2 * ***** BEGIN GPL LICENSE BLOCK *****
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
19 * All rights reserved.
21 * The Original Code is: some of this file.
23 * ***** END GPL LICENSE BLOCK *****
26 /** \file blender/blenlib/intern/math_rotation.c
35 /******************************** Quaternions ********************************/
37 /* used to test is a quat is not normalized (only used for debug prints) */
39 # define QUAT_EPSILON 0.0001
42 /* convenience, avoids setting Y axis everywhere */
43 void unit_axis_angle(float axis[3], float *angle)
51 void unit_qt(float q[4])
54 q[1] = q[2] = q[3] = 0.0f;
57 void copy_qt_qt(float q1[4], const float q2[4])
65 bool is_zero_qt(const float q[4])
67 return (q[0] == 0 && q[1] == 0 && q[2] == 0 && q[3] == 0);
70 void mul_qt_qtqt(float q[4], const float q1[4], const float q2[4])
74 t0 = q1[0] * q2[0] - q1[1] * q2[1] - q1[2] * q2[2] - q1[3] * q2[3];
75 t1 = q1[0] * q2[1] + q1[1] * q2[0] + q1[2] * q2[3] - q1[3] * q2[2];
76 t2 = q1[0] * q2[2] + q1[2] * q2[0] + q1[3] * q2[1] - q1[1] * q2[3];
77 q[3] = q1[0] * q2[3] + q1[3] * q2[0] + q1[1] * q2[2] - q1[2] * q2[1];
85 * Assumes a unit quaternion?
87 * \note: multiplying by 3x3 matrix is ~25% faster.
89 * in fact not, but you may want to use a unit quat, read on...
91 * Shortcut for 'q v q*' when \a v is actually a quaternion.
92 * This removes the need for converting a vector to a quaternion,
93 * calculating q's conjugate and converting back to a vector.
94 * It also happens to be faster (17+,24* vs * 24+,32*).
95 * If \a q is not a unit quaternion, then \a v will be both rotated by
96 * the same amount as if q was a unit quaternion, and scaled by the square of
99 * For people used to python mathutils, its like:
100 * def mul_qt_v3(q, v): (q * Quaternion((0.0, v[0], v[1], v[2])) * q.conjugated())[1:]
102 void mul_qt_v3(const float q[4], float v[3])
106 t0 = -q[1] * v[0] - q[2] * v[1] - q[3] * v[2];
107 t1 = q[0] * v[0] + q[2] * v[2] - q[3] * v[1];
108 t2 = q[0] * v[1] + q[3] * v[0] - q[1] * v[2];
109 v[2] = q[0] * v[2] + q[1] * v[1] - q[2] * v[0];
113 t1 = t0 * -q[1] + v[0] * q[0] - v[1] * q[3] + v[2] * q[2];
114 t2 = t0 * -q[2] + v[1] * q[0] - v[2] * q[1] + v[0] * q[3];
115 v[2] = t0 * -q[3] + v[2] * q[0] - v[0] * q[2] + v[1] * q[1];
120 void conjugate_qt_qt(float q1[4], const float q2[4])
128 void conjugate_qt(float q[4])
135 float dot_qtqt(const float q1[4], const float q2[4])
137 return q1[0] * q2[0] + q1[1] * q2[1] + q1[2] * q2[2] + q1[3] * q2[3];
140 void invert_qt(float q[4])
142 float f = dot_qtqt(q, q);
148 mul_qt_fl(q, 1.0f / f);
151 void invert_qt_qt(float q1[4], const float q2[4])
158 void mul_qt_fl(float q[4], const float f)
166 void sub_qt_qtqt(float q[4], const float q1[4], const float q2[4])
175 mul_qt_qtqt(q, q1, nq2);
178 /* angular mult factor */
179 void mul_fac_qt_fl(float q[4], const float fac)
181 const float angle = fac * saacos(q[0]); /* quat[0] = cos(0.5 * angle), but now the 0.5 and 2.0 rule out */
182 const float co = cosf(angle);
183 const float si = sinf(angle);
186 mul_v3_fl(q + 1, si);
189 /* skip error check, currently only needed by mat3_to_quat_is_ok */
190 static void quat_to_mat3_no_error(float m[3][3], const float q[4])
192 double q0, q1, q2, q3, qda, qdb, qdc, qaa, qab, qac, qbb, qbc, qcc;
194 q0 = M_SQRT2 * (double)q[0];
195 q1 = M_SQRT2 * (double)q[1];
196 q2 = M_SQRT2 * (double)q[2];
197 q3 = M_SQRT2 * (double)q[3];
209 m[0][0] = (float)(1.0 - qbb - qcc);
210 m[0][1] = (float)(qdc + qab);
211 m[0][2] = (float)(-qdb + qac);
213 m[1][0] = (float)(-qdc + qab);
214 m[1][1] = (float)(1.0 - qaa - qcc);
215 m[1][2] = (float)(qda + qbc);
217 m[2][0] = (float)(qdb + qac);
218 m[2][1] = (float)(-qda + qbc);
219 m[2][2] = (float)(1.0 - qaa - qbb);
222 void quat_to_mat3(float m[3][3], const float q[4])
226 if (!((f = dot_qtqt(q, q)) == 0.0f || (fabsf(f - 1.0f) < (float)QUAT_EPSILON))) {
227 fprintf(stderr, "Warning! quat_to_mat3() called with non-normalized: size %.8f *** report a bug ***\n", f);
231 quat_to_mat3_no_error(m, q);
234 void quat_to_mat4(float m[4][4], const float q[4])
236 double q0, q1, q2, q3, qda, qdb, qdc, qaa, qab, qac, qbb, qbc, qcc;
239 if (!((q0 = dot_qtqt(q, q)) == 0.0 || (fabs(q0 - 1.0) < QUAT_EPSILON))) {
240 fprintf(stderr, "Warning! quat_to_mat4() called with non-normalized: size %.8f *** report a bug ***\n", (float)q0);
244 q0 = M_SQRT2 * (double)q[0];
245 q1 = M_SQRT2 * (double)q[1];
246 q2 = M_SQRT2 * (double)q[2];
247 q3 = M_SQRT2 * (double)q[3];
259 m[0][0] = (float)(1.0 - qbb - qcc);
260 m[0][1] = (float)(qdc + qab);
261 m[0][2] = (float)(-qdb + qac);
264 m[1][0] = (float)(-qdc + qab);
265 m[1][1] = (float)(1.0 - qaa - qcc);
266 m[1][2] = (float)(qda + qbc);
269 m[2][0] = (float)(qdb + qac);
270 m[2][1] = (float)(-qda + qbc);
271 m[2][2] = (float)(1.0 - qaa - qbb);
274 m[3][0] = m[3][1] = m[3][2] = 0.0f;
278 void mat3_to_quat(float q[4], float wmat[3][3])
284 copy_m3_m3(mat, wmat);
285 normalize_m3(mat); /* this is needed AND a 'normalize_qt' in the end */
287 tr = 0.25 * (double)(1.0f + mat[0][0] + mat[1][1] + mat[2][2]);
289 if (tr > (double)1e-4f) {
293 q[1] = (float)((double)(mat[1][2] - mat[2][1]) * s);
294 q[2] = (float)((double)(mat[2][0] - mat[0][2]) * s);
295 q[3] = (float)((double)(mat[0][1] - mat[1][0]) * s);
298 if (mat[0][0] > mat[1][1] && mat[0][0] > mat[2][2]) {
299 s = 2.0f * sqrtf(1.0f + mat[0][0] - mat[1][1] - mat[2][2]);
300 q[1] = (float)(0.25 * s);
303 q[0] = (float)((double)(mat[1][2] - mat[2][1]) * s);
304 q[2] = (float)((double)(mat[1][0] + mat[0][1]) * s);
305 q[3] = (float)((double)(mat[2][0] + mat[0][2]) * s);
307 else if (mat[1][1] > mat[2][2]) {
308 s = 2.0f * sqrtf(1.0f + mat[1][1] - mat[0][0] - mat[2][2]);
309 q[2] = (float)(0.25 * s);
312 q[0] = (float)((double)(mat[2][0] - mat[0][2]) * s);
313 q[1] = (float)((double)(mat[1][0] + mat[0][1]) * s);
314 q[3] = (float)((double)(mat[2][1] + mat[1][2]) * s);
317 s = 2.0f * sqrtf(1.0f + mat[2][2] - mat[0][0] - mat[1][1]);
318 q[3] = (float)(0.25 * s);
321 q[0] = (float)((double)(mat[0][1] - mat[1][0]) * s);
322 q[1] = (float)((double)(mat[2][0] + mat[0][2]) * s);
323 q[2] = (float)((double)(mat[2][1] + mat[1][2]) * s);
330 void mat4_to_quat(float q[4], float m[4][4])
335 mat3_to_quat(q, mat);
338 void mat3_to_quat_is_ok(float q[4], float wmat[3][3])
340 float mat[3][3], matr[3][3], matn[3][3], q1[4], q2[4], angle, si, co, nor[3];
343 copy_m3_m3(mat, wmat);
346 /* rotate z-axis of matrix to z-axis */
348 nor[0] = mat[2][1]; /* cross product with (0,0,1) */
354 angle = 0.5f * saacos(co);
359 q1[1] = -nor[0] * si; /* negative here, but why? */
360 q1[2] = -nor[1] * si;
361 q1[3] = -nor[2] * si;
363 /* rotate back x-axis from mat, using inverse q1 */
364 quat_to_mat3_no_error(matr, q1);
365 invert_m3_m3(matn, matr);
366 mul_m3_v3(matn, mat[0]);
368 /* and align x-axes */
369 angle = (float)(0.5 * atan2(mat[0][1], mat[0][0]));
378 mul_qt_qtqt(q, q1, q2);
381 float normalize_qt(float q[4])
385 len = sqrtf(dot_qtqt(q, q));
387 mul_qt_fl(q, 1.0f / len);
391 q[0] = q[2] = q[3] = 0.0f;
397 float normalize_qt_qt(float r[4], const float q[4])
400 return normalize_qt(r);
403 /* note: expects vectors to be normalized */
404 void rotation_between_vecs_to_quat(float q[4], const float v1[3], const float v2[3])
409 cross_v3_v3v3(axis, v1, v2);
411 angle = angle_normalized_v3v3(v1, v2);
413 axis_angle_to_quat(q, axis, angle);
416 void rotation_between_quats_to_quat(float q[4], const float q1[4], const float q2[4])
420 conjugate_qt_qt(tquat, q1);
422 mul_qt_fl(tquat, 1.0f / dot_qtqt(tquat, tquat));
424 mul_qt_qtqt(q, tquat, q2);
427 void vec_to_quat(float q[4], const float vec[3], short axis, const short upflag)
429 float nor[3], tvec[3];
430 float angle, si, co, len;
432 assert(axis >= 0 && axis <= 5);
433 assert(upflag >= 0 && upflag <= 2);
435 /* first set the quat to unit */
440 if (UNLIKELY(len == 0.0f)) {
446 copy_v3_v3(tvec, vec);
450 negate_v3_v3(tvec, vec);
453 /* nasty! I need a good routine for this...
454 * problem is a rotation of an Y axis to the negative Y-axis for example.
457 if (axis == 0) { /* x-axis */
462 if (fabsf(tvec[1]) + fabsf(tvec[2]) < 0.0001f)
467 else if (axis == 1) { /* y-axis */
472 if (fabsf(tvec[0]) + fabsf(tvec[2]) < 0.0001f)
482 if (fabsf(tvec[0]) + fabsf(tvec[1]) < 0.0001f)
491 angle = 0.5f * saacos(co);
498 if (axis != upflag) {
501 const float *fp = mat[2];
502 quat_to_mat3(mat, q);
505 if (upflag == 1) angle = 0.5f * atan2f(fp[2], fp[1]);
506 else angle = -0.5f * atan2f(fp[1], fp[2]);
508 else if (axis == 1) {
509 if (upflag == 0) angle = -0.5f * atan2f(fp[2], fp[0]);
510 else angle = 0.5f * atan2f(fp[0], fp[2]);
513 if (upflag == 0) angle = 0.5f * atan2f(-fp[1], -fp[0]);
514 else angle = -0.5f * atan2f(-fp[0], -fp[1]);
518 si = sinf(angle) / len;
520 q2[1] = tvec[0] * si;
521 q2[2] = tvec[1] * si;
522 q2[3] = tvec[2] * si;
524 mul_qt_qtqt(q, q2, q);
530 /* A & M Watt, Advanced animation and rendering techniques, 1992 ACM press */
531 void QuatInterpolW(float *result, float quat1[4], float quat2[4], float t)
533 float omega, cosom, sinom, sc1, sc2;
535 cosom = quat1[0] * quat2[0] + quat1[1] * quat2[1] + quat1[2] * quat2[2] + quat1[3] * quat2[3];
537 /* rotate around shortest angle */
538 if ((1.0f + cosom) > 0.0001f) {
540 if ((1.0f - cosom) > 0.0001f) {
541 omega = (float)acos(cosom);
543 sc1 = sinf((1.0 - t) * omega) / sinom;
544 sc2 = sinf(t * omega) / sinom;
550 result[0] = sc1 * quat1[0] + sc2 * quat2[0];
551 result[1] = sc1 * quat1[1] + sc2 * quat2[1];
552 result[2] = sc1 * quat1[2] + sc2 * quat2[2];
553 result[3] = sc1 * quat1[3] + sc2 * quat2[3];
556 result[0] = quat2[3];
557 result[1] = -quat2[2];
558 result[2] = quat2[1];
559 result[3] = -quat2[0];
561 sc1 = sinf((1.0 - t) * M_PI_2);
562 sc2 = sinf(t * M_PI_2);
564 result[0] = sc1 * quat1[0] + sc2 * result[0];
565 result[1] = sc1 * quat1[1] + sc2 * result[1];
566 result[2] = sc1 * quat1[2] + sc2 * result[2];
567 result[3] = sc1 * quat1[3] + sc2 * result[3];
572 void interp_qt_qtqt(float result[4], const float quat1[4], const float quat2[4], const float t)
574 float quat[4], omega, cosom, sinom, sc1, sc2;
576 cosom = dot_qtqt(quat1, quat2);
578 /* rotate around shortest angle */
581 negate_v4_v4(quat, quat1);
584 copy_qt_qt(quat, quat1);
587 if ((1.0f - cosom) > 0.0001f) {
588 omega = acosf(cosom);
590 sc1 = sinf((1.0f - t) * omega) / sinom;
591 sc2 = sinf(t * omega) / sinom;
598 result[0] = sc1 * quat[0] + sc2 * quat2[0];
599 result[1] = sc1 * quat[1] + sc2 * quat2[1];
600 result[2] = sc1 * quat[2] + sc2 * quat2[2];
601 result[3] = sc1 * quat[3] + sc2 * quat2[3];
604 void add_qt_qtqt(float result[4], const float quat1[4], const float quat2[4], const float t)
606 result[0] = quat1[0] + t * quat2[0];
607 result[1] = quat1[1] + t * quat2[1];
608 result[2] = quat1[2] + t * quat2[2];
609 result[3] = quat1[3] + t * quat2[3];
612 /* same as tri_to_quat() but takes pre-computed normal from the triangle
613 * used for ngons when we know their normal */
614 void tri_to_quat_ex(float quat[4], const float v1[3], const float v2[3], const float v3[3],
615 const float no_orig[3])
617 /* imaginary x-axis, y-axis triangle is being rotated */
618 float vec[3], q1[4], q2[4], n[3], si, co, angle, mat[3][3], imat[3][3];
620 /* move z-axis to face-normal */
622 normal_tri_v3(vec, v1, v2, v3);
624 copy_v3_v3(vec, no_orig);
633 if (n[0] == 0.0f && n[1] == 0.0f) {
637 angle = -0.5f * saacos(vec[2]);
645 /* rotate back line v1-v2 */
646 quat_to_mat3(mat, q1);
647 invert_m3_m3(imat, mat);
648 sub_v3_v3v3(vec, v2, v1);
649 mul_m3_v3(imat, vec);
651 /* what angle has this line with x-axis? */
655 angle = (float)(0.5 * atan2(vec[1], vec[0]));
663 mul_qt_qtqt(quat, q1, q2);
666 void tri_to_quat(float quat[4], const float v1[3], const float v2[3], const float v3[3])
669 normal_tri_v3(vec, v1, v2, v3);
670 tri_to_quat_ex(quat, v1, v2, v3, vec);
673 void print_qt(const char *str, const float q[4])
675 printf("%s: %.3f %.3f %.3f %.3f\n", str, q[0], q[1], q[2], q[3]);
678 /******************************** Axis Angle *********************************/
680 /* Axis angle to Quaternions */
681 void axis_angle_to_quat(float q[4], const float axis[3], const float angle)
685 if (LIKELY(normalize_v3_v3(nor, axis) != 0.0f)) {
686 const float phi = angle / 2.0f;
699 /* Quaternions to Axis Angle */
700 void quat_to_axis_angle(float axis[3], float *angle, const float q[4])
705 if (!((ha = dot_qtqt(q, q)) == 0.0f || (fabsf(ha - 1.0f) < (float)QUAT_EPSILON))) {
706 fprintf(stderr, "Warning! quat_to_axis_angle() called with non-normalized: size %.8f *** report a bug ***\n", ha);
710 /* calculate angle/2, and sin(angle/2) */
714 /* from half-angle to angle */
717 /* prevent division by zero for axis conversion */
718 if (fabsf(si) < 0.0005f)
726 /* Axis Angle to Euler Rotation */
727 void axis_angle_to_eulO(float eul[3], const short order, const float axis[3], const float angle)
731 /* use quaternions as intermediate representation for now... */
732 axis_angle_to_quat(q, axis, angle);
733 quat_to_eulO(eul, order, q);
736 /* Euler Rotation to Axis Angle */
737 void eulO_to_axis_angle(float axis[3], float *angle, const float eul[3], const short order)
741 /* use quaternions as intermediate representation for now... */
742 eulO_to_quat(q, eul, order);
743 quat_to_axis_angle(axis, angle, q);
746 /* axis angle to 3x3 matrix - note: requires that axis is normalized */
747 void axis_angle_normalized_to_mat3(float mat[3][3], const float nor[3], const float angle)
749 float nsi[3], co, si, ico;
751 BLI_ASSERT_UNIT_V3(nor);
753 /* now convert this to a 3x3 matrix */
758 nsi[0] = nor[0] * si;
759 nsi[1] = nor[1] * si;
760 nsi[2] = nor[2] * si;
762 mat[0][0] = ((nor[0] * nor[0]) * ico) + co;
763 mat[0][1] = ((nor[0] * nor[1]) * ico) + nsi[2];
764 mat[0][2] = ((nor[0] * nor[2]) * ico) - nsi[1];
765 mat[1][0] = ((nor[0] * nor[1]) * ico) - nsi[2];
766 mat[1][1] = ((nor[1] * nor[1]) * ico) + co;
767 mat[1][2] = ((nor[1] * nor[2]) * ico) + nsi[0];
768 mat[2][0] = ((nor[0] * nor[2]) * ico) + nsi[1];
769 mat[2][1] = ((nor[1] * nor[2]) * ico) - nsi[0];
770 mat[2][2] = ((nor[2] * nor[2]) * ico) + co;
774 /* axis angle to 3x3 matrix - safer version (normalization of axis performed) */
775 void axis_angle_to_mat3(float mat[3][3], const float axis[3], const float angle)
779 /* normalize the axis first (to remove unwanted scaling) */
780 if (normalize_v3_v3(nor, axis) == 0.0f) {
785 axis_angle_normalized_to_mat3(mat, nor, angle);
788 /* axis angle to 4x4 matrix - safer version (normalization of axis performed) */
789 void axis_angle_to_mat4(float mat[4][4], const float axis[3], const float angle)
793 axis_angle_to_mat3(tmat, axis, angle);
795 copy_m4_m3(mat, tmat);
798 /* 3x3 matrix to axis angle (see Mat4ToVecRot too) */
799 void mat3_to_axis_angle(float axis[3], float *angle, float mat[3][3])
803 /* use quaternions as intermediate representation */
804 /* TODO: it would be nicer to go straight there... */
805 mat3_to_quat(q, mat);
806 quat_to_axis_angle(axis, angle, q);
809 /* 4x4 matrix to axis angle (see Mat4ToVecRot too) */
810 void mat4_to_axis_angle(float axis[3], float *angle, float mat[4][4])
814 /* use quaternions as intermediate representation */
815 /* TODO: it would be nicer to go straight there... */
816 mat4_to_quat(q, mat);
817 quat_to_axis_angle(axis, angle, q);
820 /* rotation matrix from a single axis */
821 void axis_angle_to_mat3_single(float mat[3][3], const char axis, const float angle)
823 const float angle_cos = cosf(angle);
824 const float angle_sin = sinf(angle);
827 case 'X': /* rotation around X */
832 mat[1][1] = angle_cos;
833 mat[1][2] = angle_sin;
835 mat[2][1] = -angle_sin;
836 mat[2][2] = angle_cos;
838 case 'Y': /* rotation around Y */
839 mat[0][0] = angle_cos;
841 mat[0][2] = -angle_sin;
845 mat[2][0] = angle_sin;
847 mat[2][2] = angle_cos;
849 case 'Z': /* rotation around Z */
850 mat[0][0] = angle_cos;
851 mat[0][1] = angle_sin;
853 mat[1][0] = -angle_sin;
854 mat[1][1] = angle_cos;
866 void angle_to_mat2(float mat[2][2], const float angle)
868 const float angle_cos = cosf(angle);
869 const float angle_sin = sinf(angle);
871 /* 2D rotation matrix */
872 mat[0][0] = angle_cos;
873 mat[0][1] = angle_sin;
874 mat[1][0] = -angle_sin;
875 mat[1][1] = angle_cos;
878 /******************************** XYZ Eulers *********************************/
881 void eul_to_mat3(float mat[3][3], const float eul[3])
883 double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
896 mat[0][0] = (float)(cj * ch);
897 mat[1][0] = (float)(sj * sc - cs);
898 mat[2][0] = (float)(sj * cc + ss);
899 mat[0][1] = (float)(cj * sh);
900 mat[1][1] = (float)(sj * ss + cc);
901 mat[2][1] = (float)(sj * cs - sc);
902 mat[0][2] = (float)-sj;
903 mat[1][2] = (float)(cj * si);
904 mat[2][2] = (float)(cj * ci);
909 void eul_to_mat4(float mat[4][4], const float eul[3])
911 double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
924 mat[0][0] = (float)(cj * ch);
925 mat[1][0] = (float)(sj * sc - cs);
926 mat[2][0] = (float)(sj * cc + ss);
927 mat[0][1] = (float)(cj * sh);
928 mat[1][1] = (float)(sj * ss + cc);
929 mat[2][1] = (float)(sj * cs - sc);
930 mat[0][2] = (float)-sj;
931 mat[1][2] = (float)(cj * si);
932 mat[2][2] = (float)(cj * ci);
935 mat[3][0] = mat[3][1] = mat[3][2] = mat[0][3] = mat[1][3] = mat[2][3] = 0.0f;
939 /* returns two euler calculation methods, so we can pick the best */
942 static void mat3_to_eul2(float tmat[3][3], float eul1[3], float eul2[3])
944 float cy, quat[4], mat[3][3];
946 mat3_to_quat(quat, tmat);
947 quat_to_mat3(mat, quat);
948 copy_m3_m3(mat, tmat);
951 cy = (float)sqrt(mat[0][0] * mat[0][0] + mat[0][1] * mat[0][1]);
953 if (cy > 16.0f * FLT_EPSILON) {
955 eul1[0] = (float)atan2(mat[1][2], mat[2][2]);
956 eul1[1] = (float)atan2(-mat[0][2], cy);
957 eul1[2] = (float)atan2(mat[0][1], mat[0][0]);
959 eul2[0] = (float)atan2(-mat[1][2], -mat[2][2]);
960 eul2[1] = (float)atan2(-mat[0][2], -cy);
961 eul2[2] = (float)atan2(-mat[0][1], -mat[0][0]);
965 eul1[0] = (float)atan2(-mat[2][1], mat[1][1]);
966 eul1[1] = (float)atan2(-mat[0][2], cy);
969 copy_v3_v3(eul2, eul1);
974 void mat3_to_eul(float *eul, float tmat[3][3])
976 float eul1[3], eul2[3];
978 mat3_to_eul2(tmat, eul1, eul2);
980 /* return best, which is just the one with lowest values it in */
981 if (fabsf(eul1[0]) + fabsf(eul1[1]) + fabsf(eul1[2]) > fabsf(eul2[0]) + fabsf(eul2[1]) + fabsf(eul2[2])) {
982 copy_v3_v3(eul, eul2);
985 copy_v3_v3(eul, eul1);
990 void mat4_to_eul(float *eul, float tmat[4][4])
994 copy_m3_m4(tempMat, tmat);
995 normalize_m3(tempMat);
996 mat3_to_eul(eul, tempMat);
1000 void quat_to_eul(float *eul, const float quat[4])
1004 quat_to_mat3(mat, quat);
1005 mat3_to_eul(eul, mat);
1009 void eul_to_quat(float quat[4], const float eul[3])
1011 float ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
1027 quat[0] = cj * cc + sj * ss;
1028 quat[1] = cj * sc - sj * cs;
1029 quat[2] = cj * ss + sj * cc;
1030 quat[3] = cj * cs - sj * sc;
1034 void rotate_eul(float beul[3], const char axis, const float ang)
1036 float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
1038 assert(axis >= 'X' && axis <= 'Z');
1040 eul[0] = eul[1] = eul[2] = 0.0f;
1041 if (axis == 'X') eul[0] = ang;
1042 else if (axis == 'Y') eul[1] = ang;
1045 eul_to_mat3(mat1, eul);
1046 eul_to_mat3(mat2, beul);
1048 mul_m3_m3m3(totmat, mat2, mat1);
1050 mat3_to_eul(beul, totmat);
1054 /* order independent! */
1055 void compatible_eul(float eul[3], const float oldrot[3])
1057 /* we could use M_PI as pi_thresh: which is correct but 5.1 gives better results.
1058 * Checked with baking actions to fcurves - campbell */
1059 const float pi_thresh = (5.1f);
1060 const float pi_x2 = (2.0f * (float)M_PI);
1065 /* correct differences of about 360 degrees first */
1066 for (i = 0; i < 3; i++) {
1067 deul[i] = eul[i] - oldrot[i];
1068 if (deul[i] > pi_thresh) {
1069 eul[i] -= floorf(( deul[i] / pi_x2) + 0.5f) * pi_x2;
1070 deul[i] = eul[i] - oldrot[i];
1072 else if (deul[i] < -pi_thresh) {
1073 eul[i] += floorf((-deul[i] / pi_x2) + 0.5f) * pi_x2;
1074 deul[i] = eul[i] - oldrot[i];
1078 /* is 1 of the axis rotations larger than 180 degrees and the other small? NO ELSE IF!! */
1079 if (fabsf(deul[0]) > 3.2f && fabsf(deul[1]) < 1.6f && fabsf(deul[2]) < 1.6f) {
1080 if (deul[0] > 0.0f) eul[0] -= pi_x2;
1081 else eul[0] += pi_x2;
1083 if (fabsf(deul[1]) > 3.2f && fabsf(deul[2]) < 1.6f && fabsf(deul[0]) < 1.6f) {
1084 if (deul[1] > 0.0f) eul[1] -= pi_x2;
1085 else eul[1] += pi_x2;
1087 if (fabsf(deul[2]) > 3.2f && fabsf(deul[0]) < 1.6f && fabsf(deul[1]) < 1.6f) {
1088 if (deul[2] > 0.0f) eul[2] -= pi_x2;
1089 else eul[2] += pi_x2;
1096 /* uses 2 methods to retrieve eulers, and picks the closest */
1099 void mat3_to_compatible_eul(float eul[3], const float oldrot[3], float mat[3][3])
1101 float eul1[3], eul2[3];
1104 mat3_to_eul2(mat, eul1, eul2);
1106 compatible_eul(eul1, oldrot);
1107 compatible_eul(eul2, oldrot);
1109 d1 = fabsf(eul1[0] - oldrot[0]) + fabsf(eul1[1] - oldrot[1]) + fabsf(eul1[2] - oldrot[2]);
1110 d2 = fabsf(eul2[0] - oldrot[0]) + fabsf(eul2[1] - oldrot[1]) + fabsf(eul2[2] - oldrot[2]);
1112 /* return best, which is just the one with lowest difference */
1114 copy_v3_v3(eul, eul2);
1117 copy_v3_v3(eul, eul1);
1122 /************************** Arbitrary Order Eulers ***************************/
1124 /* Euler Rotation Order Code:
1126 * ANSI C code from the article
1127 * "Euler Angle Conversion"
1128 * by Ken Shoemake, shoemake@graphics.cis.upenn.edu
1129 * in "Graphics Gems IV", Academic Press, 1994
1130 * for use in Blender
1133 /* Type for rotation order info - see wiki for derivation details */
1134 typedef struct RotOrderInfo {
1136 short parity; /* parity of axis permutation (even=0, odd=1) - 'n' in original code */
1139 /* Array of info for Rotation Order calculations
1140 * WARNING: must be kept in same order as eEulerRotationOrders
1142 static const RotOrderInfo rotOrders[] = {
1144 {{0, 1, 2}, 0}, /* XYZ */
1145 {{0, 2, 1}, 1}, /* XZY */
1146 {{1, 0, 2}, 1}, /* YXZ */
1147 {{1, 2, 0}, 0}, /* YZX */
1148 {{2, 0, 1}, 0}, /* ZXY */
1149 {{2, 1, 0}, 1} /* ZYX */
1152 /* Get relevant pointer to rotation order set from the array
1153 * NOTE: since we start at 1 for the values, but arrays index from 0,
1154 * there is -1 factor involved in this process...
1156 #define GET_ROTATIONORDER_INFO(order) (assert(order >= 0 && order <= 6), (order < 1) ? &rotOrders[0] : &rotOrders[(order) - 1])
1158 /* Construct quaternion from Euler angles (in radians). */
1159 void eulO_to_quat(float q[4], const float e[3], const short order)
1161 const RotOrderInfo *R = GET_ROTATIONORDER_INFO(order);
1162 short i = R->axis[0], j = R->axis[1], k = R->axis[2];
1163 double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
1167 tj = e[j] * (R->parity ? -0.5f : 0.5f);
1182 a[i] = cj * sc - sj * cs;
1183 a[j] = cj * ss + sj * cc;
1184 a[k] = cj * cs - sj * sc;
1186 q[0] = cj * cc + sj * ss;
1191 if (R->parity) q[j + 1] = -q[j + 1];
1194 /* Convert quaternion to Euler angles (in radians). */
1195 void quat_to_eulO(float e[3], short const order, const float q[4])
1200 mat3_to_eulO(e, order, M);
1203 /* Construct 3x3 matrix from Euler angles (in radians). */
1204 void eulO_to_mat3(float M[3][3], const float e[3], const short order)
1206 const RotOrderInfo *R = GET_ROTATIONORDER_INFO(order);
1207 short i = R->axis[0], j = R->axis[1], k = R->axis[2];
1208 double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
1234 M[j][i] = sj * sc - cs;
1235 M[k][i] = sj * cc + ss;
1237 M[j][j] = sj * ss + cc;
1238 M[k][j] = sj * cs - sc;
1244 /* returns two euler calculation methods, so we can pick the best */
1245 static void mat3_to_eulo2(float M[3][3], float e1[3], float e2[3], const short order)
1247 const RotOrderInfo *R = GET_ROTATIONORDER_INFO(order);
1248 short i = R->axis[0], j = R->axis[1], k = R->axis[2];
1252 /* process the matrix first */
1256 cy = sqrt(m[i][i] * m[i][i] + m[i][j] * m[i][j]);
1258 if (cy > 16.0 * (double)FLT_EPSILON) {
1259 e1[i] = atan2(m[j][k], m[k][k]);
1260 e1[j] = atan2(-m[i][k], cy);
1261 e1[k] = atan2(m[i][j], m[i][i]);
1263 e2[i] = atan2(-m[j][k], -m[k][k]);
1264 e2[j] = atan2(-m[i][k], -cy);
1265 e2[k] = atan2(-m[i][j], -m[i][i]);
1268 e1[i] = atan2(-m[k][j], m[j][j]);
1269 e1[j] = atan2(-m[i][k], cy);
1286 /* Construct 4x4 matrix from Euler angles (in radians). */
1287 void eulO_to_mat4(float M[4][4], const float e[3], const short order)
1291 /* for now, we'll just do this the slow way (i.e. copying matrices) */
1293 eulO_to_mat3(m, e, order);
1297 /* Convert 3x3 matrix to Euler angles (in radians). */
1298 void mat3_to_eulO(float eul[3], const short order, float M[3][3])
1300 float eul1[3], eul2[3];
1302 mat3_to_eulo2(M, eul1, eul2, order);
1304 /* return best, which is just the one with lowest values it in */
1305 if (fabsf(eul1[0]) + fabsf(eul1[1]) + fabsf(eul1[2]) > fabsf(eul2[0]) + fabsf(eul2[1]) + fabsf(eul2[2])) {
1306 copy_v3_v3(eul, eul2);
1309 copy_v3_v3(eul, eul1);
1313 /* Convert 4x4 matrix to Euler angles (in radians). */
1314 void mat4_to_eulO(float e[3], const short order, float M[4][4])
1318 /* for now, we'll just do this the slow way (i.e. copying matrices) */
1321 mat3_to_eulO(e, order, m);
1324 /* uses 2 methods to retrieve eulers, and picks the closest */
1325 void mat3_to_compatible_eulO(float eul[3], float oldrot[3], const short order, float mat[3][3])
1327 float eul1[3], eul2[3];
1330 mat3_to_eulo2(mat, eul1, eul2, order);
1332 compatible_eul(eul1, oldrot);
1333 compatible_eul(eul2, oldrot);
1335 d1 = fabsf(eul1[0] - oldrot[0]) + fabsf(eul1[1] - oldrot[1]) + fabsf(eul1[2] - oldrot[2]);
1336 d2 = fabsf(eul2[0] - oldrot[0]) + fabsf(eul2[1] - oldrot[1]) + fabsf(eul2[2] - oldrot[2]);
1338 /* return best, which is just the one with lowest difference */
1340 copy_v3_v3(eul, eul2);
1342 copy_v3_v3(eul, eul1);
1345 void mat4_to_compatible_eulO(float eul[3], float oldrot[3], const short order, float M[4][4])
1349 /* for now, we'll just do this the slow way (i.e. copying matrices) */
1352 mat3_to_compatible_eulO(eul, oldrot, order, m);
1354 /* rotate the given euler by the given angle on the specified axis */
1355 /* NOTE: is this safe to do with different axis orders? */
1357 void rotate_eulO(float beul[3], const short order, char axis, float ang)
1359 float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
1361 assert(axis >= 'X' && axis <= 'Z');
1363 eul[0] = eul[1] = eul[2] = 0.0f;
1366 else if (axis == 'Y')
1371 eulO_to_mat3(mat1, eul, order);
1372 eulO_to_mat3(mat2, beul, order);
1374 mul_m3_m3m3(totmat, mat2, mat1);
1376 mat3_to_eulO(beul, order, totmat);
1379 /* the matrix is written to as 3 axis vectors */
1380 void eulO_to_gimbal_axis(float gmat[3][3], const float eul[3], const short order)
1382 const RotOrderInfo *R = GET_ROTATIONORDER_INFO(order);
1387 /* first axis is local */
1388 eulO_to_mat3(mat, eul, order);
1389 copy_v3_v3(gmat[R->axis[0]], mat[R->axis[0]]);
1391 /* second axis is local minus first rotation */
1392 copy_v3_v3(teul, eul);
1393 teul[R->axis[0]] = 0;
1394 eulO_to_mat3(mat, teul, order);
1395 copy_v3_v3(gmat[R->axis[1]], mat[R->axis[1]]);
1398 /* Last axis is global */
1399 gmat[R->axis[2]][0] = 0;
1400 gmat[R->axis[2]][1] = 0;
1401 gmat[R->axis[2]][2] = 0;
1402 gmat[R->axis[2]][R->axis[2]] = 1;
1405 /******************************* Dual Quaternions ****************************/
1408 * Conversion routines between (regular quaternion, translation) and
1411 * Version 1.0.0, February 7th, 2007
1413 * Copyright (C) 2006-2007 University of Dublin, Trinity College, All Rights
1416 * This software is provided 'as-is', without any express or implied
1417 * warranty. In no event will the author(s) be held liable for any damages
1418 * arising from the use of this software.
1420 * Permission is granted to anyone to use this software for any purpose,
1421 * including commercial applications, and to alter it and redistribute it
1422 * freely, subject to the following restrictions:
1424 * 1. The origin of this software must not be misrepresented; you must not
1425 * claim that you wrote the original software. If you use this software
1426 * in a product, an acknowledgment in the product documentation would be
1427 * appreciated but is not required.
1428 * 2. Altered source versions must be plainly marked as such, and must not be
1429 * misrepresented as being the original software.
1430 * 3. This notice may not be removed or altered from any source distribution.
1432 * \author Ladislav Kavan, kavanl@cs.tcd.ie
1434 * Changes for Blender:
1435 * - renaming, style changes and optimization's
1436 * - added support for scaling
1439 void mat4_to_dquat(DualQuat *dq, float basemat[4][4], float mat[4][4])
1441 float *t, *q, dscale[3], scale[3], basequat[4];
1442 float baseRS[4][4], baseinv[4][4], baseR[4][4], baseRinv[4][4];
1443 float R[4][4], S[4][4];
1445 /* split scaling and rotation, there is probably a faster way to do
1446 * this, it's done like this now to correctly get negative scaling */
1447 mul_m4_m4m4(baseRS, mat, basemat);
1448 mat4_to_size(scale, baseRS);
1450 dscale[0] = scale[0] - 1.0f;
1451 dscale[1] = scale[1] - 1.0f;
1452 dscale[2] = scale[2] - 1.0f;
1454 if ((determinant_m4(mat) < 0.0f) || len_v3(dscale) > 1e-4f) {
1455 /* extract R and S */
1458 /* extra orthogonalize, to avoid flipping with stretched bones */
1459 copy_m4_m4(tmp, baseRS);
1460 orthogonalize_m4(tmp, 1);
1461 mat4_to_quat(basequat, tmp);
1463 quat_to_mat4(baseR, basequat);
1464 copy_v3_v3(baseR[3], baseRS[3]);
1466 invert_m4_m4(baseinv, basemat);
1467 mul_m4_m4m4(R, baseR, baseinv);
1469 invert_m4_m4(baseRinv, baseR);
1470 mul_m4_m4m4(S, baseRinv, baseRS);
1472 /* set scaling part */
1473 mul_serie_m4(dq->scale, basemat, S, baseinv, NULL, NULL, NULL, NULL, NULL);
1474 dq->scale_weight = 1.0f;
1477 /* matrix does not contain scaling */
1479 dq->scale_weight = 0.0f;
1483 mat4_to_quat(dq->quat, R);
1488 dq->trans[0] = -0.5f * ( t[0] * q[1] + t[1] * q[2] + t[2] * q[3]);
1489 dq->trans[1] = 0.5f * ( t[0] * q[0] + t[1] * q[3] - t[2] * q[2]);
1490 dq->trans[2] = 0.5f * (-t[0] * q[3] + t[1] * q[0] + t[2] * q[1]);
1491 dq->trans[3] = 0.5f * ( t[0] * q[2] - t[1] * q[1] + t[2] * q[0]);
1494 void dquat_to_mat4(float mat[4][4], const DualQuat *dq)
1499 /* regular quaternion */
1500 copy_qt_qt(q0, dq->quat);
1503 len = sqrtf(dot_qtqt(q0, q0));
1505 mul_qt_fl(q0, 1.0f / len);
1508 quat_to_mat4(mat, q0);
1512 mat[3][0] = 2.0f * (-t[0] * q0[1] + t[1] * q0[0] - t[2] * q0[3] + t[3] * q0[2]);
1513 mat[3][1] = 2.0f * (-t[0] * q0[2] + t[1] * q0[3] + t[2] * q0[0] - t[3] * q0[1]);
1514 mat[3][2] = 2.0f * (-t[0] * q0[3] - t[1] * q0[2] + t[2] * q0[1] + t[3] * q0[0]);
1516 /* note: this does not handle scaling */
1519 void add_weighted_dq_dq(DualQuat *dqsum, const DualQuat *dq, float weight)
1523 /* make sure we interpolate quats in the right direction */
1524 if (dot_qtqt(dq->quat, dqsum->quat) < 0) {
1529 /* interpolate rotation and translation */
1530 dqsum->quat[0] += weight * dq->quat[0];
1531 dqsum->quat[1] += weight * dq->quat[1];
1532 dqsum->quat[2] += weight * dq->quat[2];
1533 dqsum->quat[3] += weight * dq->quat[3];
1535 dqsum->trans[0] += weight * dq->trans[0];
1536 dqsum->trans[1] += weight * dq->trans[1];
1537 dqsum->trans[2] += weight * dq->trans[2];
1538 dqsum->trans[3] += weight * dq->trans[3];
1540 /* interpolate scale - but only if needed */
1541 if (dq->scale_weight) {
1544 if (flipped) /* we don't want negative weights for scaling */
1547 copy_m4_m4(wmat, (float(*)[4])dq->scale);
1548 mul_m4_fl(wmat, weight);
1549 add_m4_m4m4(dqsum->scale, dqsum->scale, wmat);
1550 dqsum->scale_weight += weight;
1554 void normalize_dq(DualQuat *dq, float totweight)
1556 float scale = 1.0f / totweight;
1558 mul_qt_fl(dq->quat, scale);
1559 mul_qt_fl(dq->trans, scale);
1561 if (dq->scale_weight) {
1562 float addweight = totweight - dq->scale_weight;
1565 dq->scale[0][0] += addweight;
1566 dq->scale[1][1] += addweight;
1567 dq->scale[2][2] += addweight;
1568 dq->scale[3][3] += addweight;
1571 mul_m4_fl(dq->scale, scale);
1572 dq->scale_weight = 1.0f;
1576 void mul_v3m3_dq(float co[3], float mat[3][3], DualQuat *dq)
1578 float M[3][3], t[3], scalemat[3][3], len2;
1579 float w = dq->quat[0], x = dq->quat[1], y = dq->quat[2], z = dq->quat[3];
1580 float t0 = dq->trans[0], t1 = dq->trans[1], t2 = dq->trans[2], t3 = dq->trans[3];
1582 /* rotation matrix */
1583 M[0][0] = w * w + x * x - y * y - z * z;
1584 M[1][0] = 2 * (x * y - w * z);
1585 M[2][0] = 2 * (x * z + w * y);
1587 M[0][1] = 2 * (x * y + w * z);
1588 M[1][1] = w * w + y * y - x * x - z * z;
1589 M[2][1] = 2 * (y * z - w * x);
1591 M[0][2] = 2 * (x * z - w * y);
1592 M[1][2] = 2 * (y * z + w * x);
1593 M[2][2] = w * w + z * z - x * x - y * y;
1595 len2 = dot_qtqt(dq->quat, dq->quat);
1600 t[0] = 2 * (-t0 * x + w * t1 - t2 * z + y * t3);
1601 t[1] = 2 * (-t0 * y + t1 * z - x * t3 + w * t2);
1602 t[2] = 2 * (-t0 * z + x * t2 + w * t3 - t1 * y);
1605 if (dq->scale_weight)
1606 mul_m4_v3(dq->scale, co);
1608 /* apply rotation and translation */
1610 co[0] = (co[0] + t[0]) * len2;
1611 co[1] = (co[1] + t[1]) * len2;
1612 co[2] = (co[2] + t[2]) * len2;
1614 /* compute crazyspace correction mat */
1616 if (dq->scale_weight) {
1617 copy_m3_m4(scalemat, dq->scale);
1618 mul_m3_m3m3(mat, M, scalemat);
1622 mul_m3_fl(mat, len2);
1626 void copy_dq_dq(DualQuat *dq1, const DualQuat *dq2)
1628 memcpy(dq1, dq2, sizeof(DualQuat));
1631 /* axis matches eTrackToAxis_Modes */
1632 void quat_apply_track(float quat[4], short axis, short upflag)
1634 /* rotations are hard coded to match vec_to_quat */
1635 const float quat_track[][4] = {
1636 {M_SQRT1_2, 0.0, -M_SQRT1_2, 0.0}, /* pos-y90 */
1637 {0.5, 0.5, 0.5, 0.5}, /* Quaternion((1,0,0), radians(90)) * Quaternion((0,1,0), radians(90)) */
1638 {M_SQRT1_2, 0.0, 0.0, M_SQRT1_2}, /* pos-z90 */
1639 {M_SQRT1_2, 0.0, M_SQRT1_2, 0.0}, /* neg-y90 */
1640 {0.5, -0.5, -0.5, 0.5}, /* Quaternion((1,0,0), radians(-90)) * Quaternion((0,1,0), radians(-90)) */
1641 {0.0, M_SQRT1_2, M_SQRT1_2, 0.0} /* no rotation */
1644 assert(axis >= 0 && axis <= 5);
1645 assert(upflag >= 0 && upflag <= 2);
1647 mul_qt_qtqt(quat, quat, quat_track[axis]);
1652 /* there are 2 possible up-axis for each axis used, the 'quat_track' applies so the first
1653 * up axis is used X->Y, Y->X, Z->X, if this first up axis isn't used then rotate 90d
1654 * the strange bit shift below just find the low axis {X:Y, Y:X, Z:X} */
1655 if (upflag != (2 - axis) >> 1) {
1656 float q[4] = {M_SQRT1_2, 0.0, 0.0, 0.0}; /* assign 90d rotation axis */
1657 q[axis + 1] = ((axis == 1)) ? M_SQRT1_2 : -M_SQRT1_2; /* flip non Y axis */
1658 mul_qt_qtqt(quat, quat, q);
1662 void vec_apply_track(float vec[3], short axis)
1666 assert(axis >= 0 && axis <= 5);
1668 copy_v3_v3(tvec, vec);
1677 /* vec[0] = tvec[0]; */
1679 /* vec[2] = tvec[2]; */
1682 /* vec[0] = tvec[0]; */
1683 /* vec[1] = tvec[1]; */
1704 /* lens/angle conversion (radians) */
1705 float focallength_to_fov(float focal_length, float sensor)
1707 return 2.0f * atanf((sensor / 2.0f) / focal_length);
1710 float fov_to_focallength(float hfov, float sensor)
1712 return (sensor / 2.0f) / tanf(hfov * 0.5f);
1715 /* 'mod_inline(-3, 4)= 1', 'fmod(-3, 4)= -3' */
1716 static float mod_inline(float a, float b)
1718 return a - (b * floorf(a / b));
1721 float angle_wrap_rad(float angle)
1723 return mod_inline(angle + (float)M_PI, (float)M_PI * 2.0f) - (float)M_PI;
1726 float angle_wrap_deg(float angle)
1728 return mod_inline(angle + 180.0f, 360.0f) - 180.0f;
1731 /* returns an angle compatible with angle_compat */
1732 float angle_compat_rad(float angle, float angle_compat)
1734 return angle + (floorf(((angle_compat - angle) / (float)M_PI) + 0.5f)) * (float)M_PI;
1737 /* axis conversion */
1738 static float _axis_convert_matrix[23][3][3] = {
1739 {{-1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}, {0.0, 0.0, 1.0}},
1740 {{-1.0, 0.0, 0.0}, {0.0, 0.0, -1.0}, {0.0, -1.0, 0.0}},
1741 {{-1.0, 0.0, 0.0}, {0.0, 0.0, 1.0}, {0.0, 1.0, 0.0}},
1742 {{-1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, -1.0}},
1743 {{0.0, -1.0, 0.0}, {-1.0, 0.0, 0.0}, {0.0, 0.0, -1.0}},
1744 {{0.0, 0.0, 1.0}, {-1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}},
1745 {{0.0, 0.0, -1.0}, {-1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}},
1746 {{0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0}, {0.0, 0.0, 1.0}},
1747 {{0.0, -1.0, 0.0}, {0.0, 0.0, 1.0}, {-1.0, 0.0, 0.0}},
1748 {{0.0, 0.0, -1.0}, {0.0, -1.0, 0.0}, {-1.0, 0.0, 0.0}},
1749 {{0.0, 0.0, 1.0}, {0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0}},
1750 {{0.0, 1.0, 0.0}, {0.0, 0.0, -1.0}, {-1.0, 0.0, 0.0}},
1751 {{0.0, -1.0, 0.0}, {0.0, 0.0, -1.0}, {1.0, 0.0, 0.0}},
1752 {{0.0, 0.0, 1.0}, {0.0, -1.0, 0.0}, {1.0, 0.0, 0.0}},
1753 {{0.0, 0.0, -1.0}, {0.0, 1.0, 0.0}, {1.0, 0.0, 0.0}},
1754 {{0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}, {1.0, 0.0, 0.0}},
1755 {{0.0, -1.0, 0.0}, {1.0, 0.0, 0.0}, {0.0, 0.0, 1.0}},
1756 {{0.0, 0.0, -1.0}, {1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}},
1757 {{0.0, 0.0, 1.0}, {1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}},
1758 {{0.0, 1.0, 0.0}, {1.0, 0.0, 0.0}, {0.0, 0.0, -1.0}},
1759 {{1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}, {0.0, 0.0, -1.0}},
1760 {{1.0, 0.0, 0.0}, {0.0, 0.0, 1.0}, {0.0, -1.0, 0.0}},
1761 {{1.0, 0.0, 0.0}, {0.0, 0.0, -1.0}, {0.0, 1.0, 0.0}},
1764 static int _axis_convert_lut[23][24] = {
1765 {0x8C8, 0x4D0, 0x2E0, 0xAE8, 0x701, 0x511, 0x119, 0xB29, 0x682, 0x88A,
1766 0x09A, 0x2A2, 0x80B, 0x413, 0x223, 0xA2B, 0x644, 0x454, 0x05C, 0xA6C,
1767 0x745, 0x94D, 0x15D, 0x365},
1768 {0xAC8, 0x8D0, 0x4E0, 0x2E8, 0x741, 0x951, 0x159, 0x369, 0x702, 0xB0A,
1769 0x11A, 0x522, 0xA0B, 0x813, 0x423, 0x22B, 0x684, 0x894, 0x09C, 0x2AC,
1770 0x645, 0xA4D, 0x05D, 0x465},
1771 {0x4C8, 0x2D0, 0xAE0, 0x8E8, 0x681, 0x291, 0x099, 0x8A9, 0x642, 0x44A,
1772 0x05A, 0xA62, 0x40B, 0x213, 0xA23, 0x82B, 0x744, 0x354, 0x15C, 0x96C,
1773 0x705, 0x50D, 0x11D, 0xB25},
1774 {0x2C8, 0xAD0, 0x8E0, 0x4E8, 0x641, 0xA51, 0x059, 0x469, 0x742, 0x34A,
1775 0x15A, 0x962, 0x20B, 0xA13, 0x823, 0x42B, 0x704, 0xB14, 0x11C, 0x52C,
1776 0x685, 0x28D, 0x09D, 0x8A5},
1777 {0x708, 0xB10, 0x120, 0x528, 0x8C1, 0xAD1, 0x2D9, 0x4E9, 0x942, 0x74A,
1778 0x35A, 0x162, 0x64B, 0xA53, 0x063, 0x46B, 0x804, 0xA14, 0x21C, 0x42C,
1779 0x885, 0x68D, 0x29D, 0x0A5},
1780 {0xB08, 0x110, 0x520, 0x728, 0x941, 0x151, 0x359, 0x769, 0x802, 0xA0A,
1781 0x21A, 0x422, 0xA4B, 0x053, 0x463, 0x66B, 0x884, 0x094, 0x29C, 0x6AC,
1782 0x8C5, 0xACD, 0x2DD, 0x4E5},
1783 {0x508, 0x710, 0xB20, 0x128, 0x881, 0x691, 0x299, 0x0A9, 0x8C2, 0x4CA,
1784 0x2DA, 0xAE2, 0x44B, 0x653, 0xA63, 0x06B, 0x944, 0x754, 0x35C, 0x16C,
1785 0x805, 0x40D, 0x21D, 0xA25},
1786 {0x108, 0x510, 0x720, 0xB28, 0x801, 0x411, 0x219, 0xA29, 0x882, 0x08A,
1787 0x29A, 0x6A2, 0x04B, 0x453, 0x663, 0xA6B, 0x8C4, 0x4D4, 0x2DC, 0xAEC,
1788 0x945, 0x14D, 0x35D, 0x765},
1789 {0x748, 0x350, 0x160, 0x968, 0xAC1, 0x2D1, 0x4D9, 0x8E9, 0xA42, 0x64A,
1790 0x45A, 0x062, 0x68B, 0x293, 0x0A3, 0x8AB, 0xA04, 0x214, 0x41C, 0x82C,
1791 0xB05, 0x70D, 0x51D, 0x125},
1792 {0x948, 0x750, 0x360, 0x168, 0xB01, 0x711, 0x519, 0x129, 0xAC2, 0x8CA,
1793 0x4DA, 0x2E2, 0x88B, 0x693, 0x2A3, 0x0AB, 0xA44, 0x654, 0x45C, 0x06C,
1794 0xA05, 0x80D, 0x41D, 0x225},
1795 {0x348, 0x150, 0x960, 0x768, 0xA41, 0x051, 0x459, 0x669, 0xA02, 0x20A,
1796 0x41A, 0x822, 0x28B, 0x093, 0x8A3, 0x6AB, 0xB04, 0x114, 0x51C, 0x72C,
1797 0xAC5, 0x2CD, 0x4DD, 0x8E5},
1798 {0x148, 0x950, 0x760, 0x368, 0xA01, 0x811, 0x419, 0x229, 0xB02, 0x10A,
1799 0x51A, 0x722, 0x08B, 0x893, 0x6A3, 0x2AB, 0xAC4, 0x8D4, 0x4DC, 0x2EC,
1800 0xA45, 0x04D, 0x45D, 0x665},
1801 {0x688, 0x890, 0x0A0, 0x2A8, 0x4C1, 0x8D1, 0xAD9, 0x2E9, 0x502, 0x70A,
1802 0xB1A, 0x122, 0x74B, 0x953, 0x163, 0x36B, 0x404, 0x814, 0xA1C, 0x22C,
1803 0x445, 0x64D, 0xA5D, 0x065},
1804 {0x888, 0x090, 0x2A0, 0x6A8, 0x501, 0x111, 0xB19, 0x729, 0x402, 0x80A,
1805 0xA1A, 0x222, 0x94B, 0x153, 0x363, 0x76B, 0x444, 0x054, 0xA5C, 0x66C,
1806 0x4C5, 0x8CD, 0xADD, 0x2E5},
1807 {0x288, 0x690, 0x8A0, 0x0A8, 0x441, 0x651, 0xA59, 0x069, 0x4C2, 0x2CA,
1808 0xADA, 0x8E2, 0x34B, 0x753, 0x963, 0x16B, 0x504, 0x714, 0xB1C, 0x12C,
1809 0x405, 0x20D, 0xA1D, 0x825},
1810 {0x088, 0x290, 0x6A0, 0x8A8, 0x401, 0x211, 0xA19, 0x829, 0x442, 0x04A,
1811 0xA5A, 0x662, 0x14B, 0x353, 0x763, 0x96B, 0x4C4, 0x2D4, 0xADC, 0x8EC,
1812 0x505, 0x10D, 0xB1D, 0x725},
1813 {0x648, 0x450, 0x060, 0xA68, 0x2C1, 0x4D1, 0x8D9, 0xAE9, 0x282, 0x68A,
1814 0x89A, 0x0A2, 0x70B, 0x513, 0x123, 0xB2B, 0x204, 0x414, 0x81C, 0xA2C,
1815 0x345, 0x74D, 0x95D, 0x165},
1816 {0xA48, 0x650, 0x460, 0x068, 0x341, 0x751, 0x959, 0x169, 0x2C2, 0xACA,
1817 0x8DA, 0x4E2, 0xB0B, 0x713, 0x523, 0x12B, 0x284, 0x694, 0x89C, 0x0AC,
1818 0x205, 0xA0D, 0x81D, 0x425},
1819 {0x448, 0x050, 0xA60, 0x668, 0x281, 0x091, 0x899, 0x6A9, 0x202, 0x40A,
1820 0x81A, 0xA22, 0x50B, 0x113, 0xB23, 0x72B, 0x344, 0x154, 0x95C, 0x76C,
1821 0x2C5, 0x4CD, 0x8DD, 0xAE5},
1822 {0x048, 0xA50, 0x660, 0x468, 0x201, 0xA11, 0x819, 0x429, 0x342, 0x14A,
1823 0x95A, 0x762, 0x10B, 0xB13, 0x723, 0x52B, 0x2C4, 0xAD4, 0x8DC, 0x4EC,
1824 0x285, 0x08D, 0x89D, 0x6A5},
1825 {0x808, 0xA10, 0x220, 0x428, 0x101, 0xB11, 0x719, 0x529, 0x142, 0x94A,
1826 0x75A, 0x362, 0x8CB, 0xAD3, 0x2E3, 0x4EB, 0x044, 0xA54, 0x65C, 0x46C,
1827 0x085, 0x88D, 0x69D, 0x2A5},
1828 {0xA08, 0x210, 0x420, 0x828, 0x141, 0x351, 0x759, 0x969, 0x042, 0xA4A,
1829 0x65A, 0x462, 0xACB, 0x2D3, 0x4E3, 0x8EB, 0x084, 0x294, 0x69C, 0x8AC,
1830 0x105, 0xB0D, 0x71D, 0x525},
1831 {0x408, 0x810, 0xA20, 0x228, 0x081, 0x891, 0x699, 0x2A9, 0x102, 0x50A,
1832 0x71A, 0xB22, 0x4CB, 0x8D3, 0xAE3, 0x2EB, 0x144, 0x954, 0x75C, 0x36C,
1833 0x045, 0x44D, 0x65D, 0xA65},
1836 // _axis_convert_num = {'X': 0, 'Y': 1, 'Z': 2, '-X': 3, '-Y': 4, '-Z': 5}
1838 MINLINE int _axis_signed(const int axis)
1840 return (axis < 3) ? axis : axis - 3;
1844 * Each argument us an axis in ['X', 'Y', 'Z', '-X', '-Y', '-Z']
1845 * where the first 2 are a source and the second 2 are the target.
1847 int mat3_from_axis_conversion(int from_forward, int from_up, int to_forward, int to_up,
1850 // from functools import reduce
1854 if (from_forward == to_forward && from_up == to_up) {
1859 if ((_axis_signed(from_forward) == _axis_signed(from_up)) ||
1860 (_axis_signed(to_forward) == _axis_signed(to_up)))
1862 /* we could assert here! */
1867 value = ((from_forward << (0 * 3)) |
1868 (from_up << (1 * 3)) |
1869 (to_forward << (2 * 3)) |
1870 (to_up << (3 * 3)));
1872 for (i = 0; i < (sizeof(_axis_convert_matrix) / sizeof(*_axis_convert_matrix)); i++) {
1874 for (j = 0; j < sizeof(*_axis_convert_lut) / sizeof(*_axis_convert_lut[0]); j++) {
1875 if (_axis_convert_lut[i][j] == value) {
1876 copy_m3_m3(r_mat, _axis_convert_matrix[i]);