2 * ***** BEGIN GPL LICENSE BLOCK *****
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
19 * All rights reserved.
21 * Contributors: 2004/2005/2006 Blender Foundation, full recode
23 * ***** END GPL LICENSE BLOCK *****
26 /** \file blender/render/intern/source/convertblender.c
36 #include "MEM_guardedalloc.h"
39 #include "BLI_blenlib.h"
40 #include "BLI_utildefines.h"
42 #include "BLI_memarena.h"
43 #include "BLI_ghash.h"
44 #include "BLI_linklist.h"
46 #include "BLF_translation.h"
48 #include "DNA_armature_types.h"
49 #include "DNA_camera_types.h"
50 #include "DNA_material_types.h"
51 #include "DNA_curve_types.h"
52 #include "DNA_effect_types.h"
53 #include "DNA_group_types.h"
54 #include "DNA_lamp_types.h"
55 #include "DNA_image_types.h"
56 #include "DNA_lattice_types.h"
57 #include "DNA_mesh_types.h"
58 #include "DNA_meshdata_types.h"
59 #include "DNA_meta_types.h"
60 #include "DNA_modifier_types.h"
61 #include "DNA_node_types.h"
62 #include "DNA_object_types.h"
63 #include "DNA_object_force.h"
64 #include "DNA_object_fluidsim.h"
65 #include "DNA_particle_types.h"
66 #include "DNA_scene_types.h"
67 #include "DNA_texture_types.h"
68 #include "DNA_view3d_types.h"
71 #include "BKE_armature.h"
72 #include "BKE_action.h"
73 #include "BKE_curve.h"
74 #include "BKE_customdata.h"
75 #include "BKE_colortools.h"
76 #include "BKE_constraint.h"
77 #include "BKE_displist.h"
78 #include "BKE_deform.h"
79 #include "BKE_DerivedMesh.h"
80 #include "BKE_effect.h"
81 #include "BKE_global.h"
82 #include "BKE_group.h"
85 #include "BKE_image.h"
86 #include "BKE_lattice.h"
87 #include "BKE_library.h"
88 #include "BKE_material.h"
90 #include "BKE_mball.h"
92 #include "BKE_modifier.h"
94 #include "BKE_object.h"
95 #include "BKE_particle.h"
96 #include "BKE_scene.h"
97 #include "BKE_subsurf.h"
98 #include "BKE_texture.h"
100 #include "BKE_world.h"
102 #include "PIL_time.h"
103 #include "IMB_imbuf_types.h"
106 #include "occlusion.h"
107 #include "pointdensity.h"
108 #include "voxeldata.h"
109 #include "render_types.h"
110 #include "rendercore.h"
111 #include "renderdatabase.h"
112 #include "renderpipeline.h"
117 #include "volume_precache.h"
123 #include "RE_render_ext.h"
125 /* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
126 /* or for checking vertex normal flips */
127 #define FLT_EPSILON10 1.19209290e-06F
129 /* could enable at some point but for now there are far too many conversions */
131 # pragma GCC diagnostic ignored "-Wdouble-promotion"
134 /* ------------------------------------------------------------------------- */
136 /* Stuff for stars. This sits here because it uses gl-things. Part of
137 * this code may move down to the converter. */
138 /* ------------------------------------------------------------------------- */
139 /* this is a bad beast, since it is misused by the 3d view drawing as well. */
141 static HaloRen *initstar(Render *re, ObjectRen *obr, const float vec[3], float hasize)
146 projectverto(vec, re->winmat, hoco);
148 har= RE_findOrAddHalo(obr, obr->tothalo++);
150 /* projectvert is done in function zbufvlaggen again, because of parts */
151 copy_v3_v3(har->co, vec);
155 har->pool = re->pool;
160 /* there must be a 'fixed' amount of stars generated between
162 * all stars must by preference lie on the far and solely
163 * differ in clarity/color
166 void RE_make_stars(Render *re, Scene *scenev3d, void (*initfunc)(void),
167 void (*vertexfunc)(float *), void (*termfunc)(void))
169 extern unsigned char hash[512];
170 ObjectRen *obr= NULL;
176 double dblrand, hlfrand;
177 float vec[4], fx, fy, fz;
178 float fac, starmindist, clipend;
179 float mat[4][4], stargrid, maxrand, maxjit, force, alpha;
180 int x, y, z, sx, sy, sz, ex, ey, ez, done = FALSE;
181 unsigned int totstar= 0;
192 stargrid = wrld->stardist; /* distance between stars */
193 maxrand = 2.0; /* amount a star can be shifted (in grid units) */
194 maxjit = (wrld->starcolnoise); /* amount a color is being shifted */
197 force = ( wrld->starsize );
199 /* minimal free space (starting at camera) */
200 starmindist= wrld->starmindist;
202 if (stargrid <= 0.10f) return;
204 if (re) re->flag |= R_HALO;
205 else stargrid *= 1.0f; /* then it draws fewer */
207 if (re) invert_m4_m4(mat, re->viewmat);
210 /* BOUNDING BOX CALCULATION
211 * bbox goes from z = loc_near_var | loc_far_var,
216 camera= re ? RE_GetCamera(re) : scene->camera;
218 if (camera==NULL || camera->type != OB_CAMERA)
222 clipend = cam->clipend;
224 /* convert to grid coordinates */
226 sx = ((mat[3][0] - clipend) / stargrid) - maxrand;
227 sy = ((mat[3][1] - clipend) / stargrid) - maxrand;
228 sz = ((mat[3][2] - clipend) / stargrid) - maxrand;
230 ex = ((mat[3][0] + clipend) / stargrid) + maxrand;
231 ey = ((mat[3][1] + clipend) / stargrid) + maxrand;
232 ez = ((mat[3][2] + clipend) / stargrid) + maxrand;
234 dblrand = maxrand * stargrid;
235 hlfrand = 2.0 * dblrand;
241 if (re) /* add render object for stars */
242 obr= RE_addRenderObject(re, NULL, NULL, 0, 0, 0);
244 for (x = sx, fx = sx * stargrid; x <= ex; x++, fx += stargrid) {
245 for (y = sy, fy = sy * stargrid; y <= ey; y++, fy += stargrid) {
246 for (z = sz, fz = sz * stargrid; z <= ez; z++, fz += stargrid) {
248 BLI_srand((hash[z & 0xff] << 24) + (hash[y & 0xff] << 16) + (hash[x & 0xff] << 8));
249 vec[0] = fx + (hlfrand * BLI_drand()) - dblrand;
250 vec[1] = fy + (hlfrand * BLI_drand()) - dblrand;
251 vec[2] = fz + (hlfrand * BLI_drand()) - dblrand;
255 if (done & 1) vertexfunc(vec);
260 mul_m4_v3(re->viewmat, vec);
262 /* in vec are global coordinates
263 * calculate distance to camera
264 * and using that, define the alpha
268 if (alpha >= clipend) alpha = 0.0;
269 else if (alpha <= starmindist) alpha = 0.0;
270 else if (alpha <= 2.0f * starmindist) {
271 alpha = (alpha - starmindist) / starmindist;
274 alpha -= 2.0f * starmindist;
275 alpha /= (clipend - 2.0f * starmindist);
276 alpha = 1.0f - alpha;
281 fac = force * BLI_drand();
283 har = initstar(re, obr, vec, fac);
286 har->alfa = sqrt(sqrt(alpha));
288 har->r = har->g = har->b = 1.0;
290 har->r += ((maxjit * BLI_drand()) ) - maxjit;
291 har->g += ((maxjit * BLI_drand()) ) - maxjit;
292 har->b += ((maxjit * BLI_drand()) ) - maxjit;
296 har->type |= HA_ONLYSKY;
302 /* break out of the loop if generating stars takes too long */
303 if (re && !(totstar % 1000000)) {
304 if (re->test_break(re->tbh)) {
313 /* do not call blender_test_break() here, since it is used in UI as well, confusing the callback system */
314 /* main cause is G.is_break of course, a global again... (ton) */
317 if (termfunc) termfunc();
320 re->tothalo += obr->tothalo;
324 /* ------------------------------------------------------------------------- */
325 /* tool functions/defines for ad hoc simplification and possible future
327 /* ------------------------------------------------------------------------- */
329 #define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
332 * NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
334 * ^ ()----p4----p3----()
338 * ()----p1----p2----()
342 /* ------------------------------------------------------------------------- */
344 static void split_v_renderfaces(ObjectRen *obr, int startvlak, int UNUSED(startvert), int UNUSED(usize), int vsize, int uIndex, int UNUSED(cyclu), int cyclv)
346 int vLen = vsize-1+(!!cyclv);
349 for (v=0; v<vLen; v++) {
350 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v);
351 VertRen *vert = RE_vertren_copy(obr, vlr->v2);
357 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + 0);
361 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
369 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
374 vlr->v1 = RE_vertren_copy(obr, vlr->v1);
380 /* ------------------------------------------------------------------------- */
381 /* Stress, tangents and normals */
382 /* ------------------------------------------------------------------------- */
384 static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
386 float len= len_v3v3(v1->co, v2->co)/len_v3v3(v1->orco, v2->orco);
389 acc= accum + 2*v1->index;
393 acc= accum + 2*v2->index;
398 static void calc_edge_stress(Render *UNUSED(re), ObjectRen *obr, Mesh *me)
400 float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
403 if (obr->totvert==0) return;
405 BKE_mesh_texspace_get(me, loc, NULL, size);
407 accum= MEM_callocN(2*sizeof(float)*obr->totvert, "temp accum for stress");
409 /* de-normalize orco */
410 for (a=0; a<obr->totvert; a++) {
411 VertRen *ver= RE_findOrAddVert(obr, a);
413 ver->orco[0]= ver->orco[0]*size[0] +loc[0];
414 ver->orco[1]= ver->orco[1]*size[1] +loc[1];
415 ver->orco[2]= ver->orco[2]*size[2] +loc[2];
419 /* add stress values */
420 accumoffs= accum; /* so we can use vertex index */
421 for (a=0; a<obr->totvlak; a++) {
422 VlakRen *vlr= RE_findOrAddVlak(obr, a);
424 if (vlr->v1->orco && vlr->v4) {
425 calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
426 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
427 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
429 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
430 calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
431 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
436 for (a=0; a<obr->totvert; a++) {
437 VertRen *ver= RE_findOrAddVert(obr, a);
439 /* find stress value */
440 acc= accumoffs + 2*ver->index;
443 stress= RE_vertren_get_stress(obr, ver, 1);
447 ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
448 ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
449 ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
456 /* gets tangent from tface or orco */
457 static void calc_tangent_vector(ObjectRen *obr, VlakRen *vlr, int do_tangent)
459 MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
460 VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
462 float *uv1, *uv2, *uv3, *uv4;
472 uv1= uv[0]; uv2= uv[1]; uv3= uv[2]; uv4= uv[3];
473 map_to_sphere(&uv[0][0], &uv[0][1], v1->orco[0], v1->orco[1], v1->orco[2]);
474 map_to_sphere(&uv[1][0], &uv[1][1], v2->orco[0], v2->orco[1], v2->orco[2]);
475 map_to_sphere(&uv[2][0], &uv[2][1], v3->orco[0], v3->orco[1], v3->orco[2]);
477 map_to_sphere(&uv[3][0], &uv[3][1], v4->orco[0], v4->orco[1], v4->orco[2]);
481 tangent_from_uv(uv1, uv2, uv3, v1->co, v2->co, v3->co, vlr->n, tang);
484 tav= RE_vertren_get_tangent(obr, v1, 1);
485 add_v3_v3(tav, tang);
486 tav= RE_vertren_get_tangent(obr, v2, 1);
487 add_v3_v3(tav, tang);
488 tav= RE_vertren_get_tangent(obr, v3, 1);
489 add_v3_v3(tav, tang);
493 tangent_from_uv(uv1, uv3, uv4, v1->co, v3->co, v4->co, vlr->n, tang);
496 tav= RE_vertren_get_tangent(obr, v1, 1);
497 add_v3_v3(tav, tang);
498 tav= RE_vertren_get_tangent(obr, v3, 1);
499 add_v3_v3(tav, tang);
500 tav= RE_vertren_get_tangent(obr, v4, 1);
501 add_v3_v3(tav, tang);
508 /****************************************************************
509 ************ tangent space generation interface ****************
510 ****************************************************************/
515 } SRenderMeshToTangent;
518 #include "mikktspace.h"
520 static int GetNumFaces(const SMikkTSpaceContext *pContext)
522 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
523 return pMesh->obr->totvlak;
526 static int GetNumVertsOfFace(const SMikkTSpaceContext *pContext, const int face_num)
528 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
529 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
530 return vlr->v4!=NULL ? 4 : 3;
533 static void GetPosition(const SMikkTSpaceContext *pContext, float r_co[3], const int face_num, const int vert_index)
535 //assert(vert_index>=0 && vert_index<4);
536 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
537 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
538 const float *co = (&vlr->v1)[vert_index]->co;
539 copy_v3_v3(r_co, co);
542 static void GetTextureCoordinate(const SMikkTSpaceContext *pContext, float r_uv[2], const int face_num, const int vert_index)
544 //assert(vert_index>=0 && vert_index<4);
545 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
546 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
547 MTFace *tface= RE_vlakren_get_tface(pMesh->obr, vlr, pMesh->obr->actmtface, NULL, 0);
551 coord= tface->uv[vert_index];
552 copy_v2_v2(r_uv, coord);
554 else if ((coord = (&vlr->v1)[vert_index]->orco)) {
555 map_to_sphere(&r_uv[0], &r_uv[1], coord[0], coord[1], coord[2]);
557 else { /* else we get un-initialized value, 0.0 ok default? */
562 static void GetNormal(const SMikkTSpaceContext *pContext, float r_no[3], const int face_num, const int vert_index)
564 //assert(vert_index>=0 && vert_index<4);
565 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
566 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
568 if (vlr->flag & ME_SMOOTH) {
569 const float *n = (&vlr->v1)[vert_index]->n;
573 negate_v3_v3(r_no, vlr->n);
576 static void SetTSpace(const SMikkTSpaceContext *pContext, const float fvTangent[3], const float fSign, const int face_num, const int iVert)
578 //assert(vert_index>=0 && vert_index<4);
579 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
580 VlakRen *vlr = RE_findOrAddVlak(pMesh->obr, face_num);
581 float *ftang = RE_vlakren_get_nmap_tangent(pMesh->obr, vlr, 1);
583 copy_v3_v3(&ftang[iVert*4+0], fvTangent);
584 ftang[iVert*4+3]=fSign;
588 static void calc_vertexnormals(Render *UNUSED(re), ObjectRen *obr, int do_tangent, int do_nmap_tangent)
592 /* clear all vertex normals */
593 for (a=0; a<obr->totvert; a++) {
594 VertRen *ver= RE_findOrAddVert(obr, a);
595 ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
598 /* calculate cos of angles and point-masses, use as weight factor to
599 * add face normal to vertex */
600 for (a=0; a<obr->totvlak; a++) {
601 VlakRen *vlr= RE_findOrAddVlak(obr, a);
602 if (vlr->flag & ME_SMOOTH) {
603 float *n4= (vlr->v4)? vlr->v4->n: NULL;
604 float *c4= (vlr->v4)? vlr->v4->co: NULL;
606 accumulate_vertex_normals(vlr->v1->n, vlr->v2->n, vlr->v3->n, n4,
607 vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co, c4);
610 /* tangents still need to be calculated for flat faces too */
611 /* weighting removed, they are not vertexnormals */
612 calc_tangent_vector(obr, vlr, do_tangent);
617 for (a=0; a<obr->totvlak; a++) {
618 VlakRen *vlr= RE_findOrAddVlak(obr, a);
620 if ((vlr->flag & ME_SMOOTH)==0) {
621 if (is_zero_v3(vlr->v1->n)) copy_v3_v3(vlr->v1->n, vlr->n);
622 if (is_zero_v3(vlr->v2->n)) copy_v3_v3(vlr->v2->n, vlr->n);
623 if (is_zero_v3(vlr->v3->n)) copy_v3_v3(vlr->v3->n, vlr->n);
624 if (vlr->v4 && is_zero_v3(vlr->v4->n)) copy_v3_v3(vlr->v4->n, vlr->n);
628 /* normalize vertex normals */
629 for (a=0; a<obr->totvert; a++) {
630 VertRen *ver= RE_findOrAddVert(obr, a);
631 normalize_v3(ver->n);
633 float *tav= RE_vertren_get_tangent(obr, ver, 0);
636 const float tdn = dot_v3v3(tav, ver->n);
637 tav[0] -= ver->n[0]*tdn;
638 tav[1] -= ver->n[1]*tdn;
639 tav[2] -= ver->n[2]*tdn;
645 /* normal mapping tangent with mikktspace */
646 if (do_nmap_tangent != FALSE) {
647 SRenderMeshToTangent mesh2tangent;
648 SMikkTSpaceContext sContext;
649 SMikkTSpaceInterface sInterface;
650 memset(&mesh2tangent, 0, sizeof(SRenderMeshToTangent));
651 memset(&sContext, 0, sizeof(SMikkTSpaceContext));
652 memset(&sInterface, 0, sizeof(SMikkTSpaceInterface));
654 mesh2tangent.obr = obr;
656 sContext.m_pUserData = &mesh2tangent;
657 sContext.m_pInterface = &sInterface;
658 sInterface.m_getNumFaces = GetNumFaces;
659 sInterface.m_getNumVerticesOfFace = GetNumVertsOfFace;
660 sInterface.m_getPosition = GetPosition;
661 sInterface.m_getTexCoord = GetTextureCoordinate;
662 sInterface.m_getNormal = GetNormal;
663 sInterface.m_setTSpaceBasic = SetTSpace;
665 genTangSpaceDefault(&sContext);
669 /* ------------------------------------------------------------------------- */
671 /* ------------------------------------------------------------------------- */
673 typedef struct ASvert {
678 typedef struct ASface {
679 struct ASface *next, *prev;
684 static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
689 if (v1 == NULL) return;
691 if (asv->faces.first==NULL) {
692 asf= MEM_callocN(sizeof(ASface), "asface");
693 BLI_addtail(&asv->faces, asf);
696 asf= asv->faces.last;
697 for (a=0; a<4; a++) {
698 if (asf->vlr[a]==NULL) {
705 /* new face struct */
707 asf= MEM_callocN(sizeof(ASface), "asface");
708 BLI_addtail(&asv->faces, asf);
714 static int as_testvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
716 /* return 1: vertex needs a copy */
721 if (vlr==0) return 0;
723 asf= asv->faces.first;
725 for (a=0; a<4; a++) {
726 if (asf->vlr[a] && asf->vlr[a]!=vlr) {
727 inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
728 if (inp < thresh) return 1;
737 static VertRen *as_findvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
739 /* return when new vertex already was made */
744 asf= asv->faces.first;
746 for (a=0; a<4; a++) {
747 if (asf->vlr[a] && asf->vlr[a]!=vlr) {
748 /* this face already made a copy for this vertex! */
750 inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
763 /* note; autosmooth happens in object space still, after applying autosmooth we rotate */
764 /* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
765 static void autosmooth(Render *UNUSED(re), ObjectRen *obr, float mat[4][4], int degr)
767 ASvert *asv, *asverts;
774 if (obr->totvert==0) return;
775 asverts= MEM_callocN(sizeof(ASvert)*obr->totvert, "all smooth verts");
777 thresh= cosf(DEG2RADF((0.5f + (float)degr)));
779 /* step zero: give faces normals of original mesh, if this is provided */
782 /* step one: construct listbase of all vertices and pointers to faces */
783 for (a=0; a<obr->totvlak; a++) {
784 vlr= RE_findOrAddVlak(obr, a);
785 /* skip wire faces */
786 if (vlr->v2 != vlr->v3) {
787 as_addvert(asverts+vlr->v1->index, vlr->v1, vlr);
788 as_addvert(asverts+vlr->v2->index, vlr->v2, vlr);
789 as_addvert(asverts+vlr->v3->index, vlr->v3, vlr);
791 as_addvert(asverts+vlr->v4->index, vlr->v4, vlr);
795 totvert= obr->totvert;
796 /* we now test all vertices, when faces have a normal too much different: they get a new vertex */
797 for (a=0, asv=asverts; a<totvert; a++, asv++) {
798 if (asv && asv->totface>1) {
799 ver= RE_findOrAddVert(obr, a);
801 asf= asv->faces.first;
803 for (b=0; b<4; b++) {
805 /* is there a reason to make a new vertex? */
807 if ( as_testvertex(vlr, ver, asv, thresh) ) {
809 /* already made a new vertex within threshold? */
810 v1= as_findvertex(vlr, ver, asv, thresh);
812 /* make a new vertex */
813 v1= RE_vertren_copy(obr, ver);
816 if (vlr->v1==ver) vlr->v1= v1;
817 if (vlr->v2==ver) vlr->v2= v1;
818 if (vlr->v3==ver) vlr->v3= v1;
819 if (vlr->v4==ver) vlr->v4= v1;
828 for (a=0; a<totvert; a++) {
829 BLI_freelistN(&asverts[a].faces);
833 /* rotate vertices and calculate normal of faces */
834 for (a=0; a<obr->totvert; a++) {
835 ver= RE_findOrAddVert(obr, a);
836 mul_m4_v3(mat, ver->co);
838 for (a=0; a<obr->totvlak; a++) {
839 vlr= RE_findOrAddVlak(obr, a);
841 /* skip wire faces */
842 if (vlr->v2 != vlr->v3) {
844 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
846 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
851 /* ------------------------------------------------------------------------- */
852 /* Orco hash and Materials */
853 /* ------------------------------------------------------------------------- */
855 static float *get_object_orco(Render *re, Object *ob)
860 re->orco_hash = BLI_ghash_ptr_new("get_object_orco gh");
862 orco = BLI_ghash_lookup(re->orco_hash, ob);
865 if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
866 orco = BKE_curve_make_orco(re->scene, ob);
868 else if (ob->type==OB_SURF) {
869 orco = BKE_curve_surf_make_orco(ob);
873 BLI_ghash_insert(re->orco_hash, ob, orco);
879 static void set_object_orco(Render *re, void *ob, float *orco)
882 re->orco_hash = BLI_ghash_ptr_new("set_object_orco gh");
884 BLI_ghash_insert(re->orco_hash, ob, orco);
887 static void free_mesh_orco_hash(Render *re)
890 BLI_ghash_free(re->orco_hash, NULL, (GHashValFreeFP)MEM_freeN);
891 re->orco_hash = NULL;
895 static void check_material_mapto(Material *ma)
898 ma->mapto_textured = 0;
900 /* cache which inputs are actually textured.
901 * this can avoid a bit of time spent iterating through all the texture slots, map inputs and map tos
902 * every time a property which may or may not be textured is accessed */
904 for (a=0; a<MAX_MTEX; a++) {
905 if (ma->mtex[a] && ma->mtex[a]->tex) {
906 /* currently used only in volume render, so we'll check for those flags */
907 if (ma->mtex[a]->mapto & MAP_DENSITY) ma->mapto_textured |= MAP_DENSITY;
908 if (ma->mtex[a]->mapto & MAP_EMISSION) ma->mapto_textured |= MAP_EMISSION;
909 if (ma->mtex[a]->mapto & MAP_EMISSION_COL) ma->mapto_textured |= MAP_EMISSION_COL;
910 if (ma->mtex[a]->mapto & MAP_SCATTERING) ma->mapto_textured |= MAP_SCATTERING;
911 if (ma->mtex[a]->mapto & MAP_TRANSMISSION_COL) ma->mapto_textured |= MAP_TRANSMISSION_COL;
912 if (ma->mtex[a]->mapto & MAP_REFLECTION) ma->mapto_textured |= MAP_REFLECTION;
913 if (ma->mtex[a]->mapto & MAP_REFLECTION_COL) ma->mapto_textured |= MAP_REFLECTION_COL;
917 static void flag_render_node_material(Render *re, bNodeTree *ntree)
921 for (node = ntree->nodes.first; node; node = node->next) {
923 if (GS(node->id->name)==ID_MA) {
924 Material *ma= (Material *)node->id;
926 if ((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
929 ma->flag |= MA_IS_USED;
931 else if (node->type==NODE_GROUP)
932 flag_render_node_material(re, (bNodeTree *)node->id);
937 static Material *give_render_material(Render *re, Object *ob, short nr)
939 extern Material defmaterial; /* material.c */
942 ma= give_current_material(ob, nr);
946 if (re->r.mode & R_SPEED) ma->texco |= NEED_UV;
948 if (ma->material_type == MA_TYPE_VOLUME) {
949 ma->mode |= MA_TRANSP;
950 ma->mode &= ~MA_SHADBUF;
952 if ((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
955 /* for light groups and SSS */
956 ma->flag |= MA_IS_USED;
958 if (ma->nodetree && ma->use_nodes)
959 flag_render_node_material(re, ma->nodetree);
961 check_material_mapto(ma);
966 /* ------------------------------------------------------------------------- */
968 /* ------------------------------------------------------------------------- */
969 typedef struct ParticleStrandData {
971 float *orco, *uvco, *surfnor;
972 float time, adapt_angle, adapt_pix, size;
974 int first, line, adapt, override_uv;
977 /* future thread problem... */
978 static void static_particle_strand(Render *re, ObjectRen *obr, Material *ma, ParticleStrandData *sd, const float vec[3], const float vec1[3])
980 static VertRen *v1= NULL, *v2= NULL;
982 float nor[3], cross[3], crosslen, w, dx, dy, width;
983 static float anor[3], avec[3];
987 sub_v3_v3v3(nor, vec, vec1);
988 normalize_v3(nor); /* nor needed as tangent */
989 cross_v3_v3v3(cross, vec, nor);
991 /* turn cross in pixelsize */
992 w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
993 dx= re->winx*cross[0]*re->winmat[0][0];
994 dy= re->winy*cross[1]*re->winmat[1][1];
995 w= sqrt(dx*dx + dy*dy)/w;
999 if (ma->strand_ease!=0.0f) {
1000 if (ma->strand_ease<0.0f)
1001 fac= pow(sd->time, 1.0f+ma->strand_ease);
1003 fac= pow(sd->time, 1.0f/(1.0f-ma->strand_ease));
1007 width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
1009 /* use actual Blender units for strand width and fall back to minimum width */
1010 if (ma->mode & MA_STR_B_UNITS) {
1011 crosslen= len_v3(cross);
1012 w= 2.0f*crosslen*ma->strand_min/w;
1017 /*cross is the radius of the strand so we want it to be half of full width */
1018 mul_v3_fl(cross, 0.5f/crosslen);
1023 mul_v3_fl(cross, width);
1026 if (ma->mode & MA_TANGENT_STR)
1027 flag= R_SMOOTH|R_TANGENT;
1031 /* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
1032 if (ma->strand_sta==1.0f)
1035 /* single face line */
1037 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1039 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1040 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1041 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1042 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1044 copy_v3_v3(vlr->v1->co, vec);
1045 add_v3_v3(vlr->v1->co, cross);
1046 copy_v3_v3(vlr->v1->n, nor);
1047 vlr->v1->orco= sd->orco;
1048 vlr->v1->accum = -1.0f; /* accum abuse for strand texco */
1050 copy_v3_v3(vlr->v2->co, vec);
1051 sub_v3_v3v3(vlr->v2->co, vlr->v2->co, cross);
1052 copy_v3_v3(vlr->v2->n, nor);
1053 vlr->v2->orco= sd->orco;
1054 vlr->v2->accum= vlr->v1->accum;
1056 copy_v3_v3(vlr->v4->co, vec1);
1057 add_v3_v3(vlr->v4->co, cross);
1058 copy_v3_v3(vlr->v4->n, nor);
1059 vlr->v4->orco= sd->orco;
1060 vlr->v4->accum = 1.0f; /* accum abuse for strand texco */
1062 copy_v3_v3(vlr->v3->co, vec1);
1063 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1064 copy_v3_v3(vlr->v3->n, nor);
1065 vlr->v3->orco= sd->orco;
1066 vlr->v3->accum= vlr->v4->accum;
1068 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1074 float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1075 copy_v3_v3(snor, sd->surfnor);
1079 for (i=0; i<sd->totuv; i++) {
1081 mtf=RE_vlakren_get_tface(obr, vlr, i, NULL, 1);
1082 mtf->uv[0][0]=mtf->uv[1][0]=
1083 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1084 mtf->uv[0][1]=mtf->uv[1][1]=
1085 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1087 if (sd->override_uv>=0) {
1089 mtf=RE_vlakren_get_tface(obr, vlr, sd->override_uv, NULL, 0);
1091 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1092 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1094 mtf->uv[0][1]=mtf->uv[1][1]=0.0f;
1095 mtf->uv[2][1]=mtf->uv[3][1]=1.0f;
1099 for (i=0; i<sd->totcol; i++) {
1101 mc=RE_vlakren_get_mcol(obr, vlr, i, NULL, 1);
1102 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1103 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1107 /* first two vertices of a strand */
1108 else if (sd->first) {
1110 copy_v3_v3(anor, nor);
1111 copy_v3_v3(avec, vec);
1115 v1= RE_findOrAddVert(obr, obr->totvert++);
1116 v2= RE_findOrAddVert(obr, obr->totvert++);
1118 copy_v3_v3(v1->co, vec);
1119 add_v3_v3(v1->co, cross);
1120 copy_v3_v3(v1->n, nor);
1122 v1->accum = -1.0f; /* accum abuse for strand texco */
1124 copy_v3_v3(v2->co, vec);
1125 sub_v3_v3v3(v2->co, v2->co, cross);
1126 copy_v3_v3(v2->n, nor);
1128 v2->accum= v1->accum;
1130 /* more vertices & faces to strand */
1132 if (sd->adapt==0 || second) {
1133 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1137 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1138 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1140 v1= vlr->v4; /* cycle */
1141 v2= vlr->v3; /* cycle */
1146 copy_v3_v3(anor, nor);
1147 copy_v3_v3(avec, vec);
1151 else if (sd->adapt) {
1152 float dvec[3], pvec[3];
1153 sub_v3_v3v3(dvec, avec, vec);
1154 project_v3_v3v3(pvec, dvec, vec);
1155 sub_v3_v3v3(dvec, dvec, pvec);
1157 w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1158 dx= re->winx*dvec[0]*re->winmat[0][0]/w;
1159 dy= re->winy*dvec[1]*re->winmat[1][1]/w;
1160 w= sqrt(dx*dx + dy*dy);
1161 if (dot_v3v3(anor, nor)<sd->adapt_angle && w>sd->adapt_pix) {
1162 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1166 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1167 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1169 v1= vlr->v4; /* cycle */
1170 v2= vlr->v3; /* cycle */
1172 copy_v3_v3(anor, nor);
1173 copy_v3_v3(avec, vec);
1176 vlr= RE_findOrAddVlak(obr, obr->totvlak-1);
1180 copy_v3_v3(vlr->v4->co, vec);
1181 add_v3_v3(vlr->v4->co, cross);
1182 copy_v3_v3(vlr->v4->n, nor);
1183 vlr->v4->orco= sd->orco;
1184 vlr->v4->accum= -1.0f + 2.0f * sd->time; /* accum abuse for strand texco */
1186 copy_v3_v3(vlr->v3->co, vec);
1187 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1188 copy_v3_v3(vlr->v3->n, nor);
1189 vlr->v3->orco= sd->orco;
1190 vlr->v3->accum= vlr->v4->accum;
1192 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1198 float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1199 copy_v3_v3(snor, sd->surfnor);
1203 for (i=0; i<sd->totuv; i++) {
1205 mtf=RE_vlakren_get_tface(obr, vlr, i, NULL, 1);
1206 mtf->uv[0][0]=mtf->uv[1][0]=
1207 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1208 mtf->uv[0][1]=mtf->uv[1][1]=
1209 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1211 if (sd->override_uv>=0) {
1213 mtf=RE_vlakren_get_tface(obr, vlr, sd->override_uv, NULL, 0);
1215 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1216 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1218 mtf->uv[0][1]=mtf->uv[1][1]=(vlr->v1->accum+1.0f)/2.0f;
1219 mtf->uv[2][1]=mtf->uv[3][1]=(vlr->v3->accum+1.0f)/2.0f;
1223 for (i=0; i<sd->totcol; i++) {
1225 mc=RE_vlakren_get_mcol(obr, vlr, i, NULL, 1);
1226 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1227 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1233 static void static_particle_wire(ObjectRen *obr, Material *ma, const float vec[3], const float vec1[3], int first, int line)
1239 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1240 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1241 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1245 copy_v3_v3(vlr->v1->co, vec);
1246 copy_v3_v3(vlr->v2->co, vec1);
1248 sub_v3_v3v3(vlr->n, vec, vec1);
1249 normalize_v3(vlr->n);
1250 copy_v3_v3(vlr->v1->n, vlr->n);
1251 copy_v3_v3(vlr->v2->n, vlr->n);
1258 v1= RE_findOrAddVert(obr, obr->totvert++);
1259 copy_v3_v3(v1->co, vec);
1262 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1264 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1268 v1= vlr->v2; /* cycle */
1269 copy_v3_v3(v1->co, vec);
1271 sub_v3_v3v3(vlr->n, vec, vec1);
1272 normalize_v3(vlr->n);
1273 copy_v3_v3(v1->n, vlr->n);
1281 static void particle_curve(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd,
1282 const float loc[3], const float loc1[3], int seed, float *pa_co)
1286 if (ma->material_type == MA_TYPE_WIRE)
1287 static_particle_wire(obr, ma, loc, loc1, sd->first, sd->line);
1288 else if (ma->material_type == MA_TYPE_HALO) {
1289 har= RE_inithalo_particle(re, obr, dm, ma, loc, loc1, sd->orco, sd->uvco, sd->size, 1.0, seed, pa_co);
1290 if (har) har->lay= obr->ob->lay;
1293 static_particle_strand(re, obr, ma, sd, loc, loc1);
1295 static void particle_billboard(Render *re, ObjectRen *obr, Material *ma, ParticleBillboardData *bb)
1299 float xvec[3], yvec[3], zvec[3], bb_center[3];
1300 /* Number of tiles */
1301 int totsplit = bb->uv_split * bb->uv_split;
1304 float uvx = 0.0f, uvy = 0.0f, uvdx = 1.0f, uvdy = 1.0f, time = 0.0f;
1306 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1307 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1308 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1309 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1310 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1312 psys_make_billboard(bb, xvec, yvec, zvec, bb_center);
1314 add_v3_v3v3(vlr->v1->co, bb_center, xvec);
1315 add_v3_v3(vlr->v1->co, yvec);
1316 mul_m4_v3(re->viewmat, vlr->v1->co);
1318 sub_v3_v3v3(vlr->v2->co, bb_center, xvec);
1319 add_v3_v3(vlr->v2->co, yvec);
1320 mul_m4_v3(re->viewmat, vlr->v2->co);
1322 sub_v3_v3v3(vlr->v3->co, bb_center, xvec);
1323 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, yvec);
1324 mul_m4_v3(re->viewmat, vlr->v3->co);
1326 add_v3_v3v3(vlr->v4->co, bb_center, xvec);
1327 sub_v3_v3(vlr->v4->co, yvec);
1328 mul_m4_v3(re->viewmat, vlr->v4->co);
1330 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1331 copy_v3_v3(vlr->v1->n, vlr->n);
1332 copy_v3_v3(vlr->v2->n, vlr->n);
1333 copy_v3_v3(vlr->v3->n, vlr->n);
1334 copy_v3_v3(vlr->v4->n, vlr->n);
1339 if (bb->uv_split > 1) {
1340 uvdx = uvdy = 1.0f / (float)bb->uv_split;
1342 if (ELEM(bb->anim, PART_BB_ANIM_AGE, PART_BB_ANIM_FRAME)) {
1343 if (bb->anim == PART_BB_ANIM_FRAME)
1344 time = ((int)(bb->time * bb->lifetime) % totsplit)/(float)totsplit;
1348 else if (bb->anim == PART_BB_ANIM_ANGLE) {
1349 if (bb->align == PART_BB_VIEW) {
1350 time = (float)fmod((bb->tilt + 1.0f) / 2.0f, 1.0);
1353 float axis1[3] = {0.0f, 0.0f, 0.0f};
1354 float axis2[3] = {0.0f, 0.0f, 0.0f};
1356 axis1[(bb->align + 1) % 3] = 1.0f;
1357 axis2[(bb->align + 2) % 3] = 1.0f;
1359 if (bb->lock == 0) {
1360 zvec[bb->align] = 0.0f;
1364 time = saacos(dot_v3v3(zvec, axis1)) / (float)M_PI;
1366 if (dot_v3v3(zvec, axis2) < 0.0f)
1367 time = 1.0f - time / 2.0f;
1373 if (bb->split_offset == PART_BB_OFF_LINEAR)
1374 time = (float)fmod(time + (float)bb->num / (float)totsplit, 1.0f);
1375 else if (bb->split_offset==PART_BB_OFF_RANDOM)
1376 time = (float)fmod(time + bb->random, 1.0f);
1378 /* Find the coordinates in tile space (integer), then convert to UV
1379 * space (float). Note that Y is flipped. */
1380 tile = (int)((time + FLT_EPSILON10) * totsplit);
1381 x = tile % bb->uv_split;
1382 y = tile / bb->uv_split;
1383 y = (bb->uv_split - 1) - y;
1389 if (bb->uv[0] >= 0) {
1390 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[0], NULL, 1);
1391 mtf->uv[0][0] = 1.0f;
1392 mtf->uv[0][1] = 1.0f;
1393 mtf->uv[1][0] = 0.0f;
1394 mtf->uv[1][1] = 1.0f;
1395 mtf->uv[2][0] = 0.0f;
1396 mtf->uv[2][1] = 0.0f;
1397 mtf->uv[3][0] = 1.0f;
1398 mtf->uv[3][1] = 0.0f;
1401 /* time-index UVs */
1402 if (bb->uv[1] >= 0) {
1403 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[1], NULL, 1);
1404 mtf->uv[0][0] = mtf->uv[1][0] = mtf->uv[2][0] = mtf->uv[3][0] = bb->time;
1405 mtf->uv[0][1] = mtf->uv[1][1] = mtf->uv[2][1] = mtf->uv[3][1] = (float)bb->num/(float)bb->totnum;
1409 if (bb->uv_split > 1 && bb->uv[2] >= 0) {
1410 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[2], NULL, 1);
1411 mtf->uv[0][0] = uvx + uvdx;
1412 mtf->uv[0][1] = uvy + uvdy;
1413 mtf->uv[1][0] = uvx;
1414 mtf->uv[1][1] = uvy + uvdy;
1415 mtf->uv[2][0] = uvx;
1416 mtf->uv[2][1] = uvy;
1417 mtf->uv[3][0] = uvx + uvdx;
1418 mtf->uv[3][1] = uvy;
1421 static void particle_normal_ren(short ren_as, ParticleSettings *part, Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, ParticleBillboardData *bb, ParticleKey *state, int seed, float hasize, float *pa_co)
1423 float loc[3], loc0[3], loc1[3], vel[3];
1425 copy_v3_v3(loc, state->co);
1427 if (ren_as != PART_DRAW_BB)
1428 mul_m4_v3(re->viewmat, loc);
1431 case PART_DRAW_LINE:
1436 copy_v3_v3(vel, state->vel);
1437 mul_mat3_m4_v3(re->viewmat, vel);
1440 if (part->draw & PART_DRAW_VEL_LENGTH)
1441 mul_v3_fl(vel, len_v3(state->vel));
1443 madd_v3_v3v3fl(loc0, loc, vel, -part->draw_line[0]);
1444 madd_v3_v3v3fl(loc1, loc, vel, part->draw_line[1]);
1446 particle_curve(re, obr, dm, ma, sd, loc0, loc1, seed, pa_co);
1452 copy_v3_v3(bb->vec, loc);
1453 copy_v3_v3(bb->vel, state->vel);
1455 particle_billboard(re, obr, ma, bb);
1463 har = RE_inithalo_particle(re, obr, dm, ma, loc, NULL, sd->orco, sd->uvco, hasize, 0.0, seed, pa_co);
1465 if (har) har->lay= obr->ob->lay;
1471 static void get_particle_uvco_mcol(short from, DerivedMesh *dm, float *fuv, int num, ParticleStrandData *sd)
1476 if (sd->uvco && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
1477 for (i=0; i<sd->totuv; i++) {
1478 if (num != DMCACHE_NOTFOUND) {
1479 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1480 MTFace *mtface = (MTFace*)CustomData_get_layer_n(&dm->faceData, CD_MTFACE, i);
1483 psys_interpolate_uvs(mtface, mface->v4, fuv, sd->uvco + 2 * i);
1486 sd->uvco[2*i] = 0.0f;
1487 sd->uvco[2*i + 1] = 0.0f;
1493 if (sd->mcol && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
1494 for (i=0; i<sd->totcol; i++) {
1495 if (num != DMCACHE_NOTFOUND) {
1496 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1497 MCol *mc = (MCol*)CustomData_get_layer_n(&dm->faceData, CD_MCOL, i);
1500 psys_interpolate_mcol(mc, mface->v4, fuv, sd->mcol + i);
1503 memset(&sd->mcol[i], 0, sizeof(MCol));
1507 static int render_new_particle_system(Render *re, ObjectRen *obr, ParticleSystem *psys, int timeoffset)
1509 Object *ob= obr->ob;
1512 ParticleSystemModifierData *psmd;
1513 ParticleSystem *tpsys=0;
1514 ParticleSettings *part, *tpart=0;
1515 ParticleData *pars, *pa=0, *tpa=0;
1516 ParticleKey *states=0;
1518 ParticleCacheKey *cache=0;
1519 ParticleBillboardData bb;
1520 ParticleSimulationData sim = {0};
1521 ParticleStrandData sd;
1522 StrandBuffer *strandbuf=0;
1523 StrandVert *svert=0;
1524 StrandBound *sbound= 0;
1525 StrandRen *strand=0;
1527 float loc[3], loc1[3], loc0[3], mat[4][4], nmat[3][3], co[3], nor[3], duplimat[4][4];
1528 float strandlen=0.0f, curlen=0.0f;
1529 float hasize, pa_size, r_tilt, r_length;
1530 float pa_time, pa_birthtime, pa_dietime;
1531 float random, simplify[2], pa_co[3];
1532 const float cfra= BKE_scene_frame_get(re->scene);
1533 int i, a, k, max_k=0, totpart, do_simplify = FALSE, do_surfacecache = FALSE, use_duplimat = FALSE;
1535 int seed, path_nbr=0, orco1=0, num;
1539 const int *index_mf_to_mpoly = NULL;
1540 const int *index_mp_to_orig = NULL;
1542 /* 1. check that everything is ok & updated */
1547 pars=psys->particles;
1549 if (part==NULL || pars==NULL || !psys_check_enabled(ob, psys))
1552 if (part->ren_as==PART_DRAW_OB || part->ren_as==PART_DRAW_GR || part->ren_as==PART_DRAW_NOT)
1555 /* 2. start initializing things */
1557 /* last possibility to bail out! */
1558 psmd = psys_get_modifier(ob, psys);
1559 if (!(psmd->modifier.mode & eModifierMode_Render))
1562 sim.scene= re->scene;
1567 if (part->phystype==PART_PHYS_KEYED)
1568 psys_count_keyed_targets(&sim);
1570 totchild=psys->totchild;
1572 /* can happen for disconnected/global hair */
1573 if (part->type==PART_HAIR && !psys->childcache)
1576 if (G.is_rendering == FALSE) { /* preview render */
1577 totchild = (int)((float)totchild * (float)part->disp / 100.0f);
1580 psys->flag |= PSYS_DRAWING;
1582 rng= BLI_rng_new(psys->seed);
1584 totpart=psys->totpart;
1586 memset(&sd, 0, sizeof(ParticleStrandData));
1587 sd.override_uv = -1;
1589 /* 2.1 setup material stff */
1590 ma= give_render_material(re, ob, part->omat);
1592 #if 0 /* XXX old animation system */
1594 calc_ipo(ma->ipo, cfra);
1595 execute_ipo((ID *)ma, ma->ipo);
1597 #endif /* XXX old animation system */
1599 hasize = ma->hasize;
1604 RE_set_customdata_names(obr, &psmd->dm->faceData);
1605 sd.totuv = CustomData_number_of_layers(&psmd->dm->faceData, CD_MTFACE);
1606 sd.totcol = CustomData_number_of_layers(&psmd->dm->faceData, CD_MCOL);
1608 if (ma->texco & TEXCO_UV && sd.totuv) {
1609 sd.uvco = MEM_callocN(sd.totuv * 2 * sizeof(float), "particle_uvs");
1611 if (ma->strand_uvname[0]) {
1612 sd.override_uv = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, ma->strand_uvname);
1613 sd.override_uv -= CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1620 sd.mcol = MEM_callocN(sd.totcol * sizeof(MCol), "particle_mcols");
1622 /* 2.2 setup billboards */
1623 if (part->ren_as == PART_DRAW_BB) {
1624 int first_uv = CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1626 bb.uv[0] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[0]);
1628 bb.uv[0] = CustomData_get_active_layer_index(&psmd->dm->faceData, CD_MTFACE);
1630 bb.uv[1] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[1]);
1632 bb.uv[2] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[2]);
1634 if (first_uv >= 0) {
1635 bb.uv[0] -= first_uv;
1636 bb.uv[1] -= first_uv;
1637 bb.uv[2] -= first_uv;
1640 bb.align = part->bb_align;
1641 bb.anim = part->bb_anim;
1642 bb.lock = part->draw & PART_DRAW_BB_LOCK;
1643 bb.ob = (part->bb_ob ? part->bb_ob : RE_GetCamera(re));
1644 bb.split_offset = part->bb_split_offset;
1645 bb.totnum = totpart+totchild;
1646 bb.uv_split = part->bb_uv_split;
1649 /* 2.5 setup matrices */
1650 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
1651 invert_m4_m4(ob->imat, mat); /* need to be that way, for imat texture */
1652 copy_m3_m4(nmat, ob->imat);
1655 if (psys->flag & PSYS_USE_IMAT) {
1656 /* psys->imat is the original emitter's inverse matrix, ob->obmat is the duplicated object's matrix */
1657 mult_m4_m4m4(duplimat, ob->obmat, psys->imat);
1658 use_duplimat = TRUE;
1661 /* 2.6 setup strand rendering */
1662 if (part->ren_as == PART_DRAW_PATH && psys->pathcache) {
1663 path_nbr=(int)pow(2.0, (double) part->ren_step);
1666 if (!ELEM(ma->material_type, MA_TYPE_HALO, MA_TYPE_WIRE)) {
1667 sd.orco = MEM_mallocN(3*sizeof(float)*(totpart+totchild), "particle orcos");
1668 set_object_orco(re, psys, sd.orco);
1672 if (part->draw & PART_DRAW_REN_ADAPT) {
1674 sd.adapt_pix = (float)part->adapt_pix;
1675 sd.adapt_angle = cosf(DEG2RADF((float)part->adapt_angle));
1678 if (part->draw & PART_DRAW_REN_STRAND) {
1679 strandbuf= RE_addStrandBuffer(obr, (totpart+totchild)*(path_nbr+1));
1681 strandbuf->lay= ob->lay;
1682 copy_m4_m4(strandbuf->winmat, re->winmat);
1683 strandbuf->winx= re->winx;
1684 strandbuf->winy= re->winy;
1685 strandbuf->maxdepth= 2;
1686 strandbuf->adaptcos= cosf(DEG2RADF((float)part->adapt_angle));
1687 strandbuf->overrideuv= sd.override_uv;
1688 strandbuf->minwidth= ma->strand_min;
1690 if (ma->strand_widthfade == 0.0f)
1691 strandbuf->widthfade= -1.0f;
1692 else if (ma->strand_widthfade >= 1.0f)
1693 strandbuf->widthfade= 2.0f - ma->strand_widthfade;
1695 strandbuf->widthfade= 1.0f/MAX2(ma->strand_widthfade, 1e-5f);
1697 if (part->flag & PART_HAIR_BSPLINE)
1698 strandbuf->flag |= R_STRAND_BSPLINE;
1699 if (ma->mode & MA_STR_B_UNITS)
1700 strandbuf->flag |= R_STRAND_B_UNITS;
1702 svert= strandbuf->vert;
1704 if (re->r.mode & R_SPEED)
1705 do_surfacecache = TRUE;
1706 else if ((re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT)) && (re->wrld.ao_gather_method == WO_AOGATHER_APPROX))
1707 if (ma->amb != 0.0f)
1708 do_surfacecache = TRUE;
1710 totface= psmd->dm->getNumTessFaces(psmd->dm);
1711 index_mf_to_mpoly = psmd->dm->getTessFaceDataArray(psmd->dm, CD_ORIGINDEX);
1712 index_mp_to_orig = psmd->dm->getPolyDataArray(psmd->dm, CD_ORIGINDEX);
1713 if (index_mf_to_mpoly == NULL) {
1714 index_mp_to_orig = NULL;
1716 for (a=0; a<totface; a++)
1717 strandbuf->totbound = max_ii(strandbuf->totbound, (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a): a);
1719 strandbuf->totbound++;
1720 strandbuf->bound= MEM_callocN(sizeof(StrandBound)*strandbuf->totbound, "StrandBound");
1721 sbound= strandbuf->bound;
1722 sbound->start= sbound->end= 0;
1727 sd.orco = MEM_mallocN(3 * sizeof(float), "particle orco");
1732 psys->lattice = psys_get_lattice(&sim);
1734 /* 3. start creating renderable things */
1735 for (a=0, pa=pars; a<totpart+totchild; a++, pa++, seed++) {
1736 random = BLI_rng_get_float(rng);
1737 /* setup per particle individual stuff */
1739 if (pa->flag & PARS_UNEXIST) continue;
1741 pa_time=(cfra-pa->time)/pa->lifetime;
1742 pa_birthtime = pa->time;
1743 pa_dietime = pa->dietime;
1745 hasize = ma->hasize;
1747 /* XXX 'tpsys' is alwyas NULL, this code won't run! */
1749 if (tpsys && part->phystype == PART_PHYS_NO) {
1750 tpa = tpsys->particles + pa->num;
1751 psys_particle_on_emitter(psmd, tpart->from, tpa->num, pa->num_dmcache, tpa->fuv, tpa->foffset, co, nor, 0, 0, sd.orco, 0);
1754 psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, co, nor, 0, 0, sd.orco, 0);
1756 /* get uvco & mcol */
1757 num= pa->num_dmcache;
1759 if (num == DMCACHE_NOTFOUND)
1760 if (pa->num < psmd->dm->getNumTessFaces(psmd->dm))
1763 get_particle_uvco_mcol(part->from, psmd->dm, pa->fuv, num, &sd);
1767 r_tilt = 2.0f*(PSYS_FRAND(a) - 0.5f);
1768 r_length = PSYS_FRAND(a+1);
1771 cache = psys->pathcache[a];
1772 max_k = (int)cache->steps;
1775 if (totchild && (part->draw&PART_DRAW_PARENT)==0) continue;
1778 ChildParticle *cpa= psys->child+a-totpart;
1781 cache = psys->childcache[a-totpart];
1783 if (cache->steps < 0)
1786 max_k = (int)cache->steps;
1789 pa_time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
1790 pa_size = psys_get_child_size(psys, cpa, cfra, &pa_time);
1792 r_tilt = 2.0f*(PSYS_FRAND(a + 21) - 0.5f);
1793 r_length = PSYS_FRAND(a + 22);
1798 if (part->childtype == PART_CHILD_FACES) {
1799 psys_particle_on_emitter(psmd,
1800 PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD,
1801 cpa->fuv, cpa->foffset, co, nor, 0, 0, sd.orco, 0);
1804 ParticleData *par = psys->particles + cpa->parent;
1805 psys_particle_on_emitter(psmd, part->from,
1806 par->num, DMCACHE_ISCHILD, par->fuv,
1807 par->foffset, co, nor, 0, 0, sd.orco, 0);
1810 /* get uvco & mcol */
1811 if (part->childtype==PART_CHILD_FACES) {
1812 get_particle_uvco_mcol(PART_FROM_FACE, psmd->dm, cpa->fuv, cpa->num, &sd);
1815 ParticleData *parent = psys->particles + cpa->parent;
1816 num = parent->num_dmcache;
1818 if (num == DMCACHE_NOTFOUND)
1819 if (parent->num < psmd->dm->getNumTessFaces(psmd->dm))
1822 get_particle_uvco_mcol(part->from, psmd->dm, parent->fuv, num, &sd);
1825 do_simplify = psys_render_simplify_params(psys, cpa, simplify);
1828 int orignum = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, cpa->num) : cpa->num;
1830 if (orignum > sbound - strandbuf->bound) {
1831 sbound= strandbuf->bound + orignum;
1832 sbound->start= sbound->end= obr->totstrand;
1837 /* TEXCO_PARTICLE */
1842 /* surface normal shading setup */
1843 if (ma->mode_l & MA_STR_SURFDIFF) {
1844 mul_m3_v3(nmat, nor);
1850 /* strand render setup */
1852 strand= RE_findOrAddStrand(obr, obr->totstrand++);
1853 strand->buffer= strandbuf;
1854 strand->vert= svert;
1855 copy_v3_v3(strand->orco, sd.orco);
1858 float *ssimplify= RE_strandren_get_simplify(obr, strand, 1);
1859 ssimplify[0]= simplify[0];
1860 ssimplify[1]= simplify[1];
1864 float *snor= RE_strandren_get_surfnor(obr, strand, 1);
1865 copy_v3_v3(snor, sd.surfnor);
1868 if (do_surfacecache && num >= 0) {
1869 int *facenum= RE_strandren_get_face(obr, strand, 1);
1874 for (i=0; i<sd.totuv; i++) {
1875 if (i != sd.override_uv) {
1876 float *uv= RE_strandren_get_uv(obr, strand, i, NULL, 1);
1878 uv[0]= sd.uvco[2*i];
1879 uv[1]= sd.uvco[2*i+1];
1884 for (i=0; i<sd.totcol; i++) {
1885 MCol *mc= RE_strandren_get_mcol(obr, strand, i, NULL, 1);
1893 /* strandco computation setup */
1897 for (k=1; k<=path_nbr; k++)
1899 strandlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1903 /* render strands */
1904 for (k=0; k<=path_nbr; k++) {
1908 copy_v3_v3(state.co, (cache+k)->co);
1909 copy_v3_v3(state.vel, (cache+k)->vel);
1915 curlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1916 time= curlen/strandlen;
1918 copy_v3_v3(loc, state.co);
1919 mul_m4_v3(re->viewmat, loc);
1922 copy_v3_v3(svert->co, loc);
1923 svert->strandco= -1.0f + 2.0f*time;
1933 sub_v3_v3v3(loc0, loc1, loc);
1934 add_v3_v3v3(loc0, loc1, loc0);
1936 particle_curve(re, obr, psmd->dm, ma, &sd, loc1, loc0, seed, pa_co);
1943 particle_curve(re, obr, psmd->dm, ma, &sd, loc, loc1, seed, pa_co);
1945 copy_v3_v3(loc1, loc);
1951 /* render normal particles */
1952 if (part->trail_count > 1) {
1953 float length = part->path_end * (1.0f - part->randlength * r_length);
1954 int trail_count = part->trail_count * (1.0f - part->randlength * r_length);
1955 float ct = (part->draw & PART_ABS_PATH_TIME) ? cfra : pa_time;
1956 float dt = length / (trail_count ? (float)trail_count : 1.0f);
1958 /* make sure we have pointcache in memory before getting particle on path */
1959 psys_make_temp_pointcache(ob, psys);
1961 for (i=0; i < trail_count; i++, ct -= dt) {
1962 if (part->draw & PART_ABS_PATH_TIME) {
1963 if (ct < pa_birthtime || ct > pa_dietime)
1966 else if (ct < 0.0f || ct > 1.0f)
1969 state.time = (part->draw & PART_ABS_PATH_TIME) ? -ct : ct;
1970 psys_get_particle_on_path(&sim, a, &state, 1);
1973 mul_m4_v3(psys->parent->obmat, state.co);
1976 mul_m4_v4(duplimat, state.co);
1978 if (part->ren_as == PART_DRAW_BB) {
1980 bb.offset[0] = part->bb_offset[0];
1981 bb.offset[1] = part->bb_offset[1];
1982 bb.size[0] = part->bb_size[0] * pa_size;
1983 if (part->bb_align==PART_BB_VEL) {
1984 float pa_vel = len_v3(state.vel);
1985 float head = part->bb_vel_head*pa_vel;
1986 float tail = part->bb_vel_tail*pa_vel;
1987 bb.size[1] = part->bb_size[1]*pa_size + head + tail;
1988 /* use offset to adjust the particle center. this is relative to size, so need to divide! */
1989 if (bb.size[1] > 0.0f)
1990 bb.offset[1] += (head-tail) / bb.size[1];
1993 bb.size[1] = part->bb_size[1] * pa_size;
1994 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
1999 pa_co[0] = (part->draw & PART_ABS_PATH_TIME) ? (ct-pa_birthtime)/(pa_dietime-pa_birthtime) : ct;
2000 pa_co[1] = (float)i/(float)(trail_count-1);
2002 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2007 if (psys_get_particle_state(&sim, a, &state, 0)==0)
2011 mul_m4_v3(psys->parent->obmat, state.co);
2014 mul_m4_v3(duplimat, state.co);
2016 if (part->ren_as == PART_DRAW_BB) {
2018 bb.offset[0] = part->bb_offset[0];
2019 bb.offset[1] = part->bb_offset[1];
2020 bb.size[0] = part->bb_size[0] * pa_size;
2021 if (part->bb_align==PART_BB_VEL) {
2022 float pa_vel = len_v3(state.vel);
2023 float head = part->bb_vel_head*pa_vel;
2024 float tail = part->bb_vel_tail*pa_vel;
2025 bb.size[1] = part->bb_size[1]*pa_size + head + tail;
2026 /* use offset to adjust the particle center. this is relative to size, so need to divide! */
2027 if (bb.size[1] > 0.0f)
2028 bb.offset[1] += (head-tail) / bb.size[1];
2031 bb.size[1] = part->bb_size[1] * pa_size;
2032 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2035 bb.lifetime = pa_dietime-pa_birthtime;
2038 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2045 if (re->test_break(re->tbh))
2049 if (do_surfacecache)
2050 strandbuf->surface= cache_strand_surface(re, obr, psmd->dm, mat, timeoffset);
2053 #if 0 /* XXX old animation system */
2054 if (ma) do_mat_ipo(re->scene, ma);
2055 #endif /* XXX old animation system */
2074 psys->flag &= ~PSYS_DRAWING;
2076 if (psys->lattice) {
2077 end_latt_deform(psys->lattice);
2078 psys->lattice= NULL;
2081 if (path_nbr && (ma->mode_l & MA_TANGENT_STR)==0)
2082 calc_vertexnormals(re, obr, 0, 0);
2087 /* ------------------------------------------------------------------------- */
2089 /* ------------------------------------------------------------------------- */
2091 static void make_render_halos(Render *re, ObjectRen *obr, Mesh *UNUSED(me), int totvert, MVert *mvert, Material *ma, float *orco)
2093 Object *ob= obr->ob;
2095 float xn, yn, zn, nor[3], view[3];
2096 float vec[3], hasize, mat[4][4], imat[3][3];
2097 int a, ok, seed= ma->seed1;
2099 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2100 copy_m3_m4(imat, ob->imat);
2104 for (a=0; a<totvert; a++, mvert++) {
2110 copy_v3_v3(vec, mvert->co);
2111 mul_m4_v3(mat, vec);
2113 if (ma->mode & MA_HALOPUNO) {
2119 nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2120 nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2121 nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2124 copy_v3_v3(view, vec);
2127 zn = dot_v3v3(nor, view);
2128 if (zn>=0.0f) hasize= 0.0f;
2129 else hasize*= zn*zn*zn*zn;
2132 if (orco) har= RE_inithalo(re, obr, ma, vec, NULL, orco, hasize, 0.0, seed);
2133 else har= RE_inithalo(re, obr, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
2134 if (har) har->lay= ob->lay;
2141 static int verghalo(const void *a1, const void *a2)
2143 const HaloRen *har1= *(const HaloRen**)a1;
2144 const HaloRen *har2= *(const HaloRen**)a2;
2146 if (har1->zs < har2->zs) return 1;
2147 else if (har1->zs > har2->zs) return -1;
2151 static void sort_halos(Render *re, int totsort)
2154 HaloRen *har= NULL, **haso;
2157 if (re->tothalo==0) return;
2159 re->sortedhalos= MEM_callocN(sizeof(HaloRen*)*re->tothalo, "sorthalos");
2160 haso= re->sortedhalos;
2162 for (obr=re->objecttable.first; obr; obr=obr->next) {
2163 for (a=0; a<obr->tothalo; a++) {
2164 if ((a & 255)==0) har= obr->bloha[a>>8];
2171 qsort(re->sortedhalos, totsort, sizeof(HaloRen*), verghalo);
2174 /* ------------------------------------------------------------------------- */
2175 /* Displacement Mapping */
2176 /* ------------------------------------------------------------------------- */
2178 static short test_for_displace(Render *re, Object *ob)
2180 /* return 1 when this object uses displacement textures. */
2184 for (i=1; i<=ob->totcol; i++) {
2185 ma=give_render_material(re, ob, i);
2186 /* ma->mapto is ORed total of all mapto channels */
2187 if (ma && (ma->mapto & MAP_DISPLACE)) return 1;
2192 static void displace_render_vert(Render *re, ObjectRen *obr, ShadeInput *shi, VertRen *vr, int vindex, float *scale, float mat[4][4], float imat[3][3])
2195 short texco= shi->mat->texco;
2196 float sample=0, displace[3];
2200 /* shi->co is current render coord, just make sure at least some vector is here */
2201 copy_v3_v3(shi->co, vr->co);
2202 /* vertex normal is used for textures type 'col' and 'var' */
2203 copy_v3_v3(shi->vn, vr->n);
2206 mul_m4_v3(mat, shi->co);
2209 shi->vn[0] = dot_v3v3(imat[0], vr->n);
2210 shi->vn[1] = dot_v3v3(imat[1], vr->n);
2211 shi->vn[2] = dot_v3v3(imat[2], vr->n);
2214 if (texco & TEXCO_UV) {
2216 shi->actuv= obr->actmtface;
2218 for (i=0; (tface=RE_vlakren_get_tface(obr, shi->vlr, i, &name, 0)); i++) {
2219 ShadeInputUV *suv= &shi->uv[i];
2221 /* shi.uv needs scale correction from tface uv */
2222 suv->uv[0]= 2*tface->uv[vindex][0]-1.0f;
2223 suv->uv[1]= 2*tface->uv[vindex][1]-1.0f;
2230 /* set all rendercoords, 'texco' is an ORed value for all textures needed */
2231 if ((texco & TEXCO_ORCO) && (vr->orco)) {
2232 copy_v3_v3(shi->lo, vr->orco);
2234 if (texco & TEXCO_GLOB) {
2235 copy_v3_v3(shi->gl, shi->co);
2236 mul_m4_v3(re->viewinv, shi->gl);
2238 if (texco & TEXCO_NORM) {
2239 copy_v3_v3(shi->orn, shi->vn);
2241 if (texco & TEXCO_REFL) {
2244 if (texco & TEXCO_STRESS) {
2245 float *s= RE_vertren_get_stress(obr, vr, 0);
2249 if (shi->stress<1.0f) shi->stress-= 1.0f;
2250 else shi->stress= (shi->stress-1.0f)/shi->stress;
2256 shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
2258 do_material_tex(shi, re);
2260 //printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2],
2261 //vr->co[0], vr->co[1], vr->co[2]);
2263 displace[0]= shi->displace[0] * scale[0];
2264 displace[1]= shi->displace[1] * scale[1];
2265 displace[2]= shi->displace[2] * scale[2];
2268 mul_m3_v3(imat, displace);
2270 /* 0.5 could become button once? */
2271 vr->co[0] += displace[0];
2272 vr->co[1] += displace[1];
2273 vr->co[2] += displace[2];
2275 //printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]);
2277 /* we just don't do this vertex again, bad luck for other face using same vertex with
2278 * different material... */
2281 /* Pass sample back so displace_face can decide which way to split the quad */
2282 sample = shi->displace[0]*shi->displace[0];
2283 sample += shi->displace[1]*shi->displace[1];
2284 sample += shi->displace[2]*shi->displace[2];
2287 /* Should be sqrt(sample), but I'm only looking for "bigger". Save the cycles. */
2291 static void displace_render_face(Render *re, ObjectRen *obr, VlakRen *vlr, float *scale, float mat[4][4], float imat[3][3])
2295 /* Warning, This is not that nice, and possibly a bit slow,
2296 * however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
2297 memset(&shi, 0, sizeof(ShadeInput));
2298 /* end warning! - Campbell */
2300 /* set up shadeinput struct for multitex() */
2302 /* memset above means we don't need this */
2303 /*shi.osatex= 0;*/ /* signal not to use dx[] and dy[] texture AA vectors */
2306 shi.vlr= vlr; /* current render face */
2307 shi.mat= vlr->mat; /* current input material */
2310 /* TODO, assign these, displacement with new bumpmap is skipped without - campbell */
2312 /* order is not known ? */
2318 /* Displace the verts, flag is set when done */
2320 displace_render_vert(re, obr, &shi, vlr->v1, 0, scale, mat, imat);
2323 displace_render_vert(re, obr, &shi, vlr->v2, 1, scale, mat, imat);
2326 displace_render_vert(re, obr, &shi, vlr->v3, 2, scale, mat, imat);
2330 displace_render_vert(re, obr, &shi, vlr->v4, 3, scale, mat, imat);
2332 /* closest in displace value. This will help smooth edges. */
2333 if (fabsf(vlr->v1->accum - vlr->v3->accum) > fabsf(vlr->v2->accum - vlr->v4->accum)) vlr->flag |= R_DIVIDE_24;
2334 else vlr->flag &= ~R_DIVIDE_24;
2337 /* Recalculate the face normal - if flipped before, flip now */
2339 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2342 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2346 static void do_displacement(Render *re, ObjectRen *obr, float mat[4][4], float imat[3][3])
2350 // float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
2351 float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
2352 int i; //, texflag=0;
2355 /* Object Size with parenting */
2358 mul_v3_v3v3(temp, obt->size, obt->dscale);
2359 scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
2363 /* Clear all flags */
2364 for (i=0; i<obr->totvert; i++) {
2365 vr= RE_findOrAddVert(obr, i);
2369 for (i=0; i<obr->totvlak; i++) {
2370 vlr=RE_findOrAddVlak(obr, i);
2371 displace_render_face(re, obr, vlr, scale, mat, imat);
2374 /* Recalc vertex normals */
2375 calc_vertexnormals(re, obr, 0, 0);
2378 /* ------------------------------------------------------------------------- */
2380 /* ------------------------------------------------------------------------- */
2382 static void init_render_mball(Render *re, ObjectRen *obr)
2384 Object *ob= obr->ob;
2387 VlakRen *vlr, *vlr1;
2389 float *data, *nors, *orco=NULL, mat[4][4], imat[3][3], xn, yn, zn;
2390 int a, need_orco, vlakindex, *index, negative_scale;
2391 ListBase dispbase= {NULL, NULL};
2393 if (ob!=BKE_mball_basis_find(re->scene, ob))
2396 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2397 invert_m4_m4(ob->imat, mat);
2398 copy_m3_m4(imat, ob->imat);
2399 negative_scale = is_negative_m4(mat);
2401 ma= give_render_material(re, ob, 1);
2404 if (ma->texco & TEXCO_ORCO) {
2408 BKE_displist_make_mball_forRender(re->scene, ob, &dispbase);
2415 orco= get_object_orco(re, ob);
2418 /* orco hasn't been found in cache - create new one and add to cache */
2419 orco= BKE_mball_make_orco(ob, &dispbase);
2420 set_object_orco(re, ob, orco);
2424 for (a=0; a<dl->nr; a++, data+=3, nors+=3) {
2426 ver= RE_findOrAddVert(obr, obr->totvert++);
2427 copy_v3_v3(ver->co, data);
2428 mul_m4_v3(mat, ver->co);
2430 /* render normals are inverted */
2436 ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2437 ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2438 ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2439 normalize_v3(ver->n);
2440 //if (ob->transflag & OB_NEG_SCALE) negate_v3(ver->n);
2449 for (a=0; a<dl->parts; a++, index+=4) {
2451 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2452 vlr->v1= RE_findOrAddVert(obr, index[0]);
2453 vlr->v2= RE_findOrAddVert(obr, index[1]);
2454 vlr->v3= RE_findOrAddVert(obr, index[2]);
2458 normal_tri_v3(vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co);
2460 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2463 vlr->flag= ME_SMOOTH;
2466 /* mball -too bad- always has triangles, because quads can be non-planar */
2467 if (index[3] && index[3]!=index[2]) {
2468 vlr1= RE_findOrAddVlak(obr, obr->totvlak++);
2469 vlakindex= vlr1->index;
2471 vlr1->index= vlakindex;
2473 vlr1->v3= RE_findOrAddVert(obr, index[3]);
2475 normal_tri_v3(vlr1->n, vlr1->v1->co, vlr1->v2->co, vlr1->v3->co);
2477 normal_tri_v3(vlr1->n, vlr1->v3->co, vlr1->v2->co, vlr1->v1->co);
2481 /* enforce display lists remade */
2482 BKE_displist_free(&dispbase);
2485 /* ------------------------------------------------------------------------- */
2486 /* Surfaces and Curves */
2487 /* ------------------------------------------------------------------------- */
2489 /* returns amount of vertices added for orco */
2490 static int dl_surf_to_renderdata(ObjectRen *obr, DispList *dl, Material **matar, float *orco, float mat[4][4])
2492 VertRen *v1, *v2, *v3, *v4, *ver;
2493 VlakRen *vlr, *vlr1, *vlr2, *vlr3;
2495 int u, v, orcoret= 0;
2496 int p1, p2, p3, p4, a;
2497 int sizeu, nsizeu, sizev, nsizev;
2498 int startvert, startvlak;
2500 startvert= obr->totvert;
2501 nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr;
2504 for (u = 0; u < sizeu; u++) {
2505 v1 = RE_findOrAddVert(obr, obr->totvert++); /* save this for possible V wrapping */
2506 copy_v3_v3(v1->co, data); data += 3;
2508 v1->orco= orco; orco+= 3; orcoret++;
2510 mul_m4_v3(mat, v1->co);
2512 for (v = 1; v < sizev; v++) {
2513 ver= RE_findOrAddVert(obr, obr->totvert++);
2514 copy_v3_v3(ver->co, data); data += 3;
2516 ver->orco= orco; orco+= 3; orcoret++;
2518 mul_m4_v3(mat, ver->co);
2520 /* if V-cyclic, add extra vertices at end of the row */
2521 if (dl->flag & DL_CYCL_U) {
2522 ver= RE_findOrAddVert(obr, obr->totvert++);
2523 copy_v3_v3(ver->co, v1->co);
2525 ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
2530 /* Done before next loop to get corner vert */
2531 if (dl->flag & DL_CYCL_U) nsizev++;
2532 if (dl->flag & DL_CYCL_V) nsizeu++;
2534 /* if U cyclic, add extra row at end of column */
2535 if (dl->flag & DL_CYCL_V) {
2536 for (v = 0; v < nsizev; v++) {
2537 v1= RE_findOrAddVert(obr, startvert + v);
2538 ver= RE_findOrAddVert(obr, obr->totvert++);
2539 copy_v3_v3(ver->co, v1->co);
2541 ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
2549 startvlak= obr->totvlak;
2551 for (u = 0; u < sizeu - 1; u++) {
2552 p1 = startvert + u * sizev; /* walk through face list */
2557 for (v = 0; v < sizev - 1; v++) {
2558 v1= RE_findOrAddVert(obr, p1);
2559 v2= RE_findOrAddVert(obr, p2);
2560 v3= RE_findOrAddVert(obr, p3);
2561 v4= RE_findOrAddVert(obr, p4);
2563 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2564 vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
2566 normal_quad_v3(n1, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2568 copy_v3_v3(vlr->n, n1);
2570 vlr->mat= matar[ dl->col];
2571 vlr->ec= ME_V1V2+ME_V2V3;
2574 add_v3_v3(v1->n, n1);
2575 add_v3_v3(v2->n, n1);
2576 add_v3_v3(v3->n, n1);
2577 add_v3_v3(v4->n, n1);
2579 p1++; p2++; p3++; p4++;
2582 /* fix normals for U resp. V cyclic faces */
2583 sizeu--; sizev--; /* dec size for face array */
2584 if (dl->flag & DL_CYCL_V) {
2586 for (v = 0; v < sizev; v++) {
2588 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, v));
2589 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, v));
2590 add_v3_v3(vlr1->v1->n, vlr->n);
2591 add_v3_v3(vlr1->v2->n, vlr->n);
2592 add_v3_v3(vlr->v3->n, vlr1->n);
2593 add_v3_v3(vlr->v4->n, vlr1->n);
2596 if (dl->flag & DL_CYCL_U) {
2598 for (u = 0; u < sizeu; u++) {
2600 vlr= RE_findOrAddVlak(obr, UVTOINDEX(u, 0));
2601 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(u, sizev-1));
2602 add_v3_v3(vlr1->v2->n, vlr->n);
2603 add_v3_v3(vlr1->v3->n, vlr->n);
2604 add_v3_v3(vlr->v1->n, vlr1->n);
2605 add_v3_v3(vlr->v4->n, vlr1->n);
2609 /* last vertex is an extra case:
2611 * ^ ()----()----()----()
2613 * u | |(0,n)||(0,0)|
2615 * ()====()====[]====()
2619 * ()----()----()----()
2622 * vertex [] is no longer shared, therefore distribute
2623 * normals of the surrounding faces to all of the duplicates of []
2626 if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U)) {
2627 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m, n) */
2628 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, 0)); /* (0, 0) */
2629 add_v3_v3v3(n1, vlr->n, vlr1->n);
2630 vlr2= RE_findOrAddVlak(obr, UVTOINDEX(0, sizev-1)); /* (0, n) */
2631 add_v3_v3(n1, vlr2->n);
2632 vlr3= RE_findOrAddVlak(obr, UVTOINDEX(sizeu-1, 0)); /* (m, 0) */
2633 add_v3_v3(n1, vlr3->n);
2634 copy_v3_v3(vlr->v3->n, n1);
2635 copy_v3_v3(vlr1->v1->n, n1);
2636 copy_v3_v3(vlr2->v2->n, n1);
2637 copy_v3_v3(vlr3->v4->n, n1);
2639 for (a = startvert; a < obr->totvert; a++) {
2640 ver= RE_findOrAddVert(obr, a);
2641 normalize_v3(ver->n);
2648 static void init_render_dm(DerivedMesh *dm, Render *re, ObjectRen *obr,
2649 int timeoffset, float *orco, float mat[4][4])
2651 Object *ob= obr->ob;
2652 int a, end, totvert, vertofs;
2656 MVert *mvert = NULL;
2659 /* Curve *cu= ELEM(ob->type, OB_FONT, OB_CURVE) ? ob->data : NULL; */
2661 mvert= dm->getVertArray(dm);
2662 totvert= dm->getNumVerts(dm);
2664 for (a=0; a<totvert; a++, mvert++) {
2665 ver= RE_findOrAddVert(obr, obr->totvert++);
2666 copy_v3_v3(ver->co, mvert->co);
2667 mul_m4_v3(mat, ver->co);
2676 /* store customdata names, because DerivedMesh is freed */
2677 RE_set_customdata_names(obr, &dm->faceData);
2679 /* still to do for keys: the correct local texture coordinate */
2681 /* faces in order of color blocks */
2682 vertofs= obr->totvert - totvert;
2683 for (mat_iter= 0; (mat_iter < ob->totcol || (mat_iter==0 && ob->totcol==0)); mat_iter++) {
2685 ma= give_render_material(re, ob, mat_iter+1);
2686 end= dm->getNumTessFaces(dm);
2687 mface= dm->getTessFaceArray(dm);
2689 for (a=0; a<end; a++, mface++) {
2690 int v1, v2, v3, v4, flag;
2692 if (mface->mat_nr == mat_iter) {
2699 flag= mface->flag & ME_SMOOTH;
2701 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2702 vlr->v1= RE_findOrAddVert(obr, vertofs+v1);
2703 vlr->v2= RE_findOrAddVert(obr, vertofs+v2);
2704 vlr->v3= RE_findOrAddVert(obr, vertofs+v3);
2705 if (v4) vlr->v4= RE_findOrAddVert(obr, vertofs+v4);
2708 /* render normals are inverted in render */
2710 len= normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2712 len= normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2716 vlr->ec= 0; /* mesh edges rendered separately */
2718 if (len==0) obr->totvlak--;
2720 CustomDataLayer *layer;
2721 MTFace *mtface, *mtf;
2723 int index, mtfn= 0, mcn= 0;
2726 for (index=0; index<dm->faceData.totlayer; index++) {
2727 layer= &dm->faceData.layers[index];
2730 if (layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
2731 mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
2732 mtface= (MTFace*)layer->data;
2735 else if (layer->type == CD_MCOL && mcn < MAX_MCOL) {
2736 mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
2737 mcol= (MCol*)layer->data;
2738 memcpy(mc, &mcol[a*4], sizeof(MCol)*4);
2747 calc_vertexnormals(re, obr, 0, 0);
2752 static void init_render_surf(Render *re, ObjectRen *obr, int timeoffset)
2754 Object *ob= obr->ob;
2757 ListBase displist= {NULL, NULL};
2760 float *orco=NULL, mat[4][4];
2761 int a, totmat, need_orco=0;
2762 DerivedMesh *dm= NULL;
2768 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2769 invert_m4_m4(ob->imat, mat);
2771 /* material array */
2772 totmat= ob->totcol+1;
2773 matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2775 for (a=0; a<totmat; a++) {
2776 matar[a]= give_render_material(re, ob, a+1);
2778 if (matar[a] && matar[a]->texco & TEXCO_ORCO)
2782 if (ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
2784 BKE_displist_make_surf(re->scene, ob, &displist, &dm, 1, 0);
2788 orco= BKE_displist_make_orco(re->scene, ob, dm, 1);
2790 set_object_orco(re, ob, orco);
2794 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2799 orco= get_object_orco(re, ob);
2802 /* walk along displaylist and create rendervertices/-faces */
2803 for (dl=displist.first; dl; dl=dl->next) {
2804 /* watch out: u ^= y, v ^= x !! */
2805 if (dl->type==DL_SURF)
2806 orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
2810 BKE_displist_free(&displist);
2815 static void init_render_curve(Render *re, ObjectRen *obr, int timeoffset)
2817 Object *ob= obr->ob;
2822 DerivedMesh *dm = NULL;
2823 ListBase disp={NULL, NULL};
2825 float *data, *fp, *orco=NULL;
2826 float n[3], mat[4][4], nmat[4][4];
2827 int nr, startvert, a, b;
2828 int need_orco=0, totmat;
2831 if (ob->type==OB_FONT && cu->str==NULL) return;
2832 else if (ob->type==OB_CURVE && cu->nurb.first==NULL) return;
2834 BKE_displist_make_curveTypes_forRender(re->scene, ob, &disp, &dm, 0);
2836 if (dl==NULL) return;
2838 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2839 invert_m4_m4(ob->imat, mat);
2841 /* local object -> world space transform for normals */
2842 copy_m4_m4(nmat, mat);
2846 /* material array */
2847 totmat= ob->totcol+1;
2848 matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2850 for (a=0; a<totmat; a++) {
2851 matar[a]= give_render_material(re, ob, a+1);
2853 if (matar[a] && matar[a]->texco & TEXCO_ORCO)
2859 orco= BKE_displist_make_orco(re->scene, ob, dm, 1);
2861 set_object_orco(re, ob, orco);
2865 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2870 orco = get_object_orco(re, ob);
2874 if (dl->col > ob->totcol) {
2877 else if (dl->type==DL_INDEX3) {
2880 startvert= obr->totvert;
2883 for (a=0; a<dl->nr; a++, data+=3) {
2884 ver= RE_findOrAddVert(obr, obr->totvert++);
2885 copy_v3_v3(ver->co, data);
2887 mul_m4_v3(mat, ver->co);
2895 if (timeoffset==0) {
2897 const int startvlak= obr->totvlak;
2901 for (a=0; a<dl->parts; a++, index+=3) {
2902 int v1 = index[0], v2 = index[1], v3 = index[2];
2903 float *co1 = &dl->verts[v1 * 3],
2904 *co2 = &dl->verts[v2 * 3],
2905 *co3 = &dl->verts[v3 * 3];
2907 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2908 vlr->v1= RE_findOrAddVert(obr, startvert + v1);
2909 vlr->v2= RE_findOrAddVert(obr, startvert + v2);
2910 vlr->v3= RE_findOrAddVert(obr, startvert + v3);
2913 /* to prevent float accuracy issues, we calculate normal in local object space (not world) */
2914 if (area_tri_v3(co3, co2, co1)>FLT_EPSILON10) {
2915 normal_tri_v3(tmp, co3, co2, co1);
2919 vlr->mat= matar[ dl->col ];
2924 /* transform normal to world space */
2928 /* vertex normals */