viewmat, loc);
1475
1476         switch (ren_as) {
1477                 case PART_DRAW_LINE:
1478                         sd->line = 1;
1479                         sd->time = 0.0f;
1480                         sd->size = hasize;
1481
1482                         copy_v3_v3(vel, state->vel);
1483                         mul_mat3_m4_v3(re->viewmat, vel);
1484                         normalize_v3(vel);
1485
1486                         if (part->draw & PART_DRAW_VEL_LENGTH)
1487                                 mul_v3_fl(vel, len_v3(state->vel));
1488
1489                         madd_v3_v3v3fl(loc0, loc, vel, -part->draw_line[0]);
1490                         madd_v3_v3v3fl(loc1, loc, vel, part->draw_line[1]);
1491
1492                         particle_curve(re, obr, dm, ma, sd, loc0, loc1, seed, pa_co);
1493
1494                         break;
1495
1496                 case PART_DRAW_BB:
1497
1498                         copy_v3_v3(bb->vec, loc);
1499                         copy_v3_v3(bb->vel, state->vel);
1500
1501                         particle_billboard(re, obr, ma, bb);
1502
1503                         break;
1504
1505                 default:
1506                 {
1507                         HaloRen *har=0;
1508
1509                         har = RE_inithalo_particle(re, obr, dm, ma, loc, NULL, sd->orco, sd->uvco, hasize, 0.0, seed, pa_co);
1510                         
1511                         if (har) har->lay= obr->ob->lay;
1512
1513                         break;
1514                 }
1515         }
1516 }
1517 static void get_particle_uvco_mcol(short from, DerivedMesh *dm, float *fuv, int num, ParticleStrandData *sd)
1518 {
1519         int i;
1520
1521         /* get uvco */
1522         if (sd->uvco && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
1523                 for (i=0; i<sd->totuv; i++) {
1524                         if (num != DMCACHE_NOTFOUND) {
1525                                 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1526                                 MTFace *mtface = (MTFace*)CustomData_get_layer_n(&dm->faceData, CD_MTFACE, i);
1527                                 mtface += num;
1528                                 
1529                                 psys_interpolate_uvs(mtface, mface->v4, fuv, sd->uvco + 2 * i);
1530                         }
1531                         else {
1532                                 sd->uvco[2*i] = 0.0f;
1533                                 sd->uvco[2*i + 1] = 0.0f;
1534                         }
1535                 }
1536         }
1537
1538         /* get mcol */
1539         if (sd->mcol && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
1540                 for (i=0; i<sd->totcol; i++) {
1541                         if (num != DMCACHE_NOTFOUND) {
1542                                 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1543                                 MCol *mc = (MCol*)CustomData_get_layer_n(&dm->faceData, CD_MCOL, i);
1544                                 mc += num * 4;
1545
1546                                 psys_interpolate_mcol(mc, mface->v4, fuv, sd->mcol + i);
1547                         }
1548                         else
1549                                 memset(&sd->mcol[i], 0, sizeof(MCol));
1550                 }
1551         }
1552 }
1553 static int render_new_particle_system(Render *re, ObjectRen *obr, ParticleSystem *psys, int timeoffset)
1554 {
1555         Object *ob= obr->ob;
1556 //      Object *tob=0;
1557         Material *ma=0;
1558         ParticleSystemModifierData *psmd;
1559         ParticleSystem *tpsys=0;
1560         ParticleSettings *part, *tpart=0;
1561         ParticleData *pars, *pa=0, *tpa=0;
1562         ParticleKey *states=0;
1563         ParticleKey state;
1564         ParticleCacheKey *cache=0;
1565         ParticleBillboardData bb;
1566         ParticleSimulationData sim = {0};
1567         ParticleStrandData sd;
1568         StrandBuffer *strandbuf=0;
1569         StrandVert *svert=0;
1570         StrandBound *sbound= 0;
1571         StrandRen *strand=0;
1572         RNG *rng= 0;
1573         float loc[3], loc1[3], loc0[3], mat[4][4], nmat[3][3], co[3], nor[3], duplimat[4][4];
1574         float strandlen=0.0f, curlen=0.0f;
1575         float hasize, pa_size, r_tilt, r_length;
1576         float pa_time, pa_birthtime, pa_dietime;
1577         float random, simplify[2], pa_co[3];
1578         const float cfra= BKE_scene_frame_get(re->scene);
1579         int i, a, k, max_k=0, totpart, do_simplify = FALSE, do_surfacecache = FALSE, use_duplimat = FALSE;
1580         int totchild=0;
1581         int seed, path_nbr=0, orco1=0, num;
1582         int totface, *origindex = 0;
1583         char **uv_name=0;
1584
1585 /* 1. check that everything is ok & updated */
1586         if (psys==NULL)
1587                 return 0;
1588
1589         part=psys->part;
1590         pars=psys->particles;
1591
1592         if (part==NULL || pars==NULL || !psys_check_enabled(ob, psys))
1593                 return 0;
1594         
1595         if (part->ren_as==PART_DRAW_OB || part->ren_as==PART_DRAW_GR || part->ren_as==PART_DRAW_NOT)
1596                 return 1;
1597
1598 /* 2. start initializing things */
1599
1600         /* last possibility to bail out! */
1601         psmd = psys_get_modifier(ob, psys);
1602         if (!(psmd->modifier.mode & eModifierMode_Render))
1603                 return 0;
1604
1605         sim.scene= re->scene;
1606         sim.ob= ob;
1607         sim.psys= psys;
1608         sim.psmd= psmd;
1609
1610         if (part->phystype==PART_PHYS_KEYED)
1611                 psys_count_keyed_targets(&sim);
1612
1613         totchild=psys->totchild;
1614
1615         /* can happen for disconnected/global hair */
1616         if (part->type==PART_HAIR && !psys->childcache)
1617                 totchild= 0;
1618
1619         if (G.rendering == 0) { /* preview render */
1620                 totchild = (int)((float)totchild * (float)part->disp / 100.0f);
1621         }
1622
1623         psys->flag |= PSYS_DRAWING;
1624
1625         rng= rng_new(psys->seed);
1626
1627         totpart=psys->totpart;
1628
1629         memset(&sd, 0, sizeof(ParticleStrandData));
1630         sd.override_uv = -1;
1631
1632 /* 2.1 setup material stff */
1633         ma= give_render_material(re, ob, part->omat);
1634         
1635 #if 0 // XXX old animation system
1636         if (ma->ipo) {
1637                 calc_ipo(ma->ipo, cfra);
1638                 execute_ipo((ID *)ma, ma->ipo);
1639         }
1640 #endif // XXX old animation system
1641
1642         hasize = ma->hasize;
1643         seed = ma->seed1;
1644
1645         re->flag |= R_HALO;
1646
1647         RE_set_customdata_names(obr, &psmd->dm->faceData);
1648         sd.totuv = CustomData_number_of_layers(&psmd->dm->faceData, CD_MTFACE);
1649         sd.totcol = CustomData_number_of_layers(&psmd->dm->faceData, CD_MCOL);
1650
1651         if (ma->texco & TEXCO_UV && sd.totuv) {
1652                 sd.uvco = MEM_callocN(sd.totuv * 2 * sizeof(float), "particle_uvs");
1653
1654                 if (ma->strand_uvname[0]) {
1655                         sd.override_uv = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, ma->strand_uvname);
1656                         sd.override_uv -= CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1657                 }
1658         }
1659         else
1660                 sd.uvco = NULL;
1661
1662         if (sd.totcol)
1663                 sd.mcol = MEM_callocN(sd.totcol * sizeof(MCol), "particle_mcols");
1664
1665 /* 2.2 setup billboards */
1666         if (part->ren_as == PART_DRAW_BB) {
1667                 int first_uv = CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1668
1669                 bb.uv[0] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[0]);
1670                 if (bb.uv[0] < 0)
1671                         bb.uv[0] = CustomData_get_active_layer_index(&psmd->dm->faceData, CD_MTFACE);
1672
1673                 bb.uv[1] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[1]);
1674
1675                 bb.uv[2] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[2]);
1676
1677                 if (first_uv >= 0) {
1678                         bb.uv[0] -= first_uv;
1679                         bb.uv[1] -= first_uv;
1680                         bb.uv[2] -= first_uv;
1681                 }
1682
1683                 bb.align = part->bb_align;
1684                 bb.anim = part->bb_anim;
1685                 bb.lock = part->draw & PART_DRAW_BB_LOCK;
1686                 bb.ob = (part->bb_ob ? part->bb_ob : RE_GetCamera(re));
1687                 bb.split_offset = part->bb_split_offset;
1688                 bb.totnum = totpart+totchild;
1689                 bb.uv_split = part->bb_uv_split;
1690         }
1691         
1692 /* 2.5 setup matrices */
1693         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
1694         invert_m4_m4(ob->imat, mat);    /* need to be that way, for imat texture */
1695         copy_m3_m4(nmat, ob->imat);
1696         transpose_m3(nmat);
1697
1698         if (psys->flag & PSYS_USE_IMAT) {
1699                 /* psys->imat is the original emitter's inverse matrix, ob->obmat is the duplicated object's matrix */
1700                 mult_m4_m4m4(duplimat, ob->obmat, psys->imat);
1701                 use_duplimat = TRUE;
1702         }
1703
1704 /* 2.6 setup strand rendering */
1705         if (part->ren_as == PART_DRAW_PATH && psys->pathcache) {
1706                 path_nbr=(int)pow(2.0, (double) part->ren_step);
1707
1708                 if (path_nbr) {
1709                         if (!ELEM(ma->material_type, MA_TYPE_HALO, MA_TYPE_WIRE)) {
1710                                 sd.orco = MEM_mallocN(3*sizeof(float)*(totpart+totchild), "particle orcos");
1711                                 set_object_orco(re, psys, sd.orco);
1712                         }
1713                 }
1714
1715                 if (part->draw & PART_DRAW_REN_ADAPT) {
1716                         sd.adapt = 1;
1717                         sd.adapt_pix = (float)part->adapt_pix;
1718                         sd.adapt_angle = cosf(DEG2RADF((float)part->adapt_angle));
1719                 }
1720
1721                 if (part->draw & PART_DRAW_REN_STRAND) {
1722                         strandbuf= RE_addStrandBuffer(obr, (totpart+totchild)*(path_nbr+1));
1723                         strandbuf->ma= ma;
1724                         strandbuf->lay= ob->lay;
1725                         copy_m4_m4(strandbuf->winmat, re->winmat);
1726                         strandbuf->winx= re->winx;
1727                         strandbuf->winy= re->winy;
1728                         strandbuf->maxdepth= 2;
1729                         strandbuf->adaptcos= cosf(DEG2RADF((float)part->adapt_angle));
1730                         strandbuf->overrideuv= sd.override_uv;
1731                         strandbuf->minwidth= ma->strand_min;
1732
1733                         if (ma->strand_widthfade == 0.0f)
1734                                 strandbuf->widthfade= 0.0f;
1735                         else if (ma->strand_widthfade >= 1.0f)
1736                                 strandbuf->widthfade= 2.0f - ma->strand_widthfade;
1737                         else
1738                                 strandbuf->widthfade= 1.0f/MAX2(ma->strand_widthfade, 1e-5f);
1739
1740                         if (part->flag & PART_HAIR_BSPLINE)
1741                                 strandbuf->flag |= R_STRAND_BSPLINE;
1742                         if (ma->mode & MA_STR_B_UNITS)
1743                                 strandbuf->flag |= R_STRAND_B_UNITS;
1744
1745                         svert= strandbuf->vert;
1746
1747                         if (re->r.mode & R_SPEED)
1748                                 do_surfacecache = TRUE;
1749                         else if ((re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT)) && (re->wrld.ao_gather_method == WO_AOGATHER_APPROX))
1750                                 if (ma->amb != 0.0f)
1751                                         do_surfacecache = TRUE;
1752
1753                         totface= psmd->dm->getNumTessFaces(psmd->dm);
1754                         origindex= psmd->dm->getTessFaceDataArray(psmd->dm, CD_ORIGINDEX);
1755                         for (a=0; a<totface; a++)
1756                                 strandbuf->totbound= MAX2(strandbuf->totbound, (origindex)? origindex[a]: a);
1757
1758                         strandbuf->totbound++;
1759                         strandbuf->bound= MEM_callocN(sizeof(StrandBound)*strandbuf->totbound, "StrandBound");
1760                         sbound= strandbuf->bound;
1761                         sbound->start= sbound->end= 0;
1762                 }
1763         }
1764
1765         if (sd.orco == 0) {
1766                 sd.orco = MEM_mallocN(3 * sizeof(float), "particle orco");
1767                 orco1 = 1;
1768         }
1769
1770         if (path_nbr == 0)
1771                 psys->lattice = psys_get_lattice(&sim);
1772
1773 /* 3. start creating renderable things */
1774         for (a=0, pa=pars; a<totpart+totchild; a++, pa++, seed++) {
1775                 random = rng_getFloat(rng);
1776                 /* setup per particle individual stuff */
1777                 if (a<totpart) {
1778                         if (pa->flag & PARS_UNEXIST) continue;
1779
1780                         pa_time=(cfra-pa->time)/pa->lifetime;
1781                         pa_birthtime = pa->time;
1782                         pa_dietime = pa->dietime;
1783
1784                         hasize = ma->hasize;
1785
1786                         /* XXX 'tpsys' is alwyas NULL, this code won't run! */
1787                         /* get orco */
1788                         if (tpsys && part->phystype == PART_PHYS_NO) {
1789                                 tpa = tpsys->particles + pa->num;
1790                                 psys_particle_on_emitter(psmd, tpart->from, tpa->num, pa->num_dmcache, tpa->fuv, tpa->foffset, co, nor, 0, 0, sd.orco, 0);
1791                         }
1792                         else
1793                                 psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, co, nor, 0, 0, sd.orco, 0);
1794
1795                         /* get uvco & mcol */
1796                         num= pa->num_dmcache;
1797
1798                         if (num == DMCACHE_NOTFOUND)
1799                                 if (pa->num < psmd->dm->getNumTessFaces(psmd->dm))
1800                                         num= pa->num;
1801
1802                         get_particle_uvco_mcol(part->from, psmd->dm, pa->fuv, num, &sd);
1803
1804                         pa_size = pa->size;
1805
1806                         r_tilt = 2.0f*(PSYS_FRAND(a) - 0.5f);
1807                         r_length = PSYS_FRAND(a+1);
1808
1809                         if (path_nbr) {
1810                                 cache = psys->pathcache[a];
1811                                 max_k = (int)cache->steps;
1812                         }
1813
1814                         if (totchild && (part->draw&PART_DRAW_PARENT)==0) continue;
1815                 }
1816                 else {
1817                         ChildParticle *cpa= psys->child+a-totpart;
1818
1819                         if (path_nbr) {
1820                                 cache = psys->childcache[a-totpart];
1821
1822                                 if (cache->steps < 0)
1823                                         continue;
1824
1825                                 max_k = (int)cache->steps;
1826                         }
1827                         
1828                         pa_time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
1829                         pa_size = psys_get_child_size(psys, cpa, cfra, &pa_time);
1830
1831                         r_tilt = 2.0f*(PSYS_FRAND(a + 21) - 0.5f);
1832                         r_length = PSYS_FRAND(a + 22);
1833
1834                         num = cpa->num;
1835
1836                         /* get orco */
1837                         if (part->childtype == PART_CHILD_FACES) {
1838                                 psys_particle_on_emitter(psmd,
1839                                         PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD,
1840                                         cpa->fuv, cpa->foffset, co, nor, 0, 0, sd.orco, 0);
1841                         }
1842                         else {
1843                                 ParticleData *par = psys->particles + cpa->parent;
1844                                 psys_particle_on_emitter(psmd, part->from,
1845                                         par->num, DMCACHE_ISCHILD, par->fuv,
1846                                         par->foffset, co, nor, 0, 0, sd.orco, 0);
1847                         }
1848
1849                         /* get uvco & mcol */
1850                         if (part->childtype==PART_CHILD_FACES) {
1851                                 get_particle_uvco_mcol(PART_FROM_FACE, psmd->dm, cpa->fuv, cpa->num, &sd);
1852                         }
1853                         else {
1854                                 ParticleData *parent = psys->particles + cpa->parent;
1855                                 num = parent->num_dmcache;
1856
1857                                 if (num == DMCACHE_NOTFOUND)
1858                                         if (parent->num < psmd->dm->getNumTessFaces(psmd->dm))
1859                                                 num = parent->num;
1860
1861                                 get_particle_uvco_mcol(part->from, psmd->dm, parent->fuv, num, &sd);
1862                         }
1863
1864                         do_simplify = psys_render_simplify_params(psys, cpa, simplify);
1865
1866                         if (strandbuf) {
1867                                 int orignum= (origindex)? origindex[cpa->num]: cpa->num;
1868
1869                                 if (orignum > sbound - strandbuf->bound) {
1870                                         sbound= strandbuf->bound + orignum;
1871                                         sbound->start= sbound->end= obr->totstrand;
1872                                 }
1873                         }
1874                 }
1875
1876                 /* TEXCO_PARTICLE */
1877                 pa_co[0] = pa_time;
1878                 pa_co[1] = 0.f;
1879                 pa_co[2] = 0.f;
1880
1881                 /* surface normal shading setup */
1882                 if (ma->mode_l & MA_STR_SURFDIFF) {
1883                         mul_m3_v3(nmat, nor);
1884                         sd.surfnor= nor;
1885                 }
1886                 else
1887                         sd.surfnor= NULL;
1888
1889                 /* strand render setup */
1890                 if (strandbuf) {
1891                         strand= RE_findOrAddStrand(obr, obr->totstrand++);
1892                         strand->buffer= strandbuf;
1893                         strand->vert= svert;
1894                         copy_v3_v3(strand->orco, sd.orco);
1895
1896                         if (do_simplify) {
1897                                 float *ssimplify= RE_strandren_get_simplify(obr, strand, 1);
1898                                 ssimplify[0]= simplify[0];
1899                                 ssimplify[1]= simplify[1];
1900                         }
1901
1902                         if (sd.surfnor) {
1903                                 float *snor= RE_strandren_get_surfnor(obr, strand, 1);
1904                                 copy_v3_v3(snor, sd.surfnor);
1905                         }
1906
1907                         if (do_surfacecache && num >= 0) {
1908                                 int *facenum= RE_strandren_get_face(obr, strand, 1);
1909                                 *facenum= num;
1910                         }
1911
1912                         if (sd.uvco) {
1913                                 for (i=0; i<sd.totuv; i++) {
1914                                         if (i != sd.override_uv) {
1915                                                 float *uv= RE_strandren_get_uv(obr, strand, i, NULL, 1);
1916
1917                                                 uv[0]= sd.uvco[2*i];
1918                                                 uv[1]= sd.uvco[2*i+1];
1919                                         }
1920                                 }
1921                         }
1922                         if (sd.mcol) {
1923                                 for (i=0; i<sd.totcol; i++) {
1924                                         MCol *mc= RE_strandren_get_mcol(obr, strand, i, NULL, 1);
1925                                         *mc = sd.mcol[i];
1926                                 }
1927                         }
1928
1929                         sbound->end++;
1930                 }
1931
1932                 /* strandco computation setup */
1933                 if (path_nbr) {
1934                         strandlen= 0.0f;
1935                         curlen= 0.0f;
1936                         for (k=1; k<=path_nbr; k++)
1937                                 if (k<=max_k)
1938                                         strandlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1939                 }
1940
1941                 if (path_nbr) {
1942                         /* render strands */
1943                         for (k=0; k<=path_nbr; k++) {
1944                                 float time;
1945
1946                                 if (k<=max_k) {
1947                                         copy_v3_v3(state.co, (cache+k)->co);
1948                                         copy_v3_v3(state.vel, (cache+k)->vel);
1949                                 }
1950                                 else
1951                                         continue;       
1952
1953                                 if (k > 0)
1954                                         curlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1955                                 time= curlen/strandlen;
1956
1957                                 copy_v3_v3(loc, state.co);
1958                                 mul_m4_v3(re->viewmat, loc);
1959
1960                                 if (strandbuf) {
1961                                         copy_v3_v3(svert->co, loc);
1962                                         svert->strandco= -1.0f + 2.0f*time;
1963                                         svert++;
1964                                         strand->totvert++;
1965                                 }
1966                                 else {
1967                                         sd.size = hasize;
1968
1969                                         if (k==1) {
1970                                                 sd.first = 1;
1971                                                 sd.time = 0.0f;
1972                                                 sub_v3_v3v3(loc0, loc1, loc);
1973                                                 add_v3_v3v3(loc0, loc1, loc0);
1974
1975                                                 particle_curve(re, obr, psmd->dm, ma, &sd, loc1, loc0, seed, pa_co);
1976                                         }
1977
1978                                         sd.first = 0;
1979                                         sd.time = time;
1980
1981                                         if (k)
1982                                                 particle_curve(re, obr, psmd->dm, ma, &sd, loc, loc1, seed, pa_co);
1983
1984                                         copy_v3_v3(loc1, loc);
1985                                 }
1986                         }
1987
1988                 }
1989                 else {
1990                         /* render normal particles */
1991                         if (part->trail_count > 1) {
1992                                 float length = part->path_end * (1.0f - part->randlength * r_length);
1993                                 int trail_count = part->trail_count * (1.0f - part->randlength * r_length);
1994                                 float ct = (part->draw & PART_ABS_PATH_TIME) ? cfra : pa_time;
1995                                 float dt = length / (trail_count ? (float)trail_count : 1.0f);
1996
1997                                 /* make sure we have pointcache in memory before getting particle on path */
1998                                 psys_make_temp_pointcache(ob, psys);
1999
2000                                 for (i=0; i < trail_count; i++, ct -= dt) {
2001                                         if (part->draw & PART_ABS_PATH_TIME) {
2002                                                 if (ct < pa_birthtime || ct > pa_dietime)
2003                                                         continue;
2004                                         }
2005                                         else if (ct < 0.0f || ct > 1.0f)
2006                                                 continue;
2007
2008                                         state.time = (part->draw & PART_ABS_PATH_TIME) ? -ct : ct;
2009                                         psys_get_particle_on_path(&sim, a, &state, 1);
2010
2011                                         if (psys->parent)
2012                                                 mul_m4_v3(psys->parent->obmat, state.co);
2013
2014                                         if (use_duplimat)
2015                                                 mul_m4_v4(duplimat, state.co);
2016
2017                                         if (part->ren_as == PART_DRAW_BB) {
2018                                                 bb.random = random;
2019                                                 bb.offset[0] = part->bb_offset[0];
2020                                                 bb.offset[1] = part->bb_offset[1];
2021                                                 bb.size[0] = part->bb_size[0] * pa_size;
2022                                                 if (part->bb_align==PART_BB_VEL) {
2023                                                         float pa_vel = len_v3(state.vel);
2024                                                         float head = part->bb_vel_head*pa_vel;
2025                                                         float tail = part->bb_vel_tail*pa_vel;
2026                                                         bb.size[1] = part->bb_size[1]*pa_size + head + tail;
2027                                                         /* use offset to adjust the particle center. this is relative to size, so need to divide! */
2028                                                         if (bb.size[1] > 0.0f)
2029                                                                 bb.offset[1] += (head-tail) / bb.size[1];
2030                                                 }
2031                                                 else
2032                                                         bb.size[1] = part->bb_size[1] * pa_size;
2033                                                 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2034                                                 bb.time = ct;
2035                                                 bb.num = a;
2036                                         }
2037
2038                                         pa_co[0] = (part->draw & PART_ABS_PATH_TIME) ? (ct-pa_birthtime)/(pa_dietime-pa_birthtime) : ct;
2039                                         pa_co[1] = (float)i/(float)(trail_count-1);
2040
2041                                         particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2042                                 }
2043                         }
2044                         else {
2045                                 state.time=cfra;
2046                                 if (psys_get_particle_state(&sim, a, &state, 0)==0)
2047                                         continue;
2048
2049                                 if (psys->parent)
2050                                         mul_m4_v3(psys->parent->obmat, state.co);
2051
2052                                 if (use_duplimat)
2053                                         mul_m4_v3(duplimat, state.co);
2054
2055                                 if (part->ren_as == PART_DRAW_BB) {
2056                                         bb.random = random;
2057                                         bb.offset[0] = part->bb_offset[0];
2058                                         bb.offset[1] = part->bb_offset[1];
2059                                         bb.size[0] = part->bb_size[0] * pa_size;
2060                                         if (part->bb_align==PART_BB_VEL) {
2061                                                 float pa_vel = len_v3(state.vel);
2062                                                 float head = part->bb_vel_head*pa_vel;
2063                                                 float tail = part->bb_vel_tail*pa_vel;
2064                                                 bb.size[1] = part->bb_size[1]*pa_size + head + tail;
2065                                                 /* use offset to adjust the particle center. this is relative to size, so need to divide! */
2066                                                 if (bb.size[1] > 0.0f)
2067                                                         bb.offset[1] += (head-tail) / bb.size[1];
2068                                         }
2069                                         else
2070                                                 bb.size[1] = part->bb_size[1] * pa_size;
2071                                         bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2072                                         bb.time = pa_time;
2073                                         bb.num = a;
2074                                         bb.lifetime = pa_dietime-pa_birthtime;
2075                                 }
2076
2077                                 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2078                         }
2079                 }
2080
2081                 if (orco1==0)
2082                         sd.orco+=3;
2083
2084                 if (re->test_break(re->tbh))
2085                         break;
2086         }
2087
2088         if (do_surfacecache)
2089                 strandbuf->surface= cache_strand_surface(re, obr, psmd->dm, mat, timeoffset);
2090
2091 /* 4. clean up */
2092 #if 0 // XXX old animation system
2093         if (ma) do_mat_ipo(re->scene, ma);
2094 #endif // XXX old animation system
2095         
2096         if (orco1)
2097                 MEM_freeN(sd.orco);
2098
2099         if (sd.uvco)
2100                 MEM_freeN(sd.uvco);
2101         
2102         if (sd.mcol)
2103                 MEM_freeN(sd.mcol);
2104
2105         if (uv_name)
2106                 MEM_freeN(uv_name);
2107
2108         if (states)
2109                 MEM_freeN(states);
2110         
2111         rng_free(rng);
2112
2113         psys->flag &= ~PSYS_DRAWING;
2114
2115         if (psys->lattice) {
2116                 end_latt_deform(psys->lattice);
2117                 psys->lattice= NULL;
2118         }
2119
2120         if (path_nbr && (ma->mode_l & MA_TANGENT_STR)==0)
2121                 calc_vertexnormals(re, obr, 0, 0);
2122
2123         return 1;
2124 }
2125
2126 /* ------------------------------------------------------------------------- */
2127 /* Halo's                                                                                                                                */
2128 /* ------------------------------------------------------------------------- */
2129
2130 static void make_render_halos(Render *re, ObjectRen *obr, Mesh *UNUSED(me), int totvert, MVert *mvert, Material *ma, float *orco)
2131 {
2132         Object *ob= obr->ob;
2133         HaloRen *har;
2134         float xn, yn, zn, nor[3], view[3];
2135         float vec[3], hasize, mat[4][4], imat[3][3];
2136         int a, ok, seed= ma->seed1;
2137
2138         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2139         copy_m3_m4(imat, ob->imat);
2140
2141         re->flag |= R_HALO;
2142
2143         for (a=0; a<totvert; a++, mvert++) {
2144                 ok= 1;
2145
2146                 if (ok) {
2147                         hasize= ma->hasize;
2148
2149                         copy_v3_v3(vec, mvert->co);
2150                         mul_m4_v3(mat, vec);
2151
2152                         if (ma->mode & MA_HALOPUNO) {
2153                                 xn= mvert->no[0];
2154                                 yn= mvert->no[1];
2155                                 zn= mvert->no[2];
2156
2157                                 /* transpose ! */
2158                                 nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2159                                 nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2160                                 nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2161                                 normalize_v3(nor);
2162
2163                                 copy_v3_v3(view, vec);
2164                                 normalize_v3(view);
2165
2166                                 zn = dot_v3v3(nor, view);
2167                                 if (zn>=0.0f) hasize= 0.0f;
2168                                 else hasize*= zn*zn*zn*zn;
2169                         }
2170
2171                         if (orco) har= RE_inithalo(re, obr, ma, vec, NULL, orco, hasize, 0.0, seed);
2172                         else har= RE_inithalo(re, obr, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
2173                         if (har) har->lay= ob->lay;
2174                 }
2175                 if (orco) orco+= 3;
2176                 seed++;
2177         }
2178 }
2179
2180 static int verghalo(const void *a1, const void *a2)
2181 {
2182         const HaloRen *har1= *(const HaloRen**)a1;
2183         const HaloRen *har2= *(const HaloRen**)a2;
2184         
2185         if (har1->zs < har2->zs) return 1;
2186         else if (har1->zs > har2->zs) return -1;
2187         return 0;
2188 }
2189
2190 static void sort_halos(Render *re, int totsort)
2191 {
2192         ObjectRen *obr;
2193         HaloRen *har= NULL, **haso;
2194         int a;
2195
2196         if (re->tothalo==0) return;
2197
2198         re->sortedhalos= MEM_callocN(sizeof(HaloRen*)*re->tothalo, "sorthalos");
2199         haso= re->sortedhalos;
2200
2201         for (obr=re->objecttable.first; obr; obr=obr->next) {
2202                 for (a=0; a<obr->tothalo; a++) {
2203                         if ((a & 255)==0) har= obr->bloha[a>>8];
2204                         else har++;
2205
2206                         *(haso++)= har;
2207                 }
2208         }
2209
2210         qsort(re->sortedhalos, totsort, sizeof(HaloRen*), verghalo);
2211 }
2212
2213 /* ------------------------------------------------------------------------- */
2214 /* Displacement Mapping                                                                                                          */
2215 /* ------------------------------------------------------------------------- */
2216
2217 static short test_for_displace(Render *re, Object *ob)
2218 {
2219         /* return 1 when this object uses displacement textures. */
2220         Material *ma;
2221         int i;
2222         
2223         for (i=1; i<=ob->totcol; i++) {
2224                 ma=give_render_material(re, ob, i);
2225                 /* ma->mapto is ORed total of all mapto channels */
2226                 if (ma && (ma->mapto & MAP_DISPLACE)) return 1;
2227         }
2228         return 0;
2229 }
2230
2231 static void displace_render_vert(Render *re, ObjectRen *obr, ShadeInput *shi, VertRen *vr, int vindex, float *scale, float mat[][4], float imat[][3])
2232 {
2233         MTFace *tface;
2234         short texco= shi->mat->texco;
2235         float sample=0, displace[3];
2236         char *name;
2237         int i;
2238
2239         /* shi->co is current render coord, just make sure at least some vector is here */
2240         copy_v3_v3(shi->co, vr->co);
2241         /* vertex normal is used for textures type 'col' and 'var' */
2242         copy_v3_v3(shi->vn, vr->n);
2243
2244         if (mat)
2245                 mul_m4_v3(mat, shi->co);
2246
2247         if (imat) {
2248                 shi->vn[0] = dot_v3v3(imat[0], vr->n);
2249                 shi->vn[1] = dot_v3v3(imat[1], vr->n);
2250                 shi->vn[2] = dot_v3v3(imat[2], vr->n);
2251         }
2252
2253         if (texco & TEXCO_UV) {
2254                 shi->totuv= 0;
2255                 shi->actuv= obr->actmtface;
2256
2257                 for (i=0; (tface=RE_vlakren_get_tface(obr, shi->vlr, i, &name, 0)); i++) {
2258                         ShadeInputUV *suv= &shi->uv[i];
2259
2260                         /* shi.uv needs scale correction from tface uv */
2261                         suv->uv[0]= 2*tface->uv[vindex][0]-1.0f;
2262                         suv->uv[1]= 2*tface->uv[vindex][1]-1.0f;
2263                         suv->uv[2]= 0.0f;
2264                         suv->name= name;
2265                         shi->totuv++;
2266                 }
2267         }
2268
2269         /* set all rendercoords, 'texco' is an ORed value for all textures needed */
2270         if ((texco & TEXCO_ORCO) && (vr->orco)) {
2271                 copy_v3_v3(shi->lo, vr->orco);
2272         }
2273         if (texco & TEXCO_STICKY) {
2274                 float *sticky= RE_vertren_get_sticky(obr, vr, 0);
2275                 if (sticky) {
2276                         shi->sticky[0]= sticky[0];
2277                         shi->sticky[1]= sticky[1];
2278                         shi->sticky[2]= 0.0f;
2279                 }
2280         }
2281         if (texco & TEXCO_GLOB) {
2282                 copy_v3_v3(shi->gl, shi->co);
2283                 mul_m4_v3(re->viewinv, shi->gl);
2284         }
2285         if (texco & TEXCO_NORM) {
2286                 copy_v3_v3(shi->orn, shi->vn);
2287         }
2288         if (texco & TEXCO_REFL) {
2289                 /* not (yet?) */
2290         }
2291         if (texco & TEXCO_STRESS) {
2292                 float *s= RE_vertren_get_stress(obr, vr, 0);
2293
2294                 if (s) {
2295                         shi->stress= *s;
2296                         if (shi->stress<1.0f) shi->stress-= 1.0f;
2297                         else shi->stress= (shi->stress-1.0f)/shi->stress;
2298                 }
2299                 else
2300                         shi->stress= 0.0f;
2301         }
2302
2303         shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
2304         
2305         do_material_tex(shi, re);
2306         
2307         //printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2], 
2308         //vr->co[0], vr->co[1], vr->co[2]);
2309
2310         displace[0]= shi->displace[0] * scale[0];
2311         displace[1]= shi->displace[1] * scale[1];
2312         displace[2]= shi->displace[2] * scale[2];
2313         
2314         if (mat)
2315                 mul_m3_v3(imat, displace);
2316
2317         /* 0.5 could become button once?  */
2318         vr->co[0] += displace[0]; 
2319         vr->co[1] += displace[1];
2320         vr->co[2] += displace[2];
2321         
2322         //printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]); 
2323         
2324         /* we just don't do this vertex again, bad luck for other face using same vertex with
2325          * different material... */
2326         vr->flag |= 1;
2327         
2328         /* Pass sample back so displace_face can decide which way to split the quad */
2329         sample  = shi->displace[0]*shi->displace[0];
2330         sample += shi->displace[1]*shi->displace[1];
2331         sample += shi->displace[2]*shi->displace[2];
2332         
2333         vr->accum=sample; 
2334         /* Should be sqrt(sample), but I'm only looking for "bigger".  Save the cycles. */
2335         return;
2336 }
2337
2338 static void displace_render_face(Render *re, ObjectRen *obr, VlakRen *vlr, float *scale, float mat[][4], float imat[][3])
2339 {
2340         ShadeInput shi;
2341
2342         /* Warning, This is not that nice, and possibly a bit slow,
2343          * however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
2344         memset(&shi, 0, sizeof(ShadeInput)); 
2345         /* end warning! - Campbell */
2346         
2347         /* set up shadeinput struct for multitex() */
2348         
2349         /* memset above means we don't need this */
2350         /*shi.osatex= 0;*/              /* signal not to use dx[] and dy[] texture AA vectors */
2351
2352         shi.obr= obr;
2353         shi.vlr= vlr;           /* current render face */
2354         shi.mat= vlr->mat;              /* current input material */
2355         shi.thread= 0;
2356         
2357         /* TODO, assign these, displacement with new bumpmap is skipped without - campbell */
2358 #if 0
2359         /* order is not known ? */
2360         shi.v1= vlr->v1;
2361         shi.v2= vlr->v2;
2362         shi.v3= vlr->v3;
2363 #endif
2364
2365         /* Displace the verts, flag is set when done */
2366         if (!vlr->v1->flag)
2367                 displace_render_vert(re, obr, &shi, vlr->v1, 0,  scale, mat, imat);
2368         
2369         if (!vlr->v2->flag)
2370                 displace_render_vert(re, obr, &shi, vlr->v2, 1, scale, mat, imat);
2371
2372         if (!vlr->v3->flag)
2373                 displace_render_vert(re, obr, &shi, vlr->v3, 2, scale, mat, imat);
2374
2375         if (vlr->v4) {
2376                 if (!vlr->v4->flag)
2377                         displace_render_vert(re, obr, &shi, vlr->v4, 3, scale, mat, imat);
2378
2379                 /*      closest in displace value.  This will help smooth edges.   */ 
2380                 if ( fabs(vlr->v1->accum - vlr->v3->accum) > fabs(vlr->v2->accum - vlr->v4->accum)) 
2381                         vlr->flag |= R_DIVIDE_24;
2382                 else vlr->flag &= ~R_DIVIDE_24;
2383         }
2384         
2385         /* Recalculate the face normal  - if flipped before, flip now */
2386         if (vlr->v4) {
2387                 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2388         }       
2389         else {
2390                 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2391         }
2392 }
2393
2394 static void do_displacement(Render *re, ObjectRen *obr, float mat[][4], float imat[][3])
2395 {
2396         VertRen *vr;
2397         VlakRen *vlr;
2398 //      float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
2399         float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
2400         int i; //, texflag=0;
2401         Object *obt;
2402                 
2403         /* Object Size with parenting */
2404         obt=obr->ob;
2405         while (obt) {
2406                 mul_v3_v3v3(temp, obt->size, obt->dscale);
2407                 scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
2408                 obt=obt->parent;
2409         }
2410         
2411         /* Clear all flags */
2412         for (i=0; i<obr->totvert; i++) {
2413                 vr= RE_findOrAddVert(obr, i);
2414                 vr->flag= 0;
2415         }
2416
2417         for (i=0; i<obr->totvlak; i++) {
2418                 vlr=RE_findOrAddVlak(obr, i);
2419                 displace_render_face(re, obr, vlr, scale, mat, imat);
2420         }
2421         
2422         /* Recalc vertex normals */
2423         calc_vertexnormals(re, obr, 0, 0);
2424 }
2425
2426 /* ------------------------------------------------------------------------- */
2427 /* Metaball                                                                                                                              */
2428 /* ------------------------------------------------------------------------- */
2429
2430 static void init_render_mball(Render *re, ObjectRen *obr)
2431 {
2432         Object *ob= obr->ob;
2433         DispList *dl;
2434         VertRen *ver;
2435         VlakRen *vlr, *vlr1;
2436         Material *ma;
2437         float *data, *nors, *orco=NULL, mat[4][4], imat[3][3], xn, yn, zn;
2438         int a, need_orco, vlakindex, *index, negative_scale;
2439         ListBase dispbase= {NULL, NULL};
2440
2441         if (ob!=BKE_mball_basis_find(re->scene, ob))
2442                 return;
2443
2444         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2445         invert_m4_m4(ob->imat, mat);
2446         copy_m3_m4(imat, ob->imat);
2447         negative_scale = is_negative_m4(mat);
2448
2449         ma= give_render_material(re, ob, 1);
2450
2451         need_orco= 0;
2452         if (ma->texco & TEXCO_ORCO) {
2453                 need_orco= 1;
2454         }
2455
2456         BKE_displist_make_mball_forRender(re->scene, ob, &dispbase);
2457         dl= dispbase.first;
2458         if (dl==0) return;
2459
2460         data= dl->verts;
2461         nors= dl->nors;
2462         if (need_orco) {
2463                 orco= get_object_orco(re, ob);
2464
2465                 if (!orco) {
2466                         /* orco hasn't been found in cache - create new one and add to cache */
2467                         orco= BKE_mball_make_orco(ob, &dispbase);
2468                         set_object_orco(re, ob, orco);
2469                 }
2470         }
2471
2472         for (a=0; a<dl->nr; a++, data+=3, nors+=3) {
2473
2474                 ver= RE_findOrAddVert(obr, obr->totvert++);
2475                 copy_v3_v3(ver->co, data);
2476                 mul_m4_v3(mat, ver->co);
2477
2478                 /* render normals are inverted */
2479                 xn= -nors[0];
2480                 yn= -nors[1];
2481                 zn= -nors[2];
2482
2483                 /* transpose ! */
2484                 ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2485                 ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2486                 ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2487                 normalize_v3(ver->n);
2488                 //if (ob->transflag & OB_NEG_SCALE) negate_v3(ver->n);
2489                 
2490                 if (need_orco) {
2491                         ver->orco= orco;
2492                         orco+=3;
2493                 }
2494         }
2495
2496         index= dl->index;
2497         for (a=0; a<dl->parts; a++, index+=4) {
2498
2499                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2500                 vlr->v1= RE_findOrAddVert(obr, index[0]);
2501                 vlr->v2= RE_findOrAddVert(obr, index[1]);
2502                 vlr->v3= RE_findOrAddVert(obr, index[2]);
2503                 vlr->v4= 0;
2504
2505                 if (negative_scale)
2506                         normal_tri_v3(vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co);
2507                 else
2508                         normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2509
2510                 vlr->mat= ma;
2511                 vlr->flag= ME_SMOOTH;
2512                 vlr->ec= 0;
2513
2514                 /* mball -too bad- always has triangles, because quads can be non-planar */
2515                 if (index[3] && index[3]!=index[2]) {
2516                         vlr1= RE_findOrAddVlak(obr, obr->totvlak++);
2517                         vlakindex= vlr1->index;
2518                         *vlr1= *vlr;
2519                         vlr1->index= vlakindex;
2520                         vlr1->v2= vlr1->v3;
2521                         vlr1->v3= RE_findOrAddVert(obr, index[3]);
2522                         if (negative_scale)
2523                                 normal_tri_v3(vlr1->n, vlr1->v1->co, vlr1->v2->co, vlr1->v3->co);
2524                         else
2525                                 normal_tri_v3(vlr1->n, vlr1->v3->co, vlr1->v2->co, vlr1->v1->co);
2526                 }
2527         }
2528
2529         /* enforce display lists remade */
2530         BKE_displist_free(&dispbase);
2531 }
2532
2533 /* ------------------------------------------------------------------------- */
2534 /* Surfaces and Curves                                                                                                           */
2535 /* ------------------------------------------------------------------------- */
2536
2537 /* returns amount of vertices added for orco */
2538 static int dl_surf_to_renderdata(ObjectRen *obr, DispList *dl, Material **matar, float *orco, float mat[4][4])
2539 {
2540         VertRen *v1, *v2, *v3, *v4, *ver;
2541         VlakRen *vlr, *vlr1, *vlr2, *vlr3;
2542         float *data, n1[3];
2543         int u, v, orcoret= 0;
2544         int p1, p2, p3, p4, a;
2545         int sizeu, nsizeu, sizev, nsizev;
2546         int startvert, startvlak;
2547         
2548         startvert= obr->totvert;
2549         nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr; 
2550         
2551         data= dl->verts;
2552         for (u = 0; u < sizeu; u++) {
2553                 v1 = RE_findOrAddVert(obr, obr->totvert++); /* save this for possible V wrapping */
2554                 copy_v3_v3(v1->co, data); data += 3;
2555                 if (orco) {
2556                         v1->orco= orco; orco+= 3; orcoret++;
2557                 }       
2558                 mul_m4_v3(mat, v1->co);
2559                 
2560                 for (v = 1; v < sizev; v++) {
2561                         ver= RE_findOrAddVert(obr, obr->totvert++);
2562                         copy_v3_v3(ver->co, data); data += 3;
2563                         if (orco) {
2564                                 ver->orco= orco; orco+= 3; orcoret++;
2565                         }       
2566                         mul_m4_v3(mat, ver->co);
2567                 }
2568                 /* if V-cyclic, add extra vertices at end of the row */
2569                 if (dl->flag & DL_CYCL_U) {
2570                         ver= RE_findOrAddVert(obr, obr->totvert++);
2571                         copy_v3_v3(ver->co, v1->co);
2572                         if (orco) {
2573                                 ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
2574                         }
2575                 }       
2576         }       
2577         
2578         /* Done before next loop to get corner vert */
2579         if (dl->flag & DL_CYCL_U) nsizev++;
2580         if (dl->flag & DL_CYCL_V) nsizeu++;
2581         
2582         /* if U cyclic, add extra row at end of column */
2583         if (dl->flag & DL_CYCL_V) {
2584                 for (v = 0; v < nsizev; v++) {
2585                         v1= RE_findOrAddVert(obr, startvert + v);
2586                         ver= RE_findOrAddVert(obr, obr->totvert++);
2587                         copy_v3_v3(ver->co, v1->co);
2588                         if (orco) {
2589                                 ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
2590                         }
2591                 }
2592         }
2593         
2594         sizeu = nsizeu;
2595         sizev = nsizev;
2596         
2597         startvlak= obr->totvlak;
2598         
2599         for (u = 0; u < sizeu - 1; u++) {
2600                 p1 = startvert + u * sizev; /* walk through face list */
2601                 p2 = p1 + 1;
2602                 p3 = p2 + sizev;
2603                 p4 = p3 - 1;
2604                 
2605                 for (v = 0; v < sizev - 1; v++) {
2606                         v1= RE_findOrAddVert(obr, p1);
2607                         v2= RE_findOrAddVert(obr, p2);
2608                         v3= RE_findOrAddVert(obr, p3);
2609                         v4= RE_findOrAddVert(obr, p4);
2610                         
2611                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2612                         vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
2613                         
2614                         normal_quad_v3(n1, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2615                         
2616                         copy_v3_v3(vlr->n, n1);
2617                         
2618                         vlr->mat= matar[ dl->col];
2619                         vlr->ec= ME_V1V2+ME_V2V3;
2620                         vlr->flag= dl->rt;
2621                         
2622                         add_v3_v3(v1->n, n1);
2623                         add_v3_v3(v2->n, n1);
2624                         add_v3_v3(v3->n, n1);
2625                         add_v3_v3(v4->n, n1);
2626                         
2627                         p1++; p2++; p3++; p4++;
2628                 }
2629         }       
2630         /* fix normals for U resp. V cyclic faces */
2631         sizeu--; sizev--;  /* dec size for face array */
2632         if (dl->flag & DL_CYCL_V) {
2633                 
2634                 for (v = 0; v < sizev; v++) {
2635                         /* optimize! :*/
2636                         vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, v));
2637                         vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, v));
2638                         add_v3_v3(vlr1->v1->n, vlr->n);
2639                         add_v3_v3(vlr1->v2->n, vlr->n);
2640                         add_v3_v3(vlr->v3->n, vlr1->n);
2641                         add_v3_v3(vlr->v4->n, vlr1->n);
2642                 }
2643         }
2644         if (dl->flag & DL_CYCL_U) {
2645                 
2646                 for (u = 0; u < sizeu; u++) {
2647                         /* optimize! :*/
2648                         vlr= RE_findOrAddVlak(obr, UVTOINDEX(u, 0));
2649                         vlr1= RE_findOrAddVlak(obr, UVTOINDEX(u, sizev-1));
2650                         add_v3_v3(vlr1->v2->n, vlr->n);
2651                         add_v3_v3(vlr1->v3->n, vlr->n);
2652                         add_v3_v3(vlr->v1->n, vlr1->n);
2653                         add_v3_v3(vlr->v4->n, vlr1->n);
2654                 }
2655         }
2656
2657         /* last vertex is an extra case: 
2658          *
2659          *     ^     ()----()----()----()
2660          *     |     |     |     ||     |
2661          *     u     |     |(0,n)||(0,0)|
2662          *     |     |     ||     |
2663          *     ()====()====[]====()
2664          *     |     |     ||     |
2665          *     |     |(m,n)||(m,0)|
2666          *     |     |     ||     |
2667          *     ()----()----()----()
2668          *     v ->
2669          *  
2670          *  vertex [] is no longer shared, therefore distribute
2671          *  normals of the surrounding faces to all of the duplicates of []
2672          */
2673
2674         if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U)) {
2675                 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m, n) */
2676                 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, 0));  /* (0, 0) */
2677                 add_v3_v3v3(n1, vlr->n, vlr1->n);
2678                 vlr2= RE_findOrAddVlak(obr, UVTOINDEX(0, sizev-1)); /* (0, n) */
2679                 add_v3_v3(n1, vlr2->n);
2680                 vlr3= RE_findOrAddVlak(obr, UVTOINDEX(sizeu-1, 0)); /* (m, 0) */
2681                 add_v3_v3(n1, vlr3->n);
2682                 copy_v3_v3(vlr->v3->n, n1);
2683                 copy_v3_v3(vlr1->v1->n, n1);
2684                 copy_v3_v3(vlr2->v2->n, n1);
2685                 copy_v3_v3(vlr3->v4->n, n1);
2686         }
2687         for (a = startvert; a < obr->totvert; a++) {
2688                 ver= RE_findOrAddVert(obr, a);
2689                 normalize_v3(ver->n);
2690         }
2691         
2692         
2693         return orcoret;
2694 }
2695
2696 static void init_render_dm(DerivedMesh *dm, Render *re, ObjectRen *obr,
2697         int timeoffset, float *orco, float mat[4][4])
2698 {
2699         Object *ob= obr->ob;
2700         int a, end, totvert, vertofs;
2701         short mat_iter;
2702         VertRen *ver;
2703         VlakRen *vlr;
2704         MVert *mvert = NULL;
2705         MFace *mface;
2706         Material *ma;
2707         /* Curve *cu= ELEM(ob->type, OB_FONT, OB_CURVE) ? ob->data : NULL; */
2708
2709         mvert= dm->getVertArray(dm);
2710         totvert= dm->getNumVerts(dm);
2711
2712         for (a=0; a<totvert; a++, mvert++) {
2713                 ver= RE_findOrAddVert(obr, obr->totvert++);
2714                 copy_v3_v3(ver->co, mvert->co);
2715                 mul_m4_v3(mat, ver->co);
2716
2717                 if (orco) {
2718                         ver->orco= orco;
2719                         orco+=3;
2720                 }
2721         }
2722
2723         if (!timeoffset) {
2724                 /* store customdata names, because DerivedMesh is freed */
2725                 RE_set_customdata_names(obr, &dm->faceData);
2726
2727                 /* still to do for keys: the correct local texture coordinate */
2728
2729                 /* faces in order of color blocks */
2730                 vertofs= obr->totvert - totvert;
2731                 for (mat_iter= 0; (mat_iter < ob->totcol || (mat_iter==0 && ob->totcol==0)); mat_iter++) {
2732
2733                         ma= give_render_material(re, ob, mat_iter+1);
2734                         end= dm->getNumTessFaces(dm);
2735                         mface= dm->getTessFaceArray(dm);
2736
2737                         for (a=0; a<end; a++, mface++) {
2738                                 int v1, v2, v3, v4, flag;
2739
2740                                 if (mface->mat_nr == mat_iter) {
2741                                         float len;
2742
2743                                         v1= mface->v1;
2744                                         v2= mface->v2;
2745                                         v3= mface->v3;
2746                                         v4= mface->v4;
2747                                         flag= mface->flag & ME_SMOOTH;
2748
2749                                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2750                                         vlr->v1= RE_findOrAddVert(obr, vertofs+v1);
2751                                         vlr->v2= RE_findOrAddVert(obr, vertofs+v2);
2752                                         vlr->v3= RE_findOrAddVert(obr, vertofs+v3);
2753                                         if (v4) vlr->v4= RE_findOrAddVert(obr, vertofs+v4);
2754                                         else vlr->v4= 0;
2755
2756                                         /* render normals are inverted in render */
2757                                         if (vlr->v4)
2758                                                 len= normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2759                                         else
2760                                                 len= normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2761
2762                                         vlr->mat= ma;
2763                                         vlr->flag= flag;
2764                                         vlr->ec= 0; /* mesh edges rendered separately */
2765
2766                                         if (len==0) obr->totvlak--;
2767                                         else {
2768                                                 CustomDataLayer *layer;
2769                                                 MTFace *mtface, *mtf;
2770                                                 MCol *mcol, *mc;
2771                                                 int index, mtfn= 0, mcn= 0;
2772                                                 char *name;
2773
2774                                                 for (index=0; index<dm->faceData.totlayer; index++) {
2775                                                         layer= &dm->faceData.layers[index];
2776                                                         name= layer->name;
2777
2778                                                         if (layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
2779                                                                 mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
2780                                                                 mtface= (MTFace*)layer->data;
2781                                                                 *mtf= mtface[a];
2782                                                         }
2783                                                         else if (layer->type == CD_MCOL && mcn < MAX_MCOL) {
2784                                                                 mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
2785                                                                 mcol= (MCol*)layer->data;
2786                                                                 memcpy(mc, &mcol[a*4], sizeof(MCol)*4);
2787                                                         }
2788                                                 }
2789                                         }
2790                                 }
2791                         }
2792                 }
2793
2794                 /* Normals */
2795                 calc_vertexnormals(re, obr, 0, 0);
2796         }
2797
2798 }
2799
2800 static void init_render_surf(Render *re, ObjectRen *obr, int timeoffset)
2801 {
2802         Object *ob= obr->ob;
2803         Nurb *nu=0;
2804         Curve *cu;
2805         ListBase displist= {NULL, NULL};
2806         DispList *dl;
2807         Material **matar;
2808         float *orco=NULL, mat[4][4];
2809         int a, totmat, need_orco=0;
2810         DerivedMesh *dm= NULL;
2811
2812         cu= ob->data;
2813         nu= cu->nurb.first;
2814         if (nu==0) return;
2815
2816         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2817         invert_m4_m4(ob->imat, mat);
2818
2819         /* material array */
2820         totmat= ob->totcol+1;
2821         matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2822
2823         for (a=0; a<totmat; a++) {
2824                 matar[a]= give_render_material(re, ob, a+1);
2825
2826                 if (matar[a] && matar[a]->texco & TEXCO_ORCO)
2827                         need_orco= 1;
2828         }
2829
2830         if (ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
2831
2832         BKE_displist_make_surf(re->scene, ob, &displist, &dm, 1, 0);
2833
2834         if (dm) {
2835                 if (need_orco) {
2836                         orco= BKE_displist_make_orco(re->scene, ob, dm, 1);
2837                         if (orco) {
2838                                 set_object_orco(re, ob, orco);
2839                         }
2840                 }
2841
2842                 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2843                 dm->release(dm);
2844         }
2845         else {
2846                 if (need_orco) {
2847                         orco= get_object_orco(re, ob);
2848                 }
2849
2850                 /* walk along displaylist and create rendervertices/-faces */
2851                 for (dl=displist.first; dl; dl=dl->next) {
2852                         /* watch out: u ^= y, v ^= x !! */
2853                         if (dl->type==DL_SURF)
2854                                 orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
2855                 }
2856         }
2857
2858         BKE_displist_free(&displist);
2859
2860         MEM_freeN(matar);
2861 }
2862
2863 static void init_render_curve(Render *re, ObjectRen *obr, int timeoffset)
2864 {
2865         Object *ob= obr->ob;
2866         Curve *cu;
2867         VertRen *ver;
2868         VlakRen *vlr;
2869         DispList *dl;
2870         DerivedMesh *dm = NULL;
2871         ListBase disp={NULL, NULL};
2872         Material **matar;
2873         float *data, *fp, *orco=NULL;
2874         float n[3], mat[4][4];
2875         int nr, startvert, a, b;
2876         int need_orco=0, totmat;
2877
2878         cu= ob->data;
2879         if (ob->type==OB_FONT && cu->str==NULL) return;
2880         else if (ob->type==OB_CURVE && cu->nurb.first==NULL) return;
2881
2882         BKE_displist_make_curveTypes_forRender(re->scene, ob, &disp, &dm, 0);
2883         dl= disp.first;
2884         if (dl==NULL) return;
2885         
2886         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2887         invert_m4_m4(ob->imat, mat);
2888
2889         /* material array */
2890         totmat= ob->totcol+1;
2891         matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2892
2893         for (a=0; a<totmat; a++) {
2894                 matar[a]= give_render_material(re, ob, a+1);
2895
2896                 if (matar[a] && matar[a]->texco & TEXCO_ORCO)
2897                         need_orco= 1;
2898         }
2899
2900         if (dm) {
2901                 if (need_orco) {
2902                         orco= BKE_displist_make_orco(re->scene, ob, dm, 1);
2903                         if (orco) {
2904                                 set_object_orco(re, ob, orco);
2905                         }
2906                 }
2907
2908                 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2909                 dm->release(dm);
2910         }
2911         else {
2912                 if (need_orco) {
2913                   orco= get_object_orco(re, ob);
2914                 }
2915
2916                 while (dl) {
2917                         if (dl->col > ob->totcol) {
2918                                 /* pass */
2919                         }
2920                         else if (dl->type==DL_INDEX3) {
2921                                 int *index;
2922
2923                                 startvert= obr->totvert;
2924                                 data= dl->verts;
2925
2926                                 for (a=0; a<dl->nr; a++, data+=3) {
2927                                         ver= RE_findOrAddVert(obr, obr->totvert++);
2928                                         copy_v3_v3(ver->co, data);
2929