=bmesh= merge from trunk at r36529
[blender.git] / source / blender / render / intern / source / convertblender.c
1 /*
2  * $Id$
3  *
4  * ***** BEGIN GPL LICENSE BLOCK *****
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19  *
20  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
21  * All rights reserved.
22  *
23  * Contributors: 2004/2005/2006 Blender Foundation, full recode
24  *
25  * ***** END GPL LICENSE BLOCK *****
26  */
27
28 /** \file blender/render/intern/source/convertblender.c
29  *  \ingroup render
30  */
31
32
33 #include <math.h>
34 #include <stdlib.h>
35 #include <stdio.h>
36 #include <string.h>
37 #include <limits.h>
38
39 #include "MEM_guardedalloc.h"
40
41 #include "BLI_math.h"
42 #include "BLI_blenlib.h"
43 #include "BLI_utildefines.h"
44 #include "BLI_rand.h"
45 #include "BLI_memarena.h"
46 #include "BLI_ghash.h"
47
48 #include "DNA_armature_types.h"
49 #include "DNA_camera_types.h"
50 #include "DNA_material_types.h"
51 #include "DNA_curve_types.h"
52 #include "DNA_effect_types.h"
53 #include "DNA_group_types.h"
54 #include "DNA_lamp_types.h"
55 #include "DNA_image_types.h"
56 #include "DNA_lattice_types.h"
57 #include "DNA_mesh_types.h"
58 #include "DNA_meshdata_types.h"
59 #include "DNA_meta_types.h"
60 #include "DNA_modifier_types.h"
61 #include "DNA_node_types.h"
62 #include "DNA_object_types.h"
63 #include "DNA_object_force.h"
64 #include "DNA_object_fluidsim.h"
65 #include "DNA_particle_types.h"
66 #include "DNA_scene_types.h"
67 #include "DNA_texture_types.h"
68 #include "DNA_view3d_types.h"
69
70 #include "BKE_anim.h"
71 #include "BKE_armature.h"
72 #include "BKE_action.h"
73 #include "BKE_curve.h"
74 #include "BKE_customdata.h"
75 #include "BKE_colortools.h"
76 #include "BKE_constraint.h"
77 #include "BKE_displist.h"
78 #include "BKE_deform.h"
79 #include "BKE_DerivedMesh.h"
80 #include "BKE_effect.h"
81 #include "BKE_global.h"
82 #include "BKE_group.h"
83 #include "BKE_key.h"
84 #include "BKE_ipo.h"
85 #include "BKE_image.h"
86 #include "BKE_lattice.h"
87 #include "BKE_library.h"
88 #include "BKE_material.h"
89 #include "BKE_main.h"
90 #include "BKE_mball.h"
91 #include "BKE_mesh.h"
92 #include "BKE_modifier.h"
93 #include "BKE_node.h"
94 #include "BKE_object.h"
95 #include "BKE_particle.h"
96 #include "BKE_scene.h"
97 #include "BKE_subsurf.h"
98 #include "BKE_texture.h"
99
100 #include "BKE_world.h"
101
102 #include "PIL_time.h"
103 #include "IMB_imbuf_types.h"
104
105 #include "envmap.h"
106 #include "occlusion.h"
107 #include "pointdensity.h"
108 #include "voxeldata.h"
109 #include "render_types.h"
110 #include "rendercore.h"
111 #include "renderdatabase.h"
112 #include "renderpipeline.h"
113 #include "shadbuf.h"
114 #include "shading.h"
115 #include "strand.h"
116 #include "texture.h"
117 #include "volume_precache.h"
118 #include "sss.h"
119 #include "strand.h"
120 #include "zbuf.h"
121 #include "sunsky.h"
122
123
124 /* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
125 /* or for checking vertex normal flips */
126 #define FLT_EPSILON10 1.19209290e-06F
127
128 /* ------------------------------------------------------------------------- */
129
130 /* Stuff for stars. This sits here because it uses gl-things. Part of
131 this code may move down to the converter.  */
132 /* ------------------------------------------------------------------------- */
133 /* this is a bad beast, since it is misused by the 3d view drawing as well. */
134
135 static HaloRen *initstar(Render *re, ObjectRen *obr, float *vec, float hasize)
136 {
137         HaloRen *har;
138         float hoco[4];
139         
140         projectverto(vec, re->winmat, hoco);
141         
142         har= RE_findOrAddHalo(obr, obr->tothalo++);
143         
144         /* projectvert is done in function zbufvlaggen again, because of parts */
145         VECCOPY(har->co, vec);
146         har->hasize= hasize;
147         
148         har->zd= 0.0;
149         
150         return har;
151 }
152
153 /* there must be a 'fixed' amount of stars generated between
154 *         near and far
155 * all stars must by preference lie on the far and solely
156 *        differ in clarity/color
157 */
158
159 void RE_make_stars(Render *re, Scene *scenev3d, void (*initfunc)(void),
160                                    void (*vertexfunc)(float*),  void (*termfunc)(void))
161 {
162         extern unsigned char hash[512];
163         ObjectRen *obr= NULL;
164         World *wrld= NULL;
165         HaloRen *har;
166         Scene *scene;
167         Object *camera;
168         Camera *cam;
169         double dblrand, hlfrand;
170         float vec[4], fx, fy, fz;
171         float fac, starmindist, clipend;
172         float mat[4][4], stargrid, maxrand, maxjit, force, alpha;
173         int x, y, z, sx, sy, sz, ex, ey, ez, done = 0;
174         unsigned int totstar= 0;
175         
176         if(initfunc) {
177                 scene= scenev3d;
178                 wrld= scene->world;
179         }
180         else {
181                 scene= re->scene;
182                 wrld= &(re->wrld);
183         }
184
185         stargrid = wrld->stardist;                      /* distance between stars */
186         maxrand = 2.0;                                          /* amount a star can be shifted (in grid units) */
187         maxjit = (wrld->starcolnoise);          /* amount a color is being shifted */
188         
189         /* size of stars */
190         force = ( wrld->starsize );
191         
192         /* minimal free space (starting at camera) */
193         starmindist= wrld->starmindist;
194         
195         if (stargrid <= 0.10) return;
196         
197         if (re) re->flag |= R_HALO;
198         else stargrid *= 1.0;                           /* then it draws fewer */
199         
200         if(re) invert_m4_m4(mat, re->viewmat);
201         else unit_m4(mat);
202         
203         /* BOUNDING BOX CALCULATION
204                 * bbox goes from z = loc_near_var | loc_far_var,
205                 * x = -z | +z,
206                 * y = -z | +z
207                 */
208
209         camera= re ? RE_GetCamera(re) : scene->camera;
210
211         if(camera==NULL || camera->type != OB_CAMERA)
212                 return;
213
214         cam = camera->data;
215         clipend = cam->clipend;
216         
217         /* convert to grid coordinates */
218         
219         sx = ((mat[3][0] - clipend) / stargrid) - maxrand;
220         sy = ((mat[3][1] - clipend) / stargrid) - maxrand;
221         sz = ((mat[3][2] - clipend) / stargrid) - maxrand;
222         
223         ex = ((mat[3][0] + clipend) / stargrid) + maxrand;
224         ey = ((mat[3][1] + clipend) / stargrid) + maxrand;
225         ez = ((mat[3][2] + clipend) / stargrid) + maxrand;
226         
227         dblrand = maxrand * stargrid;
228         hlfrand = 2.0 * dblrand;
229         
230         if (initfunc) {
231                 initfunc();     
232         }
233
234         if(re) /* add render object for stars */
235                 obr= RE_addRenderObject(re, NULL, NULL, 0, 0, 0);
236         
237         for (x = sx, fx = sx * stargrid; x <= ex; x++, fx += stargrid) {
238                 for (y = sy, fy = sy * stargrid; y <= ey ; y++, fy += stargrid) {
239                         for (z = sz, fz = sz * stargrid; z <= ez; z++, fz += stargrid) {
240
241                                 BLI_srand((hash[z & 0xff] << 24) + (hash[y & 0xff] << 16) + (hash[x & 0xff] << 8));
242                                 vec[0] = fx + (hlfrand * BLI_drand()) - dblrand;
243                                 vec[1] = fy + (hlfrand * BLI_drand()) - dblrand;
244                                 vec[2] = fz + (hlfrand * BLI_drand()) - dblrand;
245                                 vec[3] = 1.0;
246                                 
247                                 if (vertexfunc) {
248                                         if(done & 1) vertexfunc(vec);
249                                         done++;
250                                 }
251                                 else {
252                                         mul_m4_v3(re->viewmat, vec);
253                                         
254                                         /* in vec are global coordinates
255                                         * calculate distance to camera
256                                         * and using that, define the alpha
257                                         */
258                                         
259                                         {
260                                                 float tx, ty, tz;
261                                                 
262                                                 tx = vec[0];
263                                                 ty = vec[1];
264                                                 tz = vec[2];
265                                                 
266                                                 alpha = sqrt(tx * tx + ty * ty + tz * tz);
267                                                 
268                                                 if (alpha >= clipend) alpha = 0.0;
269                                                 else if (alpha <= starmindist) alpha = 0.0;
270                                                 else if (alpha <= 2.0 * starmindist) {
271                                                         alpha = (alpha - starmindist) / starmindist;
272                                                 } else {
273                                                         alpha -= 2.0 * starmindist;
274                                                         alpha /= (clipend - 2.0 * starmindist);
275                                                         alpha = 1.0 - alpha;
276                                                 }
277                                         }
278                                         
279                                         
280                                         if (alpha != 0.0) {
281                                                 fac = force * BLI_drand();
282                                                 
283                                                 har = initstar(re, obr, vec, fac);
284                                                 
285                                                 if (har) {
286                                                         har->alfa = sqrt(sqrt(alpha));
287                                                         har->add= 255;
288                                                         har->r = har->g = har->b = 1.0;
289                                                         if (maxjit) {
290                                                                 har->r += ((maxjit * BLI_drand()) ) - maxjit;
291                                                                 har->g += ((maxjit * BLI_drand()) ) - maxjit;
292                                                                 har->b += ((maxjit * BLI_drand()) ) - maxjit;
293                                                         }
294                                                         har->hard = 32;
295                                                         har->lay= -1;
296                                                         har->type |= HA_ONLYSKY;
297                                                         done++;
298                                                 }
299                                         }
300                                 }
301
302                                 /* break out of the loop if generating stars takes too long */
303                                 if(re && !(totstar % 1000000)) {
304                                         if(re->test_break(re->tbh)) {
305                                                 x= ex + 1;
306                                                 y= ey + 1;
307                                                 z= ez + 1;
308                                         }
309                                 }
310                                 
311                                 totstar++;
312                         }
313                         /* do not call blender_test_break() here, since it is used in UI as well, confusing the callback system */
314                         /* main cause is G.afbreek of course, a global again... (ton) */
315                 }
316         }
317         if (termfunc) termfunc();
318
319         if(obr)
320                 re->tothalo += obr->tothalo;
321 }
322
323
324 /* ------------------------------------------------------------------------- */
325 /* tool functions/defines for ad hoc simplification and possible future 
326    cleanup      */
327 /* ------------------------------------------------------------------------- */
328
329 #define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
330 /*
331
332 NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
333         
334 ^       ()----p4----p3----()
335 |       |     |     |     |
336 u       |     |  F1 |  F2 |
337         |     |     |     |
338         ()----p1----p2----()
339                    v ->
340 */
341
342 /* ------------------------------------------------------------------------- */
343
344 static void split_v_renderfaces(ObjectRen *obr, int startvlak, int startvert, int usize, int vsize, int uIndex, int UNUSED(cyclu), int cyclv)
345 {
346         int vLen = vsize-1+(!!cyclv);
347         int v;
348
349         for (v=0; v<vLen; v++) {
350                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v);
351                 VertRen *vert = RE_vertren_copy(obr, vlr->v2);
352
353                 if (cyclv) {
354                         vlr->v2 = vert;
355
356                         if (v==vLen-1) {
357                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + 0);
358                                 vlr->v1 = vert;
359                         } else {
360                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
361                                 vlr->v1 = vert;
362                         }
363                 } else {
364                         vlr->v2 = vert;
365
366                         if (v<vLen-1) {
367                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
368                                 vlr->v1 = vert;
369                         }
370
371                         if (v==0) {
372                                 vlr->v1 = RE_vertren_copy(obr, vlr->v1);
373                         } 
374                 }
375         }
376 }
377
378 /* ------------------------------------------------------------------------- */
379 /* Stress, tangents and normals                                              */
380 /* ------------------------------------------------------------------------- */
381
382 static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
383 {
384         float len= len_v3v3(v1->co, v2->co)/len_v3v3(v1->orco, v2->orco);
385         float *acc;
386         
387         acc= accum + 2*v1->index;
388         acc[0]+= len;
389         acc[1]+= 1.0f;
390         
391         acc= accum + 2*v2->index;
392         acc[0]+= len;
393         acc[1]+= 1.0f;
394 }
395
396 static void calc_edge_stress(Render *re, ObjectRen *obr, Mesh *me)
397 {
398         float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
399         int a;
400         
401         if(obr->totvert==0) return;
402         
403         mesh_get_texspace(me, loc, NULL, size);
404         
405         accum= MEM_callocN(2*sizeof(float)*obr->totvert, "temp accum for stress");
406         
407         /* de-normalize orco */
408         for(a=0; a<obr->totvert; a++) {
409                 VertRen *ver= RE_findOrAddVert(obr, a);
410                 if(ver->orco) {
411                         ver->orco[0]= ver->orco[0]*size[0] +loc[0];
412                         ver->orco[1]= ver->orco[1]*size[1] +loc[1];
413                         ver->orco[2]= ver->orco[2]*size[2] +loc[2];
414                 }
415         }
416         
417         /* add stress values */
418         accumoffs= accum;       /* so we can use vertex index */
419         for(a=0; a<obr->totvlak; a++) {
420                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
421
422                 if(vlr->v1->orco && vlr->v4) {
423                         calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
424                         calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
425                         calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
426                         if(vlr->v4) {
427                                 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
428                                 calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
429                                 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
430                         }
431                 }
432         }
433         
434         for(a=0; a<obr->totvert; a++) {
435                 VertRen *ver= RE_findOrAddVert(obr, a);
436                 if(ver->orco) {
437                         /* find stress value */
438                         acc= accumoffs + 2*ver->index;
439                         if(acc[1]!=0.0f)
440                                 acc[0]/= acc[1];
441                         stress= RE_vertren_get_stress(obr, ver, 1);
442                         *stress= *acc;
443                         
444                         /* restore orcos */
445                         ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
446                         ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
447                         ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
448                 }
449         }
450         
451         MEM_freeN(accum);
452 }
453
454 /* gets tangent from tface or orco */
455 static void calc_tangent_vector(ObjectRen *obr, VertexTangent **vtangents, MemArena *arena, VlakRen *vlr, int do_nmap_tangent, int do_tangent)
456 {
457         MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
458         VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
459         float tang[3], *tav;
460         float *uv1, *uv2, *uv3, *uv4;
461         float uv[4][2];
462         
463         if(tface) {
464                 uv1= tface->uv[0];
465                 uv2= tface->uv[1];
466                 uv3= tface->uv[2];
467                 uv4= tface->uv[3];
468         }
469         else if(v1->orco) {
470                 uv1= uv[0]; uv2= uv[1]; uv3= uv[2]; uv4= uv[3];
471                 map_to_sphere( &uv[0][0], &uv[0][1],v1->orco[0], v1->orco[1], v1->orco[2]);
472                 map_to_sphere( &uv[1][0], &uv[1][1],v2->orco[0], v2->orco[1], v2->orco[2]);
473                 map_to_sphere( &uv[2][0], &uv[2][1],v3->orco[0], v3->orco[1], v3->orco[2]);
474                 if(v4)
475                         map_to_sphere( &uv[3][0], &uv[3][1],v4->orco[0], v4->orco[1], v4->orco[2]);
476         }
477         else return;
478
479         tangent_from_uv(uv1, uv2, uv3, v1->co, v2->co, v3->co, vlr->n, tang);
480         
481         if(do_tangent) {
482                 tav= RE_vertren_get_tangent(obr, v1, 1);
483                 VECADD(tav, tav, tang);
484                 tav= RE_vertren_get_tangent(obr, v2, 1);
485                 VECADD(tav, tav, tang);
486                 tav= RE_vertren_get_tangent(obr, v3, 1);
487                 VECADD(tav, tav, tang);
488         }
489         
490         if(do_nmap_tangent) {
491                 sum_or_add_vertex_tangent(arena, &vtangents[v1->index], tang, uv1);
492                 sum_or_add_vertex_tangent(arena, &vtangents[v2->index], tang, uv2);
493                 sum_or_add_vertex_tangent(arena, &vtangents[v3->index], tang, uv3);
494         }
495
496         if(v4) {
497                 tangent_from_uv(uv1, uv3, uv4, v1->co, v3->co, v4->co, vlr->n, tang);
498                 
499                 if(do_tangent) {
500                         tav= RE_vertren_get_tangent(obr, v1, 1);
501                         VECADD(tav, tav, tang);
502                         tav= RE_vertren_get_tangent(obr, v3, 1);
503                         VECADD(tav, tav, tang);
504                         tav= RE_vertren_get_tangent(obr, v4, 1);
505                         VECADD(tav, tav, tang);
506                 }
507
508                 if(do_nmap_tangent) {
509                         sum_or_add_vertex_tangent(arena, &vtangents[v1->index], tang, uv1);
510                         sum_or_add_vertex_tangent(arena, &vtangents[v3->index], tang, uv3);
511                         sum_or_add_vertex_tangent(arena, &vtangents[v4->index], tang, uv4);
512                 }
513         }
514 }
515
516
517
518 /****************************************************************
519 ************ tangent space generation interface *****************
520 ****************************************************************/
521
522 typedef struct
523 {
524         ObjectRen *obr;
525
526 } SRenderMeshToTangent;
527
528 // interface
529 #include "mikktspace.h"
530
531 static int GetNumFaces(const SMikkTSpaceContext * pContext)
532 {
533         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
534         return pMesh->obr->totvlak;
535 }
536
537 static int GetNumVertsOfFace(const SMikkTSpaceContext * pContext, const int face_num)
538 {
539         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
540         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
541         return vlr->v4!=NULL ? 4 : 3;
542 }
543
544 static void GetPosition(const SMikkTSpaceContext * pContext, float fPos[], const int face_num, const int vert_index)
545 {
546         //assert(vert_index>=0 && vert_index<4);
547         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
548         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
549         const float *co= (&vlr->v1)[vert_index]->co;
550         VECCOPY(fPos, co);
551 }
552
553 static void GetTextureCoordinate(const SMikkTSpaceContext * pContext, float fUV[], const int face_num, const int vert_index)
554 {
555         //assert(vert_index>=0 && vert_index<4);
556         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
557         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
558         MTFace *tface= RE_vlakren_get_tface(pMesh->obr, vlr, pMesh->obr->actmtface, NULL, 0);
559         const float *coord;
560         
561         if(tface != NULL)       {
562                 coord= tface->uv[vert_index];
563                 fUV[0]= coord[0]; fUV[1]= coord[1];
564         }
565         else if((coord= (&vlr->v1)[vert_index]->orco)) {
566                 map_to_sphere(&fUV[0], &fUV[1], coord[0], coord[1], coord[2]);
567         }
568         else { /* else we get un-initialized value, 0.0 ok default? */
569                 fUV[0]= fUV[1]= 0.0f;
570         }
571 }
572
573 static void GetNormal(const SMikkTSpaceContext * pContext, float fNorm[], const int face_num, const int vert_index)
574 {
575         //assert(vert_index>=0 && vert_index<4);
576         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
577         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
578         const float *n= (&vlr->v1)[vert_index]->n;
579         VECCOPY(fNorm, n);
580 }
581 static void SetTSpace(const SMikkTSpaceContext * pContext, const float fvTangent[], const float fSign, const int face_num, const int iVert)
582 {
583         //assert(vert_index>=0 && vert_index<4);
584         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
585         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
586         float * ftang= RE_vlakren_get_nmap_tangent(pMesh->obr, vlr, 1);
587         if(ftang!=NULL) {
588                 VECCOPY(&ftang[iVert*4+0], fvTangent);
589                 ftang[iVert*4+3]=fSign;
590         }
591 }
592
593 static void calc_vertexnormals(Render *re, ObjectRen *obr, int do_tangent, int do_nmap_tangent)
594 {
595         MemArena *arena= NULL;
596         VertexTangent **vtangents= NULL;
597         int a, iCalcNewMethod;
598
599         if(do_nmap_tangent) {
600                 arena= BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "nmap tangent arena");
601                 BLI_memarena_use_calloc(arena);
602
603                 vtangents= MEM_callocN(sizeof(VertexTangent*)*obr->totvert, "VertexTangent");
604         }
605
606                 /* clear all vertex normals */
607         for(a=0; a<obr->totvert; a++) {
608                 VertRen *ver= RE_findOrAddVert(obr, a);
609                 ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
610         }
611
612                 /* calculate cos of angles and point-masses, use as weight factor to
613                    add face normal to vertex */
614         for(a=0; a<obr->totvlak; a++) {
615                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
616                 if(vlr->flag & ME_SMOOTH) {
617                         float *n4= (vlr->v4)? vlr->v4->n: NULL;
618                         float *c4= (vlr->v4)? vlr->v4->co: NULL;
619
620                         accumulate_vertex_normals(vlr->v1->n, vlr->v2->n, vlr->v3->n, n4,
621                                 vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co, c4);
622                 }
623                 if(do_nmap_tangent || do_tangent) {
624                         /* tangents still need to be calculated for flat faces too */
625                         /* weighting removed, they are not vertexnormals */
626                         calc_tangent_vector(obr, vtangents, arena, vlr, do_nmap_tangent, do_tangent);
627                 }
628         }
629
630                 /* do solid faces */
631         for(a=0; a<obr->totvlak; a++) {
632                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
633
634                 if((vlr->flag & ME_SMOOTH)==0) {
635                         if(is_zero_v3(vlr->v1->n)) VECCOPY(vlr->v1->n, vlr->n);
636                         if(is_zero_v3(vlr->v2->n)) VECCOPY(vlr->v2->n, vlr->n);
637                         if(is_zero_v3(vlr->v3->n)) VECCOPY(vlr->v3->n, vlr->n);
638                         if(vlr->v4 && is_zero_v3(vlr->v4->n)) VECCOPY(vlr->v4->n, vlr->n);
639                 }
640
641                 if(do_nmap_tangent) {
642                         VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
643                         MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
644
645                         if(tface) {
646                                 int k=0;
647                                 float *vtang, *ftang= RE_vlakren_get_nmap_tangent(obr, vlr, 1);
648
649                                 vtang= find_vertex_tangent(vtangents[v1->index], tface->uv[0]);
650                                 VECCOPY(ftang, vtang);
651                                 normalize_v3(ftang);
652                                 vtang= find_vertex_tangent(vtangents[v2->index], tface->uv[1]);
653                                 VECCOPY(ftang+4, vtang);
654                                 normalize_v3(ftang+4);
655                                 vtang= find_vertex_tangent(vtangents[v3->index], tface->uv[2]);
656                                 VECCOPY(ftang+8, vtang);
657                                 normalize_v3(ftang+8);
658                                 if(v4) {
659                                         vtang= find_vertex_tangent(vtangents[v4->index], tface->uv[3]);
660                                         VECCOPY(ftang+12, vtang);
661                                         normalize_v3(ftang+12);
662                                 }
663                                 for(k=0; k<4; k++) ftang[4*k+3]=1;
664                         }
665                 }
666         }
667         
668                 /* normalize vertex normals */
669         for(a=0; a<obr->totvert; a++) {
670                 VertRen *ver= RE_findOrAddVert(obr, a);
671                 normalize_v3(ver->n);
672                 if(do_tangent) {
673                         float *tav= RE_vertren_get_tangent(obr, ver, 0);
674                         if (tav) {
675                                 /* orthonorm. */
676                                 float tdn = tav[0]*ver->n[0] + tav[1]*ver->n[1] + tav[2]*ver->n[2];
677                                 tav[0] -= ver->n[0]*tdn;
678                                 tav[1] -= ver->n[1]*tdn;
679                                 tav[2] -= ver->n[2]*tdn;
680                                 normalize_v3(tav);
681                         }
682                 }
683         }
684
685         iCalcNewMethod = 1;
686         if(iCalcNewMethod!=0 && do_nmap_tangent!=0)
687         {
688                 SRenderMeshToTangent mesh2tangent;
689                 SMikkTSpaceContext sContext;
690                 SMikkTSpaceInterface sInterface;
691                 memset(&mesh2tangent, 0, sizeof(SRenderMeshToTangent));
692                 memset(&sContext, 0, sizeof(SMikkTSpaceContext));
693                 memset(&sInterface, 0, sizeof(SMikkTSpaceInterface));
694
695                 mesh2tangent.obr = obr;
696
697                 sContext.m_pUserData = &mesh2tangent;
698                 sContext.m_pInterface = &sInterface;
699                 sInterface.m_getNumFaces = GetNumFaces;
700                 sInterface.m_getNumVerticesOfFace = GetNumVertsOfFace;
701                 sInterface.m_getPosition = GetPosition;
702                 sInterface.m_getTexCoord = GetTextureCoordinate;
703                 sInterface.m_getNormal = GetNormal;
704                 sInterface.m_setTSpaceBasic = SetTSpace;
705
706                 // 0 if failed
707                 iCalcNewMethod = genTangSpaceDefault(&sContext);
708         }
709
710
711         if(arena)
712                 BLI_memarena_free(arena);
713         if(vtangents)
714                 MEM_freeN(vtangents);
715 }
716
717 /* ------------------------------------------------------------------------- */
718 /* Autosmoothing:                                                            */
719 /* ------------------------------------------------------------------------- */
720
721 typedef struct ASvert {
722         int totface;
723         ListBase faces;
724 } ASvert;
725
726 typedef struct ASface {
727         struct ASface *next, *prev;
728         VlakRen *vlr[4];
729         VertRen *nver[4];
730 } ASface;
731
732 static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
733 {
734         ASface *asf;
735         int a;
736         
737         if(v1 == NULL) return;
738         
739         if(asv->faces.first==NULL) {
740                 asf= MEM_callocN(sizeof(ASface), "asface");
741                 BLI_addtail(&asv->faces, asf);
742         }
743         
744         asf= asv->faces.last;
745         for(a=0; a<4; a++) {
746                 if(asf->vlr[a]==NULL) {
747                         asf->vlr[a]= vlr;
748                         asv->totface++;
749                         break;
750                 }
751         }
752         
753         /* new face struct */
754         if(a==4) {
755                 asf= MEM_callocN(sizeof(ASface), "asface");
756                 BLI_addtail(&asv->faces, asf);
757                 asf->vlr[0]= vlr;
758                 asv->totface++;
759         }
760 }
761
762 static int as_testvertex(VlakRen *vlr, VertRen *ver, ASvert *asv, float thresh) 
763 {
764         /* return 1: vertex needs a copy */
765         ASface *asf;
766         float inp;
767         int a;
768         
769         if(vlr==0) return 0;
770         
771         asf= asv->faces.first;
772         while(asf) {
773                 for(a=0; a<4; a++) {
774                         if(asf->vlr[a] && asf->vlr[a]!=vlr) {
775                                 inp= fabs( vlr->n[0]*asf->vlr[a]->n[0] + vlr->n[1]*asf->vlr[a]->n[1] + vlr->n[2]*asf->vlr[a]->n[2] );
776                                 if(inp < thresh) return 1;
777                         }
778                 }
779                 asf= asf->next;
780         }
781         
782         return 0;
783 }
784
785 static VertRen *as_findvertex(VlakRen *vlr, VertRen *ver, ASvert *asv, float thresh) 
786 {
787         /* return when new vertex already was made */
788         ASface *asf;
789         float inp;
790         int a;
791         
792         asf= asv->faces.first;
793         while(asf) {
794                 for(a=0; a<4; a++) {
795                         if(asf->vlr[a] && asf->vlr[a]!=vlr) {
796                                 /* this face already made a copy for this vertex! */
797                                 if(asf->nver[a]) {
798                                         inp= fabs( vlr->n[0]*asf->vlr[a]->n[0] + vlr->n[1]*asf->vlr[a]->n[1] + vlr->n[2]*asf->vlr[a]->n[2] );
799                                         if(inp >= thresh) {
800                                                 return asf->nver[a];
801                                         }
802                                 }
803                         }
804                 }
805                 asf= asf->next;
806         }
807         
808         return NULL;
809 }
810
811 /* note; autosmooth happens in object space still, after applying autosmooth we rotate */
812 /* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
813 static void autosmooth(Render *re, ObjectRen *obr, float mat[][4], int degr)
814 {
815         ASvert *asv, *asverts;
816         ASface *asf;
817         VertRen *ver, *v1;
818         VlakRen *vlr;
819         float thresh;
820         int a, b, totvert;
821         
822         if(obr->totvert==0) return;
823         asverts= MEM_callocN(sizeof(ASvert)*obr->totvert, "all smooth verts");
824         
825         thresh= cos( M_PI*(0.5f+(float)degr)/180.0 );
826         
827         /* step zero: give faces normals of original mesh, if this is provided */
828         
829         
830         /* step one: construct listbase of all vertices and pointers to faces */
831         for(a=0; a<obr->totvlak; a++) {
832                 vlr= RE_findOrAddVlak(obr, a);
833                 /* skip wire faces */
834                 if(vlr->v2 != vlr->v3) {
835                         as_addvert(asverts+vlr->v1->index, vlr->v1, vlr);
836                         as_addvert(asverts+vlr->v2->index, vlr->v2, vlr);
837                         as_addvert(asverts+vlr->v3->index, vlr->v3, vlr);
838                         if(vlr->v4) 
839                                 as_addvert(asverts+vlr->v4->index, vlr->v4, vlr);
840                 }
841         }
842         
843         totvert= obr->totvert;
844         /* we now test all vertices, when faces have a normal too much different: they get a new vertex */
845         for(a=0, asv=asverts; a<totvert; a++, asv++) {
846                 if(asv && asv->totface>1) {
847                         ver= RE_findOrAddVert(obr, a);
848
849                         asf= asv->faces.first;
850                         while(asf) {
851                                 for(b=0; b<4; b++) {
852                                 
853                                         /* is there a reason to make a new vertex? */
854                                         vlr= asf->vlr[b];
855                                         if( as_testvertex(vlr, ver, asv, thresh) ) {
856                                                 
857                                                 /* already made a new vertex within threshold? */
858                                                 v1= as_findvertex(vlr, ver, asv, thresh);
859                                                 if(v1==NULL) {
860                                                         /* make a new vertex */
861                                                         v1= RE_vertren_copy(obr, ver);
862                                                 }
863                                                 asf->nver[b]= v1;
864                                                 if(vlr->v1==ver) vlr->v1= v1;
865                                                 if(vlr->v2==ver) vlr->v2= v1;
866                                                 if(vlr->v3==ver) vlr->v3= v1;
867                                                 if(vlr->v4==ver) vlr->v4= v1;
868                                         }
869                                 }
870                                 asf= asf->next;
871                         }
872                 }
873         }
874         
875         /* free */
876         for(a=0; a<totvert; a++) {
877                 BLI_freelistN(&asverts[a].faces);
878         }
879         MEM_freeN(asverts);
880         
881         /* rotate vertices and calculate normal of faces */
882         for(a=0; a<obr->totvert; a++) {
883                 ver= RE_findOrAddVert(obr, a);
884                 mul_m4_v3(mat, ver->co);
885         }
886         for(a=0; a<obr->totvlak; a++) {
887                 vlr= RE_findOrAddVlak(obr, a);
888                 
889                 /* skip wire faces */
890                 if(vlr->v2 != vlr->v3) {
891                         if(vlr->v4) 
892                                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
893                         else 
894                                 normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
895                 }
896         }               
897 }
898
899 /* ------------------------------------------------------------------------- */
900 /* Orco hash and Materials                                                   */
901 /* ------------------------------------------------------------------------- */
902
903 static float *get_object_orco(Render *re, Object *ob)
904 {
905         float *orco;
906
907         if (!re->orco_hash)
908                 re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp, "get_object_orco gh");
909
910         orco = BLI_ghash_lookup(re->orco_hash, ob);
911
912         if (!orco) {
913                 if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
914                         orco = make_orco_curve(re->scene, ob);
915                 } else if (ob->type==OB_SURF) {
916                         orco = make_orco_surf(ob);
917                 }
918
919                 if (orco)
920                         BLI_ghash_insert(re->orco_hash, ob, orco);
921         }
922
923         return orco;
924 }
925
926 static void set_object_orco(Render *re, void *ob, float *orco)
927 {
928         if (!re->orco_hash)
929                 re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp, "set_object_orco gh");
930         
931         BLI_ghash_insert(re->orco_hash, ob, orco);
932 }
933
934 static void free_mesh_orco_hash(Render *re) 
935 {
936         if (re->orco_hash) {
937                 BLI_ghash_free(re->orco_hash, NULL, (GHashValFreeFP)MEM_freeN);
938                 re->orco_hash = NULL;
939         }
940 }
941
942 static void check_material_mapto(Material *ma)
943 {
944         int a;
945         ma->mapto_textured = 0;
946         
947         /* cache which inputs are actually textured.
948          * this can avoid a bit of time spent iterating through all the texture slots, map inputs and map tos
949          * every time a property which may or may not be textured is accessed */
950         
951         for(a=0; a<MAX_MTEX; a++) {
952                 if(ma->mtex[a] && ma->mtex[a]->tex) {
953                         /* currently used only in volume render, so we'll check for those flags */
954                         if(ma->mtex[a]->mapto & MAP_DENSITY) ma->mapto_textured |= MAP_DENSITY;
955                         if(ma->mtex[a]->mapto & MAP_EMISSION) ma->mapto_textured |= MAP_EMISSION;
956                         if(ma->mtex[a]->mapto & MAP_EMISSION_COL) ma->mapto_textured |= MAP_EMISSION_COL;
957                         if(ma->mtex[a]->mapto & MAP_SCATTERING) ma->mapto_textured |= MAP_SCATTERING;
958                         if(ma->mtex[a]->mapto & MAP_TRANSMISSION_COL) ma->mapto_textured |= MAP_TRANSMISSION_COL;
959                         if(ma->mtex[a]->mapto & MAP_REFLECTION) ma->mapto_textured |= MAP_REFLECTION;
960                         if(ma->mtex[a]->mapto & MAP_REFLECTION_COL) ma->mapto_textured |= MAP_REFLECTION_COL;
961                 }
962         }
963 }
964 static void flag_render_node_material(Render *re, bNodeTree *ntree)
965 {
966         bNode *node;
967
968         for(node=ntree->nodes.first; node; node= node->next) {
969                 if(node->id) {
970                         if(GS(node->id->name)==ID_MA) {
971                                 Material *ma= (Material *)node->id;
972
973                                 if((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
974                                         re->flag |= R_ZTRA;
975
976                                 ma->flag |= MA_IS_USED;
977                         }
978                         else if(node->type==NODE_GROUP)
979                                 flag_render_node_material(re, (bNodeTree *)node->id);
980                 }
981         }
982 }
983
984 static Material *give_render_material(Render *re, Object *ob, int nr)
985 {
986         extern Material defmaterial;    /* material.c */
987         Material *ma;
988         
989         ma= give_current_material(ob, nr);
990         if(ma==NULL) 
991                 ma= &defmaterial;
992         
993         if(re->r.mode & R_SPEED) ma->texco |= NEED_UV;
994         
995         if(ma->material_type == MA_TYPE_VOLUME) {
996                 ma->mode |= MA_TRANSP;
997                 ma->mode &= ~MA_SHADBUF;
998         }
999         if((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
1000                 re->flag |= R_ZTRA;
1001         
1002         /* for light groups and SSS */
1003         ma->flag |= MA_IS_USED;
1004
1005         if(ma->nodetree && ma->use_nodes)
1006                 flag_render_node_material(re, ma->nodetree);
1007         
1008         check_material_mapto(ma);
1009         
1010         return ma;
1011 }
1012
1013 /* ------------------------------------------------------------------------- */
1014 /* Particles                                                                 */
1015 /* ------------------------------------------------------------------------- */
1016 typedef struct ParticleStrandData
1017 {
1018         struct MCol *mcol;
1019         float *orco, *uvco, *surfnor;
1020         float time, adapt_angle, adapt_pix, size;
1021         int totuv, totcol;
1022         int first, line, adapt, override_uv;
1023 }
1024 ParticleStrandData;
1025 /* future thread problem... */
1026 static void static_particle_strand(Render *re, ObjectRen *obr, Material *ma, ParticleStrandData *sd, float *vec, float *vec1)
1027 {
1028         static VertRen *v1= NULL, *v2= NULL;
1029         VlakRen *vlr= NULL;
1030         float nor[3], cross[3], crosslen, w, dx, dy, width;
1031         static float anor[3], avec[3];
1032         int flag, i;
1033         static int second=0;
1034         
1035         sub_v3_v3v3(nor, vec, vec1);
1036         normalize_v3(nor);              // nor needed as tangent 
1037         cross_v3_v3v3(cross, vec, nor);
1038
1039         /* turn cross in pixelsize */
1040         w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1041         dx= re->winx*cross[0]*re->winmat[0][0];
1042         dy= re->winy*cross[1]*re->winmat[1][1];
1043         w= sqrt(dx*dx + dy*dy)/w;
1044         
1045         if(w!=0.0f) {
1046                 float fac;
1047                 if(ma->strand_ease!=0.0f) {
1048                         if(ma->strand_ease<0.0f)
1049                                 fac= pow(sd->time, 1.0+ma->strand_ease);
1050                         else
1051                                 fac= pow(sd->time, 1.0/(1.0f-ma->strand_ease));
1052                 }
1053                 else fac= sd->time;
1054
1055                 width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
1056
1057                 /* use actual Blender units for strand width and fall back to minimum width */
1058                 if(ma->mode & MA_STR_B_UNITS){
1059                         crosslen= len_v3(cross);
1060                         w= 2.0f*crosslen*ma->strand_min/w;
1061
1062                         if(width < w)
1063                                 width= w;
1064
1065                         /*cross is the radius of the strand so we want it to be half of full width */
1066                         mul_v3_fl(cross,0.5/crosslen);
1067                 }
1068                 else
1069                         width/=w;
1070
1071                 mul_v3_fl(cross, width);
1072         }
1073         else width= 1.0f;
1074         
1075         if(ma->mode & MA_TANGENT_STR)
1076                 flag= R_SMOOTH|R_TANGENT;
1077         else
1078                 flag= R_SMOOTH;
1079         
1080         /* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
1081         if(ma->strand_sta==1.0f)
1082                 flag |= R_STRAND;
1083         
1084         /* single face line */
1085         if(sd->line) {
1086                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1087                 vlr->flag= flag;
1088                 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1089                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1090                 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1091                 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1092                 
1093                 VECCOPY(vlr->v1->co, vec);
1094                 add_v3_v3(vlr->v1->co, cross);
1095                 VECCOPY(vlr->v1->n, nor);
1096                 vlr->v1->orco= sd->orco;
1097                 vlr->v1->accum= -1.0f;  // accum abuse for strand texco
1098                 
1099                 VECCOPY(vlr->v2->co, vec);
1100                 sub_v3_v3v3(vlr->v2->co, vlr->v2->co, cross);
1101                 VECCOPY(vlr->v2->n, nor);
1102                 vlr->v2->orco= sd->orco;
1103                 vlr->v2->accum= vlr->v1->accum;
1104
1105                 VECCOPY(vlr->v4->co, vec1);
1106                 add_v3_v3(vlr->v4->co, cross);
1107                 VECCOPY(vlr->v4->n, nor);
1108                 vlr->v4->orco= sd->orco;
1109                 vlr->v4->accum= 1.0f;   // accum abuse for strand texco
1110                 
1111                 VECCOPY(vlr->v3->co, vec1);
1112                 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1113                 VECCOPY(vlr->v3->n, nor);
1114                 vlr->v3->orco= sd->orco;
1115                 vlr->v3->accum= vlr->v4->accum;
1116
1117                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1118                 
1119                 vlr->mat= ma;
1120                 vlr->ec= ME_V2V3;
1121
1122                 if(sd->surfnor) {
1123                         float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1124                         VECCOPY(snor, sd->surfnor);
1125                 }
1126
1127                 if(sd->uvco){
1128                         for(i=0; i<sd->totuv; i++){
1129                                 MTFace *mtf;
1130                                 mtf=RE_vlakren_get_tface(obr,vlr,i,NULL,1);
1131                                 mtf->uv[0][0]=mtf->uv[1][0]=
1132                                 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1133                                 mtf->uv[0][1]=mtf->uv[1][1]=
1134                                 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1135                         }
1136                         if(sd->override_uv>=0){
1137                                 MTFace *mtf;
1138                                 mtf=RE_vlakren_get_tface(obr,vlr,sd->override_uv,NULL,0);
1139                                 
1140                                 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1141                                 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1142
1143                                 mtf->uv[0][1]=mtf->uv[1][1]=0.0f;
1144                                 mtf->uv[2][1]=mtf->uv[3][1]=1.0f;
1145                         }
1146                 }
1147                 if(sd->mcol){
1148                         for(i=0; i<sd->totcol; i++){
1149                                 MCol *mc;
1150                                 mc=RE_vlakren_get_mcol(obr,vlr,i,NULL,1);
1151                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1152                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1153                         }
1154                 }
1155         }
1156         /* first two vertices of a strand */
1157         else if(sd->first) {
1158                 if(sd->adapt){
1159                         VECCOPY(anor, nor);
1160                         VECCOPY(avec, vec);
1161                         second=1;
1162                 }
1163
1164                 v1= RE_findOrAddVert(obr, obr->totvert++);
1165                 v2= RE_findOrAddVert(obr, obr->totvert++);
1166                 
1167                 VECCOPY(v1->co, vec);
1168                 add_v3_v3(v1->co, cross);
1169                 VECCOPY(v1->n, nor);
1170                 v1->orco= sd->orco;
1171                 v1->accum= -1.0f;       // accum abuse for strand texco
1172                 
1173                 VECCOPY(v2->co, vec);
1174                 sub_v3_v3v3(v2->co, v2->co, cross);
1175                 VECCOPY(v2->n, nor);
1176                 v2->orco= sd->orco;
1177                 v2->accum= v1->accum;
1178         }
1179         /* more vertices & faces to strand */
1180         else {
1181                 if(sd->adapt==0 || second){
1182                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1183                         vlr->flag= flag;
1184                         vlr->v1= v1;
1185                         vlr->v2= v2;
1186                         vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1187                         vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1188                         
1189                         v1= vlr->v4; // cycle
1190                         v2= vlr->v3; // cycle
1191
1192                         
1193                         if(sd->adapt){
1194                                 second=0;
1195                                 VECCOPY(anor,nor);
1196                                 VECCOPY(avec,vec);
1197                         }
1198
1199                 }
1200                 else if(sd->adapt){
1201                         float dvec[3],pvec[3];
1202                         sub_v3_v3v3(dvec,avec,vec);
1203                         project_v3_v3v3(pvec,dvec,vec);
1204                         sub_v3_v3v3(dvec,dvec,pvec);
1205
1206                         w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1207                         dx= re->winx*dvec[0]*re->winmat[0][0]/w;
1208                         dy= re->winy*dvec[1]*re->winmat[1][1]/w;
1209                         w= sqrt(dx*dx + dy*dy);
1210                         if(dot_v3v3(anor,nor)<sd->adapt_angle && w>sd->adapt_pix){
1211                                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1212                                 vlr->flag= flag;
1213                                 vlr->v1= v1;
1214                                 vlr->v2= v2;
1215                                 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1216                                 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1217                                 
1218                                 v1= vlr->v4; // cycle
1219                                 v2= vlr->v3; // cycle
1220
1221                                 VECCOPY(anor,nor);
1222                                 VECCOPY(avec,vec);
1223                         }
1224                         else{
1225                                 vlr= RE_findOrAddVlak(obr, obr->totvlak-1);
1226                         }
1227                 }
1228         
1229                 VECCOPY(vlr->v4->co, vec);
1230                 add_v3_v3(vlr->v4->co, cross);
1231                 VECCOPY(vlr->v4->n, nor);
1232                 vlr->v4->orco= sd->orco;
1233                 vlr->v4->accum= -1.0f + 2.0f*sd->time;  // accum abuse for strand texco
1234                 
1235                 VECCOPY(vlr->v3->co, vec);
1236                 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1237                 VECCOPY(vlr->v3->n, nor);
1238                 vlr->v3->orco= sd->orco;
1239                 vlr->v3->accum= vlr->v4->accum;
1240                 
1241                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1242                 
1243                 vlr->mat= ma;
1244                 vlr->ec= ME_V2V3;
1245
1246                 if(sd->surfnor) {
1247                         float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1248                         VECCOPY(snor, sd->surfnor);
1249                 }
1250
1251                 if(sd->uvco){
1252                         for(i=0; i<sd->totuv; i++){
1253                                 MTFace *mtf;
1254                                 mtf=RE_vlakren_get_tface(obr,vlr,i,NULL,1);
1255                                 mtf->uv[0][0]=mtf->uv[1][0]=
1256                                 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1257                                 mtf->uv[0][1]=mtf->uv[1][1]=
1258                                 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1259                         }
1260                         if(sd->override_uv>=0){
1261                                 MTFace *mtf;
1262                                 mtf=RE_vlakren_get_tface(obr,vlr,sd->override_uv,NULL,0);
1263                                 
1264                                 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1265                                 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1266
1267                                 mtf->uv[0][1]=mtf->uv[1][1]=(vlr->v1->accum+1.0f)/2.0f;
1268                                 mtf->uv[2][1]=mtf->uv[3][1]=(vlr->v3->accum+1.0f)/2.0f;
1269                         }
1270                 }
1271                 if(sd->mcol){
1272                         for(i=0; i<sd->totcol; i++){
1273                                 MCol *mc;
1274                                 mc=RE_vlakren_get_mcol(obr,vlr,i,NULL,1);
1275                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1276                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1277                         }
1278                 }
1279         }
1280 }
1281
1282 static void static_particle_wire(ObjectRen *obr, Material *ma, float *vec, float *vec1, int first, int line)
1283 {
1284         VlakRen *vlr;
1285         static VertRen *v1;
1286
1287         if(line) {
1288                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1289                 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1290                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1291                 vlr->v3= vlr->v2;
1292                 vlr->v4= NULL;
1293                 
1294                 VECCOPY(vlr->v1->co, vec);
1295                 VECCOPY(vlr->v2->co, vec1);
1296                 
1297                 sub_v3_v3v3(vlr->n, vec, vec1);
1298                 normalize_v3(vlr->n);
1299                 VECCOPY(vlr->v1->n, vlr->n);
1300                 VECCOPY(vlr->v2->n, vlr->n);
1301                 
1302                 vlr->mat= ma;
1303                 vlr->ec= ME_V1V2;
1304
1305         }
1306         else if(first) {
1307                 v1= RE_findOrAddVert(obr, obr->totvert++);
1308                 VECCOPY(v1->co, vec);
1309         }
1310         else {
1311                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1312                 vlr->v1= v1;
1313                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1314                 vlr->v3= vlr->v2;
1315                 vlr->v4= NULL;
1316                 
1317                 v1= vlr->v2; // cycle
1318                 VECCOPY(v1->co, vec);
1319                 
1320                 sub_v3_v3v3(vlr->n, vec, vec1);
1321                 normalize_v3(vlr->n);
1322                 VECCOPY(v1->n, vlr->n);
1323                 
1324                 vlr->mat= ma;
1325                 vlr->ec= ME_V1V2;
1326         }
1327
1328 }
1329
1330 static void particle_curve(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, float *loc, float *loc1,  int seed, float *pa_co)
1331 {
1332         HaloRen *har=0;
1333
1334         if(ma->material_type == MA_TYPE_WIRE)
1335                 static_particle_wire(obr, ma, loc, loc1, sd->first, sd->line);
1336         else if(ma->material_type == MA_TYPE_HALO) {
1337                 har= RE_inithalo_particle(re, obr, dm, ma, loc, loc1, sd->orco, sd->uvco, sd->size, 1.0, seed, pa_co);
1338                 if(har) har->lay= obr->ob->lay;
1339         }
1340         else
1341                 static_particle_strand(re, obr, ma, sd, loc, loc1);
1342 }
1343 static void particle_billboard(Render *re, ObjectRen *obr, Material *ma, ParticleBillboardData *bb)
1344 {
1345         VlakRen *vlr;
1346         MTFace *mtf;
1347         float xvec[3], yvec[3], zvec[3], bb_center[3];
1348         int totsplit = bb->uv_split * bb->uv_split;
1349         float uvx = 0.0f, uvy = 0.0f, uvdx = 1.0f, uvdy = 1.0f, time = 0.0f;
1350
1351         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1352         vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1353         vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1354         vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1355         vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1356
1357         psys_make_billboard(bb, xvec, yvec, zvec, bb_center);
1358
1359         VECADD(vlr->v1->co, bb_center, xvec);
1360         VECADD(vlr->v1->co, vlr->v1->co, yvec);
1361         mul_m4_v3(re->viewmat, vlr->v1->co);
1362
1363         VECSUB(vlr->v2->co, bb_center, xvec);
1364         VECADD(vlr->v2->co, vlr->v2->co, yvec);
1365         mul_m4_v3(re->viewmat, vlr->v2->co);
1366
1367         VECSUB(vlr->v3->co, bb_center, xvec);
1368         VECSUB(vlr->v3->co, vlr->v3->co, yvec);
1369         mul_m4_v3(re->viewmat, vlr->v3->co);
1370
1371         VECADD(vlr->v4->co, bb_center, xvec);
1372         VECSUB(vlr->v4->co, vlr->v4->co, yvec);
1373         mul_m4_v3(re->viewmat, vlr->v4->co);
1374
1375         normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1376         VECCOPY(vlr->v1->n,vlr->n);
1377         VECCOPY(vlr->v2->n,vlr->n);
1378         VECCOPY(vlr->v3->n,vlr->n);
1379         VECCOPY(vlr->v4->n,vlr->n);
1380         
1381         vlr->mat= ma;
1382         vlr->ec= ME_V2V3;
1383
1384         if(bb->uv_split > 1){
1385                 uvdx = uvdy = 1.0f / (float)bb->uv_split;
1386
1387                 if(ELEM(bb->anim, PART_BB_ANIM_AGE, PART_BB_ANIM_FRAME)) {
1388                         if(bb->anim == PART_BB_ANIM_FRAME)
1389                                 time = ((int)(bb->time * bb->lifetime) % totsplit)/(float)totsplit;
1390                         else
1391                                 time = bb->time;
1392                 }
1393                 else if(bb->anim == PART_BB_ANIM_ANGLE) {
1394                         if(bb->align == PART_BB_VIEW) {
1395                                 time = (float)fmod((bb->tilt + 1.0f) / 2.0f, 1.0);
1396                         }
1397                         else {
1398                                 float axis1[3] = {0.0f,0.0f,0.0f};
1399                                 float axis2[3] = {0.0f,0.0f,0.0f};
1400
1401                                 axis1[(bb->align + 1) % 3] = 1.0f;
1402                                 axis2[(bb->align + 2) % 3] = 1.0f;
1403
1404                                 if(bb->lock == 0) {
1405                                         zvec[bb->align] = 0.0f;
1406                                         normalize_v3(zvec);
1407                                 }
1408                                 
1409                                 time = saacos(dot_v3v3(zvec, axis1)) / (float)M_PI;
1410                                 
1411                                 if(dot_v3v3(zvec, axis2) < 0.0f)
1412                                         time = 1.0f - time / 2.0f;
1413                                 else
1414                                         time /= 2.0f;
1415                         }
1416                 }
1417
1418                 if(bb->split_offset == PART_BB_OFF_LINEAR)
1419                         time = (float)fmod(time + (float)bb->num / (float)totsplit, 1.0f);
1420                 else if(bb->split_offset==PART_BB_OFF_RANDOM)
1421                         time = (float)fmod(time + bb->random, 1.0f);
1422
1423                 uvx = uvdx * floor((float)(bb->uv_split * bb->uv_split) * (float)fmod((double)time, (double)uvdx));
1424                 uvy = uvdy * floor((1.0f - time) * (float)bb->uv_split);
1425
1426                 if(fmod(time, 1.0f / bb->uv_split) == 0.0f)
1427                         uvy -= uvdy;
1428         }
1429
1430         /* normal UVs */
1431         if(bb->uv[0] >= 0){
1432                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[0], NULL, 1);
1433                 mtf->uv[0][0] = 1.0f;
1434                 mtf->uv[0][1] = 1.0f;
1435                 mtf->uv[1][0] = 0.0f;
1436                 mtf->uv[1][1] = 1.0f;
1437                 mtf->uv[2][0] = 0.0f;
1438                 mtf->uv[2][1] = 0.0f;
1439                 mtf->uv[3][0] = 1.0f;
1440                 mtf->uv[3][1] = 0.0f;
1441         }
1442
1443         /* time-index UVs */
1444         if(bb->uv[1] >= 0){
1445                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[1], NULL, 1);
1446                 mtf->uv[0][0] = mtf->uv[1][0] = mtf->uv[2][0] = mtf->uv[3][0] = bb->time;
1447                 mtf->uv[0][1] = mtf->uv[1][1] = mtf->uv[2][1] = mtf->uv[3][1] = (float)bb->num/(float)bb->totnum;
1448         }
1449
1450         /* split UVs */
1451         if(bb->uv_split > 1 && bb->uv[2] >= 0){
1452                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[2], NULL, 1);
1453                 mtf->uv[0][0] = uvx + uvdx;
1454                 mtf->uv[0][1] = uvy + uvdy;
1455                 mtf->uv[1][0] = uvx;
1456                 mtf->uv[1][1] = uvy + uvdy;
1457                 mtf->uv[2][0] = uvx;
1458                 mtf->uv[2][1] = uvy;
1459                 mtf->uv[3][0] = uvx + uvdx;
1460                 mtf->uv[3][1] = uvy;
1461         }
1462 }
1463 static void particle_normal_ren(short ren_as, ParticleSettings *part, Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, ParticleBillboardData *bb, ParticleKey *state, int seed, float hasize, float *pa_co)
1464 {
1465         float loc[3], loc0[3], loc1[3], vel[3];
1466         
1467         VECCOPY(loc, state->co);
1468
1469         if(ren_as != PART_DRAW_BB)
1470                 mul_m4_v3(re->viewmat, loc);
1471
1472         switch(ren_as) {
1473                 case PART_DRAW_LINE:
1474                         sd->line = 1;
1475                         sd->time = 0.0f;
1476                         sd->size = hasize;
1477
1478                         VECCOPY(vel, state->vel);
1479                         mul_mat3_m4_v3(re->viewmat, vel);
1480                         normalize_v3(vel);
1481
1482                         if(part->draw & PART_DRAW_VEL_LENGTH)
1483                                 mul_v3_fl(vel, len_v3(state->vel));
1484
1485                         VECADDFAC(loc0, loc, vel, -part->draw_line[0]);
1486                         VECADDFAC(loc1, loc, vel, part->draw_line[1]);
1487
1488                         particle_curve(re, obr, dm, ma, sd, loc0, loc1, seed, pa_co);
1489
1490                         break;
1491
1492                 case PART_DRAW_BB:
1493
1494                         VECCOPY(bb->vec, loc);
1495                         VECCOPY(bb->vel, state->vel);
1496
1497                         particle_billboard(re, obr, ma, bb);
1498
1499                         break;
1500
1501                 default:
1502                 {
1503                         HaloRen *har=0;
1504
1505                         har = RE_inithalo_particle(re, obr, dm, ma, loc, NULL, sd->orco, sd->uvco, hasize, 0.0, seed, pa_co);
1506                         
1507                         if(har) har->lay= obr->ob->lay;
1508
1509                         break;
1510                 }
1511         }
1512 }
1513 static void get_particle_uvco_mcol(short from, DerivedMesh *dm, float *fuv, int num, ParticleStrandData *sd)
1514 {
1515         int i;
1516
1517         /* get uvco */
1518         if(sd->uvco && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
1519                 for(i=0; i<sd->totuv; i++) {
1520                         if(num != DMCACHE_NOTFOUND) {
1521                                 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1522                                 MTFace *mtface = (MTFace*)CustomData_get_layer_n(&dm->faceData, CD_MTFACE, i);
1523                                 mtface += num;
1524                                 
1525                                 psys_interpolate_uvs(mtface, mface->v4, fuv, sd->uvco + 2 * i);
1526                         }
1527                         else {
1528                                 sd->uvco[2*i] = 0.0f;
1529                                 sd->uvco[2*i + 1] = 0.0f;
1530                         }
1531                 }
1532         }
1533
1534         /* get mcol */
1535         if(sd->mcol && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
1536                 for(i=0; i<sd->totcol; i++) {
1537                         if(num != DMCACHE_NOTFOUND) {
1538                                 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1539                                 MCol *mc = (MCol*)CustomData_get_layer_n(&dm->faceData, CD_MCOL, i);
1540                                 mc += num * 4;
1541
1542                                 psys_interpolate_mcol(mc, mface->v4, fuv, sd->mcol + i);
1543                         }
1544                         else
1545                                 memset(&sd->mcol[i], 0, sizeof(MCol));
1546                 }
1547         }
1548 }
1549 static int render_new_particle_system(Render *re, ObjectRen *obr, ParticleSystem *psys, int timeoffset)
1550 {
1551         Object *ob= obr->ob;
1552 //      Object *tob=0;
1553         Material *ma=0;
1554         ParticleSystemModifierData *psmd;
1555         ParticleSystem *tpsys=0;
1556         ParticleSettings *part, *tpart=0;
1557         ParticleData *pars, *pa=0,*tpa=0;
1558         ParticleKey *states=0;
1559         ParticleKey state;
1560         ParticleCacheKey *cache=0;
1561         ParticleBillboardData bb;
1562         ParticleSimulationData sim = {0};
1563         ParticleStrandData sd;
1564         StrandBuffer *strandbuf=0;
1565         StrandVert *svert=0;
1566         StrandBound *sbound= 0;
1567         StrandRen *strand=0;
1568         RNG *rng= 0;
1569         float loc[3],loc1[3],loc0[3],mat[4][4],nmat[3][3],co[3],nor[3],duplimat[4][4];
1570         float strandlen=0.0f, curlen=0.0f;
1571         float hasize, pa_size, r_tilt, r_length;
1572         float pa_time, pa_birthtime, pa_dietime;
1573         float random, simplify[2], pa_co[3];
1574         const float cfra= BKE_curframe(re->scene);
1575         int i, a, k, max_k=0, totpart, dosimplify = 0, dosurfacecache = 0, use_duplimat = 0;
1576         int totchild=0;
1577         int seed, path_nbr=0, orco1=0, num;
1578         int totface, *origindex = 0;
1579         char **uv_name=0;
1580
1581 /* 1. check that everything is ok & updated */
1582         if(psys==NULL)
1583                 return 0;
1584
1585         part=psys->part;
1586         pars=psys->particles;
1587
1588         if(part==NULL || pars==NULL || !psys_check_enabled(ob, psys))
1589                 return 0;
1590         
1591         if(part->ren_as==PART_DRAW_OB || part->ren_as==PART_DRAW_GR || part->ren_as==PART_DRAW_NOT)
1592                 return 1;
1593
1594 /* 2. start initialising things */
1595
1596         /* last possibility to bail out! */
1597         psmd = psys_get_modifier(ob,psys);
1598         if(!(psmd->modifier.mode & eModifierMode_Render))
1599                 return 0;
1600
1601         sim.scene= re->scene;
1602         sim.ob= ob;
1603         sim.psys= psys;
1604         sim.psmd= psmd;
1605
1606         if(part->phystype==PART_PHYS_KEYED)
1607                 psys_count_keyed_targets(&sim);
1608
1609         totchild=psys->totchild;
1610
1611         /* can happen for disconnected/global hair */
1612         if(part->type==PART_HAIR && !psys->childcache)
1613                 totchild= 0;
1614
1615         if(G.rendering == 0) { /* preview render */
1616                 totchild = (int)((float)totchild * (float)part->disp / 100.0f);
1617         }
1618
1619         psys->flag |= PSYS_DRAWING;
1620
1621         rng= rng_new(psys->seed);
1622
1623         totpart=psys->totpart;
1624
1625         memset(&sd, 0, sizeof(ParticleStrandData));
1626         sd.override_uv = -1;
1627
1628 /* 2.1 setup material stff */
1629         ma= give_render_material(re, ob, part->omat);
1630         
1631 #if 0 // XXX old animation system
1632         if(ma->ipo){
1633                 calc_ipo(ma->ipo, cfra);
1634                 execute_ipo((ID *)ma, ma->ipo);
1635         }
1636 #endif // XXX old animation system
1637
1638         hasize = ma->hasize;
1639         seed = ma->seed1;
1640
1641         re->flag |= R_HALO;
1642
1643         RE_set_customdata_names(obr, &psmd->dm->faceData);
1644         sd.totuv = CustomData_number_of_layers(&psmd->dm->faceData, CD_MTFACE);
1645         sd.totcol = CustomData_number_of_layers(&psmd->dm->faceData, CD_MCOL);
1646
1647         if(ma->texco & TEXCO_UV && sd.totuv) {
1648                 sd.uvco = MEM_callocN(sd.totuv * 2 * sizeof(float), "particle_uvs");
1649
1650                 if(ma->strand_uvname[0]) {
1651                         sd.override_uv = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, ma->strand_uvname);
1652                         sd.override_uv -= CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1653                 }
1654         }
1655         else
1656                 sd.uvco = NULL;
1657
1658         if(sd.totcol)
1659                 sd.mcol = MEM_callocN(sd.totcol * sizeof(MCol), "particle_mcols");
1660
1661 /* 2.2 setup billboards */
1662         if(part->ren_as == PART_DRAW_BB) {
1663                 int first_uv = CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1664
1665                 bb.uv[0] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[0]);
1666                 if(bb.uv[0] < 0)
1667                         bb.uv[0] = CustomData_get_active_layer_index(&psmd->dm->faceData, CD_MTFACE);
1668
1669                 bb.uv[1] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[1]);
1670
1671                 bb.uv[2] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[2]);
1672
1673                 if(first_uv >= 0) {
1674                         bb.uv[0] -= first_uv;
1675                         bb.uv[1] -= first_uv;
1676                         bb.uv[2] -= first_uv;
1677                 }
1678
1679                 bb.align = part->bb_align;
1680                 bb.anim = part->bb_anim;
1681                 bb.lock = part->draw & PART_DRAW_BB_LOCK;
1682                 bb.ob = (part->bb_ob ? part->bb_ob : RE_GetCamera(re));
1683                 bb.offset[0] = part->bb_offset[0];
1684                 bb.offset[1] = part->bb_offset[1];
1685                 bb.split_offset = part->bb_split_offset;
1686                 bb.totnum = totpart+totchild;
1687                 bb.uv_split = part->bb_uv_split;
1688         }
1689         
1690 /* 2.5 setup matrices */
1691         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
1692         invert_m4_m4(ob->imat, mat);    /* need to be that way, for imat texture */
1693         copy_m3_m4(nmat, ob->imat);
1694         transpose_m3(nmat);
1695
1696         if(psys->flag & PSYS_USE_IMAT) {
1697                 /* psys->imat is the original emitter's inverse matrix, ob->obmat is the duplicated object's matrix */
1698                 mul_m4_m4m4(duplimat, psys->imat, ob->obmat);
1699                 use_duplimat = 1;
1700         }
1701
1702 /* 2.6 setup strand rendering */
1703         if(part->ren_as == PART_DRAW_PATH && psys->pathcache){
1704                 path_nbr=(int)pow(2.0,(double) part->ren_step);
1705
1706                 if(path_nbr) {
1707                         if(!ELEM(ma->material_type, MA_TYPE_HALO, MA_TYPE_WIRE)) {
1708                                 sd.orco = MEM_mallocN(3*sizeof(float)*(totpart+totchild), "particle orcos");
1709                                 set_object_orco(re, psys, sd.orco);
1710                         }
1711                 }
1712
1713                 if(part->draw & PART_DRAW_REN_ADAPT) {
1714                         sd.adapt = 1;
1715                         sd.adapt_pix = (float)part->adapt_pix;
1716                         sd.adapt_angle = cos((float)part->adapt_angle * (float)(M_PI / 180.0));
1717                 }
1718
1719                 if(re->r.renderer==R_INTERN && part->draw&PART_DRAW_REN_STRAND) {
1720                         strandbuf= RE_addStrandBuffer(obr, (totpart+totchild)*(path_nbr+1));
1721                         strandbuf->ma= ma;
1722                         strandbuf->lay= ob->lay;
1723                         copy_m4_m4(strandbuf->winmat, re->winmat);
1724                         strandbuf->winx= re->winx;
1725                         strandbuf->winy= re->winy;
1726                         strandbuf->maxdepth= 2;
1727                         strandbuf->adaptcos= cos((float)part->adapt_angle*(float)(M_PI/180.0));
1728                         strandbuf->overrideuv= sd.override_uv;
1729                         strandbuf->minwidth= ma->strand_min;
1730
1731                         if(ma->strand_widthfade == 0.0f)
1732                                 strandbuf->widthfade= 0.0f;
1733                         else if(ma->strand_widthfade >= 1.0f)
1734                                 strandbuf->widthfade= 2.0f - ma->strand_widthfade;
1735                         else
1736                                 strandbuf->widthfade= 1.0f/MAX2(ma->strand_widthfade, 1e-5f);
1737
1738                         if(part->flag & PART_HAIR_BSPLINE)
1739                                 strandbuf->flag |= R_STRAND_BSPLINE;
1740                         if(ma->mode & MA_STR_B_UNITS)
1741                                 strandbuf->flag |= R_STRAND_B_UNITS;
1742
1743                         svert= strandbuf->vert;
1744
1745                         if(re->r.mode & R_SPEED)
1746                                 dosurfacecache= 1;
1747                         else if((re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT)) && (re->wrld.ao_gather_method == WO_AOGATHER_APPROX))
1748                                 if(ma->amb != 0.0f)
1749                                         dosurfacecache= 1;
1750
1751                         totface= psmd->dm->getNumTessFaces(psmd->dm);
1752                         origindex= psmd->dm->getTessFaceDataArray(psmd->dm, CD_ORIGINDEX);
1753                         for(a=0; a<totface; a++)
1754                                 strandbuf->totbound= MAX2(strandbuf->totbound, (origindex)? origindex[a]: a);
1755
1756                         strandbuf->totbound++;
1757                         strandbuf->bound= MEM_callocN(sizeof(StrandBound)*strandbuf->totbound, "StrandBound");
1758                         sbound= strandbuf->bound;
1759                         sbound->start= sbound->end= 0;
1760                 }
1761         }
1762
1763         if(sd.orco == 0) {
1764                 sd.orco = MEM_mallocN(3 * sizeof(float), "particle orco");
1765                 orco1 = 1;
1766         }
1767
1768         if(path_nbr == 0)
1769                 psys->lattice = psys_get_lattice(&sim);
1770
1771 /* 3. start creating renderable things */
1772         for(a=0,pa=pars; a<totpart+totchild; a++, pa++, seed++) {
1773                 random = rng_getFloat(rng);
1774                 /* setup per particle individual stuff */
1775                 if(a<totpart){
1776                         if(pa->flag & PARS_UNEXIST) continue;
1777
1778                         pa_time=(cfra-pa->time)/pa->lifetime;
1779                         pa_birthtime = pa->time;
1780                         pa_dietime = pa->dietime;
1781
1782                         hasize = ma->hasize;
1783
1784                         /* get orco */
1785                         if(tpsys && part->phystype==PART_PHYS_NO){
1786                                 tpa=tpsys->particles+pa->num;
1787                                 psys_particle_on_emitter(psmd,tpart->from,tpa->num,pa->num_dmcache,tpa->fuv,tpa->foffset,co,nor,0,0,sd.orco,0);
1788                         }
1789                         else
1790                                 psys_particle_on_emitter(psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,sd.orco,0);
1791
1792                         /* get uvco & mcol */
1793                         num= pa->num_dmcache;
1794
1795                         if(num == DMCACHE_NOTFOUND)
1796                                 if(pa->num < psmd->dm->getNumTessFaces(psmd->dm))
1797                                         num= pa->num;
1798
1799                         get_particle_uvco_mcol(part->from, psmd->dm, pa->fuv, num, &sd);
1800
1801                         pa_size = pa->size;
1802
1803                         BLI_srandom(psys->seed+a);
1804
1805                         r_tilt = 2.0f*(BLI_frand() - 0.5f);
1806                         r_length = BLI_frand();
1807
1808                         if(path_nbr) {
1809                                 cache = psys->pathcache[a];
1810                                 max_k = (int)cache->steps;
1811                         }
1812
1813                         if(totchild && (part->draw&PART_DRAW_PARENT)==0) continue;
1814                 }
1815                 else {
1816                         ChildParticle *cpa= psys->child+a-totpart;
1817
1818                         if(path_nbr) {
1819                                 cache = psys->childcache[a-totpart];
1820
1821                                 if(cache->steps < 0)
1822                                         continue;
1823
1824                                 max_k = (int)cache->steps;
1825                         }
1826                         
1827                         pa_time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
1828                         pa_size = psys_get_child_size(psys, cpa, cfra, &pa_time);
1829
1830                         r_tilt = 2.0f*(PSYS_FRAND(a + 21) - 0.5f);
1831                         r_length = PSYS_FRAND(a + 22);
1832
1833                         num = cpa->num;
1834
1835                         /* get orco */
1836                         if(part->childtype == PART_CHILD_FACES) {
1837                                 psys_particle_on_emitter(psmd,
1838                                         PART_FROM_FACE, cpa->num,DMCACHE_ISCHILD,
1839                                         cpa->fuv,cpa->foffset,co,nor,0,0,sd.orco,0);
1840                         }
1841                         else {
1842                                 ParticleData *par = psys->particles + cpa->parent;
1843                                 psys_particle_on_emitter(psmd, part->from,
1844                                         par->num,DMCACHE_ISCHILD,par->fuv,
1845                                         par->foffset,co,nor,0,0,sd.orco,0);
1846                         }
1847
1848                         /* get uvco & mcol */
1849                         if(part->childtype==PART_CHILD_FACES) {
1850                                 get_particle_uvco_mcol(PART_FROM_FACE, psmd->dm, cpa->fuv, cpa->num, &sd);
1851                         }
1852                         else {
1853                                 ParticleData *parent = psys->particles + cpa->parent;
1854                                 num = parent->num_dmcache;
1855
1856                                 if(num == DMCACHE_NOTFOUND)
1857                                         if(parent->num < psmd->dm->getNumTessFaces(psmd->dm))
1858                                                 num = parent->num;
1859
1860                                 get_particle_uvco_mcol(part->from, psmd->dm, parent->fuv, num, &sd);
1861                         }
1862
1863                         dosimplify = psys_render_simplify_params(psys, cpa, simplify);
1864
1865                         if(strandbuf) {
1866                                 int orignum= (origindex)? origindex[cpa->num]: cpa->num;
1867
1868                                 if(orignum > sbound - strandbuf->bound) {
1869                                         sbound= strandbuf->bound + orignum;
1870                                         sbound->start= sbound->end= obr->totstrand;
1871                                 }
1872                         }
1873                 }
1874
1875                 /* TEXCO_PARTICLE */
1876                 pa_co[0] = pa_time;
1877                 pa_co[1] = 0.f;
1878                 pa_co[2] = 0.f;
1879
1880                 /* surface normal shading setup */
1881                 if(ma->mode_l & MA_STR_SURFDIFF) {
1882                         mul_m3_v3(nmat, nor);
1883                         sd.surfnor= nor;
1884                 }
1885                 else
1886                         sd.surfnor= NULL;
1887
1888                 /* strand render setup */
1889                 if(strandbuf) {
1890                         strand= RE_findOrAddStrand(obr, obr->totstrand++);
1891                         strand->buffer= strandbuf;
1892                         strand->vert= svert;
1893                         VECCOPY(strand->orco, sd.orco);
1894
1895                         if(dosimplify) {
1896                                 float *ssimplify= RE_strandren_get_simplify(obr, strand, 1);
1897                                 ssimplify[0]= simplify[0];
1898                                 ssimplify[1]= simplify[1];
1899                         }
1900
1901                         if(sd.surfnor) {
1902                                 float *snor= RE_strandren_get_surfnor(obr, strand, 1);
1903                                 VECCOPY(snor, sd.surfnor);
1904                         }
1905
1906                         if(dosurfacecache && num >= 0) {
1907                                 int *facenum= RE_strandren_get_face(obr, strand, 1);
1908                                 *facenum= num;
1909                         }
1910
1911                         if(sd.uvco) {
1912                                 for(i=0; i<sd.totuv; i++) {
1913                                         if(i != sd.override_uv) {
1914                                                 float *uv= RE_strandren_get_uv(obr, strand, i, NULL, 1);
1915
1916                                                 uv[0]= sd.uvco[2*i];
1917                                                 uv[1]= sd.uvco[2*i+1];
1918                                         }
1919                                 }
1920                         }
1921                         if(sd.mcol) {
1922                                 for(i=0; i<sd.totcol; i++) {
1923                                         MCol *mc= RE_strandren_get_mcol(obr, strand, i, NULL, 1);
1924                                         *mc = sd.mcol[i];
1925                                 }
1926                         }
1927
1928                         sbound->end++;
1929                 }
1930
1931                 /* strandco computation setup */
1932                 if(path_nbr) {
1933                         strandlen= 0.0f;
1934                         curlen= 0.0f;
1935                         for(k=1; k<=path_nbr; k++)
1936                                 if(k<=max_k)
1937                                         strandlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1938                 }
1939
1940                 if(path_nbr) {
1941                         /* render strands */
1942                         for(k=0; k<=path_nbr; k++){
1943                                 float time;
1944
1945                                 if(k<=max_k){
1946                                         VECCOPY(state.co,(cache+k)->co);
1947                                         VECCOPY(state.vel,(cache+k)->vel);
1948                                 }
1949                                 else
1950                                         continue;       
1951
1952                                 if(k > 0)
1953                                         curlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1954                                 time= curlen/strandlen;
1955
1956                                 VECCOPY(loc,state.co);
1957                                 mul_m4_v3(re->viewmat,loc);
1958
1959                                 if(strandbuf) {
1960                                         VECCOPY(svert->co, loc);
1961                                         svert->strandco= -1.0f + 2.0f*time;
1962                                         svert++;
1963                                         strand->totvert++;
1964                                 }
1965                                 else{
1966                                         sd.size = hasize;
1967
1968                                         if(k==1){
1969                                                 sd.first = 1;
1970                                                 sd.time = 0.0f;
1971                                                 VECSUB(loc0,loc1,loc);
1972                                                 VECADD(loc0,loc1,loc0);
1973
1974                                                 particle_curve(re, obr, psmd->dm, ma, &sd, loc1, loc0, seed, pa_co);
1975                                         }
1976
1977                                         sd.first = 0;
1978                                         sd.time = time;
1979
1980                                         if(k)
1981                                                 particle_curve(re, obr, psmd->dm, ma, &sd, loc, loc1, seed, pa_co);
1982
1983                                         VECCOPY(loc1,loc);
1984                                 }
1985                         }
1986
1987                 }
1988                 else {
1989                         /* render normal particles */
1990                         if(part->trail_count > 1) {
1991                                 float length = part->path_end * (1.0 - part->randlength * r_length);
1992                                 int trail_count = part->trail_count * (1.0 - part->randlength * r_length);
1993                                 float ct = (part->draw & PART_ABS_PATH_TIME) ? cfra : pa_time;
1994                                 float dt = length / (trail_count ? (float)trail_count : 1.0f);
1995
1996                                 /* make sure we have pointcache in memory before getting particle on path */
1997                                 psys_make_temp_pointcache(ob, psys);
1998
1999                                 for(i=0; i < trail_count; i++, ct -= dt) {
2000                                         if(part->draw & PART_ABS_PATH_TIME) {
2001                                                 if(ct < pa_birthtime || ct > pa_dietime)
2002                                                         continue;
2003                                         }
2004                                         else if(ct < 0.0f || ct > 1.0f)
2005                                                 continue;
2006
2007                                         state.time = (part->draw & PART_ABS_PATH_TIME) ? -ct : ct;
2008                                         psys_get_particle_on_path(&sim,a,&state,1);
2009
2010                                         if(psys->parent)
2011                                                 mul_m4_v3(psys->parent->obmat, state.co);
2012
2013                                         if(use_duplimat)
2014                                                 mul_m4_v4(duplimat, state.co);
2015
2016                                         if(part->ren_as == PART_DRAW_BB) {
2017                                                 bb.random = random;
2018                                                 bb.size = pa_size;
2019                                                 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2020                                                 bb.time = ct;
2021                                                 bb.num = a;
2022                                         }
2023
2024                                         pa_co[0] = (part->draw & PART_ABS_PATH_TIME) ? (ct-pa_birthtime)/(pa_dietime-pa_birthtime) : ct;
2025                                         pa_co[1] = (float)i/(float)(trail_count-1);
2026
2027                                         particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2028                                 }
2029                         }
2030                         else {
2031                                 state.time=cfra;
2032                                 if(psys_get_particle_state(&sim,a,&state,0)==0)
2033                                         continue;
2034
2035                                 if(psys->parent)
2036                                         mul_m4_v3(psys->parent->obmat, state.co);
2037
2038                                 if(use_duplimat)
2039                                         mul_m4_v4(duplimat, state.co);
2040
2041                                 if(part->ren_as == PART_DRAW_BB) {
2042                                         bb.random = random;
2043                                         bb.size = pa_size;
2044                                         bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2045                                         bb.time = pa_time;
2046                                         bb.num = a;
2047                                         bb.lifetime = pa_dietime-pa_birthtime;
2048                                 }
2049
2050                                 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2051                         }
2052                 }
2053
2054                 if(orco1==0)
2055                         sd.orco+=3;
2056
2057                 if(re->test_break(re->tbh))
2058                         break;
2059         }
2060
2061         if(dosurfacecache)
2062                 strandbuf->surface= cache_strand_surface(re, obr, psmd->dm, mat, timeoffset);
2063
2064 /* 4. clean up */
2065 #if 0 // XXX old animation system
2066         if(ma) do_mat_ipo(re->scene, ma);
2067 #endif // XXX old animation system
2068         
2069         if(orco1)
2070                 MEM_freeN(sd.orco);
2071
2072         if(sd.uvco)
2073                 MEM_freeN(sd.uvco);
2074         
2075         if(sd.mcol)
2076                 MEM_freeN(sd.mcol);
2077
2078         if(uv_name)
2079                 MEM_freeN(uv_name);
2080
2081         if(states)
2082                 MEM_freeN(states);
2083         
2084         rng_free(rng);
2085
2086         psys->flag &= ~PSYS_DRAWING;
2087
2088         if(psys->lattice){
2089                 end_latt_deform(psys->lattice);
2090                 psys->lattice= NULL;
2091         }
2092
2093         if(path_nbr && (ma->mode_l & MA_TANGENT_STR)==0)
2094                 calc_vertexnormals(re, obr, 0, 0);
2095
2096         return 1;
2097 }
2098
2099 /* ------------------------------------------------------------------------- */
2100 /* Halo's                                                                                                                                */
2101 /* ------------------------------------------------------------------------- */
2102
2103 static void make_render_halos(Render *re, ObjectRen *obr, Mesh *me, int totvert, MVert *mvert, Material *ma, float *orco)
2104 {
2105         Object *ob= obr->ob;
2106         HaloRen *har;
2107         float xn, yn, zn, nor[3], view[3];
2108         float vec[3], hasize, mat[4][4], imat[3][3];
2109         int a, ok, seed= ma->seed1;
2110
2111         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
2112         copy_m3_m4(imat, ob->imat);
2113
2114         re->flag |= R_HALO;
2115
2116         for(a=0; a<totvert; a++, mvert++) {
2117                 ok= 1;
2118
2119                 if(ok) {
2120                         hasize= ma->hasize;
2121
2122                         VECCOPY(vec, mvert->co);
2123                         mul_m4_v3(mat, vec);
2124
2125                         if(ma->mode & MA_HALOPUNO) {
2126                                 xn= mvert->no[0];
2127                                 yn= mvert->no[1];
2128                                 zn= mvert->no[2];
2129
2130                                 /* transpose ! */
2131                                 nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2132                                 nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2133                                 nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2134                                 normalize_v3(nor);
2135
2136                                 VECCOPY(view, vec);
2137                                 normalize_v3(view);
2138
2139                                 zn= nor[0]*view[0]+nor[1]*view[1]+nor[2]*view[2];
2140                                 if(zn>=0.0) hasize= 0.0;
2141                                 else hasize*= zn*zn*zn*zn;
2142                         }
2143
2144                         if(orco) har= RE_inithalo(re, obr, ma, vec, NULL, orco, hasize, 0.0, seed);
2145                         else har= RE_inithalo(re, obr, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
2146                         if(har) har->lay= ob->lay;
2147                 }
2148                 if(orco) orco+= 3;
2149                 seed++;
2150         }
2151 }
2152
2153 static int verghalo(const void *a1, const void *a2)
2154 {
2155         const HaloRen *har1= *(const HaloRen**)a1;
2156         const HaloRen *har2= *(const HaloRen**)a2;
2157         
2158         if(har1->zs < har2->zs) return 1;
2159         else if(har1->zs > har2->zs) return -1;
2160         return 0;
2161 }
2162
2163 static void sort_halos(Render *re, int totsort)
2164 {
2165         ObjectRen *obr;
2166         HaloRen *har= NULL, **haso;
2167         int a;
2168
2169         if(re->tothalo==0) return;
2170
2171         re->sortedhalos= MEM_callocN(sizeof(HaloRen*)*re->tothalo, "sorthalos");
2172         haso= re->sortedhalos;
2173
2174         for(obr=re->objecttable.first; obr; obr=obr->next) {
2175                 for(a=0; a<obr->tothalo; a++) {
2176                         if((a & 255)==0) har= obr->bloha[a>>8];
2177                         else har++;
2178
2179                         *(haso++)= har;
2180                 }
2181         }
2182
2183         qsort(re->sortedhalos, totsort, sizeof(HaloRen*), verghalo);
2184 }
2185
2186 /* ------------------------------------------------------------------------- */
2187 /* Displacement Mapping                                                                                                          */
2188 /* ------------------------------------------------------------------------- */
2189
2190 static short test_for_displace(Render *re, Object *ob)
2191 {
2192         /* return 1 when this object uses displacement textures. */
2193         Material *ma;
2194         int i;
2195         
2196         for (i=1; i<=ob->totcol; i++) {
2197                 ma=give_render_material(re, ob, i);
2198                 /* ma->mapto is ORed total of all mapto channels */
2199                 if(ma && (ma->mapto & MAP_DISPLACE)) return 1;
2200         }
2201         return 0;
2202 }
2203
2204 static void displace_render_vert(Render *re, ObjectRen *obr, ShadeInput *shi, VertRen *vr, int vindex, float *scale, float mat[][4], float imat[][3])
2205 {
2206         MTFace *tface;
2207         short texco= shi->mat->texco;
2208         float sample=0, displace[3];
2209         char *name;
2210         int i;
2211
2212         /* shi->co is current render coord, just make sure at least some vector is here */
2213         VECCOPY(shi->co, vr->co);
2214         /* vertex normal is used for textures type 'col' and 'var' */
2215         VECCOPY(shi->vn, vr->n);
2216
2217         if(mat)
2218                 mul_m4_v3(mat, shi->co);
2219
2220         if(imat) {
2221                 shi->vn[0]= imat[0][0]*vr->n[0]+imat[0][1]*vr->n[1]+imat[0][2]*vr->n[2];
2222                 shi->vn[1]= imat[1][0]*vr->n[0]+imat[1][1]*vr->n[1]+imat[1][2]*vr->n[2];
2223                 shi->vn[2]= imat[2][0]*vr->n[0]+imat[2][1]*vr->n[1]+imat[2][2]*vr->n[2];
2224         }
2225
2226         if (texco & TEXCO_UV) {
2227                 shi->totuv= 0;
2228                 shi->actuv= obr->actmtface;
2229
2230                 for (i=0; (tface=RE_vlakren_get_tface(obr, shi->vlr, i, &name, 0)); i++) {
2231                         ShadeInputUV *suv= &shi->uv[i];
2232
2233                         /* shi.uv needs scale correction from tface uv */
2234                         suv->uv[0]= 2*tface->uv[vindex][0]-1.0f;
2235                         suv->uv[1]= 2*tface->uv[vindex][1]-1.0f;
2236                         suv->uv[2]= 0.0f;
2237                         suv->name= name;
2238                         shi->totuv++;
2239                 }
2240         }
2241
2242         /* set all rendercoords, 'texco' is an ORed value for all textures needed */
2243         if ((texco & TEXCO_ORCO) && (vr->orco)) {
2244                 VECCOPY(shi->lo, vr->orco);
2245         }
2246         if (texco & TEXCO_STICKY) {
2247                 float *sticky= RE_vertren_get_sticky(obr, vr, 0);
2248                 if(sticky) {
2249                         shi->sticky[0]= sticky[0];
2250                         shi->sticky[1]= sticky[1];
2251                         shi->sticky[2]= 0.0f;
2252                 }
2253         }
2254         if (texco & TEXCO_GLOB) {
2255                 VECCOPY(shi->gl, shi->co);
2256                 mul_m4_v3(re->viewinv, shi->gl);
2257         }
2258         if (texco & TEXCO_NORM) {
2259                 VECCOPY(shi->orn, shi->vn);
2260         }
2261         if(texco & TEXCO_REFL) {
2262                 /* not (yet?) */
2263         }
2264         
2265         shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
2266         
2267         do_material_tex(shi);
2268         
2269         //printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2], 
2270         //vr->co[0], vr->co[1], vr->co[2]);
2271
2272         displace[0]= shi->displace[0] * scale[0];
2273         displace[1]= shi->displace[1] * scale[1];
2274         displace[2]= shi->displace[2] * scale[2];
2275         
2276         if(mat)
2277                 mul_m3_v3(imat, displace);
2278
2279         /* 0.5 could become button once?  */
2280         vr->co[0] += displace[0]; 
2281         vr->co[1] += displace[1];
2282         vr->co[2] += displace[2];
2283         
2284         //printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]); 
2285         
2286         /* we just don't do this vertex again, bad luck for other face using same vertex with
2287                 different material... */
2288         vr->flag |= 1;
2289         
2290         /* Pass sample back so displace_face can decide which way to split the quad */
2291         sample  = shi->displace[0]*shi->displace[0];
2292         sample += shi->displace[1]*shi->displace[1];
2293         sample += shi->displace[2]*shi->displace[2];
2294         
2295         vr->accum=sample; 
2296         /* Should be sqrt(sample), but I'm only looking for "bigger".  Save the cycles. */
2297         return;
2298 }
2299
2300 static void displace_render_face(Render *re, ObjectRen *obr, VlakRen *vlr, float *scale, float mat[][4], float imat[][3])
2301 {
2302         ShadeInput shi;
2303
2304         /* Warning, This is not that nice, and possibly a bit slow,
2305         however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
2306         memset(&shi, 0, sizeof(ShadeInput)); 
2307         /* end warning! - Campbell */
2308         
2309         /* set up shadeinput struct for multitex() */
2310         
2311         /* memset above means we dont need this */
2312         /*shi.osatex= 0;*/              /* signal not to use dx[] and dy[] texture AA vectors */
2313
2314         shi.obr= obr;
2315         shi.vlr= vlr;           /* current render face */
2316         shi.mat= vlr->mat;              /* current input material */
2317         shi.thread= 0;
2318         
2319         /* TODO, assign these, displacement with new bumpmap is skipped without - campbell */
2320 #if 0
2321         /* order is not known ? */
2322         shi.v1= vlr->v1;
2323         shi.v2= vlr->v2;
2324         shi.v3= vlr->v3;
2325 #endif
2326
2327         /* Displace the verts, flag is set when done */
2328         if (!vlr->v1->flag)
2329                 displace_render_vert(re, obr, &shi, vlr->v1,0,  scale, mat, imat);
2330         
2331         if (!vlr->v2->flag)
2332                 displace_render_vert(re, obr, &shi, vlr->v2, 1, scale, mat, imat);
2333
2334         if (!vlr->v3->flag)
2335                 displace_render_vert(re, obr, &shi, vlr->v3, 2, scale, mat, imat);
2336
2337         if (vlr->v4) {
2338                 if (!vlr->v4->flag)
2339                         displace_render_vert(re, obr, &shi, vlr->v4, 3, scale, mat, imat);
2340
2341                 /*      closest in displace value.  This will help smooth edges.   */ 
2342                 if ( fabs(vlr->v1->accum - vlr->v3->accum) > fabs(vlr->v2->accum - vlr->v4->accum)) 
2343                         vlr->flag |= R_DIVIDE_24;
2344                 else vlr->flag &= ~R_DIVIDE_24;
2345         }
2346         
2347         /* Recalculate the face normal  - if flipped before, flip now */
2348         if(vlr->v4) {
2349                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2350         }       
2351         else {
2352                 normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
2353         }
2354 }
2355
2356 static void do_displacement(Render *re, ObjectRen *obr, float mat[][4], float imat[][3])
2357 {
2358         VertRen *vr;
2359         VlakRen *vlr;
2360 //      float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
2361         float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
2362         int i; //, texflag=0;
2363         Object *obt;
2364                 
2365         /* Object Size with parenting */
2366         obt=obr->ob;
2367         while(obt){
2368                 add_v3_v3v3(temp, obt->size, obt->dsize);
2369                 scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
2370                 obt=obt->parent;
2371         }
2372         
2373         /* Clear all flags */
2374         for(i=0; i<obr->totvert; i++){ 
2375                 vr= RE_findOrAddVert(obr, i);
2376                 vr->flag= 0;
2377         }
2378
2379         for(i=0; i<obr->totvlak; i++){
2380                 vlr=RE_findOrAddVlak(obr, i);
2381                 displace_render_face(re, obr, vlr, scale, mat, imat);
2382         }
2383         
2384         /* Recalc vertex normals */
2385         calc_vertexnormals(re, obr, 0, 0);
2386 }
2387
2388 /* ------------------------------------------------------------------------- */
2389 /* Metaball                                                                                                                              */
2390 /* ------------------------------------------------------------------------- */
2391
2392 static void init_render_mball(Render *re, ObjectRen *obr)
2393 {
2394         Object *ob= obr->ob;
2395         DispList *dl;
2396         VertRen *ver;
2397         VlakRen *vlr, *vlr1;
2398         Material *ma;
2399         float *data, *nors, *orco=NULL, mat[4][4], imat[3][3], xn, yn, zn;
2400         int a, need_orco, vlakindex, *index;
2401         ListBase dispbase= {NULL, NULL};
2402
2403         if (ob!=find_basis_mball(re->scene, ob))
2404                 return;
2405
2406         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
2407         invert_m4_m4(ob->imat, mat);
2408         copy_m3_m4(imat, ob->imat);
2409
2410         ma= give_render_material(re, ob, 1);
2411
2412         need_orco= 0;
2413         if(ma->texco & TEXCO_ORCO) {
2414                 need_orco= 1;
2415         }
2416
2417         makeDispListMBall_forRender(re->scene, ob, &dispbase);
2418         dl= dispbase.first;
2419         if(dl==0) return;
2420
2421         data= dl->verts;
2422         nors= dl->nors;
2423         if(need_orco) {
2424                 orco= get_object_orco(re, ob);
2425
2426                 if (!orco) {
2427                         /* orco hasn't been found in cache - create new one and add to cache */
2428                         orco= make_orco_mball(ob, &dispbase);
2429                         set_object_orco(re, ob, orco);
2430                 }
2431         }
2432
2433         for(a=0; a<dl->nr; a++, data+=3, nors+=3) {
2434
2435                 ver= RE_findOrAddVert(obr, obr->totvert++);
2436                 VECCOPY(ver->co, data);
2437                 mul_m4_v3(mat, ver->co);
2438
2439                 /* render normals are inverted */
2440                 xn= -nors[0];
2441                 yn= -nors[1];
2442                 zn= -nors[2];
2443
2444                 /* transpose ! */
2445                 ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2446                 ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2447                 ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2448                 normalize_v3(ver->n);
2449                 //if(ob->transflag & OB_NEG_SCALE) negate_v3(ver->n);
2450                 
2451                 if(need_orco) {
2452                         ver->orco= orco;
2453                         orco+=3;
2454                 }
2455         }
2456
2457         index= dl->index;
2458         for(a=0; a<dl->parts; a++, index+=4) {
2459
2460                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2461                 vlr->v1= RE_findOrAddVert(obr, index[0]);
2462                 vlr->v2= RE_findOrAddVert(obr, index[1]);
2463                 vlr->v3= RE_findOrAddVert(obr, index[2]);
2464                 vlr->v4= 0;
2465
2466                 if(ob->transflag & OB_NEG_SCALE) 
2467                         normal_tri_v3( vlr->n,vlr->v1->co, vlr->v2->co, vlr->v3->co);
2468                 else
2469                         normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
2470
2471                 vlr->mat= ma;
2472                 vlr->flag= ME_SMOOTH;
2473                 vlr->ec= 0;
2474
2475                 /* mball -too bad- always has triangles, because quads can be non-planar */
2476                 if(index[3] && index[3]!=index[2]) {
2477                         vlr1= RE_findOrAddVlak(obr, obr->totvlak++);
2478                         vlakindex= vlr1->index;
2479                         *vlr1= *vlr;
2480                         vlr1->index= vlakindex;
2481                         vlr1->v2= vlr1->v3;
2482                         vlr1->v3= RE_findOrAddVert(obr, index[3]);
2483                         if(ob->transflag & OB_NEG_SCALE) 
2484                                 normal_tri_v3( vlr1->n,vlr1->v1->co, vlr1->v2->co, vlr1->v3->co);
2485                         else
2486                                 normal_tri_v3( vlr1->n,vlr1->v3->co, vlr1->v2->co, vlr1->v1->co);
2487                 }
2488         }
2489
2490         /* enforce display lists remade */
2491         freedisplist(&dispbase);
2492 }
2493
2494 /* ------------------------------------------------------------------------- */
2495 /* Surfaces and Curves                                                                                                           */
2496 /* ------------------------------------------------------------------------- */
2497
2498 /* returns amount of vertices added for orco */
2499 static int dl_surf_to_renderdata(ObjectRen *obr, DispList *dl, Material **matar, float *orco, float mat[4][4])
2500 {
2501         VertRen *v1, *v2, *v3, *v4, *ver;
2502         VlakRen *vlr, *vlr1, *vlr2, *vlr3;
2503         float *data, n1[3];
2504         int u, v, orcoret= 0;
2505         int p1, p2, p3, p4, a;
2506         int sizeu, nsizeu, sizev, nsizev;
2507         int startvert, startvlak;
2508         
2509         startvert= obr->totvert;
2510         nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr; 
2511         
2512         data= dl->verts;
2513         for (u = 0; u < sizeu; u++) {
2514                 v1 = RE_findOrAddVert(obr, obr->totvert++); /* save this for possible V wrapping */
2515                 VECCOPY(v1->co, data); data += 3;
2516                 if(orco) {
2517                         v1->orco= orco; orco+= 3; orcoret++;
2518                 }       
2519                 mul_m4_v3(mat, v1->co);
2520                 
2521                 for (v = 1; v < sizev; v++) {
2522                         ver= RE_findOrAddVert(obr, obr->totvert++);
2523                         VECCOPY(ver->co, data); data += 3;
2524                         if(orco) {
2525                                 ver->orco= orco; orco+= 3; orcoret++;
2526                         }       
2527                         mul_m4_v3(mat, ver->co);
2528                 }
2529                 /* if V-cyclic, add extra vertices at end of the row */
2530                 if (dl->flag & DL_CYCL_U) {
2531                         ver= RE_findOrAddVert(obr, obr->totvert++);
2532                         VECCOPY(ver->co, v1->co);
2533                         if(orco) {
2534                                 ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
2535                         }
2536                 }       
2537         }       
2538         
2539         /* Done before next loop to get corner vert */
2540         if (dl->flag & DL_CYCL_U) nsizev++;
2541         if (dl->flag & DL_CYCL_V) nsizeu++;
2542         
2543         /* if U cyclic, add extra row at end of column */
2544         if (dl->flag & DL_CYCL_V) {
2545                 for (v = 0; v < nsizev; v++) {
2546                         v1= RE_findOrAddVert(obr, startvert + v);
2547                         ver= RE_findOrAddVert(obr, obr->totvert++);
2548                         VECCOPY(ver->co, v1->co);
2549                         if(orco) {
2550                                 ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
2551                         }
2552                 }
2553         }
2554         
2555         sizeu = nsizeu;
2556         sizev = nsizev;
2557         
2558         startvlak= obr->totvlak;
2559         
2560         for(u = 0; u < sizeu - 1; u++) {
2561                 p1 = startvert + u * sizev; /* walk through face list */
2562                 p2 = p1 + 1;
2563                 p3 = p2 + sizev;
2564                 p4 = p3 - 1;
2565                 
2566                 for(v = 0; v < sizev - 1; v++) {
2567                         v1= RE_findOrAddVert(obr, p1);
2568                         v2= RE_findOrAddVert(obr, p2);
2569                         v3= RE_findOrAddVert(obr, p3);
2570                         v4= RE_findOrAddVert(obr, p4);
2571                         
2572                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2573                         vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
2574                         
2575                         normal_quad_v3( n1,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2576                         
2577                         VECCOPY(vlr->n, n1);
2578                         
2579                         vlr->mat= matar[ dl->col];
2580                         vlr->ec= ME_V1V2+ME_V2V3;
2581                         vlr->flag= dl->rt;
2582                         
2583                         add_v3_v3(v1->n, n1);
2584                         add_v3_v3(v2->n, n1);
2585                         add_v3_v3(v3->n, n1);
2586                         add_v3_v3(v4->n, n1);
2587                         
2588                         p1++; p2++; p3++; p4++;
2589                 }
2590         }       
2591         /* fix normals for U resp. V cyclic faces */
2592         sizeu--; sizev--;  /* dec size for face array */
2593         if (dl->flag & DL_CYCL_V) {
2594                 
2595                 for (v = 0; v < sizev; v++)
2596                 {
2597                         /* optimize! :*/
2598                         vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, v));
2599                         vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, v));
2600                         add_v3_v3(vlr1->v1->n, vlr->n);
2601                         add_v3_v3(vlr1->v2->n, vlr->n);
2602                         add_v3_v3(vlr->v3->n, vlr1->n);
2603                         add_v3_v3(vlr->v4->n, vlr1->n);
2604                 }
2605         }
2606         if (dl->flag & DL_CYCL_U) {
2607                 
2608                 for (u = 0; u < sizeu; u++)
2609                 {
2610                         /* optimize! :*/
2611                         vlr= RE_findOrAddVlak(obr, UVTOINDEX(u, 0));
2612                         vlr1= RE_findOrAddVlak(obr, UVTOINDEX(u, sizev-1));
2613                         add_v3_v3(vlr1->v2->n, vlr->n);
2614                         add_v3_v3(vlr1->v3->n, vlr->n);
2615                         add_v3_v3(vlr->v1->n, vlr1->n);
2616                         add_v3_v3(vlr->v4->n, vlr1->n);
2617                 }
2618         }
2619         /* last vertex is an extra case: 
2620                 
2621                 ^       ()----()----()----()
2622                 |       |     |     ||     |
2623                 u       |     |(0,n)||(0,0)|
2624                 |     |     ||     |
2625                 ()====()====[]====()
2626                 |     |     ||     |
2627                 |     |(m,n)||(m,0)|
2628                 |     |     ||     |
2629                 ()----()----()----()
2630                 v ->
2631                 
2632                 vertex [] is no longer shared, therefore distribute
2633                 normals of the surrounding faces to all of the duplicates of []
2634                 */
2635         
2636         if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U))
2637         {
2638                 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m,n) */
2639                 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0,0));  /* (0,0) */
2640                 add_v3_v3v3(n1, vlr->n, vlr1->n);
2641                 vlr2= RE_findOrAddVlak(obr, UVTOINDEX(0, sizev-1)); /* (0,n) */
2642                 add_v3_v3(n1, vlr2->n);
2643                 vlr3= RE_findOrAddVlak(obr, UVTOINDEX(sizeu-1, 0)); /* (m,0) */
2644                 add_v3_v3(n1, vlr3->n);
2645                 VECCOPY(vlr->v3->n, n1);
2646                 VECCOPY(vlr1->v1->n, n1);
2647                 VECCOPY(vlr2->v2->n, n1);
2648                 VECCOPY(vlr3->v4->n, n1);
2649         }
2650         for(a = startvert; a < obr->totvert; a++) {
2651                 ver= RE_findOrAddVert(obr, a);
2652                 normalize_v3(ver->n);
2653         }
2654         
2655         
2656         return orcoret;
2657 }
2658
2659 static void init_render_dm(DerivedMesh *dm, Render *re, ObjectRen *obr,
2660         int timeoffset, float *orco, float mat[4][4])
2661 {
2662         Object *ob= obr->ob;
2663         int a, a1, end, totvert, vertofs;
2664         VertRen *ver;
2665         VlakRen *vlr;
2666         MVert *mvert = NULL;
2667         MFace *mface;
2668         Material *ma;
2669         /* Curve *cu= ELEM(ob->type, OB_FONT, OB_CURVE) ? ob->data : NULL; */
2670
2671         mvert= dm->getVertArray(dm);
2672         totvert= dm->getNumVerts(dm);
2673
2674         for(a=0; a<totvert; a++, mvert++) {
2675                 ver= RE_findOrAddVert(obr, obr->totvert++);
2676                 VECCOPY(ver->co, mvert->co);
2677                 mul_m4_v3(mat, ver->co);
2678
2679                 if(orco) {
2680                         ver->orco= orco;
2681                         orco+=3;
2682                 }
2683         }
2684
2685         if(!timeoffset) {
2686                 /* store customdata names, because DerivedMesh is freed */
2687                 RE_set_customdata_names(obr, &dm->faceData);
2688
2689                 /* still to do for keys: the correct local texture coordinate */
2690
2691                 /* faces in order of color blocks */
2692                 vertofs= obr->totvert - totvert;
2693                 for(a1=0; (a1<ob->totcol || (a1==0 && ob->totcol==0)); a1++) {
2694
2695                         ma= give_render_material(re, ob, a1+1);
2696                         end= dm->getNumTessFaces(dm);
2697                         mface= dm->getTessFaceArray(dm);
2698
2699                         for(a=0; a<end; a++, mface++) {
2700                                 int v1, v2, v3, v4, flag;
2701
2702                                 if( mface->mat_nr==a1 ) {
2703                                         float len;
2704
2705                                         v1= mface->v1;
2706                                         v2= mface->v2;
2707                                         v3= mface->v3;
2708                                         v4= mface->v4;
2709                                         flag= mface->flag & ME_SMOOTH;
2710
2711                                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2712                                         vlr->v1= RE_findOrAddVert(obr, vertofs+v1);
2713                                         vlr->v2= RE_findOrAddVert(obr, vertofs+v2);
2714                                         vlr->v3= RE_findOrAddVert(obr, vertofs+v3);
2715                                         if(v4) vlr->v4= RE_findOrAddVert(obr, vertofs+v4);
2716                                         else vlr->v4= 0;
2717
2718                                         /* render normals are inverted in render */
2719                                         if(vlr->v4)
2720                                                 len= normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2721                                         else
2722                                                 len= normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
2723
2724                                         vlr->mat= ma;
2725                                         vlr->flag= flag;
2726                                         vlr->ec= 0; /* mesh edges rendered separately */
2727
2728                                         if(len==0) obr->totvlak--;
2729                                         else {
2730                                                 CustomDataLayer *layer;
2731                                                 MTFace *mtface, *mtf;
2732                                                 MCol *mcol, *mc;
2733                                                 int index, mtfn= 0, mcn= 0;
2734                                                 char *name;
2735
2736                                                 for(index=0; index<dm->faceData.totlayer; index++) {
2737                                                         layer= &dm->faceData.layers[index];
2738                                                         name= layer->name;
2739
2740                                                         if(layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
2741                                                                 mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
2742                                                                 mtface= (MTFace*)layer->data;
2743                                                                 *mtf= mtface[a];
2744                                                         }
2745                                                         else if(layer->type == CD_MCOL && mcn < MAX_MCOL) {
2746                                                                 mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
2747                                                                 mcol= (MCol*)layer->data;
2748                                                                 memcpy(mc, &mcol[a*4], sizeof(MCol)*4);
2749                                                         }
2750                                                 }
2751                                         }
2752                                 }
2753                         }
2754                 }
2755
2756                 /* Normals */
2757                 calc_vertexnormals(re, obr, 0, 0);
2758         }
2759
2760 }
2761
2762 static void init_render_surf(Render *re, ObjectRen *obr, int timeoffset)
2763 {
2764         Object *ob= obr->ob;
2765         Nurb *nu=0;
2766         Curve *cu;
2767         ListBase displist= {NULL, NULL};
2768         DispList *dl;
2769         Material **matar;
2770         float *orco=NULL, mat[4][4];
2771         int a, totmat, need_orco=0;
2772         DerivedMesh *dm= NULL;
2773
2774         cu= ob->data;
2775         nu= cu->nurb.first;
2776         if(nu==0) return;
2777
2778         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
2779         invert_m4_m4(ob->imat, mat);
2780
2781         /* material array */
2782         totmat= ob->totcol+1;
2783         matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2784
2785         for(a=0; a<totmat; a++) {
2786                 matar[a]= give_render_material(re, ob, a+1);
2787
2788                 if(matar[a] && matar[a]->texco & TEXCO_ORCO)
2789                         need_orco= 1;
2790         }
2791
2792         if(ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
2793
2794         makeDispListSurf(re->scene, ob, &displist, &dm, 1, 0);
2795
2796         if (dm) {
2797                 if(need_orco) {
2798                         orco= makeOrcoDispList(re->scene, ob, dm, 1);
2799                         if(orco) {
2800                                 set_object_orco(re, ob, orco);
2801                         }
2802                 }
2803
2804                 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2805                 dm->release(dm);
2806         } else {
2807                 if(need_orco) {
2808                         orco= get_object_orco(re, ob);
2809                 }
2810
2811                 /* walk along displaylist and create rendervertices/-faces */
2812                 for(dl=displist.first; dl; dl=dl->next) {
2813                         /* watch out: u ^= y, v ^= x !! */
2814                         if(dl->type==DL_SURF)
2815                                 orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
2816                 }
2817         }
2818
2819         freedisplist(&displist);
2820
2821         MEM_freeN(matar);
2822 }
2823
2824 static void init_render_curve(Render *re, ObjectRen *obr, int timeoffset)
2825 {
2826         Object *ob= obr->ob;
2827         Curve *cu;
2828         VertRen *ver;
2829         VlakRen *vlr;
2830         DispList *dl;
2831         DerivedMesh *dm = NULL;
2832         ListBase disp={NULL, NULL};
2833         Material **matar;
2834         float *data, *fp, *orco=NULL;
2835         float n[3], mat[4][4];
2836         int nr, startvert, a, b;
2837         int need_orco=0, totmat;
2838
2839         cu= ob->data;
2840         if(ob->type==OB_FONT && cu->str==NULL) return;
2841         else if(ob->type==OB_CURVE && cu->nurb.first==NULL) return;
2842
2843         makeDispListCurveTypes_forRender(re->scene, ob, &disp, &dm, 0);
2844         dl= disp.first;
2845         if(dl==NULL) return;
2846         
2847         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
2848         invert_m4_m4(ob->imat, mat);
2849
2850         /* material array */
2851         totmat= ob->totcol+1;
2852         matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2853
2854         for(a=0; a<totmat; a++) {
2855                 matar[a]= give_render_material(re, ob, a+1);
2856
2857                 if(matar[a] && matar[a]->texco & TEXCO_ORCO)
2858                         need_orco= 1;
2859         }
2860
2861         if (dm) {
2862                 if(need_orco) {
2863                         orco= makeOrcoDispList(re->scene, ob, dm, 1);
2864                         if(orco) {
2865                                 set_object_orco(re, ob, orco);
2866                         }
2867                 }
2868
2869                 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2870                 dm->release(dm);
2871         } else {
2872                 if(need_orco) {
2873                   orco= get_object_orco(re, ob);
2874                 }
2875
2876                 while(dl) {
2877                         if(dl->col > ob->totcol) {
2878                                 /* pass */
2879                         }
2880                         else if(dl->type==DL_INDEX3) {
2881                                 int *index;
2882
2883                                 startvert= obr->totvert;
2884                                 data= dl->verts;
2885
2886                                 for(a=0; a<dl->nr; a++, data+=3) {
2887                                         ver= RE_findOrAddVert(obr, obr->totvert++);
2888                                         VECCOPY(ver->co, data);
2889
2890                                         mul_m4_v3(mat, ver->co);
2891
2892                                         if (orco) {
2893                                                 ver->orco = orco;
2894                                                 orco += 3;
2895                                         }
2896                                 }
2897
2898                                 if(timeoffset==0) {
2899                                         float tmp[3];
2900                                         const int startvlak= obr->totvlak;
2901
2902                                         zero_v3(n);
2903                                         index= dl->index;
2904                                         for(a=0; a<dl->parts; a++, index+=3) {
2905                                                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2906                                                 vlr->v1= RE_findOrAddVert(obr, startvert+index[0]);
2907                                                 vlr->v2= RE_findOrAddVert(obr, startvert+index[1]);
2908                                                 vlr->v3= RE_findOrAddVert(obr, startvert+index[2]);
2909                                                 vlr->v4= NULL;
2910
2911                                                 normal_tri_v3(tmp, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2912                                                 add_v3_v3(n, tmp);
2913
2914                                                 vlr->mat= matar[ dl->col ];
2915                                                 vlr->flag= 0;
2916                                                 vlr->ec= 0;
2917                                         }
2918
2919                                         normalize_v3(n);
2920
2921                                         /* vertex normals */
2922                                         for(a= startvlak; a<obr->totvlak; a++) {
2923                                                 vlr= RE_findOrAddVlak(obr, a);
2924
2925                                                 copy_v3_v3(vlr->n, n);
2926                                                 add_v3_v3(vlr->v1->n, vlr->n);
2927                                                 add_v3_v3(vlr->v3->n, vlr->n);
2928                                                 add_v3_v3(vlr->v2->n, vlr->n);
2929                                         }
2930                                         for(a=startvert; a<obr->totvert; a++) {
2931                                                 ver= RE_findOrAddVert(obr, a);
2932                                                 normalize_v3(ver->n);
2933                                         }
2934                                 }
2935                         }
2936                         else if (dl->type==DL_SURF) {
2937
2938                                 /* cyclic U means an extruded full circular curve, we skip bevel splitting then */
2939          &nb