2 * ***** BEGIN GPL LICENSE BLOCK *****
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * along with this program; if not, write to the Free Software Foundation,
15 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
18 * All rights reserved.
20 * The Original Code is: some of this file.
22 * Contributor(s): Jens Ole Wund (bjornmose), Campbell Barton (ideasman42)
24 * ***** END GPL LICENSE BLOCK *****
27 /** \file blender/editors/sculpt_paint/paint_image_proj.c
29 * \brief Functions to paint images in 2D and 3D.
37 #include "MEM_guardedalloc.h"
40 # include "BLI_winstuff.h"
43 #include "BLI_blenlib.h"
44 #include "BLI_linklist.h"
46 #include "BLI_math_bits.h"
47 #include "BLI_math_color_blend.h"
48 #include "BLI_memarena.h"
49 #include "BLI_threads.h"
50 #include "BLI_utildefines.h"
52 #include "BLT_translation.h"
55 #include "IMB_imbuf.h"
56 #include "IMB_imbuf_types.h"
58 #include "DNA_brush_types.h"
59 #include "DNA_material_types.h"
60 #include "DNA_mesh_types.h"
61 #include "DNA_node_types.h"
62 #include "DNA_object_types.h"
64 #include "BKE_camera.h"
65 #include "BKE_context.h"
66 #include "BKE_colortools.h"
67 #include "BKE_depsgraph.h"
68 #include "BKE_DerivedMesh.h"
69 #include "BKE_idprop.h"
70 #include "BKE_brush.h"
71 #include "BKE_image.h"
72 #include "BKE_library.h"
74 #include "BKE_material.h"
76 #include "BKE_mesh_mapping.h"
78 #include "BKE_paint.h"
79 #include "BKE_report.h"
80 #include "BKE_scene.h"
81 #include "BKE_texture.h"
83 #include "UI_interface.h"
88 #include "ED_screen.h"
89 #include "ED_uvedit.h"
90 #include "ED_view3d.h"
92 #include "GPU_extensions.h"
97 #include "RNA_access.h"
98 #include "RNA_define.h"
99 #include "RNA_enum_types.h"
101 #include "GPU_draw.h"
103 #include "IMB_colormanagement.h"
106 //#include "bmesh_tools.h"
108 #include "paint_intern.h"
110 static void partial_redraw_array_init(ImagePaintPartialRedraw *pr);
112 /* Defines and Structs */
113 /* FTOCHAR as inline function */
114 BLI_INLINE unsigned char f_to_char(const float val)
119 /* ProjectionPaint defines */
121 /* approx the number of buckets to have under the brush,
122 * used with the brush size to set the ps->buckets_x and ps->buckets_y value.
124 * When 3 - a brush should have ~9 buckets under it at once
125 * ...this helps for threading while painting as well as
126 * avoiding initializing pixels that wont touch the brush */
127 #define PROJ_BUCKET_BRUSH_DIV 4
129 #define PROJ_BUCKET_RECT_MIN 4
130 #define PROJ_BUCKET_RECT_MAX 256
132 #define PROJ_BOUNDBOX_DIV 8
133 #define PROJ_BOUNDBOX_SQUARED (PROJ_BOUNDBOX_DIV * PROJ_BOUNDBOX_DIV)
135 //#define PROJ_DEBUG_PAINT 1
136 //#define PROJ_DEBUG_NOSEAMBLEED 1
137 //#define PROJ_DEBUG_PRINT_CLIP 1
138 #define PROJ_DEBUG_WINCLIP 1
141 #ifndef PROJ_DEBUG_NOSEAMBLEED
142 /* projectFaceSeamFlags options */
143 //#define PROJ_FACE_IGNORE (1<<0) /* When the face is hidden, backfacing or occluded */
144 //#define PROJ_FACE_INIT (1<<1) /* When we have initialized the faces data */
145 #define PROJ_FACE_SEAM1 (1 << 0) /* If this face has a seam on any of its edges */
146 #define PROJ_FACE_SEAM2 (1 << 1)
147 #define PROJ_FACE_SEAM3 (1 << 2)
149 #define PROJ_FACE_NOSEAM1 (1 << 4)
150 #define PROJ_FACE_NOSEAM2 (1 << 5)
151 #define PROJ_FACE_NOSEAM3 (1 << 6)
154 #define PROJ_FACE_WINDING_INIT 1
155 #define PROJ_FACE_WINDING_CW 2
157 /* a slightly scaled down face is used to get fake 3D location for edge pixels in the seams
158 * as this number approaches 1.0f the likelihood increases of float precision errors where
159 * it is occluded by an adjacent face */
160 #define PROJ_FACE_SCALE_SEAM 0.99f
161 #endif /* PROJ_DEBUG_NOSEAMBLEED */
164 #define PROJ_SRC_VIEW 1
165 #define PROJ_SRC_IMAGE_CAM 2
166 #define PROJ_SRC_IMAGE_VIEW 3
167 #define PROJ_SRC_VIEW_FILL 4
169 #define PROJ_VIEW_DATA_ID "view_data"
170 #define PROJ_VIEW_DATA_SIZE (4 * 4 + 4 * 4 + 3) /* viewmat + winmat + clipsta + clipend + is_ortho */
172 #define PROJ_BUCKET_NULL 0
173 #define PROJ_BUCKET_INIT (1 << 0)
174 // #define PROJ_BUCKET_CLONE_INIT (1<<1)
176 /* used for testing doubles, if a point is on a line etc */
177 #define PROJ_GEOM_TOLERANCE 0.00075f
178 #define PROJ_PIXEL_TOLERANCE 0.01f
181 #define PROJ_VERT_CULL 1
183 /* to avoid locking in tile initialization */
184 #define TILE_PENDING SET_INT_IN_POINTER(-1)
186 /* This is mainly a convenience struct used so we can keep an array of images we use
187 * Thir imbufs, etc, in 1 array, When using threads this array is copied for each thread
188 * because 'partRedrawRect' and 'touch' values would not be thread safe */
189 typedef struct ProjPaintImage {
192 ImagePaintPartialRedraw *partRedrawRect;
193 volatile void **undoRect; /* only used to build undo tiles during painting */
194 unsigned short **maskRect; /* the mask accumulation must happen on canvas, not on space screen bucket.
195 * Here we store the mask rectangle */
196 bool **valid; /* store flag to enforce validation of undo rectangle */
201 * Handle for stroke (operator customdata)
203 typedef struct ProjStrokeHandle {
204 /* Support for painting from multiple views at once,
205 * currently used to impliment symmetry painting,
206 * we can assume at least the first is set while painting. */
207 struct ProjPaintState *ps_views[8];
215 /* trick to bypass regular paint and allow clone picking */
216 bool is_clone_cursor_pick;
218 /* In ProjPaintState, only here for convenience */
223 /* Main projection painting struct passed to all projection painting functions */
224 typedef struct ProjPaintState {
229 int source; /* PROJ_SRC_**** */
231 /* the paint color. It can change depending of inverted mode or not */
232 float paint_color[3];
233 float paint_color_linear[3];
237 short tool, blend, mode;
241 /* for symmetry, we need to store modified object matrix */
243 float obmat_imat[4][4];
244 /* end similarities with ImagePaintState */
251 /* projection painting only */
252 MemArena *arena_mt[BLENDER_MAX_THREADS]; /* for multithreading, the first item is sometimes used for non threaded cases too */
253 LinkNode **bucketRect; /* screen sized 2D array, each pixel has a linked list of ProjPixel's */
254 LinkNode **bucketFaces; /* bucketRect aligned array linkList of faces overlapping each bucket */
255 unsigned char *bucketFlags; /* store if the bucks have been initialized */
257 char *vertFlags; /* store options per vert, now only store if the vert is pointing away from the view */
258 int buckets_x; /* The size of the bucket grid, the grid span's screenMin/screenMax so you can paint outsize the screen or with 2 brushes at once */
261 int pixel_sizeof; /* result of project_paint_pixel_sizeof(), constant per stroke */
263 int image_tot; /* size of projectImages array */
265 float (*screenCoords)[4]; /* verts projected into floating point screen space */
266 float screenMin[2]; /* 2D bounds for mesh verts on the screen's plane (screenspace) */
268 float screen_width; /* Calculated from screenMin & screenMax */
270 int winx, winy; /* from the carea or from the projection render */
272 /* options for projection painting */
274 bool do_layer_stencil;
275 bool do_layer_stencil_inv;
276 bool do_stencil_brush;
277 bool do_material_slots;
279 bool do_occlude; /* Use raytraced occlusion? - ortherwise will paint right through to the back*/
280 bool do_backfacecull; /* ignore faces with normals pointing away, skips a lot of raycasts if your normals are correctly flipped */
281 bool do_mask_normal; /* mask out pixels based on their normals */
282 bool do_mask_cavity; /* mask out pixels based on cavity */
283 bool do_new_shading_nodes; /* cache BKE_scene_use_new_shading_nodes value */
284 float normal_angle; /* what angle to mask at */
285 float normal_angle__cos; /* cos(normal_angle), faster to compare */
286 float normal_angle_inner;
287 float normal_angle_inner__cos;
288 float normal_angle_range; /* difference between normal_angle and normal_angle_inner, for easy access */
290 bool do_face_sel; /* quick access to (me->editflag & ME_EDIT_PAINT_FACE_SEL) */
292 bool is_flip_object; /* the object is negative scaled */
293 bool do_masking; /* use masking during painting. Some operations such as airbrush may disable */
294 bool is_texbrush; /* only to avoid running */
295 bool is_maskbrush; /* mask brush is applied before masking */
296 #ifndef PROJ_DEBUG_NOSEAMBLEED
300 float cloneOffset[2];
302 float projectMat[4][4]; /* Projection matrix, use for getting screen coords */
303 float projectMatInv[4][4]; /* inverse of projectMat */
304 float viewDir[3]; /* View vector, use for do_backfacecull and for ray casting with an ortho viewport */
305 float viewPos[3]; /* View location in object relative 3D space, so can compare to verts */
306 float clipsta, clipend;
309 Image *reproject_image;
310 ImBuf *reproject_ibuf;
311 bool reproject_ibuf_free_float;
312 bool reproject_ibuf_free_uchar;
318 int context_bucket_x, context_bucket_y; /* must lock threads while accessing these */
320 struct CurveMapping *cavity_curve;
321 BlurKernel *blurkernel;
325 /* -------------------------------------------------------------------- */
326 /* Vars shared between multiple views (keep last) */
328 * This data is owned by ``ProjStrokeHandle.ps_views[0]``,
329 * all other views re-use the data.
332 #define PROJ_PAINT_STATE_SHARED_MEMCPY(ps_dst, ps_src) \
333 MEMCPY_STRUCT_OFS(ps_dst, ps_src, is_shared_user)
335 #define PROJ_PAINT_STATE_SHARED_CLEAR(ps) \
336 MEMSET_STRUCT_OFS(ps, 0, is_shared_user)
340 ProjPaintImage *projImages;
341 float *cavities; /* cavity amount for vertices */
343 #ifndef PROJ_DEBUG_NOSEAMBLEED
344 char *faceSeamFlags; /* store info about faces, if they are initialized etc*/
345 char *faceWindingFlags; /* save the winding of the face in uv space, helps as an extra validation step for seam detection */
346 float (*faceSeamUVs)[3][2]; /* expanded UVs for faces to use as seams */
347 LinkNode **vertFaces; /* Only needed for when seam_bleed_px is enabled, use to find UV seams */
359 const MVert *dm_mvert;
360 const MEdge *dm_medge;
361 const MPoly *dm_mpoly;
362 const MLoop *dm_mloop;
363 const MLoopTri *dm_mlooptri;
365 const MLoopUV *dm_mloopuv_stencil;
368 * \note These UV layers are aligned to \a dm_mpoly
369 * but each pointer references the start of the layer,
370 * so a loop indirection is needed as well.
372 const MLoopUV **dm_mloopuv;
373 const MLoopUV **dm_mloopuv_clone; /* other UV map, use for cloning between layers */
376 typedef union pixelPointer {
377 float *f_pt; /* float buffer */
378 unsigned int *uint_pt; /* 2 ways to access a char buffer */
379 unsigned char *ch_pt;
382 typedef union pixelStore {
388 typedef struct ProjPixel {
389 float projCoSS[2]; /* the floating point screen projection of this pixel */
394 unsigned short image_index; /* if anyone wants to paint onto more than 65535 images they can bite me */
395 unsigned char bb_cell_index;
397 /* for various reasons we may want to mask out painting onto this pixel */
400 /* Only used when the airbrush is disabled.
401 * Store the max mask value to avoid painting over an area with a lower opacity
402 * with an advantage that we can avoid touching the pixel at all, if the
403 * new mask value is lower then mask_accum */
404 unsigned short *mask_accum;
406 /* horrible hack, store tile valid flag pointer here to re-validate tiles used for anchored and drag-dot strokes */
409 PixelPointer origColor;
414 typedef struct ProjPixelClone {
415 struct ProjPixel __pp;
419 /* undo tile pushing */
423 unsigned short tile_width;
425 ProjPaintImage *pjima;
430 /* -------------------------------------------------------------------- */
432 /** \name MLoopTri accessor functions.
435 BLI_INLINE const MPoly *ps_tri_index_to_mpoly(const ProjPaintState *ps, int tri_index)
437 return &ps->dm_mpoly[ps->dm_mlooptri[tri_index].poly];
440 #define PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) \
441 ps->dm_mloop[lt->tri[0]].v, \
442 ps->dm_mloop[lt->tri[1]].v, \
443 ps->dm_mloop[lt->tri[2]].v,
445 #define PS_LOOPTRI_AS_UV_3(uvlayer, lt) \
446 uvlayer[lt->poly][lt->tri[0]].uv, \
447 uvlayer[lt->poly][lt->tri[1]].uv, \
448 uvlayer[lt->poly][lt->tri[2]].uv,
450 #define PS_LOOPTRI_ASSIGN_UV_3(uv_tri, uvlayer, lt) { \
451 (uv_tri)[0] = uvlayer[lt->poly][lt->tri[0]].uv; \
452 (uv_tri)[1] = uvlayer[lt->poly][lt->tri[1]].uv; \
453 (uv_tri)[2] = uvlayer[lt->poly][lt->tri[2]].uv; \
460 /* Finish projection painting structs */
462 static TexPaintSlot *project_paint_face_paint_slot(const ProjPaintState *ps, int tri_index)
464 const MPoly *mp = ps_tri_index_to_mpoly(ps, tri_index);
465 Material *ma = ps->dm->mat[mp->mat_nr];
466 return ma ? ma->texpaintslot + ma->paint_active_slot : NULL;
469 static Image *project_paint_face_paint_image(const ProjPaintState *ps, int tri_index)
471 if (ps->do_stencil_brush) {
472 return ps->stencil_ima;
475 const MPoly *mp = ps_tri_index_to_mpoly(ps, tri_index);
476 Material *ma = ps->dm->mat[mp->mat_nr];
477 TexPaintSlot *slot = ma ? ma->texpaintslot + ma->paint_active_slot : NULL;
478 return slot ? slot->ima : ps->canvas_ima;
482 static TexPaintSlot *project_paint_face_clone_slot(const ProjPaintState *ps, int tri_index)
484 const MPoly *mp = ps_tri_index_to_mpoly(ps, tri_index);
485 Material *ma = ps->dm->mat[mp->mat_nr];
486 return ma ? ma->texpaintslot + ma->paint_clone_slot : NULL;
489 static Image *project_paint_face_clone_image(const ProjPaintState *ps, int tri_index)
491 const MPoly *mp = ps_tri_index_to_mpoly(ps, tri_index);
492 Material *ma = ps->dm->mat[mp->mat_nr];
493 TexPaintSlot *slot = ma ? ma->texpaintslot + ma->paint_clone_slot : NULL;
494 return slot ? slot->ima : ps->clone_ima;
497 /* fast projection bucket array lookup, use the safe version for bound checking */
498 static int project_bucket_offset(const ProjPaintState *ps, const float projCoSS[2])
500 /* If we were not dealing with screenspace 2D coords we could simple do...
501 * ps->bucketRect[x + (y*ps->buckets_y)] */
504 * projCoSS[0] - ps->screenMin[0] : zero origin
505 * ... / ps->screen_width : range from 0.0 to 1.0
506 * ... * ps->buckets_x : use as a bucket index
508 * Second multiplication does similar but for vertical offset
510 return ( (int)(((projCoSS[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x)) +
511 (((int)(((projCoSS[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y)) * ps->buckets_x);
514 static int project_bucket_offset_safe(const ProjPaintState *ps, const float projCoSS[2])
516 int bucket_index = project_bucket_offset(ps, projCoSS);
518 if (bucket_index < 0 || bucket_index >= ps->buckets_x * ps->buckets_y) {
526 static float VecZDepthOrtho(
528 const float v1[3], const float v2[3], const float v3[3],
531 barycentric_weights_v2(v1, v2, v3, pt, w);
532 return (v1[2] * w[0]) + (v2[2] * w[1]) + (v3[2] * w[2]);
535 static float VecZDepthPersp(
537 const float v1[4], const float v2[4], const float v3[4],
540 float wtot_inv, wtot;
543 barycentric_weights_v2_persp(v1, v2, v3, pt, w);
544 /* for the depth we need the weights to match what
545 * barycentric_weights_v2 would return, in this case its easiest just to
546 * undo the 4th axis division and make it unit-sum
548 * don't call barycentric_weights_v2() because our callers expect 'w'
549 * to be weighted from the perspective */
550 w_tmp[0] = w[0] * v1[3];
551 w_tmp[1] = w[1] * v2[3];
552 w_tmp[2] = w[2] * v3[3];
554 wtot = w_tmp[0] + w_tmp[1] + w_tmp[2];
557 wtot_inv = 1.0f / wtot;
559 w_tmp[0] = w_tmp[0] * wtot_inv;
560 w_tmp[1] = w_tmp[1] * wtot_inv;
561 w_tmp[2] = w_tmp[2] * wtot_inv;
563 else /* dummy values for zero area face */
564 w_tmp[0] = w_tmp[1] = w_tmp[2] = 1.0f / 3.0f;
565 /* done mimicing barycentric_weights_v2() */
567 return (v1[2] * w_tmp[0]) + (v2[2] * w_tmp[1]) + (v3[2] * w_tmp[2]);
571 /* Return the top-most face index that the screen space coord 'pt' touches (or -1) */
572 static int project_paint_PickFace(
573 const ProjPaintState *ps, const float pt[2],
579 int best_tri_index = -1;
580 float z_depth_best = FLT_MAX, z_depth;
582 bucket_index = project_bucket_offset_safe(ps, pt);
583 if (bucket_index == -1)
588 /* we could return 0 for 1 face buckets, as long as this function assumes
589 * that the point its testing is only every originated from an existing face */
591 for (node = ps->bucketFaces[bucket_index]; node; node = node->next) {
592 const int tri_index = GET_INT_FROM_POINTER(node->link);
593 const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
594 const float *vtri_ss[3] = {
595 ps->screenCoords[ps->dm_mloop[lt->tri[0]].v],
596 ps->screenCoords[ps->dm_mloop[lt->tri[1]].v],
597 ps->screenCoords[ps->dm_mloop[lt->tri[2]].v],
601 if (isect_point_tri_v2(pt, UNPACK3(vtri_ss))) {
603 z_depth = VecZDepthOrtho(pt, UNPACK3(vtri_ss), w_tmp);
606 z_depth = VecZDepthPersp(pt, UNPACK3(vtri_ss), w_tmp);
609 if (z_depth < z_depth_best) {
610 best_tri_index = tri_index;
611 z_depth_best = z_depth;
612 copy_v3_v3(w, w_tmp);
617 return best_tri_index; /* will be -1 or a valid face */
620 /* Converts a uv coord into a pixel location wrapping if the uv is outside 0-1 range */
621 static void uvco_to_wrapped_pxco(const float uv[2], int ibuf_x, int ibuf_y, float *x, float *y)
624 *x = fmodf(uv[0], 1.0f);
625 *y = fmodf(uv[1], 1.0f);
627 if (*x < 0.0f) *x += 1.0f;
628 if (*y < 0.0f) *y += 1.0f;
630 *x = *x * ibuf_x - 0.5f;
631 *y = *y * ibuf_y - 0.5f;
634 /* Set the top-most face color that the screen space coord 'pt' touches (or return 0 if none touch) */
635 static bool project_paint_PickColor(
636 const ProjPaintState *ps, const float pt[2],
637 float *rgba_fp, unsigned char *rgba, const bool interp)
640 const float *lt_tri_uv[3];
647 tri_index = project_paint_PickFace(ps, pt, w);
652 lt = &ps->dm_mlooptri[tri_index];
653 PS_LOOPTRI_ASSIGN_UV_3(lt_tri_uv, ps->dm_mloopuv, lt);
655 interp_v2_v2v2v2(uv, UNPACK3(lt_tri_uv), w);
657 ima = project_paint_face_paint_image(ps, tri_index);
658 ibuf = BKE_image_get_first_ibuf(ima); /* we must have got the imbuf before getting here */
663 uvco_to_wrapped_pxco(uv, ibuf->x, ibuf->y, &x, &y);
665 if (ibuf->rect_float) {
667 bilinear_interpolation_color_wrap(ibuf, NULL, rgba_fp, x, y);
671 bilinear_interpolation_color_wrap(ibuf, NULL, rgba_tmp_f, x, y);
672 premul_float_to_straight_uchar(rgba, rgba_tmp_f);
677 bilinear_interpolation_color_wrap(ibuf, rgba, NULL, x, y);
680 unsigned char rgba_tmp[4];
681 bilinear_interpolation_color_wrap(ibuf, rgba_tmp, NULL, x, y);
682 straight_uchar_to_premul_float(rgba_fp, rgba_tmp);
687 //xi = (int)((uv[0]*ibuf->x) + 0.5f);
688 //yi = (int)((uv[1]*ibuf->y) + 0.5f);
689 //if (xi < 0 || xi >= ibuf->x || yi < 0 || yi >= ibuf->y) return 0;
692 xi = mod_i((int)(uv[0] * ibuf->x), ibuf->x);
693 yi = mod_i((int)(uv[1] * ibuf->y), ibuf->y);
696 if (ibuf->rect_float) {
697 const float *rgba_tmp_fp = ibuf->rect_float + (xi + yi * ibuf->x * 4);
698 premul_float_to_straight_uchar(rgba, rgba_tmp_fp);
701 *((unsigned int *)rgba) = *(unsigned int *)(((char *)ibuf->rect) + ((xi + yi * ibuf->x) * 4));
706 if (ibuf->rect_float) {
707 copy_v4_v4(rgba_fp, (ibuf->rect_float + ((xi + yi * ibuf->x) * 4)));
710 unsigned char *tmp_ch = ((unsigned char *)ibuf->rect) + ((xi + yi * ibuf->x) * 4);
711 straight_uchar_to_premul_float(rgba_fp, tmp_ch);
715 BKE_image_release_ibuf(ima, ibuf, NULL);
720 * Check if 'pt' is infront of the 3 verts on the Z axis (used for screenspace occlusion test)
722 * - `0`: no occlusion
723 * - `-1`: no occlusion but 2D intersection is true
725 * - `2`: occluded with `w[3]` weights set (need to know in some cases)
727 static int project_paint_occlude_ptv(
729 const float v1[4], const float v2[4], const float v3[4],
730 float w[3], const bool is_ortho)
732 /* if all are behind us, return false */
733 if (v1[2] > pt[2] && v2[2] > pt[2] && v3[2] > pt[2])
736 /* do a 2D point in try intersection */
737 if (!isect_point_tri_v2(pt, v1, v2, v3))
738 return 0; /* we know there is */
741 /* From here on we know there IS an intersection */
742 /* if ALL of the verts are infront of us then we know it intersects ? */
743 if (v1[2] < pt[2] && v2[2] < pt[2] && v3[2] < pt[2]) {
747 /* we intersect? - find the exact depth at the point of intersection */
748 /* Is this point is occluded by another face? */
750 if (VecZDepthOrtho(pt, v1, v2, v3, w) < pt[2]) return 2;
753 if (VecZDepthPersp(pt, v1, v2, v3, w) < pt[2]) return 2;
760 static int project_paint_occlude_ptv_clip(
762 const float v1[4], const float v2[4], const float v3[4],
763 const float v1_3d[3], const float v2_3d[3], const float v3_3d[3],
764 float w[3], const bool is_ortho, RegionView3D *rv3d)
767 int ret = project_paint_occlude_ptv(pt, v1, v2, v3, w, is_ortho);
772 if (ret == 1) { /* weights not calculated */
774 barycentric_weights_v2(v1, v2, v3, pt, w);
777 barycentric_weights_v2_persp(v1, v2, v3, pt, w);
781 /* Test if we're in the clipped area, */
782 interp_v3_v3v3v3(wco, v1_3d, v2_3d, v3_3d, w);
784 if (!ED_view3d_clipping_test(rv3d, wco, true)) {
792 /* Check if a screenspace location is occluded by any other faces
793 * check, pixelScreenCo must be in screenspace, its Z-Depth only needs to be used for comparison
794 * and doesn't need to be correct in relation to X and Y coords (this is the case in perspective view) */
795 static bool project_bucket_point_occluded(
796 const ProjPaintState *ps, LinkNode *bucketFace,
797 const int orig_face, const float pixelScreenCo[4])
800 const bool do_clip = ps->rv3d ? (ps->rv3d->rflag & RV3D_CLIPPING) != 0 : 0;
802 /* we could return 0 for 1 face buckets, as long as this function assumes
803 * that the point its testing is only every originated from an existing face */
805 for (; bucketFace; bucketFace = bucketFace->next) {
806 const int tri_index = GET_INT_FROM_POINTER(bucketFace->link);
808 if (orig_face != tri_index) {
809 const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
810 const float *vtri_ss[3] = {
811 ps->screenCoords[ps->dm_mloop[lt->tri[0]].v],
812 ps->screenCoords[ps->dm_mloop[lt->tri[1]].v],
813 ps->screenCoords[ps->dm_mloop[lt->tri[2]].v],
818 const float *vtri_co[3] = {
819 ps->dm_mvert[ps->dm_mloop[lt->tri[0]].v].co,
820 ps->dm_mvert[ps->dm_mloop[lt->tri[1]].v].co,
821 ps->dm_mvert[ps->dm_mloop[lt->tri[2]].v].co,
823 isect_ret = project_paint_occlude_ptv_clip(
824 pixelScreenCo, UNPACK3(vtri_ss), UNPACK3(vtri_co),
825 w, ps->is_ortho, ps->rv3d);
828 isect_ret = project_paint_occlude_ptv(
829 pixelScreenCo, UNPACK3(vtri_ss),
833 if (isect_ret >= 1) {
834 /* TODO - we may want to cache the first hit,
835 * it is not possible to swap the face order in the list anymore */
843 /* basic line intersection, could move to math_geom.c, 2 points with a horiz line
844 * 1 for an intersection, 2 if the first point is aligned, 3 if the second point is aligned */
846 #define ISECT_TRUE_P1 2
847 #define ISECT_TRUE_P2 3
848 static int line_isect_y(const float p1[2], const float p2[2], const float y_level, float *x_isect)
852 if (y_level == p1[1]) { /* are we touching the first point? - no interpolation needed */
854 return ISECT_TRUE_P1;
856 if (y_level == p2[1]) { /* are we touching the second point? - no interpolation needed */
858 return ISECT_TRUE_P2;
861 y_diff = fabsf(p1[1] - p2[1]); /* yuck, horizontal line, we cant do much here */
863 if (y_diff < 0.000001f) {
864 *x_isect = (p1[0] + p2[0]) * 0.5f;
868 if (p1[1] > y_level && p2[1] < y_level) {
869 *x_isect = (p2[0] * (p1[1] - y_level) + p1[0] * (y_level - p2[1])) / y_diff; /* (p1[1] - p2[1]); */
872 else if (p1[1] < y_level && p2[1] > y_level) {
873 *x_isect = (p2[0] * (y_level - p1[1]) + p1[0] * (p2[1] - y_level)) / y_diff; /* (p2[1] - p1[1]); */
881 static int line_isect_x(const float p1[2], const float p2[2], const float x_level, float *y_isect)
885 if (x_level == p1[0]) { /* are we touching the first point? - no interpolation needed */
887 return ISECT_TRUE_P1;
889 if (x_level == p2[0]) { /* are we touching the second point? - no interpolation needed */
891 return ISECT_TRUE_P2;
894 x_diff = fabsf(p1[0] - p2[0]); /* yuck, horizontal line, we cant do much here */
896 if (x_diff < 0.000001f) { /* yuck, vertical line, we cant do much here */
897 *y_isect = (p1[0] + p2[0]) * 0.5f;
901 if (p1[0] > x_level && p2[0] < x_level) {
902 *y_isect = (p2[1] * (p1[0] - x_level) + p1[1] * (x_level - p2[0])) / x_diff; /* (p1[0] - p2[0]); */
905 else if (p1[0] < x_level && p2[0] > x_level) {
906 *y_isect = (p2[1] * (x_level - p1[0]) + p1[1] * (p2[0] - x_level)) / x_diff; /* (p2[0] - p1[0]); */
914 /* simple func use for comparing UV locations to check if there are seams.
915 * Its possible this gives incorrect results, when the UVs for 1 face go into the next
916 * tile, but do not do this for the adjacent face, it could return a false positive.
917 * This is so unlikely that Id not worry about it. */
918 #ifndef PROJ_DEBUG_NOSEAMBLEED
919 static bool cmp_uv(const float vec2a[2], const float vec2b[2])
921 /* if the UV's are not between 0.0 and 1.0 */
922 float xa = fmodf(vec2a[0], 1.0f);
923 float ya = fmodf(vec2a[1], 1.0f);
925 float xb = fmodf(vec2b[0], 1.0f);
926 float yb = fmodf(vec2b[1], 1.0f);
928 if (xa < 0.0f) xa += 1.0f;
929 if (ya < 0.0f) ya += 1.0f;
931 if (xb < 0.0f) xb += 1.0f;
932 if (yb < 0.0f) yb += 1.0f;
934 return ((fabsf(xa - xb) < PROJ_GEOM_TOLERANCE) && (fabsf(ya - yb) < PROJ_GEOM_TOLERANCE)) ? 1 : 0;
938 /* set min_px and max_px to the image space bounds of the UV coords
939 * return zero if there is no area in the returned rectangle */
940 #ifndef PROJ_DEBUG_NOSEAMBLEED
941 static bool pixel_bounds_uv(
942 const float uv_quad[4][2],
944 const int ibuf_x, const int ibuf_y
947 float min_uv[2], max_uv[2]; /* UV bounds */
949 INIT_MINMAX2(min_uv, max_uv);
951 minmax_v2v2_v2(min_uv, max_uv, uv_quad[0]);
952 minmax_v2v2_v2(min_uv, max_uv, uv_quad[1]);
953 minmax_v2v2_v2(min_uv, max_uv, uv_quad[2]);
954 minmax_v2v2_v2(min_uv, max_uv, uv_quad[3]);
956 bounds_px->xmin = (int)(ibuf_x * min_uv[0]);
957 bounds_px->ymin = (int)(ibuf_y * min_uv[1]);
959 bounds_px->xmax = (int)(ibuf_x * max_uv[0]) + 1;
960 bounds_px->ymax = (int)(ibuf_y * max_uv[1]) + 1;
962 /*printf("%d %d %d %d\n", min_px[0], min_px[1], max_px[0], max_px[1]);*/
964 /* face uses no UV area when quantized to pixels? */
965 return (bounds_px->xmin == bounds_px->xmax || bounds_px->ymin == bounds_px->ymax) ? 0 : 1;
969 static bool pixel_bounds_array(float (*uv)[2], rcti *bounds_px, const int ibuf_x, const int ibuf_y, int tot)
971 float min_uv[2], max_uv[2]; /* UV bounds */
977 INIT_MINMAX2(min_uv, max_uv);
980 minmax_v2v2_v2(min_uv, max_uv, (*uv));
984 bounds_px->xmin = (int)(ibuf_x * min_uv[0]);
985 bounds_px->ymin = (int)(ibuf_y * min_uv[1]);
987 bounds_px->xmax = (int)(ibuf_x * max_uv[0]) + 1;
988 bounds_px->ymax = (int)(ibuf_y * max_uv[1]) + 1;
990 /*printf("%d %d %d %d\n", min_px[0], min_px[1], max_px[0], max_px[1]);*/
992 /* face uses no UV area when quantized to pixels? */
993 return (bounds_px->xmin == bounds_px->xmax || bounds_px->ymin == bounds_px->ymax) ? 0 : 1;
996 #ifndef PROJ_DEBUG_NOSEAMBLEED
998 static void project_face_winding_init(const ProjPaintState *ps, const int tri_index)
1000 /* detect the winding of faces in uv space */
1001 const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
1002 const float *lt_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, lt) };
1003 float winding = cross_tri_v2(lt_tri_uv[0], lt_tri_uv[1], lt_tri_uv[2]);
1006 ps->faceWindingFlags[tri_index] |= PROJ_FACE_WINDING_CW;
1008 ps->faceWindingFlags[tri_index] |= PROJ_FACE_WINDING_INIT;
1011 /* This function returns 1 if this face has a seam along the 2 face-vert indices
1012 * 'orig_i1_fidx' and 'orig_i2_fidx' */
1013 static bool check_seam(
1014 const ProjPaintState *ps,
1015 const int orig_face, const int orig_i1_fidx, const int orig_i2_fidx,
1016 int *other_face, int *orig_fidx)
1018 const MLoopTri *orig_lt = &ps->dm_mlooptri[orig_face];
1019 const float *orig_lt_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, orig_lt) };
1020 /* vert indices from face vert order indices */
1021 const unsigned int i1 = ps->dm_mloop[orig_lt->tri[orig_i1_fidx]].v;
1022 const unsigned int i2 = ps->dm_mloop[orig_lt->tri[orig_i2_fidx]].v;
1024 int i1_fidx = -1, i2_fidx = -1; /* index in face */
1026 for (node = ps->vertFaces[i1]; node; node = node->next) {
1027 const int tri_index = GET_INT_FROM_POINTER(node->link);
1029 if (tri_index != orig_face) {
1030 const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
1031 const int lt_vtri[3] = { PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) };
1032 /* could check if the 2 faces images match here,
1033 * but then there wouldn't be a way to return the opposite face's info */
1036 /* We need to know the order of the verts in the adjacent face
1037 * set the i1_fidx and i2_fidx to (0,1,2,3) */
1038 i1_fidx = BKE_MESH_TESSTRI_VINDEX_ORDER(lt_vtri, i1);
1039 i2_fidx = BKE_MESH_TESSTRI_VINDEX_ORDER(lt_vtri, i2);
1041 /* Only need to check if 'i2_fidx' is valid because we know i1_fidx is the same vert on both faces */
1042 if (i2_fidx != -1) {
1043 const float *lt_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, lt) };
1044 Image *tpage = project_paint_face_paint_image(ps, tri_index);
1045 Image *orig_tpage = project_paint_face_paint_image(ps, orig_face);
1047 BLI_assert(i1_fidx != -1);
1049 /* This IS an adjacent face!, now lets check if the UVs are ok */
1051 /* set up the other face */
1052 *other_face = tri_index;
1054 /* we check if difference is 1 here, else we might have a case of edge 2-0 for a tri */
1055 *orig_fidx = (i1_fidx < i2_fidx && (i2_fidx - i1_fidx == 1)) ? i1_fidx : i2_fidx;
1057 /* initialize face winding if needed */
1058 if ((ps->faceWindingFlags[tri_index] & PROJ_FACE_WINDING_INIT) == 0)
1059 project_face_winding_init(ps, tri_index);
1061 /* first test if they have the same image */
1062 if ((orig_tpage == tpage) &&
1063 cmp_uv(orig_lt_tri_uv[orig_i1_fidx], lt_tri_uv[i1_fidx]) &&
1064 cmp_uv(orig_lt_tri_uv[orig_i2_fidx], lt_tri_uv[i2_fidx]))
1066 /* if faces don't have the same winding in uv space,
1067 * they are on the same side so edge is boundary */
1068 if ((ps->faceWindingFlags[tri_index] & PROJ_FACE_WINDING_CW) !=
1069 (ps->faceWindingFlags[orig_face] & PROJ_FACE_WINDING_CW))
1074 // printf("SEAM (NONE)\n");
1079 // printf("SEAM (UV GAP)\n");
1085 // printf("SEAM (NO FACE)\n");
1090 #define SMALL_NUMBER 1.e-6f
1091 BLI_INLINE float shell_v2v2_normal_dir_to_dist(float n[2], float d[2])
1093 const float angle_cos = (normalize_v2(n) < SMALL_NUMBER) ? fabsf(dot_v2v2(d, n)) : 0.0f;
1094 return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
1098 /* Calculate outset UV's, this is not the same as simply scaling the UVs,
1099 * since the outset coords are a margin that keep an even distance from the original UV's,
1100 * note that the image aspect is taken into account */
1101 static void uv_image_outset(
1102 float (*orig_uv)[2], float (*outset_uv)[2], const float scaler,
1103 const int ibuf_x, const int ibuf_y, const bool cw)
1105 /* disallow shell-thickness to outset extreme values,
1106 * otherwise near zero area UV's may extend thousands of pixels. */
1107 const float scale_clamp = 5.0f;
1110 float puv[3][2]; /* pixelspace uv's */
1111 float no1[2], no2[2], no3[2]; /* normals */
1112 float dir1[2], dir2[2], dir3[2];
1115 ibuf_inv[0] = 1.0f / (float)ibuf_x;
1116 ibuf_inv[1] = 1.0f / (float)ibuf_y;
1118 /* make UV's in pixel space so we can */
1119 puv[0][0] = orig_uv[0][0] * ibuf_x;
1120 puv[0][1] = orig_uv[0][1] * ibuf_y;
1122 puv[1][0] = orig_uv[1][0] * ibuf_x;
1123 puv[1][1] = orig_uv[1][1] * ibuf_y;
1125 puv[2][0] = orig_uv[2][0] * ibuf_x;
1126 puv[2][1] = orig_uv[2][1] * ibuf_y;
1128 /* face edge directions */
1129 sub_v2_v2v2(dir1, puv[1], puv[0]);
1130 sub_v2_v2v2(dir2, puv[2], puv[1]);
1131 sub_v2_v2v2(dir3, puv[0], puv[2]);
1136 /* here we just use the orthonormality property (a1, a2) dot (a2, -a1) = 0
1137 * to get normals from the edge directions based on the winding */
1139 no1[0] = -dir3[1] - dir1[1];
1140 no1[1] = dir3[0] + dir1[0];
1141 no2[0] = -dir1[1] - dir2[1];
1142 no2[1] = dir1[0] + dir2[0];
1143 no3[0] = -dir2[1] - dir3[1];
1144 no3[1] = dir2[0] + dir3[0];
1147 no1[0] = dir3[1] + dir1[1];
1148 no1[1] = -dir3[0] - dir1[0];
1149 no2[0] = dir1[1] + dir2[1];
1150 no2[1] = -dir1[0] - dir2[0];
1151 no3[0] = dir2[1] + dir3[1];
1152 no3[1] = -dir2[0] - dir3[0];
1155 a1 = shell_v2v2_normal_dir_to_dist(no1, dir3);
1156 a2 = shell_v2v2_normal_dir_to_dist(no2, dir1);
1157 a3 = shell_v2v2_normal_dir_to_dist(no3, dir2);
1159 CLAMP_MAX(a1, scale_clamp);
1160 CLAMP_MAX(a2, scale_clamp);
1161 CLAMP_MAX(a3, scale_clamp);
1163 mul_v2_fl(no1, a1 * scaler);
1164 mul_v2_fl(no2, a2 * scaler);
1165 mul_v2_fl(no3, a3 * scaler);
1166 add_v2_v2v2(outset_uv[0], puv[0], no1);
1167 add_v2_v2v2(outset_uv[1], puv[1], no2);
1168 add_v2_v2v2(outset_uv[2], puv[2], no3);
1170 mul_v2_v2(outset_uv[0], ibuf_inv);
1171 mul_v2_v2(outset_uv[1], ibuf_inv);
1172 mul_v2_v2(outset_uv[2], ibuf_inv);
1176 * Be tricky with flags, first 4 bits are PROJ_FACE_SEAM1 to 4, last 4 bits are PROJ_FACE_NOSEAM1 to 4
1177 * 1<<i - where i is (0-3)
1179 * If we're multithreadng, make sure threads are locked when this is called
1181 static void project_face_seams_init(const ProjPaintState *ps, const int tri_index)
1183 int other_face, other_fidx; /* vars for the other face, we also set its flag */
1185 int fidx2 = 0; /* next fidx in the face (0,1,2,3) -> (1,2,3,0) or (0,1,2) -> (1,2,0) for a tri */
1187 /* initialize face winding if needed */
1188 if ((ps->faceWindingFlags[tri_index] & PROJ_FACE_WINDING_INIT) == 0)
1189 project_face_winding_init(ps, tri_index);
1192 if ((ps->faceSeamFlags[tri_index] & (1 << fidx1 | 16 << fidx1)) == 0) {
1193 if (check_seam(ps, tri_index, fidx1, fidx2, &other_face, &other_fidx)) {
1194 ps->faceSeamFlags[tri_index] |= 1 << fidx1;
1195 if (other_face != -1)
1196 ps->faceSeamFlags[other_face] |= 1 << other_fidx;
1199 ps->faceSeamFlags[tri_index] |= 16 << fidx1;
1200 if (other_face != -1)
1201 ps->faceSeamFlags[other_face] |= 16 << other_fidx; /* second 4 bits for disabled */
1208 #endif // PROJ_DEBUG_NOSEAMBLEED
1211 /* Converts a UV location to a 3D screenspace location
1212 * Takes a 'uv' and 3 UV coords, and sets the values of pixelScreenCo
1214 * This is used for finding a pixels location in screenspace for painting */
1215 static void screen_px_from_ortho(
1217 const float v1co[3], const float v2co[3], const float v3co[3], /* Screenspace coords */
1218 const float uv1co[2], const float uv2co[2], const float uv3co[2],
1219 float pixelScreenCo[4],
1222 barycentric_weights_v2(uv1co, uv2co, uv3co, uv, w);
1223 interp_v3_v3v3v3(pixelScreenCo, v1co, v2co, v3co, w);
1226 /* same as screen_px_from_ortho except we
1227 * do perspective correction on the pixel coordinate */
1228 static void screen_px_from_persp(
1230 const float v1co[4], const float v2co[4], const float v3co[4], /* screenspace coords */
1231 const float uv1co[2], const float uv2co[2], const float uv3co[2],
1232 float pixelScreenCo[4],
1236 float wtot_inv, wtot;
1237 barycentric_weights_v2(uv1co, uv2co, uv3co, uv, w);
1239 /* re-weight from the 4th coord of each screen vert */
1240 w_int[0] = w[0] * v1co[3];
1241 w_int[1] = w[1] * v2co[3];
1242 w_int[2] = w[2] * v3co[3];
1244 wtot = w_int[0] + w_int[1] + w_int[2];
1247 wtot_inv = 1.0f / wtot;
1248 w_int[0] *= wtot_inv;
1249 w_int[1] *= wtot_inv;
1250 w_int[2] *= wtot_inv;
1253 w[0] = w[1] = w[2] =
1254 w_int[0] = w_int[1] = w_int[2] = 1.0f / 3.0f; /* dummy values for zero area face */
1256 /* done re-weighting */
1258 /* do interpolation based on projected weight */
1259 interp_v3_v3v3v3(pixelScreenCo, v1co, v2co, v3co, w_int);
1264 * Set a direction vector based on a screen location.
1265 * (use for perspective view, else we can simply use `ps->viewDir`)
1267 * Similar functionality to #ED_view3d_win_to_vector
1269 * \param r_dir: Resulting direction (length is undefined).
1271 static void screen_px_to_vector_persp(
1272 int winx, int winy, const float projmat_inv[4][4], const float view_pos[3],
1273 const float co_px[2],
1276 r_dir[0] = 2.0f * (co_px[0] / winx) - 1.0f;
1277 r_dir[1] = 2.0f * (co_px[1] / winy) - 1.0f;
1279 mul_project_m4_v3((float(*)[4])projmat_inv, r_dir);
1280 sub_v3_v3(r_dir, view_pos);
1284 * Special function to return the factor to a point along a line in pixel space.
1286 * This is needed since we can't use #line_point_factor_v2 for perspective screen-space coords.
1288 * \param p: 2D screen-space location.
1289 * \param v1, v2: 3D object-space locations.
1291 static float screen_px_line_point_factor_v2_persp(
1292 const ProjPaintState *ps,
1294 const float v1[3], const float v2[3])
1296 const float zero[3] = {0};
1297 float v1_proj[3], v2_proj[3];
1300 screen_px_to_vector_persp(ps->winx, ps->winy, ps->projectMatInv, ps->viewPos, p, dir);
1302 sub_v3_v3v3(v1_proj, v1, ps->viewPos);
1303 sub_v3_v3v3(v2_proj, v2, ps->viewPos);
1305 project_plane_v3_v3v3(v1_proj, v1_proj, dir);
1306 project_plane_v3_v3v3(v2_proj, v2_proj, dir);
1308 return line_point_factor_v2(zero, v1_proj, v2_proj);
1312 static void project_face_pixel(
1313 const float *lt_tri_uv[3], ImBuf *ibuf_other, const float w[3],
1314 unsigned char rgba_ub[4], float rgba_f[4])
1316 float uv_other[2], x, y;
1318 interp_v2_v2v2v2(uv_other, UNPACK3(lt_tri_uv), w);
1321 uvco_to_wrapped_pxco(uv_other, ibuf_other->x, ibuf_other->y, &x, &y);
1323 if (ibuf_other->rect_float) { /* from float to float */
1324 bilinear_interpolation_color_wrap(ibuf_other, NULL, rgba_f, x, y);
1326 else { /* from char to float */
1327 bilinear_interpolation_color_wrap(ibuf_other, rgba_ub, NULL, x, y);
1332 /* run this outside project_paint_uvpixel_init since pixels with mask 0 don't need init */
1333 static float project_paint_uvpixel_mask(
1334 const ProjPaintState *ps,
1335 const int tri_index,
1341 if (ps->do_layer_stencil) {
1342 /* another UV maps image is masking this one's */
1344 Image *other_tpage = ps->stencil_ima;
1346 if (other_tpage && (ibuf_other = BKE_image_acquire_ibuf(other_tpage, NULL, NULL))) {
1347 const MLoopTri *lt_other = &ps->dm_mlooptri[tri_index];
1348 const float *lt_other_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, lt_other) };
1350 /* BKE_image_acquire_ibuf - TODO - this may be slow */
1351 unsigned char rgba_ub[4];
1354 project_face_pixel(lt_other_tri_uv, ibuf_other, w, rgba_ub, rgba_f);
1356 if (ibuf_other->rect_float) { /* from float to float */
1357 mask = ((rgba_f[0] + rgba_f[1] + rgba_f[2]) * (1.0f / 3.0f)) * rgba_f[3];
1359 else { /* from char to float */
1360 mask = ((rgba_ub[0] + rgba_ub[1] + rgba_ub[2]) * (1.0f / (255.0f * 3.0f))) * (rgba_ub[3] * (1.0f / 255.0f));
1363 BKE_image_release_ibuf(other_tpage, ibuf_other, NULL);
1365 if (!ps->do_layer_stencil_inv) /* matching the gimps layer mask black/white rules, white==full opacity */
1366 mask = (1.0f - mask);
1380 if (ps->do_mask_cavity) {
1381 const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
1382 const int lt_vtri[3] = { PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) };
1383 float ca1, ca2, ca3, ca_mask;
1384 ca1 = ps->cavities[lt_vtri[0]];
1385 ca2 = ps->cavities[lt_vtri[1]];
1386 ca3 = ps->cavities[lt_vtri[2]];
1388 ca_mask = w[0] * ca1 + w[1] * ca2 + w[2] * ca3;
1389 ca_mask = curvemapping_evaluateF(ps->cavity_curve, 0, ca_mask);
1390 CLAMP(ca_mask, 0.0f, 1.0f);
1394 /* calculate mask */
1395 if (ps->do_mask_normal) {
1396 const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
1397 const int lt_vtri[3] = { PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) };
1398 const MPoly *mp = &ps->dm_mpoly[lt->poly];
1399 float no[3], angle_cos;
1401 if (mp->flag & ME_SMOOTH) {
1402 const short *no1, *no2, *no3;
1403 no1 = ps->dm_mvert[lt_vtri[0]].no;
1404 no2 = ps->dm_mvert[lt_vtri[1]].no;
1405 no3 = ps->dm_mvert[lt_vtri[2]].no;
1407 no[0] = w[0] * no1[0] + w[1] * no2[0] + w[2] * no3[0];
1408 no[1] = w[0] * no1[1] + w[1] * no2[1] + w[2] * no3[1];
1409 no[2] = w[0] * no1[2] + w[1] * no2[2] + w[2] * no3[2];
1415 /* normalizing per pixel isn't optimal, we could cache or check ps->*/
1417 ps->dm_mvert[lt_vtri[0]].co,
1418 ps->dm_mvert[lt_vtri[1]].co,
1419 ps->dm_mvert[lt_vtri[2]].co);
1421 /* don't use because some modifiers dont have normal data (subsurf for eg) */
1422 copy_v3_v3(no, (float *)ps->dm->getTessFaceData(ps->dm, tri_index, CD_NORMAL));
1426 if (UNLIKELY(ps->is_flip_object)) {
1430 /* now we can use the normal as a mask */
1432 angle_cos = dot_v3v3(ps->viewDir, no);
1435 /* Annoying but for the perspective view we need to get the pixels location in 3D space :/ */
1436 float viewDirPersp[3];
1437 const float *co1, *co2, *co3;
1438 co1 = ps->dm_mvert[lt_vtri[0]].co;
1439 co2 = ps->dm_mvert[lt_vtri[1]].co;
1440 co3 = ps->dm_mvert[lt_vtri[2]].co;
1442 /* Get the direction from the viewPoint to the pixel and normalize */
1443 viewDirPersp[0] = (ps->viewPos[0] - (w[0] * co1[0] + w[1] * co2[0] + w[2] * co3[0]));
1444 viewDirPersp[1] = (ps->viewPos[1] - (w[0] * co1[1] + w[1] * co2[1] + w[2] * co3[1]));
1445 viewDirPersp[2] = (ps->viewPos[2] - (w[0] * co1[2] + w[1] * co2[2] + w[2] * co3[2]));
1446 normalize_v3(viewDirPersp);
1447 if (UNLIKELY(ps->is_flip_object)) {
1448 negate_v3(viewDirPersp);
1451 angle_cos = dot_v3v3(viewDirPersp, no);
1454 if (angle_cos <= ps->normal_angle__cos) {
1455 return 0.0f; /* outsize the normal limit*/
1457 else if (angle_cos < ps->normal_angle_inner__cos) {
1458 mask *= (ps->normal_angle - acosf(angle_cos)) / ps->normal_angle_range;
1459 } /* otherwise no mask normal is needed, were within the limit */
1462 /* This only works when the opacity dosnt change while painting, stylus pressure messes with this
1463 * so don't use it. */
1464 // if (ps->is_airbrush == 0) mask *= BKE_brush_alpha_get(ps->brush);
1469 static int project_paint_pixel_sizeof(const short tool)
1471 if ((tool == PAINT_TOOL_CLONE) || (tool == PAINT_TOOL_SMEAR)) {
1472 return sizeof(ProjPixelClone);
1475 return sizeof(ProjPixel);
1479 static int project_paint_undo_subtiles(const TileInfo *tinf, int tx, int ty)
1481 ProjPaintImage *pjIma = tinf->pjima;
1482 int tile_index = tx + ty * tinf->tile_width;
1483 bool generate_tile = false;
1485 /* double check lock to avoid locking */
1486 if (UNLIKELY(!pjIma->undoRect[tile_index])) {
1488 BLI_spin_lock(tinf->lock);
1489 if (LIKELY(!pjIma->undoRect[tile_index])) {
1490 pjIma->undoRect[tile_index] = TILE_PENDING;
1491 generate_tile = true;
1494 BLI_spin_unlock(tinf->lock);
1498 if (generate_tile) {
1499 volatile void *undorect;
1501 undorect = image_undo_push_tile(
1502 pjIma->ima, pjIma->ibuf, tinf->tmpibuf,
1503 tx, ty, &pjIma->maskRect[tile_index], &pjIma->valid[tile_index], true, false);
1506 undorect = image_undo_push_tile(
1507 pjIma->ima, pjIma->ibuf, tinf->tmpibuf,
1508 tx, ty, NULL, &pjIma->valid[tile_index], true, false);
1511 pjIma->ibuf->userflags |= IB_BITMAPDIRTY;
1512 /* tile ready, publish */
1514 BLI_spin_lock(tinf->lock);
1515 pjIma->undoRect[tile_index] = undorect;
1517 BLI_spin_unlock(tinf->lock);
1524 /* run this function when we know a bucket's, face's pixel can be initialized,
1525 * return the ProjPixel which is added to 'ps->bucketRect[bucket_index]' */
1526 static ProjPixel *project_paint_uvpixel_init(
1527 const ProjPaintState *ps,
1529 const TileInfo *tinf,
1532 const int tri_index,
1533 const float pixelScreenCo[4],
1534 const float world_spaceCo[3],
1537 ProjPixel *projPixel;
1539 int x_round, y_round;
1541 /* volatile is important here to ensure pending check is not optimized away by compiler*/
1542 volatile int tile_index;
1544 ProjPaintImage *projima = tinf->pjima;
1545 ImBuf *ibuf = projima->ibuf;
1546 /* wrap pixel location */
1548 x_px = mod_i(x_px, ibuf->x);
1549 y_px = mod_i(y_px, ibuf->y);
1551 BLI_assert(ps->pixel_sizeof == project_paint_pixel_sizeof(ps->tool));
1552 projPixel = BLI_memarena_alloc(arena, ps->pixel_sizeof);
1554 /* calculate the undo tile offset of the pixel, used to store the original
1555 * pixel color and accumulated mask if any */
1556 x_tile = x_px >> IMAPAINT_TILE_BITS;
1557 y_tile = y_px >> IMAPAINT_TILE_BITS;
1559 x_round = x_tile * IMAPAINT_TILE_SIZE;
1560 y_round = y_tile * IMAPAINT_TILE_SIZE;
1561 //memset(projPixel, 0, size);
1563 tile_offset = (x_px - x_round) + (y_px - y_round) * IMAPAINT_TILE_SIZE;
1564 tile_index = project_paint_undo_subtiles(tinf, x_tile, y_tile);
1566 /* other thread may be initializing the tile so wait here */
1567 while (projima->undoRect[tile_index] == TILE_PENDING)
1570 BLI_assert(tile_index < (IMAPAINT_TILE_NUMBER(ibuf->x) * IMAPAINT_TILE_NUMBER(ibuf->y)));
1571 BLI_assert(tile_offset < (IMAPAINT_TILE_SIZE * IMAPAINT_TILE_SIZE));
1573 projPixel->valid = projima->valid[tile_index];
1575 if (ibuf->rect_float) {
1576 projPixel->pixel.f_pt = ibuf->rect_float + ((x_px + y_px * ibuf->x) * 4);
1577 projPixel->origColor.f_pt = (float *)projima->undoRect[tile_index] + 4 * tile_offset;
1578 zero_v4(projPixel->newColor.f);
1581 projPixel->pixel.ch_pt = (unsigned char *)(ibuf->rect + (x_px + y_px * ibuf->x));
1582 projPixel->origColor.uint_pt = (unsigned int *)projima->undoRect[tile_index] + tile_offset;
1583 projPixel->newColor.uint = 0;
1586 /* screenspace unclamped, we could keep its z and w values but don't need them at the moment */
1587 if (ps->brush->mtex.brush_map_mode == MTEX_MAP_MODE_3D) {
1588 copy_v3_v3(projPixel->worldCoSS, world_spaceCo);
1591 copy_v2_v2(projPixel->projCoSS, pixelScreenCo);
1593 projPixel->x_px = x_px;
1594 projPixel->y_px = y_px;
1596 projPixel->mask = (unsigned short)(mask * 65535);
1598 projPixel->mask_accum = projima->maskRect[tile_index] + tile_offset;
1600 projPixel->mask_accum = NULL;
1602 /* which bounding box cell are we in?, needed for undo */
1603 projPixel->bb_cell_index = ((int)(((float)x_px / (float)ibuf->x) * PROJ_BOUNDBOX_DIV)) +
1604 ((int)(((float)y_px / (float)ibuf->y) * PROJ_BOUNDBOX_DIV)) * PROJ_BOUNDBOX_DIV;
1606 /* done with view3d_project_float inline */
1607 if (ps->tool == PAINT_TOOL_CLONE) {
1608 if (ps->dm_mloopuv_clone) {
1610 Image *other_tpage = project_paint_face_clone_image(ps, tri_index);
1612 if (other_tpage && (ibuf_other = BKE_image_acquire_ibuf(other_tpage, NULL, NULL))) {
1613 const MLoopTri *lt_other = &ps->dm_mlooptri[tri_index];
1614 const float *lt_other_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv_clone, lt_other) };
1616 /* BKE_image_acquire_ibuf - TODO - this may be slow */
1618 if (ibuf->rect_float) {
1619 if (ibuf_other->rect_float) { /* from float to float */
1620 project_face_pixel(lt_other_tri_uv, ibuf_other, w, NULL, ((ProjPixelClone *)projPixel)->clonepx.f);
1622 else { /* from char to float */
1623 unsigned char rgba_ub[4];
1625 project_face_pixel(lt_other_tri_uv, ibuf_other, w, rgba_ub, NULL);
1626 srgb_to_linearrgb_uchar4(rgba, rgba_ub);
1627 straight_to_premul_v4_v4(((ProjPixelClone *)projPixel)->clonepx.f, rgba);
1631 if (ibuf_other->rect_float) { /* float to char */
1633 project_face_pixel(lt_other_tri_uv, ibuf_other, w, NULL, rgba);
1634 premul_to_straight_v4(rgba);
1635 linearrgb_to_srgb_uchar3(((ProjPixelClone *)projPixel)->clonepx.ch, rgba);
1636 ((ProjPixelClone *)projPixel)->clonepx.ch[3] = rgba[3] * 255;
1638 else { /* char to char */
1639 project_face_pixel(lt_other_tri_uv, ibuf_other, w, ((ProjPixelClone *)projPixel)->clonepx.ch, NULL);
1643 BKE_image_release_ibuf(other_tpage, ibuf_other, NULL);
1646 if (ibuf->rect_float) {
1647 ((ProjPixelClone *)projPixel)->clonepx.f[3] = 0;
1650 ((ProjPixelClone *)projPixel)->clonepx.ch[3] = 0;
1657 sub_v2_v2v2(co, projPixel->projCoSS, ps->cloneOffset);
1659 /* no need to initialize the bucket, we're only checking buckets faces and for this
1660 * the faces are already initialized in project_paint_delayed_face_init(...) */
1661 if (ibuf->rect_float) {
1662 if (!project_paint_PickColor(ps, co, ((ProjPixelClone *)projPixel)->clonepx.f, NULL, 1)) {
1663 ((ProjPixelClone *)projPixel)->clonepx.f[3] = 0; /* zero alpha - ignore */
1667 if (!project_paint_PickColor(ps, co, NULL, ((ProjPixelClone *)projPixel)->clonepx.ch, 1)) {
1668 ((ProjPixelClone *)projPixel)->clonepx.ch[3] = 0; /* zero alpha - ignore */
1674 #ifdef PROJ_DEBUG_PAINT
1675 if (ibuf->rect_float) projPixel->pixel.f_pt[0] = 0;
1676 else projPixel->pixel.ch_pt[0] = 0;
1678 /* pointer arithmetics */
1679 projPixel->image_index = projima - ps->projImages;
1684 static bool line_clip_rect2f(
1685 const rctf *cliprect,
1687 const float l1[2], const float l2[2],
1688 float l1_clip[2], float l2_clip[2])
1690 /* first account for horizontal, then vertical lines */
1692 if (fabsf(l1[1] - l2[1]) < PROJ_PIXEL_TOLERANCE) {
1693 /* is the line out of range on its Y axis? */
1694 if (l1[1] < rect->ymin || l1[1] > rect->ymax) {
1697 /* line is out of range on its X axis */
1698 if ((l1[0] < rect->xmin && l2[0] < rect->xmin) || (l1[0] > rect->xmax && l2[0] > rect->xmax)) {
1703 if (fabsf(l1[0] - l2[0]) < PROJ_PIXEL_TOLERANCE) { /* this is a single point (or close to)*/
1704 if (BLI_rctf_isect_pt_v(rect, l1)) {
1705 copy_v2_v2(l1_clip, l1);
1706 copy_v2_v2(l2_clip, l2);
1714 copy_v2_v2(l1_clip, l1);
1715 copy_v2_v2(l2_clip, l2);
1716 CLAMP(l1_clip[0], rect->xmin, rect->xmax);
1717 CLAMP(l2_clip[0], rect->xmin, rect->xmax);
1720 else if (fabsf(l1[0] - l2[0]) < PROJ_PIXEL_TOLERANCE) {
1721 /* is the line out of range on its X axis? */
1722 if (l1[0] < rect->xmin || l1[0] > rect->xmax) {
1726 /* line is out of range on its Y axis */
1727 if ((l1[1] < rect->ymin && l2[1] < rect->ymin) || (l1[1] > rect->ymax && l2[1] > rect->ymax)) {
1731 if (fabsf(l1[1] - l2[1]) < PROJ_PIXEL_TOLERANCE) { /* this is a single point (or close to)*/
1732 if (BLI_rctf_isect_pt_v(rect, l1)) {
1733 copy_v2_v2(l1_clip, l1);
1734 copy_v2_v2(l2_clip, l2);
1742 copy_v2_v2(l1_clip, l1);
1743 copy_v2_v2(l2_clip, l2);
1744 CLAMP(l1_clip[1], rect->ymin, rect->ymax);
1745 CLAMP(l2_clip[1], rect->ymin, rect->ymax);
1753 /* Done with vertical lines */
1755 /* are either of the points inside the rectangle ? */
1756 if (BLI_rctf_isect_pt_v(rect, l1)) {
1757 copy_v2_v2(l1_clip, l1);
1761 if (BLI_rctf_isect_pt_v(rect, l2)) {
1762 copy_v2_v2(l2_clip, l2);
1766 /* line inside rect */
1767 if (ok1 && ok2) return 1;
1770 if (line_isect_y(l1, l2, rect->ymin, &isect) && (isect >= cliprect->xmin) && (isect <= cliprect->xmax)) {
1771 if (l1[1] < l2[1]) { /* line 1 is outside */
1773 l1_clip[1] = rect->ymin;
1778 l2_clip[1] = rect->ymin;
1783 if (ok1 && ok2) return 1;
1785 if (line_isect_y(l1, l2, rect->ymax, &isect) && (isect >= cliprect->xmin) && (isect <= cliprect->xmax)) {
1786 if (l1[1] > l2[1]) { /* line 1 is outside */
1788 l1_clip[1] = rect->ymax;
1793 l2_clip[1] = rect->ymax;
1798 if (ok1 && ok2) return 1;
1801 if (line_isect_x(l1, l2, rect->xmin, &isect) && (isect >= cliprect->ymin) && (isect <= cliprect->ymax)) {
1802 if (l1[0] < l2[0]) { /* line 1 is outside */
1803 l1_clip[0] = rect->xmin;
1808 l2_clip[0] = rect->xmin;
1814 if (ok1 && ok2) return 1;
1816 if (line_isect_x(l1, l2, rect->xmax, &isect) && (isect >= cliprect->ymin) && (isect <= cliprect->ymax)) {
1817 if (l1[0] > l2[0]) { /* line 1 is outside */
1818 l1_clip[0] = rect->xmax;
1823 l2_clip[0] = rect->xmax;
1841 * Scale the tri about its center
1842 * scaling by #PROJ_FACE_SCALE_SEAM (0.99x) is used for getting fake UV pixel coords that are on the
1843 * edge of the face but slightly inside it occlusion tests don't return hits on adjacent faces
1845 #ifndef PROJ_DEBUG_NOSEAMBLEED
1847 static void scale_tri(float insetCos[3][3], const float *origCos[4], const float inset)
1850 cent[0] = (origCos[0][0] + origCos[1][0] + origCos[2][0]) * (1.0f / 3.0f);
1851 cent[1] = (origCos[0][1] + origCos[1][1] + origCos[2][1]) * (1.0f / 3.0f);
1852 cent[2] = (origCos[0][2] + origCos[1][2] + origCos[2][2]) * (1.0f / 3.0f);
1854 sub_v3_v3v3(insetCos[0], origCos[0], cent);
1855 sub_v3_v3v3(insetCos[1], origCos[1], cent);
1856 sub_v3_v3v3(insetCos[2], origCos[2], cent);
1858 mul_v3_fl(insetCos[0], inset);
1859 mul_v3_fl(insetCos[1], inset);
1860 mul_v3_fl(insetCos[2], inset);
1862 add_v3_v3(insetCos[0], cent);
1863 add_v3_v3(insetCos[1], cent);
1864 add_v3_v3(insetCos[2], cent);
1866 #endif //PROJ_DEBUG_NOSEAMBLEED
1868 static float len_squared_v2v2_alt(const float v1[2], const float v2_1, const float v2_2)
1874 return x * x + y * y;
1877 /* note, use a squared value so we can use len_squared_v2v2
1878 * be sure that you have done a bounds check first or this may fail */
1879 /* only give bucket_bounds as an arg because we need it elsewhere */
1880 static bool project_bucket_isect_circle(const float cent[2], const float radius_squared, const rctf *bucket_bounds)
1883 /* Would normally to a simple intersection test, however we know the bounds of these 2 already intersect
1884 * so we only need to test if the center is inside the vertical or horizontal bounds on either axis,
1885 * this is even less work then an intersection test
1888 if (BLI_rctf_isect_pt_v(bucket_bounds, cent))
1892 if ((bucket_bounds->xmin <= cent[0] && bucket_bounds->xmax >= cent[0]) ||
1893 (bucket_bounds->ymin <= cent[1] && bucket_bounds->ymax >= cent[1]))
1898 /* out of bounds left */
1899 if (cent[0] < bucket_bounds->xmin) {
1900 /* lower left out of radius test */
1901 if (cent[1] < bucket_bounds->ymin) {
1902 return (len_squared_v2v2_alt(cent, bucket_bounds->xmin, bucket_bounds->ymin) < radius_squared) ? 1 : 0;
1905 else if (cent[1] > bucket_bounds->ymax) {
1906 return (len_squared_v2v2_alt(cent, bucket_bounds->xmin, bucket_bounds->ymax) < radius_squared) ? 1 : 0;
1909 else if (cent[0] > bucket_bounds->xmax) {
1910 /* lower right out of radius test */
1911 if (cent[1] < bucket_bounds->ymin) {
1912 return (len_squared_v2v2_alt(cent, bucket_bounds->xmax, bucket_bounds->ymin) < radius_squared) ? 1 : 0;
1914 /* top right test */
1915 else if (cent[1] > bucket_bounds->ymax) {
1916 return (len_squared_v2v2_alt(cent, bucket_bounds->xmax, bucket_bounds->ymax) < radius_squared) ? 1 : 0;
1925 /* Note for rect_to_uvspace_ortho() and rect_to_uvspace_persp()
1926 * in ortho view this function gives good results when bucket_bounds are outside the triangle
1927 * however in some cases, perspective view will mess up with faces that have minimal screenspace area
1928 * (viewed from the side)
1930 * for this reason its not reliable in this case so we'll use the Simple Barycentric'
1931 * funcs that only account for points inside the triangle.
1932 * however switching back to this for ortho is always an option */
1934 static void rect_to_uvspace_ortho(
1935 const rctf *bucket_bounds,
1936 const float *v1coSS, const float *v2coSS, const float *v3coSS,
1937 const float *uv1co, const float *uv2co, const float *uv3co,
1938 float bucket_bounds_uv[4][2],
1944 /* get the UV space bounding box */
1945 uv[0] = bucket_bounds->xmax;
1946 uv[1] = bucket_bounds->ymin;
1947 barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1948 interp_v2_v2v2v2(bucket_bounds_uv[flip ? 3 : 0], uv1co, uv2co, uv3co, w);
1950 //uv[0] = bucket_bounds->xmax; // set above
1951 uv[1] = bucket_bounds->ymax;
1952 barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1953 interp_v2_v2v2v2(bucket_bounds_uv[flip ? 2 : 1], uv1co, uv2co, uv3co, w);
1955 uv[0] = bucket_bounds->xmin;
1956 //uv[1] = bucket_bounds->ymax; // set above
1957 barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1958 interp_v2_v2v2v2(bucket_bounds_uv[flip ? 1 : 2], uv1co, uv2co, uv3co, w);
1960 //uv[0] = bucket_bounds->xmin; // set above
1961 uv[1] = bucket_bounds->ymin;
1962 barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1963 interp_v2_v2v2v2(bucket_bounds_uv[flip ? 0 : 3], uv1co, uv2co, uv3co, w);
1966 /* same as above but use barycentric_weights_v2_persp */
1967 static void rect_to_uvspace_persp(
1968 const rctf *bucket_bounds,
1969 const float *v1coSS, const float *v2coSS, const float *v3coSS,
1970 const float *uv1co, const float *uv2co, const float *uv3co,
1971 float bucket_bounds_uv[4][2],
1978 /* get the UV space bounding box */
1979 uv[0] = bucket_bounds->xmax;
1980 uv[1] = bucket_bounds->ymin;
1981 barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1982 interp_v2_v2v2v2(bucket_bounds_uv[flip ? 3 : 0], uv1co, uv2co, uv3co, w);
1984 //uv[0] = bucket_bounds->xmax; // set above
1985 uv[1] = bucket_bounds->ymax;
1986 barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1987 interp_v2_v2v2v2(bucket_bounds_uv[flip ? 2 : 1], uv1co, uv2co, uv3co, w);
1989 uv[0] = bucket_bounds->xmin;
1990 //uv[1] = bucket_bounds->ymax; // set above
1991 barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1992 interp_v2_v2v2v2(bucket_bounds_uv[flip ? 1 : 2], uv1co, uv2co, uv3co, w);
1994 //uv[0] = bucket_bounds->xmin; // set above
1995 uv[1] = bucket_bounds->ymin;
1996 barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1997 interp_v2_v2v2v2(bucket_bounds_uv[flip ? 0 : 3], uv1co, uv2co, uv3co, w);
2000 /* This works as we need it to but we can save a few steps and not use it */
2003 static float angle_2d_clockwise(const float p1[2], const float p2[2], const float p3[2])
2007 v1[0] = p1[0] - p2[0]; v1[1] = p1[1] - p2[1];
2008 v2[0] = p3[0] - p2[0]; v2[1] = p3[1] - p2[1];
2010 return -atan2f(v1[0] * v2[1] - v1[1] * v2[0], v1[0] * v2[0] + v1[1] * v2[1]);
2015 #define ISECT_2 (1 << 1)
2016 #define ISECT_3 (1 << 2)
2017 #define ISECT_4 (1 << 3)
2018 #define ISECT_ALL3 ((1 << 3) - 1)
2019 #define ISECT_ALL4 ((1 << 4) - 1)
2021 /* limit must be a fraction over 1.0f */
2022 static bool IsectPT2Df_limit(
2024 const float v1[2], const float v2[2], const float v3[2],
2027 return ((area_tri_v2(pt, v1, v2) +
2028 area_tri_v2(pt, v2, v3) +
2029 area_tri_v2(pt, v3, v1)) / (area_tri_v2(v1, v2, v3))) < limit;
2032 /* Clip the face by a bucket and set the uv-space bucket_bounds_uv
2033 * so we have the clipped UV's to do pixel intersection tests with
2035 static int float_z_sort_flip(const void *p1, const void *p2)
2037 return (((float *)p1)[2] < ((float *)p2)[2] ? 1 : -1);
2040 static int float_z_sort(const void *p1, const void *p2)
2042 return (((float *)p1)[2] < ((float *)p2)[2] ? -1 : 1);
2045 /* assumes one point is within the rectangle */
2046 static bool line_rect_clip(
2048 const float l1[4], const float l2[4],
2049 const float uv1[2], const float uv2[2],
2050 float uv[2], bool is_ortho)
2052 float min = FLT_MAX, tmp;
2053 float xlen = l2[0] - l1[0];
2054 float ylen = l2[1] - l1[1];
2056 /* 0.1 might seem too much, but remember, this is pixels! */
2058 if ((l1[0] - rect->xmin) * (l2[0] - rect->xmin) <= 0) {
2060 min = min_ff((tmp - l1[0]) / xlen, min);
2062 else if ((l1[0] - rect->xmax) * (l2[0] - rect->xmax) < 0) {
2064 min = min_ff((tmp - l1[0]) / xlen, min);
2069 if ((l1[1] - rect->ymin) * (l2[1] - rect->ymin) <= 0) {
2071 min = min_ff((tmp - l1[1]) / ylen, min);
2073 else if ((l1[1] - rect->ymax) * (l2[1] - rect->ymax) < 0) {
2075 min = min_ff((tmp - l1[1]) / ylen, min);
2082 tmp = (is_ortho) ? 1.0f : (l1[3] + min * (l2[3] - l1[3]));
2084 uv[0] = (uv1[0] + min / tmp * (uv2[0] - uv1[0]));
2085 uv[1] = (uv1[1] + min / tmp * (uv2[1] - uv1[1]));
2091 static void project_bucket_clip_face(
2092 const bool is_ortho, const bool is_flip_object,
2093 const rctf *cliprect,
2094 const rctf *bucket_bounds,
2095 const float *v1coSS, const float *v2coSS, const float *v3coSS,
2096 const float *uv1co, const float *uv2co, const float *uv3co,
2097 float bucket_bounds_uv[8][2],
2098 int *tot, bool cull)
2100 int inside_bucket_flag = 0;
2101 int inside_face_flag = 0;
2103 bool collinear = false;
2105 float bucket_bounds_ss[4][2];
2107 /* detect pathological case where face the three vertices are almost collinear in screen space.
2108 * mostly those will be culled but when flood filling or with smooth shading it's a possibility */
2109 if (min_fff(dist_squared_to_line_v2(v1coSS, v2coSS, v3coSS),
2110 dist_squared_to_line_v2(v2coSS, v3coSS, v1coSS),
2111 dist_squared_to_line_v2(v3coSS, v1coSS, v2coSS)) < PROJ_PIXEL_TOLERANCE)
2116 /* get the UV space bounding box */
2117 inside_bucket_flag |= BLI_rctf_isect_pt_v(bucket_bounds, v1coSS);
2118 inside_bucket_flag |= BLI_rctf_isect_pt_v(bucket_bounds, v2coSS) << 1;
2119 inside_bucket_flag |= BLI_rctf_isect_pt_v(bucket_bounds, v3coSS) << 2;
2121 if (inside_bucket_flag == ISECT_ALL3) {
2122 /* is_flip_object is used here because we use the face winding */
2123 flip = (((line_point_side_v2(v1coSS, v2coSS, v3coSS) > 0.0f) != is_flip_object) !=
2124 (line_point_side_v2(uv1co, uv2co, uv3co) > 0.0f));
2126 /* all screenspace points are inside the bucket bounding box,
2127 * this means we don't need to clip and can simply return the UVs */
2128 if (flip) { /* facing the back? */
2129 copy_v2_v2(bucket_bounds_uv[0], uv3co);
2130 copy_v2_v2(bucket_bounds_uv[1], uv2co);
2131 copy_v2_v2(bucket_bounds_uv[2], uv1co);
2134 copy_v2_v2(bucket_bounds_uv[0], uv1co);
2135 copy_v2_v2(bucket_bounds_uv[1], uv2co);
2136 copy_v2_v2(bucket_bounds_uv[2], uv3co);
2142 /* handle pathological case here, no need for further intersections below since tringle area is almost zero */
2151 if (inside_bucket_flag & ISECT_1) { copy_v2_v2(bucket_bounds_uv[*tot], uv1co); (*tot)++; }
2153 flag = inside_bucket_flag & (ISECT_1 | ISECT_2);
2154 if (flag && flag != (ISECT_1 | ISECT_2)) {
2155 if (line_rect_clip(bucket_bounds, v1coSS, v2coSS, uv1co, uv2co, bucket_bounds_uv[*tot], is_ortho))
2159 if (inside_bucket_flag & ISECT_2) { copy_v2_v2(bucket_bounds_uv[*tot], uv2co); (*tot)++; }
2161 flag = inside_bucket_flag & (ISECT_2 | ISECT_3);
2162 if (flag && flag != (ISECT_2 | ISECT_3)) {
2163 if (line_rect_clip(bucket_bounds, v2coSS, v3coSS, uv2co, uv3co, bucket_bounds_uv[*tot], is_ortho))
2167 if (inside_bucket_flag & ISECT_3) { copy_v2_v2(bucket_bounds_uv[*tot], uv3co); (*tot)++; }
2169 flag = inside_bucket_flag & (ISECT_3 | ISECT_1);
2170 if (flag && flag != (ISECT_3 | ISECT_1)) {
2171 if (line_rect_clip(bucket_bounds, v3coSS, v1coSS, uv3co, uv1co, bucket_bounds_uv[*tot], is_ortho))
2176 /* no intersections to speak of, but more probable is that all face is just outside the
2177 * rectangle and culled due to float precision issues. Since above teste have failed,
2178 * just dump triangle as is for painting */
2180 copy_v2_v2(bucket_bounds_uv[*tot], uv1co); (*tot)++;
2181 copy_v2_v2(bucket_bounds_uv[*tot], uv2co); (*tot)++;
2182 copy_v2_v2(bucket_bounds_uv[*tot], uv3co); (*tot)++;
2189 /* get the UV space bounding box */
2190 /* use IsectPT2Df_limit here so we catch points are are touching the tri edge (or a small fraction over) */
2191 bucket_bounds_ss[0][0] = bucket_bounds->xmax;
2192 bucket_bounds_ss[0][1] = bucket_bounds->ymin;
2193 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[0], v1coSS, v2coSS, v3coSS, 1 + PROJ_GEOM_TOLERANCE) ? ISECT_1 : 0);
2195 bucket_bounds_ss[1][0] = bucket_bounds->xmax;
2196 bucket_bounds_ss[1][1] = bucket_bounds->ymax;
2197 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[1], v1coSS, v2coSS, v3coSS, 1 + PROJ_GEOM_TOLERANCE) ? ISECT_2 : 0);
2199 bucket_bounds_ss[2][0] = bucket_bounds->xmin;
2200 bucket_bounds_ss[2][1] = bucket_bounds->ymax;
2201 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[2], v1coSS, v2coSS, v3coSS, 1 + PROJ_GEOM_TOLERANCE) ? ISECT_3 : 0);
2203 bucket_bounds_ss[3][0] = bucket_bounds->xmin;
2204 bucket_bounds_ss[3][1] = bucket_bounds->ymin;
2205 inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[3], v1coSS, v2coSS, v3coSS, 1 + PROJ_GEOM_TOLERANCE) ? ISECT_4 : 0);
2207 flip = ((line_point_side_v2(v1coSS, v2coSS, v3coSS) > 0.0f) !=
2208 (line_point_side_v2(uv1co, uv2co, uv3co) > 0.0f));
2210 if (inside_face_flag == ISECT_ALL4) {
2211 /* bucket is totally inside the screenspace face, we can safely use weights */
2214 rect_to_uvspace_ortho(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, bucket_bounds_uv, flip);
2217 rect_to_uvspace_persp(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, bucket_bounds_uv, flip);
2224 /* The Complicated Case!
2226 * The 2 cases above are where the face is inside the bucket or the bucket is inside the face.
2228 * we need to make a convex polyline from the intersection between the screenspace face
2229 * and the bucket bounds.
2231 * There are a number of ways this could be done, currently it just collects all intersecting verts,
2232 * and line intersections, then sorts them clockwise, this is a lot easier then evaluating the geometry to
2233 * do a correct clipping on both shapes. */
2236 /* add a bunch of points, we know must make up the convex hull which is the clipped rect and triangle */
2240 /* Maximum possible 6 intersections when using a rectangle and triangle */
2241 float isectVCosSS[8][3]; /* The 3rd float is used to store angle for qsort(), NOT as a Z location */
2242 float v1_clipSS[2], v2_clipSS[2];
2246 float cent[2] = {0.0f, 0.0f};
2247 /*float up[2] = {0.0f, 1.0f};*/
2253 if (inside_face_flag & ISECT_1) { copy_v2_v2(isectVCosSS[*tot], bucket_bounds_ss[0]); (*tot)++; }
2254 if (inside_face_flag & ISECT_2) { copy_v2_v2(isectVCosSS[*tot], bucket_bounds_ss[1]); (*tot)++; }
2255 if (inside_face_flag & ISECT_3) { copy_v2_v2(isectVCosSS[*tot], bucket_bounds_ss[2]); (*tot)++; }
2256 if (inside_face_flag & ISECT_4) { copy_v2_v2(isectVCosSS[*tot], bucket_bounds_ss[3]); (*tot)++; }
2258 if (inside_bucket_flag & ISECT_1) { copy_v2_v2(isectVCosSS[*tot], v1coSS); (*tot)++; }
2259 if (inside_bucket_flag & ISECT_2) { copy_v2_v2(isectVCosSS[*tot], v2coSS); (*tot)++; }
2260 if (inside_bucket_flag & ISECT_3) { copy_v2_v2(isectVCosSS[*tot], v3coSS); (*tot)++; }
2262 if ((inside_bucket_flag & (ISECT_1 | ISECT_2)) != (ISECT_1 | ISECT_2)) {
2263 if (line_clip_rect2f(cliprect, bucket_bounds, v1coSS, v2coSS, v1_clipSS, v2_clipSS)) {
2264 if ((inside_bucket_flag & ISECT_1) == 0) { copy_v2_v2(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2265 if ((inside_bucket_flag & ISECT_2) == 0) { copy_v2_v2(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2269 if ((inside_bucket_flag & (ISECT_2 | ISECT_3)) != (ISECT_2 | ISECT_3)) {
2270 if (line_clip_rect2f(cliprect, bucket_bounds, v2coSS, v3coSS, v1_clipSS, v2_clipSS)) {
2271 if ((inside_bucket_flag & ISECT_2) == 0) { copy_v2_v2(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2272 if ((inside_bucket_flag & ISECT_3) == 0) { copy_v2_v2(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2276 if ((inside_bucket_flag & (ISECT_3 | ISECT_1)) != (ISECT_3 | ISECT_1)) {
2277 if (line_clip_rect2f(cliprect, bucket_bounds, v3coSS, v1coSS, v1_clipSS, v2_clipSS)) {
2278 if ((inside_bucket_flag & ISECT_3) == 0) { copy_v2_v2(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2279 if ((inside_bucket_flag & ISECT_1) == 0) { copy_v2_v2(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2284 if ((*tot) < 3) { /* no intersections to speak of */
2289 /* now we have all points we need, collect their angles and sort them clockwise */
2291 for (i = 0; i < (*tot); i++) {
2292 cent[0] += isectVCosSS[i][0];
2293 cent[1] += isectVCosSS[i][1];
2295 cent[0] = cent[0] / (float)(*tot);
2296 cent[1] = cent[1] / (float)(*tot);
2300 /* Collect angles for every point around the center point */
2303 #if 0 /* uses a few more cycles then the above loop */
2304 for (i = 0; i < (*tot); i++) {
2305 isectVCosSS[i][2] = angle_2d_clockwise(up, cent, isectVCosSS[i]);
2309 v1_clipSS[0] = cent[0]; /* Abuse this var for the loop below */
2310 v1_clipSS[1] = cent[1] + 1.0f;
2312 for (i = 0; i < (*tot); i++) {
2313 v2_clipSS[0] = isectVCosSS[i][0] - cent[0];
2314 v2_clipSS[1] = isectVCosSS[i][1] - cent[1];
2315 isectVCosSS[i][2] = atan2f(v1_clipSS[0] * v2_clipSS[1] - v1_clipSS[1] * v2_clipSS[0],
2316 v1_clipSS[0] * v2_clipSS[0] + v1_clipSS[1] * v2_clipSS[1]);
2319 if (flip) qsort(isectVCosSS, *tot, sizeof(float) * 3, float_z_sort_flip);
2320 else qsort(isectVCosSS, *tot, sizeof(float) * 3, float_z_sort);
2323 while (doubles == true) {
2326 for (i = 0; i < (*tot); i++) {
2327 if (fabsf(isectVCosSS[(i + 1) % *tot][0] - isectVCosSS[i][0]) < PROJ_PIXEL_TOLERANCE &&
2328 fabsf(isectVCosSS[(i + 1) % *tot][1] - isectVCosSS[i][1]) < PROJ_PIXEL_TOLERANCE)
2331 for (j = i; j < (*tot) - 1; j++) {
2332 isectVCosSS[j][0] = isectVCosSS[j + 1][0];
2333 isectVCosSS[j][1] = isectVCosSS[j + 1][1];
2335 doubles = true; /* keep looking for more doubles */
2340 /* its possible there is only a few left after remove doubles */
2342 // printf("removed too many doubles B\n");
2349 for (i = 0; i < (*tot); i++) {
2350 barycentric_weights_v2(v1coSS, v2coSS, v3coSS, isectVCosSS[i], w);
2351 interp_v2_v2v2v2(bucket_bounds_uv[i], uv1co, uv2co, uv3co, w);
2355 for (i = 0; i < (*tot); i++) {
2356 barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, isectVCosSS[i], w);
2357 interp_v2_v2v2v2(bucket_bounds_uv[i], uv1co, uv2co, uv3co, w);
2362 #ifdef PROJ_DEBUG_PRINT_CLIP
2363 /* include this at the bottom of the above function to debug the output */
2366 /* If there are ever any problems, */
2367 float test_uv[4][2];
2369 if (is_ortho) rect_to_uvspace_ortho(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, test_uv, flip);
2370 else rect_to_uvspace_persp(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, test_uv, flip);
2371 printf("( [(%f,%f), (%f,%f), (%f,%f), (%f,%f)], ",
2372 test_uv[0][0], test_uv[0][1], test_uv[1][0], test_uv[1][1],
2373 test_uv[2][0], test_uv[2][1], test_uv[3][0], test_uv[3][1]);
2375 printf(" [(%f,%f), (%f,%f), (%f,%f)], ", uv1co[0], uv1co[1], uv2co[0], uv2co[1], uv3co[0], uv3co[1]);
2378 for (i = 0; i < (*tot); i++) {
2379 printf("(%f, %f),", bucket_bounds_uv[i][0], bucket_bounds_uv[i][1]);
2387 * # This script creates faces in a blender scene from printed data above.
2390 * ...(output from above block)...
2393 * from Blender import Scene, Mesh, Window, sys, Mathutils
2397 * V = Mathutils.Vector
2400 * sce = bpy.data.scenes.active
2402 * for item in project_ls:
2407 * me = bpy.data.meshes.new()
2408 * ob = sce.objects.new(me)
2410 * me.verts.extend([V(bb[0]).xyz, V(bb[1]).xyz, V(bb[2]).xyz, V(bb[3]).xyz])
2411 * me.faces.extend([(0,1,2,3),])
2412 * me.verts.extend([V(uv[0]).xyz, V(uv[1]).xyz, V(uv[2]).xyz])
2413 * me.faces.extend([(4,5,6),])
2415 * vs = [V(p).xyz for p in poly]
2418 * me.verts.extend(vs)
2421 * while i < len(me.verts):
2423 * if ii == len(me.verts):
2425 * me.edges.extend([i, ii])
2428 * if __name__ == '__main__':
2441 /* checks if pt is inside a convex 2D polyline, the polyline must be ordered rotating clockwise
2442 * otherwise it would have to test for mixed (line_point_side_v2 > 0.0f) cases */
2443 static bool IsectPoly2Df(const float pt[2], float uv[][2], const int tot)
2446 if (line_point_side_v2(uv[tot - 1], uv[0], pt) < 0.0f)
2449 for (i = 1; i < tot; i++) {
2450 if (line_point_side_v2(uv[i - 1], uv[i], pt) < 0.0f)
2457 static bool IsectPoly2Df_twoside(const float pt[2], float uv[][2], const int tot)
2460 bool side = (line_point_side_v2(uv[tot - 1], uv[0], pt) > 0.0f);
2462 for (i = 1; i < tot; i++) {
2463 if ((line_point_side_v2(uv[i - 1], uv[i], pt) > 0.0f) != side)
2471 /* One of the most important function for projection painting,
2472 * since it selects the pixels to be added into each bucket.
2474 * initialize pixels from this face where it intersects with the bucket_index,
2475 * optionally initialize pixels for removing seams */
2476 static void project_paint_face_init(
2477 const ProjPaintState *ps,
2478 const int thread_index, const int bucket_index, const int tri_index, const int image_index,
2479 const rctf *clip_rect, const rctf *bucket_bounds, ImBuf *ibuf, ImBuf **tmpibuf,
2480 const bool clamp_u, const bool clamp_v)
2482 /* Projection vars, to get the 3D locations into screen space */
2483 MemArena *arena = ps->arena_mt[thread_index];
2484 LinkNode **bucketPixelNodes = ps->bucketRect + bucket_index;
2485 LinkNode *bucketFaceNodes = ps->bucketFaces[bucket_index];
2486 bool threaded = (ps->thread_tot > 1);
2491 IMAPAINT_TILE_NUMBER(ibuf->x),
2493 ps->projImages + image_index
2496 const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
2497 const int lt_vtri[3] = { PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) };
2498 const float *lt_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, lt) };
2500 /* UV/pixel seeking data */
2501 int x; /* Image X-Pixel */
2502 int y; /* Image Y-Pixel */
2504 float uv[2]; /* Image floating point UV - same as x, y but from 0.0-1.0 */
2506 const float *v1coSS, *v2coSS, *v3coSS; /* vert co screen-space, these will be assigned to lt_vtri[0-2] */
2508 const float *vCo[3]; /* vertex screenspace coords */
2512 float *uv1co, *uv2co, *uv3co; /* for convenience only, these will be assigned to lt_tri_uv[0],1,2 or lt_tri_uv[0],2,3 */
2513 float pixelScreenCo[4];
2514 bool do_3d_mapping = ps->brush->mtex.brush_map_mode == MTEX_MAP_MODE_3D;
2516 rcti bounds_px; /* ispace bounds */
2517 /* vars for getting uvspace bounds */
2519 float lt_uv_pxoffset[3][2]; /* bucket bounds in UV space so we can init pixels only for this face, */
2520 float xhalfpx, yhalfpx;
2521 const float ibuf_xf = (float)ibuf->x, ibuf_yf = (float)ibuf->y;
2523 int has_x_isect = 0, has_isect = 0; /* for early loop exit */
2525 float uv_clip[8][2];
2527 const bool is_ortho = ps->is_ortho;
2528 const bool is_flip_object = ps->is_flip_object;
2529 const bool do_backfacecull = ps->do_backfacecull;
2530 const bool do_clip = ps->rv3d ? ps->rv3d->rflag & RV3D_CLIPPING : 0;
2532 vCo[0] = ps->dm_mvert[lt_vtri[0]].co;
2533 vCo[1] = ps->dm_mvert[lt_vtri[1]].co;
2534 vCo[2] = ps->dm_mvert[lt_vtri[2]].co;
2537 /* Use lt_uv_pxoffset instead of lt_tri_uv so we can offset the UV half a pixel
2538 * this is done so we can avoid offsetting all the pixels by 0.5 which causes
2539 * problems when wrapping negative coords */
2540 xhalfpx = (0.5f + (PROJ_PIXEL_TOLERANCE * (1.0f / 3.0f))) / ibuf_xf;
2541 yhalfpx = (0.5f + (PROJ_PIXEL_TOLERANCE * (1.0f / 4.0f))) / ibuf_yf;
2543 /* Note about (PROJ_GEOM_TOLERANCE/x) above...
2544 * Needed to add this offset since UV coords are often quads aligned to pixels.
2545 * In this case pixels can be exactly between 2 triangles causing nasty
2548 * This workaround can be removed and painting will still work on most cases
2549 * but since the first thing most people try is painting onto a quad- better make it work.
2552 lt_uv_pxoffset[0][0] = lt_tri_uv[0][0] - xhalfpx;
2553 lt_uv_pxoffset[0][1] = lt_tri_uv[0][1] - yhalfpx;
2555 lt_uv_pxoffset[1][0] = lt_tri_uv[1][0] - xhalfpx;
2556 lt_uv_pxoffset[1][1] = lt_tri_uv[1][1] - yhalfpx;
2558 lt_uv_pxoffset[2][0] = lt_tri_uv[2][0] - xhalfpx;
2559 lt_uv_pxoffset[2][1] = lt_tri_uv[2][1] - yhalfpx;
2562 uv1co = lt_uv_pxoffset[0]; // was lt_tri_uv[i1];
2563 uv2co = lt_uv_pxoffset[1]; // was lt_tri_uv[i2];
2564 uv3co = lt_uv_pxoffset[2]; // was lt_tri_uv[i3];
2566 v1coSS = ps->screenCoords[lt_vtri[0]];
2567 v2coSS = ps->screenCoords[lt_vtri[1]];
2568 v3coSS = ps->screenCoords[lt_vtri[2]];
2570 /* This funtion gives is a concave polyline in UV space from the clipped tri*/
2571 project_bucket_clip_face(
2572 is_ortho, is_flip_object,
2573 clip_rect, bucket_bounds,
2574 v1coSS, v2coSS, v3coSS,
2575 uv1co, uv2co, uv3co,
2576 uv_clip, &uv_clip_tot,
2577 do_backfacecull || ps->do_occlude);
2579 /* sometimes this happens, better just allow for 8 intersectiosn even though there should be max 6 */
2581 if (uv_clip_tot > 6) {
2582 printf("this should never happen! %d\n", uv_clip_tot);
2586 if (pixel_bounds_array(uv_clip, &bounds_px, ibuf->x, ibuf->y, uv_clip_tot)) {
2589 CLAMP(bounds_px.xmin, 0, ibuf->x);
2590 CLAMP(bounds_px.xmax, 0, ibuf->x);
2594 CLAMP(bounds_px.ymin, 0, ibuf->y);
2595 CLAMP(bounds_px.ymax, 0, ibuf->y);
2599 project_paint_undo_tiles_init(&bounds_px, ps->projImages + image_index, tmpibuf,
2600 tile_width, threaded, ps->do_masking);
2605 for (y = bounds_px.ymin; y < bounds_px.ymax; y++) {
2606 //uv[1] = (((float)y) + 0.5f) / (float)ibuf->y;
2607 uv[1] = (float)y / ibuf_yf; /* use pixel offset UV coords instead */
2610 for (x = bounds_px.xmin; x < bounds_px.xmax; x++) {
2611 //uv[0] = (((float)x) + 0.5f) / ibuf->x;
2612 uv[0] = (float)x / ibuf_xf; /* use pixel offset UV coords instead */
2614 /* Note about IsectPoly2Df_twoside, checking the face or uv flipping doesnt work,
2615 * could check the poly direction but better to do this */
2616 if ((do_backfacecull == true && IsectPoly2Df(uv, uv_clip, uv_clip_tot)) ||
2617 (do_backfacecull == false && IsectPoly2Df_twoside(uv, uv_clip, uv_clip_tot)))
2620 has_x_isect = has_isect = 1;
2622 if (is_ortho) screen_px_from_ortho(uv, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, pixelScreenCo, w);
2623 else screen_px_from_persp(uv, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, pixelScreenCo, w);
2625 /* a pity we need to get the worldspace pixel location here */
2626 if (do_clip || do_3d_mapping) {
2629 ps->dm_mvert[lt_vtri[0]].co,
2630 ps->dm_mvert[lt_vtri[1]].co,
2631 ps->dm_mvert[lt_vtri[2]].co,
2633 if (do_clip && ED_view3d_clipping_test(ps->rv3d, wco, true)) {
2634 continue; /* Watch out that no code below this needs to run */
2638 /* Is this UV visible from the view? - raytrace */
2639 /* project_paint_PickFace is less complex, use for testing */
2640 //if (project_paint_PickFace(ps, pixelScreenCo, w, &side) == tri_index) {
2641 if ((ps->do_occlude == false) ||
2642 !project_bucket_point_occluded(ps, bucketFaceNodes, tri_index, pixelScreenCo))
2644 mask = project_paint_uvpixel_mask(ps, tri_index, w);
2647 BLI_linklist_prepend_arena(
2649 project_paint_uvpixel_init(ps, arena, &tinf, x, y, mask, tri_index,
2650 pixelScreenCo, wco, w),
2658 else if (has_x_isect) {
2659 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2666 #if 0 /* TODO - investigate why this dosnt work sometimes! it should! */
2667 /* no intersection for this entire row, after some intersection above means we can quit now */
2668 if (has_x_isect == 0 && has_isect) {
2677 #ifndef PROJ_DEBUG_NOSEAMBLEED
2678 if (ps->seam_bleed_px > 0.0f) {
2682 BLI_lock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2684 face_seam_flag = ps->faceSeamFlags[tri_index];
2686 /* are any of our edges un-initialized? */
2687 if ((face_seam_flag & (PROJ_FACE_SEAM1 | PROJ_FACE_NOSEAM1)) == 0 ||
2688 (face_seam_flag & (PROJ_FACE_SEAM2 | PROJ_FACE_NOSEAM2)) == 0 ||
2689 (face_seam_flag & (PROJ_FACE_SEAM3 | PROJ_FACE_NOSEAM3)) == 0)
2691 project_face_seams_init(ps, tri_index);
2692 face_seam_flag = ps->faceSeamFlags[tri_index];
2693 //printf("seams - %d %d %d %d\n", flag&PROJ_FACE_SEAM1, flag&PROJ_FACE_SEAM2, flag&PROJ_FACE_SEAM3);
2696 if ((face_seam_flag & (PROJ_FACE_SEAM1 | PROJ_FACE_SEAM2 | PROJ_FACE_SEAM3)) == 0) {
2699 BLI_unlock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2703 /* we have a seam - deal with it! */
2705 /* Now create new UV's for the seam face */
2706 float (*outset_uv)[2] = ps->faceSeamUVs[tri_index];
2707 float insetCos[3][3]; /* inset face coords. NOTE!!! ScreenSace for ortho, Worldspace in prespective view */
2709 const float *vCoSS[3]; /* vertex screenspace coords */
2711 float bucket_clip_edges[2][2]; /* store the screenspace coords of the face, clipped by the bucket's screen aligned rectangle */
2712 float edge_verts_inset_clip[2][3];
2713 int fidx1, fidx2; /* face edge pairs - loop throuh these ((0,1), (1,2), (2,3), (3,0)) or ((0,1), (1,2), (2,0)) for a tri */
2715 float seam_subsection[4][2];
2718 if (outset_uv[0][0] == FLT_MAX) /* first time initialize */
2720 lt_uv_pxoffset, outset_uv, ps->seam_bleed_px,
2721 ibuf->x, ibuf->y, (ps->faceWindingFlags[tri_index] & PROJ_FACE_WINDING_CW) == 0);
2723 /* ps->faceSeamUVs cant be modified when threading, now this is done we can unlock */
2725 BLI_unlock_thread(LOCK_CUSTOM1); /* Other threads could be modifying these vars */
2727 vCoSS[0] = ps->screenCoords[lt_vtri[0]];
2728 vCoSS[1] = ps->screenCoords[lt_vtri[1]];
2729 vCoSS[2] = ps->screenCoords[lt_vtri[2]];
2731 /* PROJ_FACE_SCALE_SEAM must be slightly less then 1.0f */
2733 scale_tri(insetCos, vCoSS, PROJ_FACE_SCALE_SEAM);
2736 scale_tri(insetCos, vCo, PROJ_FACE_SCALE_SEAM);
2739 for (fidx1 = 0; fidx1 < 3; fidx1++) {
2740 fidx2 = (fidx1 == 2) ? 0 : fidx1 + 1; /* next fidx in the face (0,1,2) -> (1,2,0) */
2742 if ((face_seam_flag & (1 << fidx1)) && /* 1<<fidx1 -> PROJ_FACE_SEAM# */
2743 line_clip_rect2f(clip_rect, bucket_bounds, vCoSS[fidx1], vCoSS[fidx2], bucket_clip_edges[0], bucket_clip_edges[1]))
2745 if (len_squared_v2v2(vCoSS[fidx1], vCoSS[fidx2]) > FLT_EPSILON) { /* avoid div by zero */
2748 fac1 = line_point_factor_v2(bucket_clip_edges[0], vCoSS[fidx1], vCoSS[fidx2]);
2749 fac2 = line_point_factor_v2(bucket_clip_edges[1], vCoSS[fidx1], vCoSS[fidx2]);
2752 fac1 = screen_px_line_point_factor_v2_persp(ps, bucket_clip_edges[0], vCo[fidx1], vCo[fidx2]);
2753 fac2 = screen_px_line_point_factor_v2_persp(ps, bucket_clip_edges[1], vCo[fidx1], vCo[fidx2]);
2756 interp_v2_v2v2(seam_subsection[0], lt_uv_pxoffset[fidx1], lt_uv_pxoffset[fidx2], fac1);
2757 interp_v2_v2v2(seam_subsection[1], lt_uv_pxoffset[fidx1], lt_uv_pxoffset[fidx2], fac2);
2759 interp_v2_v2v2(seam_subsection[2], outset_uv[fidx1], outset_uv[fidx2], fac2);
2760 interp_v2_v2v2(seam_subsection[3], outset_uv[fidx1], outset_uv[fidx2], fac1);
2762 /* if the bucket_clip_edges values Z values was kept we could avoid this
2763 * Inset needs to be added so occlusion tests wont hit adjacent faces */
2764 interp_v3_v3v3(edge_verts_inset_clip[0], insetCos[fidx1], insetCos[fidx2], fac1);
2765 interp_v3_v3v3(edge_verts_inset_clip[1], insetCos[fidx1], insetCos[fidx2], fac2);
2768 if (pixel_bounds_uv((const float (*)[2])seam_subsection, &bounds_px, ibuf->x, ibuf->y)) {
2769 /* bounds between the seam rect and the uvspace bucket pixels */
2772 for (y = bounds_px.ymin; y < bounds_px.ymax; y++) {
2773 // uv[1] = (((float)y) + 0.5f) / (float)ibuf->y;
2774 uv[1] = (float)y / ibuf_yf; /* use offset uvs instead */
2777 for (x = bounds_px.xmin; x < bounds_px.xmax; x++) {
2778 //uv[0] = (((float)x) + 0.5f) / (float)ibuf->x;
2779 uv[0] = (float)x / ibuf_xf; /* use offset uvs instead */
2781 /* test we're inside uvspace bucket and triangle bounds */
2782 if (isect_point_quad_v2(uv, UNPACK4(seam_subsection))) {
2785 /* We need to find the closest point along the face edge,
2786 * getting the screen_px_from_*** wont work because our actual location
2787 * is not relevant, since we are outside the face, Use VecLerpf to find
2788 * our location on the side of the face's UV */
2790 if (is_ortho) screen_px_from_ortho(ps, uv, v1co, v2co, v3co, uv1co, uv2co, uv3co, pixelScreenCo);
2791 else screen_px_from_persp(ps, uv, v1co, v2co, v3co, uv1co, uv2co, uv3co, pixelScreenCo);
2794 /* Since this is a seam we need to work out where on the line this pixel is */
2795 //fac = line_point_factor_v2(uv, uv_seam_quad[0], uv_seam_quad[1]);
2796 fac = resolve_quad_u_v2(uv, UNPACK4(seam_subsection));
2797 interp_v3_v3v3(pixelScreenCo, edge_verts_inset_clip[0], edge_verts_inset_clip[1], fac);
2800 pixelScreenCo[3] = 1.0f;
2801 mul_m4_v4((float(*)[4])ps->projectMat, pixelScreenCo); /* cast because of const */
2802 pixelScreenCo[0] = (float)(ps->winx * 0.5f) + (ps->winx * 0.5f) * pixelScreenCo[0] / pixelScreenCo[3];
2803 pixelScreenCo[1] = (float)(ps->winy * 0.5f) + (ps->winy * 0.5f) * pixelScreenCo[1] / pixelScreenCo[3];
2804 pixelScreenCo[2] = pixelScreenCo[2] / pixelScreenCo[3]; /* Use the depth for bucket point occlusion */
2807 if ((ps->do_occlude == false) ||
2808 !project_bucket_point_occluded(ps, bucketFaceNodes, tri_index, pixelScreenCo))
2810 /* Only bother calculating the weights if we intersect */
2811 if (ps->do_mask_normal || ps->dm_mloopuv_clone) {
2812 const float uv_fac = fac1 + (fac * (fac2 - fac1));
2814 /* get the UV on the line since we want to copy the pixels from there for bleeding */
2816 interp_v2_v2v2(uv_close, lt_uv_pxoffset[fidx1], lt_uv_pxoffset[fidx2], uv_fac);
2817 barycentric_weights_v2(lt_uv_pxoffset[0], lt_uv_pxoffset[1], lt_uv_pxoffset[2], uv_close, w);
2820 /* Cheat, we know where we are along the edge so work out the weights from that */
2821 w[0] = w[1] = w[2] = 0.0;
2822 w[fidx1] = 1.0f - uv_fac;
2827 /* a pity we need to get the worldspace pixel location here */
2828 if (do_clip || do_3d_mapping) {
2829 interp_v3_v3v3v3(wco, vCo[0], vCo[1], vCo[2], w);
2831 if (do_clip && ED_view3d_clipping_test(ps->rv3d, wco, true)) {
2832 continue; /* Watch out that no code below this needs to run */
2836 mask = project_paint_uvpixel_mask(ps, tri_index, w);
2839 BLI_linklist_prepend_arena(
2841 project_paint_uvpixel_init(ps, arena, &tinf, x, y, mask, tri_index,
2842 pixelScreenCo, wco, w),
2849 else if (has_x_isect) {
2850 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2855 #if 0 /* TODO - investigate why this dosnt work sometimes! it should! */
2856 /* no intersection for this entire row, after some intersection above means we can quit now */
2857 if (has_x_isect == 0 && has_isect) {
2869 UNUSED_VARS(vCo, threaded);
2870 #endif // PROJ_DEBUG_NOSEAMBLEED
2874 /* takes floating point screenspace min/max and returns int min/max to be used as indices for ps->bucketRect, ps->bucketFlags */
2875 static void project_paint_bucket_bounds(const ProjPaintState *ps, const float min[2], const float max[2], int bucketMin[2], int bucketMax[2])
2877 /* divide by bucketWidth & bucketHeight so the bounds are offset in bucket grid units */
2878 /* XXX: the offset of 0.5 is always truncated to zero and the offset of 1.5f is always truncated to 1, is this really correct?? - jwilkins */
2879 bucketMin[0] = (int)((int)(((float)(min[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x) + 0.5f); /* these offsets of 0.5 and 1.5 seem odd but they are correct */
2880 bucketMin[1] = (int)((int)(((float)(min[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y) + 0.5f);
2882 bucketMax[0] = (int)((int)(((float)(max[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x) + 1.5f);
2883 bucketMax[1] = (int)((int)(((float)(max[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y) + 1.5f);
2885 /* in case the rect is outside the mesh 2d bounds */
2886 CLAMP(bucketMin[0], 0, ps->buckets_x);
2887 CLAMP(bucketMin[1], 0, ps->buckets_y);
2889 CLAMP(bucketMax[0], 0, ps->buckets_x);
2890 CLAMP(bucketMax[1], 0, ps->buckets_y);
2893 /* set bucket_bounds to a screen space-aligned floating point bound-box */
2894 static void project_bucket_bounds(const ProjPaintState *ps, const int bucket_x, const int bucket_y, rctf *bucket_bounds)
2896 bucket_bounds->xmin = ps->screenMin[0] + ((bucket_x) * (ps->screen_width / ps->buckets_x)); /* left */
2897 bucket_bounds->xmax = ps->screenMin[0] + ((bucket_x + 1) * (ps->screen_width / ps->buckets_x)); /* right */
2899 bucket_bounds->ymin = ps->screenMin[1] + ((bucket_y) * (ps->screen_height / ps->buckets_y)); /* bottom */
2900 bucket_bounds->ymax = ps->screenMin[1] + ((bucket_y + 1) * (ps->screen_height / ps->buckets_y)); /* top */
2903 /* Fill this bucket with pixels from the faces that intersect it.
2905 * have bucket_bounds as an argument so we don't need to give bucket_x/y the rect function needs */
2906 static void project_bucket_init(
2907 const ProjPaintState *ps, const int thread_index, const int bucket_index,
2908 const rctf *clip_rect, const rctf *bucket_bounds)
2911 int tri_index, image_index = 0;
2913 Image *tpage_last = NULL, *tpage;
2915 ImBuf *tmpibuf = NULL;
2917 if (ps->image_tot == 1) {
2918 /* Simple loop, no context switching */
2919 ibuf = ps->projImages[0].ibuf;
2920 ima = ps->projImages[0].ima;
2922 for (node = ps->bucketFaces[bucket_index]; node; node = node->next) {
2923 project_paint_face_init(
2924 ps, thread_index, bucket_index, GET_INT_FROM_POINTER(node->link), 0,
2925 clip_rect, bucket_bounds, ibuf, &tmpibuf,
2926 (ima->tpageflag & IMA_CLAMP_U) != 0, (ima->tpageflag & IMA_CLAMP_V) != 0);
2931 /* More complicated loop, switch between images */
2932 for (node = ps->bucketFaces[bucket_index]; node; node = node->next) {
2933 tri_index = GET_INT_FROM_POINTER(node->link);
2935 /* Image context switching */
2936 tpage = project_paint_face_paint_image(ps, tri_index);
2937 if (tpage_last != tpage) {