synched with trunk at revision 34793
[blender.git] / source / blender / blenkernel / intern / effect.c
1 /*  effect.c
2  * 
3  * 
4  * $Id$
5  *
6  * ***** BEGIN GPL LICENSE BLOCK *****
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
21  *
22  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
23  * All rights reserved.
24  *
25  * The Original Code is: all of this file.
26  *
27  * Contributor(s): none yet.
28  *
29  * ***** END GPL LICENSE BLOCK *****
30  */
31
32 #include <stddef.h>
33 #include "BLI_storage.h" /* _LARGEFILE_SOURCE */
34
35 #include <math.h>
36 #include <stdlib.h>
37
38 #include "MEM_guardedalloc.h"
39
40 #include "DNA_curve_types.h"
41 #include "DNA_effect_types.h"
42 #include "DNA_group_types.h"
43 #include "DNA_ipo_types.h"
44 #include "DNA_key_types.h"
45 #include "DNA_lattice_types.h"
46 #include "DNA_listBase.h"
47 #include "DNA_mesh_types.h"
48 #include "DNA_meshdata_types.h"
49 #include "DNA_material_types.h"
50 #include "DNA_object_types.h"
51 #include "DNA_object_force.h"
52 #include "DNA_particle_types.h"
53 #include "DNA_texture_types.h"
54 #include "DNA_scene_types.h"
55
56 #include "BLI_math.h"
57 #include "BLI_blenlib.h"
58 #include "BLI_jitter.h"
59 #include "BLI_listbase.h"
60 #include "BLI_noise.h"
61 #include "BLI_rand.h"
62
63 #include "PIL_time.h"
64
65 #include "BKE_action.h"
66 #include "BKE_anim.h"           /* needed for where_on_path */
67 #include "BKE_armature.h"
68 #include "BKE_blender.h"
69 #include "BKE_collision.h"
70 #include "BKE_constraint.h"
71 #include "BKE_deform.h"
72 #include "BKE_depsgraph.h"
73 #include "BKE_displist.h"
74 #include "BKE_DerivedMesh.h"
75 #include "BKE_cdderivedmesh.h"
76 #include "BKE_effect.h"
77 #include "BKE_global.h"
78 #include "BKE_group.h"
79 #include "BKE_ipo.h"
80 #include "BKE_key.h"
81 #include "BKE_lattice.h"
82 #include "BKE_mesh.h"
83 #include "BKE_material.h"
84 #include "BKE_main.h"
85 #include "BKE_modifier.h"
86 #include "BKE_object.h"
87 #include "BKE_particle.h"
88 #include "BKE_scene.h"
89 #include "BKE_utildefines.h"
90
91 #include "RE_render_ext.h"
92 #include "RE_shader_ext.h"
93
94 /* fluid sim particle import */
95 #ifndef DISABLE_ELBEEM
96 #include "DNA_object_fluidsim.h"
97 #include "LBM_fluidsim.h"
98 #include <zlib.h>
99 #include <string.h>
100 #endif // DISABLE_ELBEEM
101
102 //XXX #include "BIF_screen.h"
103
104 EffectorWeights *BKE_add_effector_weights(Group *group)
105 {
106         EffectorWeights *weights = MEM_callocN(sizeof(EffectorWeights), "EffectorWeights");
107         int i;
108
109         for(i=0; i<NUM_PFIELD_TYPES; i++)
110                 weights->weight[i] = 1.0f;
111
112         weights->global_gravity = 1.0f;
113
114         weights->group = group;
115
116         return weights;
117 }
118 PartDeflect *object_add_collision_fields(int type)
119 {
120         PartDeflect *pd;
121
122         pd= MEM_callocN(sizeof(PartDeflect), "PartDeflect");
123
124         pd->forcefield = type;
125         pd->pdef_sbdamp = 0.1f;
126         pd->pdef_sbift  = 0.2f;
127         pd->pdef_sboft  = 0.02f;
128         pd->seed = ((unsigned int)(ceil(PIL_check_seconds_timer()))+1) % 128;
129         pd->f_strength = 1.0f;
130         pd->f_damp = 1.0f;
131
132         /* set sensible defaults based on type */
133         switch(type) {
134                 case PFIELD_VORTEX:
135                         pd->shape = PFIELD_SHAPE_PLANE;
136                         break;
137                 case PFIELD_WIND:
138                         pd->shape = PFIELD_SHAPE_PLANE;
139                         pd->f_flow = 1.0f; /* realistic wind behavior */
140                         break;
141                 case PFIELD_TEXTURE:
142                         pd->f_size = 1.0f;
143                         break;
144         }
145         pd->flag = PFIELD_DO_LOCATION|PFIELD_DO_ROTATION;
146
147         return pd;
148 }
149
150 /* temporal struct, used for reading return of mesh_get_mapped_verts_nors() */
151
152 typedef struct VeNoCo {
153         float co[3], no[3];
154 } VeNoCo;
155
156 /* ***************** PARTICLES ***************** */
157
158 /* deprecated, only keep this for readfile.c */
159 PartEff *give_parteff(Object *ob)
160 {
161         PartEff *paf;
162         
163         paf= ob->effect.first;
164         while(paf) {
165                 if(paf->type==EFF_PARTICLE) return paf;
166                 paf= paf->next;
167         }
168         return 0;
169 }
170
171 void free_effect(Effect *eff)
172 {
173         PartEff *paf;
174         
175         if(eff->type==EFF_PARTICLE) {
176                 paf= (PartEff *)eff;
177                 if(paf->keys) MEM_freeN(paf->keys);
178         }
179         MEM_freeN(eff); 
180 }
181
182
183 void free_effects(ListBase *lb)
184 {
185         Effect *eff;
186         
187         eff= lb->first;
188         while(eff) {
189                 BLI_remlink(lb, eff);
190                 free_effect(eff);
191                 eff= lb->first;
192         }
193 }
194
195 /* -------------------------- Effectors ------------------ */
196 void free_partdeflect(PartDeflect *pd)
197 {
198         if(!pd)
199                 return;
200
201         if(pd->tex)
202                 pd->tex->id.us--;
203
204         if(pd->rng)
205                 rng_free(pd->rng);
206
207         MEM_freeN(pd);
208 }
209
210 static void precalculate_effector(EffectorCache *eff)
211 {
212         unsigned int cfra = (unsigned int)(eff->scene->r.cfra >= 0 ? eff->scene->r.cfra : -eff->scene->r.cfra);
213         if(!eff->pd->rng)
214                 eff->pd->rng = rng_new(eff->pd->seed + cfra);
215         else
216                 rng_srandom(eff->pd->rng, eff->pd->seed + cfra);
217
218         if(eff->pd->forcefield == PFIELD_GUIDE && eff->ob->type==OB_CURVE) {
219                 Curve *cu= eff->ob->data;
220                 if(cu->flag & CU_PATH) {
221                         if(cu->path==NULL || cu->path->data==NULL)
222                                 makeDispListCurveTypes(eff->scene, eff->ob, 0);
223
224                         if(cu->path && cu->path->data) {
225                                 where_on_path(eff->ob, 0.0, eff->guide_loc, eff->guide_dir, NULL, &eff->guide_radius, NULL);
226                                 mul_m4_v3(eff->ob->obmat, eff->guide_loc);
227                                 mul_mat3_m4_v3(eff->ob->obmat, eff->guide_dir);
228                         }
229                 }
230         }
231         else if(eff->pd->shape == PFIELD_SHAPE_SURFACE) {
232                 eff->surmd = (SurfaceModifierData *)modifiers_findByType ( eff->ob, eModifierType_Surface );
233                 if(eff->ob->type == OB_CURVE)
234                         eff->flag |= PE_USE_NORMAL_DATA;
235         }
236         else if(eff->psys)
237                 psys_update_particle_tree(eff->psys, eff->scene->r.cfra);
238 }
239 static EffectorCache *new_effector_cache(Scene *scene, Object *ob, ParticleSystem *psys, PartDeflect *pd)
240 {
241         EffectorCache *eff = MEM_callocN(sizeof(EffectorCache), "EffectorCache");
242         eff->scene = scene;
243         eff->ob = ob;
244         eff->psys = psys;
245         eff->pd = pd;
246         eff->frame = -1;
247
248         precalculate_effector(eff);
249
250         return eff;
251 }
252 static void add_object_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, Object *ob_src)
253 {
254         EffectorCache *eff = NULL;
255
256         if( ob == ob_src || weights->weight[ob->pd->forcefield] == 0.0f )
257                 return;
258
259         if (ob->pd->shape == PFIELD_SHAPE_POINTS && !ob->derivedFinal )
260                 return;
261
262         if(*effectors == NULL)
263                 *effectors = MEM_callocN(sizeof(ListBase), "effectors list");
264
265         eff = new_effector_cache(scene, ob, NULL, ob->pd);
266
267         BLI_addtail(*effectors, eff);
268 }
269 static void add_particles_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, ParticleSystem *psys, ParticleSystem *psys_src)
270 {
271         ParticleSettings *part= psys->part;
272
273         if( !psys_check_enabled(ob, psys) )
274                 return;
275
276         if( psys == psys_src && (part->flag & PART_SELF_EFFECT) == 0)
277                 return;
278
279         if( part->pd && part->pd->forcefield && weights->weight[part->pd->forcefield] != 0.0f) {
280                 if(*effectors == NULL)
281                         *effectors = MEM_callocN(sizeof(ListBase), "effectors list");
282
283                 BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd));
284         }
285
286         if (part->pd2 && part->pd2->forcefield && weights->weight[part->pd2->forcefield] != 0.0f) {
287                 if(*effectors == NULL)
288                         *effectors = MEM_callocN(sizeof(ListBase), "effectors list");
289
290                 BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd2));
291         }
292 }
293
294 /* returns ListBase handle with objects taking part in the effecting */
295 ListBase *pdInitEffectors(Scene *scene, Object *ob_src, ParticleSystem *psys_src, EffectorWeights *weights)
296 {
297         Base *base;
298         unsigned int layer= ob_src->lay;
299         ListBase *effectors = NULL;
300         
301         if(weights->group) {
302                 GroupObject *go;
303                 
304                 for(go= weights->group->gobject.first; go; go= go->next) {
305                         if( (go->ob->lay & layer) ) {
306                                 if( go->ob->pd && go->ob->pd->forcefield )
307                                         add_object_to_effectors(&effectors, scene, weights, go->ob, ob_src);
308
309                                 if( go->ob->particlesystem.first ) {
310                                         ParticleSystem *psys= go->ob->particlesystem.first;
311
312                                         for( ; psys; psys=psys->next )
313                                                 add_particles_to_effectors(&effectors, scene, weights, go->ob, psys, psys_src);
314                                 }
315                         }
316                 }
317         }
318         else {
319                 for(base = scene->base.first; base; base= base->next) {
320                         if( (base->lay & layer) ) {
321                                 if( base->object->pd && base->object->pd->forcefield )
322                                 add_object_to_effectors(&effectors, scene, weights, base->object, ob_src);
323
324                                 if( base->object->particlesystem.first ) {
325                                         ParticleSystem *psys= base->object->particlesystem.first;
326
327                                         for( ; psys; psys=psys->next )
328                                                 add_particles_to_effectors(&effectors, scene, weights, base->object, psys, psys_src);
329                                 }
330                         }
331                 }
332         }
333         return effectors;
334 }
335
336 void pdEndEffectors(ListBase **effectors)
337 {
338         if(*effectors) {
339                 EffectorCache *eff = (*effectors)->first;
340
341                 for(; eff; eff=eff->next) {
342                         if(eff->guide_data)
343                                 MEM_freeN(eff->guide_data);
344                 }
345
346                 BLI_freelistN(*effectors);
347                 MEM_freeN(*effectors);
348                 *effectors = NULL;
349         }
350 }
351
352
353 void pd_point_from_particle(ParticleSimulationData *sim, ParticleData *pa, ParticleKey *state, EffectedPoint *point)
354 {
355         point->loc = state->co;
356         point->vel = state->vel;
357         point->index = pa - sim->psys->particles;
358         point->size = pa->size;
359         /* TODO: point->charge */
360         point->charge = 1.0f;
361
362         point->vel_to_sec = 1.0f;
363         point->vel_to_frame = psys_get_timestep(sim);
364
365         point->flag = 0;
366
367         if(sim->psys->part->flag & PART_ROT_DYN) {
368                 point->ave = state->ave;
369                 point->rot = state->rot;
370         }
371         else
372                 point->ave = point->rot = NULL;
373
374         point->psys = sim->psys;
375 }
376
377 void pd_point_from_loc(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
378 {
379         point->loc = loc;
380         point->vel = vel;
381         point->index = index;
382         point->size = 0.0f;
383
384         point->vel_to_sec = (float)scene->r.frs_sec;
385         point->vel_to_frame = 1.0f;
386
387         point->flag = 0;
388
389         point->ave = point->rot = NULL;
390         point->psys = NULL;
391 }
392 void pd_point_from_soft(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
393 {
394         point->loc = loc;
395         point->vel = vel;
396         point->index = index;
397         point->size = 0.0f;
398
399         point->vel_to_sec = (float)scene->r.frs_sec;
400         point->vel_to_frame = 1.0f;
401
402         point->flag = PE_WIND_AS_SPEED;
403
404         point->ave = point->rot = NULL;
405
406         point->psys = NULL;
407 }
408 /************************************************/
409 /*                      Effectors               */
410 /************************************************/
411
412 // triangle - ray callback function
413 static void eff_tri_ray_hit(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
414 {       
415         // whenever we hit a bounding box, we don't check further
416         hit->dist = -1;
417         hit->index = 1;
418 }
419
420 // get visibility of a wind ray
421 static float eff_calc_visibility(ListBase *colliders, EffectorCache *eff, EffectorData *efd, EffectedPoint *point)
422 {
423         ListBase *colls = colliders;
424         ColliderCache *col;
425         float norm[3], len = 0.0;
426         float visibility = 1.0, absorption = 0.0;
427         
428         if(!(eff->pd->flag & PFIELD_VISIBILITY))
429                 return visibility;
430
431         if(!colls)
432                 colls = get_collider_cache(eff->scene, NULL, NULL);
433
434         if(!colls)
435                 return visibility;
436
437         negate_v3_v3(norm, efd->vec_to_point);
438         len = normalize_v3(norm);
439         
440         // check all collision objects
441         for(col = colls->first; col; col = col->next)
442         {
443                 CollisionModifierData *collmd = col->collmd;
444
445                 if(col->ob == eff->ob)
446                         continue;
447                 
448                 if(collmd->bvhtree)
449                 {
450                         BVHTreeRayHit hit;
451                         
452                         hit.index = -1;
453                         hit.dist = len + FLT_EPSILON;
454                         
455                         // check if the way is blocked
456                         if(BLI_bvhtree_ray_cast(collmd->bvhtree, point->loc, norm, 0.0f, &hit, eff_tri_ray_hit, NULL)>=0)
457                         {
458                                 absorption= col->ob->pd->absorption;
459
460                                 // visibility is only between 0 and 1, calculated from 1-absorption
461                                 visibility *= CLAMPIS(1.0f-absorption, 0.0f, 1.0f);
462                                 
463                                 if(visibility <= 0.0f)
464                                         break;
465                         }
466                 }
467         }
468
469         if(!colliders)
470                 free_collider_cache(&colls);
471         
472         return visibility;
473 }
474
475 // noise function for wind e.g.
476 static float wind_func(struct RNG *rng, float strength)
477 {
478         int random = (rng_getInt(rng)+1) % 128; // max 2357
479         float force = rng_getFloat(rng) + 1.0f;
480         float ret;
481         float sign = 0;
482         
483         sign = ((float)random > 64.0) ? 1.0: -1.0; // dividing by 2 is not giving equal sign distribution
484         
485         ret = sign*((float)random / force)*strength/128.0f;
486         
487         return ret;
488 }
489
490 /* maxdist: zero effect from this distance outwards (if usemax) */
491 /* mindist: full effect up to this distance (if usemin) */
492 /* power: falloff with formula 1/r^power */
493 static float falloff_func(float fac, int usemin, float mindist, int usemax, float maxdist, float power)
494 {
495         /* first quick checks */
496         if(usemax && fac > maxdist)
497                 return 0.0f;
498
499         if(usemin && fac < mindist)
500                 return 1.0f;
501
502         if(!usemin)
503                 mindist = 0.0;
504
505         return pow((double)1.0+fac-mindist, (double)-power);
506 }
507
508 static float falloff_func_dist(PartDeflect *pd, float fac)
509 {
510         return falloff_func(fac, pd->flag&PFIELD_USEMIN, pd->mindist, pd->flag&PFIELD_USEMAX, pd->maxdist, pd->f_power);
511 }
512
513 static float falloff_func_rad(PartDeflect *pd, float fac)
514 {
515         return falloff_func(fac, pd->flag&PFIELD_USEMINR, pd->minrad, pd->flag&PFIELD_USEMAXR, pd->maxrad, pd->f_power_r);
516 }
517
518 float effector_falloff(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, EffectorWeights *weights)
519 {
520         float temp[3];
521         float falloff = weights ? weights->weight[0] * weights->weight[eff->pd->forcefield] : 1.0f;
522         float fac, r_fac;
523
524         fac = dot_v3v3(efd->nor, efd->vec_to_point2);
525
526         if(eff->pd->zdir == PFIELD_Z_POS && fac < 0.0f)
527                 falloff=0.0f;
528         else if(eff->pd->zdir == PFIELD_Z_NEG && fac > 0.0f)
529                 falloff=0.0f;
530         else switch(eff->pd->falloff){
531                 case PFIELD_FALL_SPHERE:
532                         falloff*= falloff_func_dist(eff->pd, efd->distance);
533                         break;
534
535                 case PFIELD_FALL_TUBE:
536                         falloff*= falloff_func_dist(eff->pd, ABS(fac));
537                         if(falloff == 0.0f)
538                                 break;
539
540                         VECADDFAC(temp, efd->vec_to_point, efd->nor, -fac);
541                         r_fac= len_v3(temp);
542                         falloff*= falloff_func_rad(eff->pd, r_fac);
543                         break;
544                 case PFIELD_FALL_CONE:
545                         falloff*= falloff_func_dist(eff->pd, ABS(fac));
546                         if(falloff == 0.0f)
547                                 break;
548
549                         r_fac=saacos(fac/len_v3(efd->vec_to_point))*180.0f/(float)M_PI;
550                         falloff*= falloff_func_rad(eff->pd, r_fac);
551
552                         break;
553         }
554
555         return falloff;
556 }
557
558 int closest_point_on_surface(SurfaceModifierData *surmd, float *co, float *surface_co, float *surface_nor, float *surface_vel)
559 {
560         BVHTreeNearest nearest;
561
562         nearest.index = -1;
563         nearest.dist = FLT_MAX;
564
565         BLI_bvhtree_find_nearest(surmd->bvhtree->tree, co, &nearest, surmd->bvhtree->nearest_callback, surmd->bvhtree);
566
567         if(nearest.index != -1) {
568                 VECCOPY(surface_co, nearest.co);
569
570                 if(surface_nor) {
571                         VECCOPY(surface_nor, nearest.no);
572                 }
573
574                 if(surface_vel) {
575                         MFace *mface = CDDM_get_face(surmd->dm, nearest.index);
576                         
577                         VECCOPY(surface_vel, surmd->v[mface->v1].co);
578                         add_v3_v3(surface_vel, surmd->v[mface->v2].co);
579                         add_v3_v3(surface_vel, surmd->v[mface->v3].co);
580                         if(mface->v4)
581                                 add_v3_v3(surface_vel, surmd->v[mface->v4].co);
582
583                         mul_v3_fl(surface_vel, mface->v4 ? 0.25f : 0.333f);
584                 }
585                 return 1;
586         }
587
588         return 0;
589 }
590 int get_effector_data(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int real_velocity)
591 {
592         float cfra = eff->scene->r.cfra;
593         int ret = 0;
594
595         if(eff->pd && eff->pd->shape==PFIELD_SHAPE_SURFACE && eff->surmd) {
596                 /* closest point in the object surface is an effector */
597                 float vec[3];
598
599                 /* using velocity corrected location allows for easier sliding over effector surface */
600                 copy_v3_v3(vec, point->vel);
601                 mul_v3_fl(vec, point->vel_to_frame);
602                 add_v3_v3(vec, point->loc);
603
604                 ret = closest_point_on_surface(eff->surmd, vec, efd->loc, efd->nor, real_velocity ? efd->vel : NULL);
605
606                 efd->size = 0.0f;
607         }
608         else if(eff->pd && eff->pd->shape==PFIELD_SHAPE_POINTS) {
609
610                 if(eff->ob->derivedFinal) {
611                         DerivedMesh *dm = eff->ob->derivedFinal;
612
613                         dm->getVertCo(dm, *efd->index, efd->loc);
614                         dm->getVertNo(dm, *efd->index, efd->nor);
615
616                         mul_m4_v3(eff->ob->obmat, efd->loc);
617                         mul_mat3_m4_v3(eff->ob->obmat, efd->nor);
618
619                         normalize_v3(efd->nor);
620
621                         efd->size = 0.0f;
622
623                         /**/
624                         ret = 1;
625                 }
626         }
627         else if(eff->psys) {
628                 ParticleSimulationData sim = {eff->scene, eff->ob, eff->psys, NULL, NULL};
629                 ParticleData *pa = eff->psys->particles + *efd->index;
630                 ParticleKey state;
631
632                 /* exclude the particle itself for self effecting particles */
633                 if(eff->psys == point->psys && *efd->index == point->index)
634                         ;
635                 else {
636                         /* TODO: time from actual previous calculated frame (step might not be 1) */
637                         state.time = cfra - 1.0;
638                         ret = psys_get_particle_state(&sim, *efd->index, &state, 0);
639
640                         /* TODO */
641                         //if(eff->pd->forcefiled == PFIELD_HARMONIC && ret==0) {
642                         //      if(pa->dietime < eff->psys->cfra)
643                         //              eff->flag |= PE_VELOCITY_TO_IMPULSE;
644                         //}
645
646                         VECCOPY(efd->loc, state.co);
647                         VECCOPY(efd->nor, state.vel);
648                         if(real_velocity) {
649                                 VECCOPY(efd->vel, state.vel);
650                         }
651
652                         efd->size = pa->size;
653                 }
654         }
655         else {
656                 /* use center of object for distance calculus */
657                 Object *ob = eff->ob;
658                 Object obcopy = *ob;
659
660                 /* XXX this is not thread-safe, but used from multiple threads by
661                    particle system */
662                 where_is_object_time(eff->scene, ob, cfra);
663
664                 /* use z-axis as normal*/
665                 normalize_v3_v3(efd->nor, ob->obmat[2]);
666
667                 /* for vortex the shape chooses between old / new force */
668                 if(eff->pd && eff->pd->shape == PFIELD_SHAPE_PLANE) {
669                         /* efd->loc is closes point on effector xy-plane */
670                         float temp[3], translate[3];
671                         sub_v3_v3v3(temp, point->loc, ob->obmat[3]);
672                         project_v3_v3v3(translate, temp, efd->nor);
673                         add_v3_v3v3(efd->loc, ob->obmat[3], translate);
674                 }
675                 else {
676                         VECCOPY(efd->loc, ob->obmat[3]);
677                 }
678
679                 if(real_velocity) {
680                         VECCOPY(efd->vel, ob->obmat[3]);
681
682                         where_is_object_time(eff->scene, ob, cfra - 1.0);
683
684                         sub_v3_v3v3(efd->vel, efd->vel, ob->obmat[3]);
685                 }
686
687                 *eff->ob = obcopy;
688
689                 efd->size = 0.0f;
690
691                 ret = 1;
692         }
693
694         if(ret) {
695                 sub_v3_v3v3(efd->vec_to_point, point->loc, efd->loc);
696                 efd->distance = len_v3(efd->vec_to_point);
697
698                 /* rest length for harmonic effector, will have to see later if this could be extended to other effectors */
699                 if(eff->pd && eff->pd->forcefield == PFIELD_HARMONIC && eff->pd->f_size)
700                         mul_v3_fl(efd->vec_to_point, (efd->distance-eff->pd->f_size)/efd->distance);
701
702                 if(eff->flag & PE_USE_NORMAL_DATA) {
703                         VECCOPY(efd->vec_to_point2, efd->vec_to_point);
704                         VECCOPY(efd->nor2, efd->nor);
705                 }
706                 else {
707                         /* for some effectors we need the object center every time */
708                         sub_v3_v3v3(efd->vec_to_point2, point->loc, eff->ob->obmat[3]);
709                         normalize_v3_v3(efd->nor2, eff->ob->obmat[2]);
710                 }
711         }
712
713         return ret;
714 }
715 static void get_effector_tot(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int *tot, int *p)
716 {
717         if(eff->pd->shape == PFIELD_SHAPE_POINTS) {
718                 efd->index = p;
719
720                 *p = 0;
721                 *tot = eff->ob->derivedFinal ? eff->ob->derivedFinal->numVertData : 1;
722
723                 if(*tot && eff->pd->forcefield == PFIELD_HARMONIC && point->index >= 0) {
724                         *p = point->index % *tot;
725                         *tot = *p+1;
726                 }
727         }
728         else if(eff->psys) {
729                 efd->index = p;
730
731                 *p = 0;
732                 *tot = eff->psys->totpart;
733                 
734                 if(eff->pd->forcefield == PFIELD_CHARGE) {
735                         /* Only the charge of the effected particle is used for 
736                         interaction, not fall-offs. If the fall-offs aren't the 
737                         same this will be unphysical, but for animation this            
738                         could be the wanted behavior. If you want physical
739                         correctness the fall-off should be spherical 2.0 anyways.
740                         */
741                         efd->charge = eff->pd->f_strength;
742                 }
743                 else if(eff->pd->forcefield == PFIELD_HARMONIC && (eff->pd->flag & PFIELD_MULTIPLE_SPRINGS)==0) {
744                         /* every particle is mapped to only one harmonic effector particle */
745                         *p= point->index % eff->psys->totpart;
746                         *tot= *p + 1;
747                 }
748         }
749         else {
750                 *p = 0;
751                 *tot = 1;
752         }
753 }
754 static void do_texture_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
755 {
756         TexResult result[4];
757         float tex_co[3], strength, force[3];
758         float nabla = eff->pd->tex_nabla;
759         int hasrgb;
760         short mode = eff->pd->tex_mode;
761
762         if(!eff->pd->tex)
763                 return;
764
765         result[0].nor = result[1].nor = result[2].nor = result[3].nor = 0;
766
767         strength= eff->pd->f_strength * efd->falloff;
768
769         VECCOPY(tex_co,point->loc);
770
771         if(eff->pd->flag & PFIELD_TEX_2D) {
772                 float fac=-dot_v3v3(tex_co, efd->nor);
773                 VECADDFAC(tex_co, tex_co, efd->nor, fac);
774         }
775
776         if(eff->pd->flag & PFIELD_TEX_OBJECT) {
777                 mul_m4_v3(eff->ob->obmat, tex_co);
778         }
779
780         hasrgb = multitex_ext(eff->pd->tex, tex_co, NULL,NULL, 0, result);
781
782         if(hasrgb && mode==PFIELD_TEX_RGB) {
783                 force[0] = (0.5f - result->tr) * strength;
784                 force[1] = (0.5f - result->tg) * strength;
785                 force[2] = (0.5f - result->tb) * strength;
786         }
787         else {
788                 strength/=nabla;
789
790                 tex_co[0] += nabla;
791                 multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+1);
792
793                 tex_co[0] -= nabla;
794                 tex_co[1] += nabla;
795                 multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+2);
796
797                 tex_co[1] -= nabla;
798                 tex_co[2] += nabla;
799                 multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+3);
800
801                 if(mode == PFIELD_TEX_GRAD || !hasrgb) { /* if we dont have rgb fall back to grad */
802                         force[0] = (result[0].tin - result[1].tin) * strength;
803                         force[1] = (result[0].tin - result[2].tin) * strength;
804                         force[2] = (result[0].tin - result[3].tin) * strength;
805                 }
806                 else { /*PFIELD_TEX_CURL*/
807                         float dbdy, dgdz, drdz, dbdx, dgdx, drdy;
808
809                         dbdy = result[2].tb - result[0].tb;
810                         dgdz = result[3].tg - result[0].tg;
811                         drdz = result[3].tr - result[0].tr;
812                         dbdx = result[1].tb - result[0].tb;
813                         dgdx = result[1].tg - result[0].tg;
814                         drdy = result[2].tr - result[0].tr;
815
816                         force[0] = (dbdy - dgdz) * strength;
817                         force[1] = (drdz - dbdx) * strength;
818                         force[2] = (dgdx - drdy) * strength;
819                 }
820         }
821
822         if(eff->pd->flag & PFIELD_TEX_2D){
823                 float fac = -dot_v3v3(force, efd->nor);
824                 VECADDFAC(force, force, efd->nor, fac);
825         }
826
827         add_v3_v3(total_force, force);
828 }
829 void do_physical_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
830 {
831         PartDeflect *pd = eff->pd;
832         RNG *rng = pd->rng;
833         float force[3]={0,0,0};
834         float temp[3];
835         float fac;
836         float strength = pd->f_strength;
837         float damp = pd->f_damp;
838         float noise_factor = pd->f_noise;
839
840         if(noise_factor > 0.0f) {
841                 strength += wind_func(rng, noise_factor);
842
843                 if(ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG))
844                         damp += wind_func(rng, noise_factor);
845         }
846
847         VECCOPY(force, efd->vec_to_point);
848
849         switch(pd->forcefield){
850                 case PFIELD_WIND:
851                         VECCOPY(force, efd->nor);
852                         mul_v3_fl(force, strength * efd->falloff);
853                         break;
854                 case PFIELD_FORCE:
855                         normalize_v3(force);
856                         mul_v3_fl(force, strength * efd->falloff);
857                         break;
858                 case PFIELD_VORTEX:
859                         /* old vortex force */
860                         if(pd->shape == PFIELD_SHAPE_POINT) {
861                                 cross_v3_v3v3(force, efd->nor, efd->vec_to_point);
862                                 normalize_v3(force);
863                                 mul_v3_fl(force, strength * efd->distance * efd->falloff);
864                         }
865                         else {
866                                 /* new vortex force */
867                                 cross_v3_v3v3(temp, efd->nor2, efd->vec_to_point2);
868                                 mul_v3_fl(temp, strength * efd->falloff);
869                                 
870                                 cross_v3_v3v3(force, efd->nor2, temp);
871                                 mul_v3_fl(force, strength * efd->falloff);
872                                 
873                                 VECADDFAC(temp, temp, point->vel, -point->vel_to_sec);
874                                 add_v3_v3(force, temp);
875                         }
876                         break;
877                 case PFIELD_MAGNET:
878                         if(eff->pd->shape == PFIELD_SHAPE_POINT)
879                                 /* magnetic field of a moving charge */
880                                 cross_v3_v3v3(temp, efd->nor, efd->vec_to_point);
881                         else
882                                 copy_v3_v3(temp, efd->nor);
883
884                         normalize_v3(temp);
885                         mul_v3_fl(temp, strength * efd->falloff);
886                         cross_v3_v3v3(force, point->vel, temp);
887                         mul_v3_fl(force, point->vel_to_sec);
888                         break;
889                 case PFIELD_HARMONIC:
890                         mul_v3_fl(force, -strength * efd->falloff);
891                         copy_v3_v3(temp, point->vel);
892                         mul_v3_fl(temp, -damp * 2.0f * (float)sqrt(fabs(strength)) * point->vel_to_sec);
893                         add_v3_v3(force, temp);
894                         break;
895                 case PFIELD_CHARGE:
896                         mul_v3_fl(force, point->charge * strength * efd->falloff);
897                         break;
898                 case PFIELD_LENNARDJ:
899                         fac = pow((efd->size + point->size) / efd->distance, 6.0);
900                         
901                         fac = - fac * (1.0 - fac) / efd->distance;
902
903                         /* limit the repulsive term drastically to avoid huge forces */
904                         fac = ((fac>2.0) ? 2.0 : fac);
905
906                         mul_v3_fl(force, strength * fac);
907                         break;
908                 case PFIELD_BOID:
909                         /* Boid field is handled completely in boids code. */
910                         return;
911                 case PFIELD_TURBULENCE:
912                         if(pd->flag & PFIELD_GLOBAL_CO) {
913                                 VECCOPY(temp, point->loc);
914                         }
915                         else {
916                                 VECADD(temp, efd->vec_to_point2, efd->nor2);
917                         }
918                         force[0] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[0], temp[1], temp[2], 2,0,2);
919                         force[1] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[1], temp[2], temp[0], 2,0,2);
920                         force[2] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[2], temp[0], temp[1], 2,0,2);
921                         mul_v3_fl(force, strength * efd->falloff);
922                         break;
923                 case PFIELD_DRAG:
924                         VECCOPY(force, point->vel);
925                         fac = normalize_v3(force) * point->vel_to_sec;
926
927                         strength = MIN2(strength, 2.0f);
928                         damp = MIN2(damp, 2.0f);
929
930                         mul_v3_fl(force, -efd->falloff * fac * (strength * fac + damp));
931                         break;
932         }
933
934         if(pd->flag & PFIELD_DO_LOCATION) {
935                 VECADDFAC(total_force, total_force, force, 1.0f/point->vel_to_sec);
936
937                 if(ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG)==0 && pd->f_flow != 0.0f) {
938                         VECADDFAC(total_force, total_force, point->vel, -pd->f_flow * efd->falloff);
939                 }
940         }
941
942         if(pd->flag & PFIELD_DO_ROTATION && point->ave && point->rot) {
943                 float xvec[3] = {1.0f, 0.0f, 0.0f};
944                 float dave[3];
945                 mul_qt_v3(point->rot, xvec);
946                 cross_v3_v3v3(dave, xvec, force);
947                 if(pd->f_flow != 0.0f) {
948                         VECADDFAC(dave, dave, point->ave, -pd->f_flow * efd->falloff);
949                 }
950                 add_v3_v3(point->ave, dave);
951         }
952 }
953
954 /*  -------- pdDoEffectors() --------
955         generic force/speed system, now used for particles and softbodies
956         scene       = scene where it runs in, for time and stuff
957         lb                      = listbase with objects that take part in effecting
958         opco            = global coord, as input
959         force           = force accumulator
960         speed           = actual current speed which can be altered
961         cur_time        = "external" time in frames, is constant for static particles
962         loc_time        = "local" time in frames, range <0-1> for the lifetime of particle
963         par_layer       = layer the caller is in
964         flags           = only used for softbody wind now
965         guide           = old speed of particle
966
967 */
968 void pdDoEffectors(ListBase *effectors, ListBase *colliders, EffectorWeights *weights, EffectedPoint *point, float *force, float *impulse)
969 {
970 /*
971         Modifies the force on a particle according to its
972         relation with the effector object
973         Different kind of effectors include:
974                 Forcefields: Gravity-like attractor
975                 (force power is related to the inverse of distance to the power of a falloff value)
976                 Vortex fields: swirling effectors
977                 (particles rotate around Z-axis of the object. otherwise, same relation as)
978                 (Forcefields, but this is not done through a force/acceleration)
979                 Guide: particles on a path
980                 (particles are guided along a curve bezier or old nurbs)
981                 (is independent of other effectors)
982 */
983         EffectorCache *eff;
984         EffectorData efd;
985         int p=0, tot = 1;
986
987         /* Cycle through collected objects, get total of (1/(gravity_strength * dist^gravity_power)) */
988         /* Check for min distance here? (yes would be cool to add that, ton) */
989         
990         if(effectors) for(eff = effectors->first; eff; eff=eff->next) {
991                 /* object effectors were fully checked to be OK to evaluate! */
992
993                 get_effector_tot(eff, &efd, point, &tot, &p);
994
995                 for(; p<tot; p++) {
996                         if(get_effector_data(eff, &efd, point, 0)) {
997                                 efd.falloff= effector_falloff(eff, &efd, point, weights);
998                                 
999                                 if(efd.falloff > 0.0f)
1000                                         efd.falloff *= eff_calc_visibility(colliders, eff, &efd, point);
1001
1002                                 if(efd.falloff <= 0.0f)
1003                                         ;       /* don't do anything */
1004                                 else if(eff->pd->forcefield == PFIELD_TEXTURE)
1005                                         do_texture_effector(eff, &efd, point, force);
1006                                 else {
1007                                         float temp1[3]={0,0,0}, temp2[3];
1008                                         VECCOPY(temp1, force);
1009
1010                                         do_physical_effector(eff, &efd, point, force);
1011                                         
1012                                         // for softbody backward compatibility
1013                                         if(point->flag & PE_WIND_AS_SPEED && impulse){
1014                                                 VECSUB(temp2, force, temp1);
1015                                                 VECSUB(impulse, impulse, temp2);
1016                                         }
1017                                 }
1018                         }
1019                         else if(eff->flag & PE_VELOCITY_TO_IMPULSE && impulse) {
1020                                 /* special case for harmonic effector */
1021                                 VECADD(impulse, impulse, efd.vel);
1022                         }
1023                 }
1024         }
1025 }