752036c6b9fcfd722f8b796b2c81d595451674b2
[blender.git] / source / blender / blenkernel / intern / armature.c
1 /*
2  * ***** BEGIN GPL LICENSE BLOCK *****
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17  *
18  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
19  * All rights reserved.
20  *
21  * Contributor(s): Full recode, Ton Roosendaal, Crete 2005
22  *
23  * ***** END GPL LICENSE BLOCK *****
24  */
25
26 /** \file blender/blenkernel/intern/armature.c
27  *  \ingroup bke
28  */
29
30
31 #include <ctype.h>
32 #include <stdlib.h>
33 #include <math.h>
34 #include <string.h>
35 #include <stdio.h>
36 #include <float.h>
37
38 #include "MEM_guardedalloc.h"
39
40 #include "BLI_bpath.h"
41 #include "BLI_math.h"
42 #include "BLI_blenlib.h"
43 #include "BLI_utildefines.h"
44
45 #include "DNA_anim_types.h"
46 #include "DNA_armature_types.h"
47 #include "DNA_constraint_types.h"
48 #include "DNA_mesh_types.h"
49 #include "DNA_lattice_types.h"
50 #include "DNA_meshdata_types.h"
51 #include "DNA_nla_types.h"
52 #include "DNA_scene_types.h"
53 #include "DNA_object_types.h"
54
55 #include "BKE_animsys.h"
56 #include "BKE_armature.h"
57 #include "BKE_action.h"
58 #include "BKE_anim.h"
59 #include "BKE_constraint.h"
60 #include "BKE_curve.h"
61 #include "BKE_depsgraph.h"
62 #include "BKE_DerivedMesh.h"
63 #include "BKE_deform.h"
64 #include "BKE_displist.h"
65 #include "BKE_global.h"
66 #include "BKE_idprop.h"
67 #include "BKE_library.h"
68 #include "BKE_lattice.h"
69 #include "BKE_main.h"
70 #include "BKE_object.h"
71 #include "BKE_scene.h"
72
73 #include "BIK_api.h"
74 #include "BKE_sketch.h"
75
76 /* **************** Generic Functions, data level *************** */
77
78 bArmature *BKE_armature_add(const char *name)
79 {
80         bArmature *arm;
81
82         arm = BKE_libblock_alloc(&G.main->armature, ID_AR, name);
83         arm->deformflag = ARM_DEF_VGROUP | ARM_DEF_ENVELOPE;
84         arm->flag = ARM_COL_CUSTOM; /* custom bone-group colors */
85         arm->layer = 1;
86         return arm;
87 }
88
89 bArmature *BKE_armature_from_object(Object *ob)
90 {
91         if (ob->type == OB_ARMATURE)
92                 return (bArmature *)ob->data;
93         return NULL;
94 }
95
96 void BKE_armature_bonelist_free(ListBase *lb)
97 {
98         Bone *bone;
99
100         for (bone = lb->first; bone; bone = bone->next) {
101                 if (bone->prop) {
102                         IDP_FreeProperty(bone->prop);
103                         MEM_freeN(bone->prop);
104                 }
105                 BKE_armature_bonelist_free(&bone->childbase);
106         }
107
108         BLI_freelistN(lb);
109 }
110
111 void BKE_armature_free(bArmature *arm)
112 {
113         if (arm) {
114                 BKE_armature_bonelist_free(&arm->bonebase);
115
116                 /* free editmode data */
117                 if (arm->edbo) {
118                         BLI_freelistN(arm->edbo);
119
120                         MEM_freeN(arm->edbo);
121                         arm->edbo = NULL;
122                 }
123
124                 /* free sketch */
125                 if (arm->sketch) {
126                         freeSketch(arm->sketch);
127                         arm->sketch = NULL;
128                 }
129
130                 /* free animation data */
131                 if (arm->adt) {
132                         BKE_free_animdata(&arm->id);
133                         arm->adt = NULL;
134                 }
135         }
136 }
137
138 void BKE_armature_make_local(bArmature *arm)
139 {
140         Main *bmain = G.main;
141         int is_local = FALSE, is_lib = FALSE;
142         Object *ob;
143
144         if (arm->id.lib == NULL)
145                 return;
146         if (arm->id.us == 1) {
147                 id_clear_lib_data(bmain, &arm->id);
148                 return;
149         }
150
151         for (ob = bmain->object.first; ob && ELEM(0, is_lib, is_local); ob = ob->id.next) {
152                 if (ob->data == arm) {
153                         if (ob->id.lib)
154                                 is_lib = TRUE;
155                         else
156                                 is_local = TRUE;
157                 }
158         }
159
160         if (is_local && is_lib == FALSE) {
161                 id_clear_lib_data(bmain, &arm->id);
162         }
163         else if (is_local && is_lib) {
164                 bArmature *arm_new = BKE_armature_copy(arm);
165                 arm_new->id.us = 0;
166
167                 /* Remap paths of new ID using old library as base. */
168                 BKE_id_lib_local_paths(bmain, arm->id.lib, &arm_new->id);
169
170                 for (ob = bmain->object.first; ob; ob = ob->id.next) {
171                         if (ob->data == arm) {
172                                 if (ob->id.lib == NULL) {
173                                         ob->data = arm_new;
174                                         arm_new->id.us++;
175                                         arm->id.us--;
176                                 }
177                         }
178                 }
179         }
180 }
181
182 static void copy_bonechildren(Bone *newBone, Bone *oldBone, Bone *actBone, Bone **newActBone)
183 {
184         Bone *curBone, *newChildBone;
185
186         if (oldBone == actBone)
187                 *newActBone = newBone;
188
189         if (oldBone->prop)
190                 newBone->prop = IDP_CopyProperty(oldBone->prop);
191
192         /* Copy this bone's list */
193         BLI_duplicatelist(&newBone->childbase, &oldBone->childbase);
194
195         /* For each child in the list, update it's children */
196         newChildBone = newBone->childbase.first;
197         for (curBone = oldBone->childbase.first; curBone; curBone = curBone->next) {
198                 newChildBone->parent = newBone;
199                 copy_bonechildren(newChildBone, curBone, actBone, newActBone);
200                 newChildBone = newChildBone->next;
201         }
202 }
203
204 bArmature *BKE_armature_copy(bArmature *arm)
205 {
206         bArmature *newArm;
207         Bone *oldBone, *newBone;
208         Bone *newActBone = NULL;
209
210         newArm = BKE_libblock_copy(&arm->id);
211         BLI_duplicatelist(&newArm->bonebase, &arm->bonebase);
212
213         /* Duplicate the childrens' lists*/
214         newBone = newArm->bonebase.first;
215         for (oldBone = arm->bonebase.first; oldBone; oldBone = oldBone->next) {
216                 newBone->parent = NULL;
217                 copy_bonechildren(newBone, oldBone, arm->act_bone, &newActBone);
218                 newBone = newBone->next;
219         }
220
221         newArm->act_bone = newActBone;
222
223         newArm->edbo = NULL;
224         newArm->act_edbone = NULL;
225         newArm->sketch = NULL;
226
227         return newArm;
228 }
229
230 static Bone *get_named_bone_bonechildren(Bone *bone, const char *name)
231 {
232         Bone *curBone, *rbone;
233
234         if (!strcmp(bone->name, name))
235                 return bone;
236
237         for (curBone = bone->childbase.first; curBone; curBone = curBone->next) {
238                 rbone = get_named_bone_bonechildren(curBone, name);
239                 if (rbone)
240                         return rbone;
241         }
242
243         return NULL;
244 }
245
246
247 /* Walk the list until the bone is found */
248 Bone *BKE_armature_find_bone_name(bArmature *arm, const char *name)
249 {
250         Bone *bone = NULL, *curBone;
251
252         if (!arm)
253                 return NULL;
254
255         for (curBone = arm->bonebase.first; curBone; curBone = curBone->next) {
256                 bone = get_named_bone_bonechildren(curBone, name);
257                 if (bone)
258                         return bone;
259         }
260
261         return bone;
262 }
263
264 /* Finds the best possible extension to the name on a particular axis. (For renaming, check for
265  * unique names afterwards) strip_number: removes number extensions  (TODO: not used)
266  * axis: the axis to name on
267  * head/tail: the head/tail co-ordinate of the bone on the specified axis */
268 int bone_autoside_name(char name[MAXBONENAME], int UNUSED(strip_number), short axis, float head, float tail)
269 {
270         unsigned int len;
271         char basename[MAXBONENAME] = "";
272         char extension[5] = "";
273
274         len = strlen(name);
275         if (len == 0)
276                 return 0;
277         BLI_strncpy(basename, name, sizeof(basename));
278
279         /* Figure out extension to append:
280          *      - The extension to append is based upon the axis that we are working on.
281          *      - If head happens to be on 0, then we must consider the tail position as well to decide
282          *        which side the bone is on
283          *              -> If tail is 0, then it's bone is considered to be on axis, so no extension should be added
284          *              -> Otherwise, extension is added from perspective of object based on which side tail goes to
285          *      - If head is non-zero, extension is added from perspective of object based on side head is on
286          */
287         if (axis == 2) {
288                 /* z-axis - vertical (top/bottom) */
289                 if (IS_EQ(head, 0)) {
290                         if (tail < 0)
291                                 strcpy(extension, "Bot");
292                         else if (tail > 0)
293                                 strcpy(extension, "Top");
294                 }
295                 else {
296                         if (head < 0)
297                                 strcpy(extension, "Bot");
298                         else
299                                 strcpy(extension, "Top");
300                 }
301         }
302         else if (axis == 1) {
303                 /* y-axis - depth (front/back) */
304                 if (IS_EQ(head, 0)) {
305                         if (tail < 0)
306                                 strcpy(extension, "Fr");
307                         else if (tail > 0)
308                                 strcpy(extension, "Bk");
309                 }
310                 else {
311                         if (head < 0)
312                                 strcpy(extension, "Fr");
313                         else
314                                 strcpy(extension, "Bk");
315                 }
316         }
317         else {
318                 /* x-axis - horizontal (left/right) */
319                 if (IS_EQ(head, 0)) {
320                         if (tail < 0)
321                                 strcpy(extension, "R");
322                         else if (tail > 0)
323                                 strcpy(extension, "L");
324                 }
325                 else {
326                         if (head < 0)
327                                 strcpy(extension, "R");
328                         /* XXX Shouldn't this be simple else, as for z and y axes? */
329                         else if (head > 0)
330                                 strcpy(extension, "L");
331                 }
332         }
333
334         /* Simple name truncation
335          *      - truncate if there is an extension and it wouldn't be able to fit
336          *      - otherwise, just append to end
337          */
338         if (extension[0]) {
339                 int change = 1;
340
341                 while (change) { /* remove extensions */
342                         change = 0;
343                         if (len > 2 && basename[len - 2] == '.') {
344                                 if (basename[len - 1] == 'L' || basename[len - 1] == 'R') { /* L R */
345                                         basename[len - 2] = '\0';
346                                         len -= 2;
347                                         change = 1;
348                                 }
349                         }
350                         else if (len > 3 && basename[len - 3] == '.') {
351                                 if ((basename[len - 2] == 'F' && basename[len - 1] == 'r') || /* Fr */
352                                     (basename[len - 2] == 'B' && basename[len - 1] == 'k')) /* Bk */
353                                 {
354                                         basename[len - 3] = '\0';
355                                         len -= 3;
356                                         change = 1;
357                                 }
358                         }
359                         else if (len > 4 && basename[len - 4] == '.') {
360                                 if ((basename[len - 3] == 'T' && basename[len - 2] == 'o' && basename[len - 1] == 'p') || /* Top */
361                                     (basename[len - 3] == 'B' && basename[len - 2] == 'o' && basename[len - 1] == 't')) /* Bot */
362                                 {
363                                         basename[len - 4] = '\0';
364                                         len -= 4;
365                                         change = 1;
366                                 }
367                         }
368                 }
369
370                 if ((MAXBONENAME - len) < strlen(extension) + 1) { /* add 1 for the '.' */
371                         strncpy(name, basename, len - strlen(extension));
372                 }
373
374                 BLI_snprintf(name, MAXBONENAME, "%s.%s", basename, extension);
375
376                 return 1;
377         }
378
379         else
380                 return 0;
381 }
382
383 /* ************* B-Bone support ******************* */
384
385 #define MAX_BBONE_SUBDIV    32
386
387 /* data has MAX_BBONE_SUBDIV+1 interpolated points, will become desired amount with equal distances */
388 static void equalize_bezier(float *data, int desired)
389 {
390         float *fp, totdist, ddist, dist, fac1, fac2;
391         float pdist[MAX_BBONE_SUBDIV + 1];
392         float temp[MAX_BBONE_SUBDIV + 1][4];
393         int a, nr;
394
395         pdist[0] = 0.0f;
396         for (a = 0, fp = data; a < MAX_BBONE_SUBDIV; a++, fp += 4) {
397                 copy_qt_qt(temp[a], fp);
398                 pdist[a + 1] = pdist[a] + len_v3v3(fp, fp + 4);
399         }
400         /* do last point */
401         copy_qt_qt(temp[a], fp);
402         totdist = pdist[a];
403
404         /* go over distances and calculate new points */
405         ddist = totdist / ((float)desired);
406         nr = 1;
407         for (a = 1, fp = data + 4; a < desired; a++, fp += 4) {
408                 dist = ((float)a) * ddist;
409
410                 /* we're looking for location (distance) 'dist' in the array */
411                 while ((dist >= pdist[nr]) && nr < MAX_BBONE_SUBDIV)
412                         nr++;
413
414                 fac1 = pdist[nr] - pdist[nr - 1];
415                 fac2 = pdist[nr] - dist;
416                 fac1 = fac2 / fac1;
417                 fac2 = 1.0f - fac1;
418
419                 fp[0] = fac1 * temp[nr - 1][0] + fac2 * temp[nr][0];
420                 fp[1] = fac1 * temp[nr - 1][1] + fac2 * temp[nr][1];
421                 fp[2] = fac1 * temp[nr - 1][2] + fac2 * temp[nr][2];
422                 fp[3] = fac1 * temp[nr - 1][3] + fac2 * temp[nr][3];
423         }
424         /* set last point, needed for orientation calculus */
425         copy_qt_qt(fp, temp[MAX_BBONE_SUBDIV]);
426 }
427
428 /* returns pointer to static array, filled with desired amount of bone->segments elements */
429 /* this calculation is done  within unit bone space */
430 Mat4 *b_bone_spline_setup(bPoseChannel *pchan, int rest)
431 {
432         static Mat4 bbone_array[MAX_BBONE_SUBDIV];
433         static Mat4 bbone_rest_array[MAX_BBONE_SUBDIV];
434         Mat4 *result_array = (rest) ? bbone_rest_array : bbone_array;
435         bPoseChannel *next, *prev;
436         Bone *bone = pchan->bone;
437         float h1[3], h2[3], scale[3], length, hlength1, hlength2, roll1 = 0.0f, roll2;
438         float mat3[3][3], imat[4][4], posemat[4][4], scalemat[4][4], iscalemat[4][4];
439         float data[MAX_BBONE_SUBDIV + 1][4], *fp;
440         int a, do_scale = 0;
441
442         length = bone->length;
443
444         if (!rest) {
445                 /* check if we need to take non-uniform bone scaling into account */
446                 scale[0] = len_v3(pchan->pose_mat[0]);
447                 scale[1] = len_v3(pchan->pose_mat[1]);
448                 scale[2] = len_v3(pchan->pose_mat[2]);
449
450                 if (fabsf(scale[0] - scale[1]) > 1e-6f || fabsf(scale[1] - scale[2]) > 1e-6f) {
451                         unit_m4(scalemat);
452                         scalemat[0][0] = scale[0];
453                         scalemat[1][1] = scale[1];
454                         scalemat[2][2] = scale[2];
455                         invert_m4_m4(iscalemat, scalemat);
456
457                         length *= scale[1];
458                         do_scale = 1;
459                 }
460         }
461
462         hlength1 = bone->ease1 * length * 0.390464f; /* 0.5f * sqrt(2) * kappa, the handle length for near-perfect circles */
463         hlength2 = bone->ease2 * length * 0.390464f;
464
465         /* evaluate next and prev bones */
466         if (bone->flag & BONE_CONNECTED)
467                 prev = pchan->parent;
468         else
469                 prev = NULL;
470
471         next = pchan->child;
472
473         /* find the handle points, since this is inside bone space, the
474          * first point = (0, 0, 0)
475          * last point =  (0, length, 0) */
476         if (rest) {
477                 invert_m4_m4(imat, pchan->bone->arm_mat);
478         }
479         else if (do_scale) {
480                 copy_m4_m4(posemat, pchan->pose_mat);
481                 normalize_m4(posemat);
482                 invert_m4_m4(imat, posemat);
483         }
484         else
485                 invert_m4_m4(imat, pchan->pose_mat);
486
487         if (prev) {
488                 float difmat[4][4], result[3][3], imat3[3][3];
489
490                 /* transform previous point inside this bone space */
491                 if (rest)
492                         copy_v3_v3(h1, prev->bone->arm_head);
493                 else
494                         copy_v3_v3(h1, prev->pose_head);
495                 mul_m4_v3(imat, h1);
496
497                 if (prev->bone->segments > 1) {
498                         /* if previous bone is B-bone too, use average handle direction */
499                         h1[1] -= length;
500                         roll1 = 0.0f;
501                 }
502
503                 normalize_v3(h1);
504                 mul_v3_fl(h1, -hlength1);
505
506                 if (prev->bone->segments == 1) {
507                         /* find the previous roll to interpolate */
508                         if (rest)
509                                 mult_m4_m4m4(difmat, imat, prev->bone->arm_mat);
510                         else
511                                 mult_m4_m4m4(difmat, imat, prev->pose_mat);
512                         copy_m3_m4(result, difmat); /* the desired rotation at beginning of next bone */
513
514                         vec_roll_to_mat3(h1, 0.0f, mat3); /* the result of vec_roll without roll */
515
516                         invert_m3_m3(imat3, mat3);
517                         mul_m3_m3m3(mat3, result, imat3); /* the matrix transforming vec_roll to desired roll */
518
519                         roll1 = (float)atan2(mat3[2][0], mat3[2][2]);
520                 }
521         }
522         else {
523                 h1[0] = 0.0f; h1[1] = hlength1; h1[2] = 0.0f;
524                 roll1 = 0.0f;
525         }
526         if (next) {
527                 float difmat[4][4], result[3][3], imat3[3][3];
528
529                 /* transform next point inside this bone space */
530                 if (rest)
531                         copy_v3_v3(h2, next->bone->arm_tail);
532                 else
533                         copy_v3_v3(h2, next->pose_tail);
534                 mul_m4_v3(imat, h2);
535
536                 /* if next bone is B-bone too, use average handle direction */
537                 if (next->bone->segments > 1)
538                         ;
539                 else
540                         h2[1] -= length;
541                 normalize_v3(h2);
542
543                 /* find the next roll to interpolate as well */
544                 if (rest)
545                         mult_m4_m4m4(difmat, imat, next->bone->arm_mat);
546                 else
547                         mult_m4_m4m4(difmat, imat, next->pose_mat);
548                 copy_m3_m4(result, difmat); /* the desired rotation at beginning of next bone */
549
550                 vec_roll_to_mat3(h2, 0.0f, mat3); /* the result of vec_roll without roll */
551
552                 invert_m3_m3(imat3, mat3);
553                 mul_m3_m3m3(mat3, imat3, result); /* the matrix transforming vec_roll to desired roll */
554
555                 roll2 = (float)atan2(mat3[2][0], mat3[2][2]);
556
557                 /* and only now negate handle */
558                 mul_v3_fl(h2, -hlength2);
559         }
560         else {
561                 h2[0] = 0.0f; h2[1] = -hlength2; h2[2] = 0.0f;
562                 roll2 = 0.0;
563         }
564
565         /* make curve */
566         if (bone->segments > MAX_BBONE_SUBDIV)
567                 bone->segments = MAX_BBONE_SUBDIV;
568
569         BKE_curve_forward_diff_bezier(0.0f,  h1[0],                               h2[0],                               0.0f,   data[0],     MAX_BBONE_SUBDIV, 4 * sizeof(float));
570         BKE_curve_forward_diff_bezier(0.0f,  h1[1],                               length + h2[1],                      length, data[0] + 1, MAX_BBONE_SUBDIV, 4 * sizeof(float));
571         BKE_curve_forward_diff_bezier(0.0f,  h1[2],                               h2[2],                               0.0f,   data[0] + 2, MAX_BBONE_SUBDIV, 4 * sizeof(float));
572         BKE_curve_forward_diff_bezier(roll1, roll1 + 0.390464f * (roll2 - roll1), roll2 - 0.390464f * (roll2 - roll1), roll2,  data[0] + 3, MAX_BBONE_SUBDIV, 4 * sizeof(float));
573
574         equalize_bezier(data[0], bone->segments); /* note: does stride 4! */
575
576         /* make transformation matrices for the segments for drawing */
577         for (a = 0, fp = data[0]; a < bone->segments; a++, fp += 4) {
578                 sub_v3_v3v3(h1, fp + 4, fp);
579                 vec_roll_to_mat3(h1, fp[3], mat3); /* fp[3] is roll */
580
581                 copy_m4_m3(result_array[a].mat, mat3);
582                 copy_v3_v3(result_array[a].mat[3], fp);
583
584                 if (do_scale) {
585                         /* correct for scaling when this matrix is used in scaled space */
586                         mul_serie_m4(result_array[a].mat, iscalemat, result_array[a].mat, scalemat, NULL, NULL, NULL, NULL, NULL);
587                 }
588         }
589
590         return result_array;
591 }
592
593 /* ************ Armature Deform ******************* */
594
595 typedef struct bPoseChanDeform {
596         Mat4     *b_bone_mats;
597         DualQuat *dual_quat;
598         DualQuat *b_bone_dual_quats;
599 } bPoseChanDeform;
600
601 static void pchan_b_bone_defmats(bPoseChannel *pchan, bPoseChanDeform *pdef_info, int use_quaternion)
602 {
603         Bone *bone = pchan->bone;
604         Mat4 *b_bone = b_bone_spline_setup(pchan, 0);
605         Mat4 *b_bone_rest = b_bone_spline_setup(pchan, 1);
606         Mat4 *b_bone_mats;
607         DualQuat *b_bone_dual_quats = NULL;
608         float tmat[4][4] = MAT4_UNITY;
609         int a;
610
611         /* allocate b_bone matrices and dual quats */
612         b_bone_mats = MEM_mallocN((1 + bone->segments) * sizeof(Mat4), "BBone defmats");
613         pdef_info->b_bone_mats = b_bone_mats;
614
615         if (use_quaternion) {
616                 b_bone_dual_quats = MEM_mallocN((bone->segments) * sizeof(DualQuat), "BBone dqs");
617                 pdef_info->b_bone_dual_quats = b_bone_dual_quats;
618         }
619
620         /* first matrix is the inverse arm_mat, to bring points in local bone space
621          * for finding out which segment it belongs to */
622         invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat);
623
624         /* then we make the b_bone_mats:
625          * - first transform to local bone space
626          * - translate over the curve to the bbone mat space
627          * - transform with b_bone matrix
628          * - transform back into global space */
629
630         for (a = 0; a < bone->segments; a++) {
631                 invert_m4_m4(tmat, b_bone_rest[a].mat);
632
633                 mul_serie_m4(b_bone_mats[a + 1].mat, pchan->chan_mat, bone->arm_mat, b_bone[a].mat, tmat, b_bone_mats[0].mat,
634                              NULL, NULL, NULL);
635
636                 if (use_quaternion)
637                         mat4_to_dquat(&b_bone_dual_quats[a], bone->arm_mat, b_bone_mats[a + 1].mat);
638         }
639 }
640
641 static void b_bone_deform(bPoseChanDeform *pdef_info, Bone *bone, float co[3], DualQuat *dq, float defmat[][3])
642 {
643         Mat4 *b_bone = pdef_info->b_bone_mats;
644         float (*mat)[4] = b_bone[0].mat;
645         float segment, y;
646         int a;
647
648         /* need to transform co back to bonespace, only need y */
649         y = mat[0][1] * co[0] + mat[1][1] * co[1] + mat[2][1] * co[2] + mat[3][1];
650
651         /* now calculate which of the b_bones are deforming this */
652         segment = bone->length / ((float)bone->segments);
653         a = (int)(y / segment);
654
655         /* note; by clamping it extends deform at endpoints, goes best with
656          * straight joints in restpos. */
657         CLAMP(a, 0, bone->segments - 1);
658
659         if (dq) {
660                 copy_dq_dq(dq, &(pdef_info->b_bone_dual_quats)[a]);
661         }
662         else {
663                 mul_m4_v3(b_bone[a + 1].mat, co);
664
665                 if (defmat) {
666                         copy_m3_m4(defmat, b_bone[a + 1].mat);
667                 }
668         }
669 }
670
671 /* using vec with dist to bone b1 - b2 */
672 float distfactor_to_bone(const float vec[3], const float b1[3], const float b2[3], float rad1, float rad2, float rdist)
673 {
674         float dist = 0.0f;
675         float bdelta[3];
676         float pdelta[3];
677         float hsqr, a, l, rad;
678
679         sub_v3_v3v3(bdelta, b2, b1);
680         l = normalize_v3(bdelta);
681
682         sub_v3_v3v3(pdelta, vec, b1);
683
684         a = dot_v3v3(bdelta, pdelta);
685         hsqr = dot_v3v3(pdelta, pdelta);
686
687         if (a < 0.0f) {
688                 /* If we're past the end of the bone, do a spherical field attenuation thing */
689                 dist = len_squared_v3v3(b1, vec);
690                 rad = rad1;
691         }
692         else if (a > l) {
693                 /* If we're past the end of the bone, do a spherical field attenuation thing */
694                 dist = len_squared_v3v3(b2, vec);
695                 rad = rad2;
696         }
697         else {
698                 dist = (hsqr - (a * a));
699
700                 if (l != 0.0f) {
701                         rad = a / l;
702                         rad = rad * rad2 + (1.0f - rad) * rad1;
703                 }
704                 else
705                         rad = rad1;
706         }
707
708         a = rad * rad;
709         if (dist < a)
710                 return 1.0f;
711         else {
712                 l = rad + rdist;
713                 l *= l;
714                 if (rdist == 0.0f || dist >= l)
715                         return 0.0f;
716                 else {
717                         a = sqrtf(dist) - rad;
718                         return 1.0f - (a * a) / (rdist * rdist);
719                 }
720         }
721 }
722
723 static void pchan_deform_mat_add(bPoseChannel *pchan, float weight, float bbonemat[][3], float mat[][3])
724 {
725         float wmat[3][3];
726
727         if (pchan->bone->segments > 1)
728                 copy_m3_m3(wmat, bbonemat);
729         else
730                 copy_m3_m4(wmat, pchan->chan_mat);
731
732         mul_m3_fl(wmat, weight);
733         add_m3_m3m3(mat, mat, wmat);
734 }
735
736 static float dist_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float vec[3], DualQuat *dq,
737                               float mat[][3], float *co)
738 {
739         Bone *bone = pchan->bone;
740         float fac, contrib = 0.0;
741         float cop[3], bbonemat[3][3];
742         DualQuat bbonedq;
743
744         if (bone == NULL)
745                 return 0.0f;
746
747         copy_v3_v3(cop, co);
748
749         fac = distfactor_to_bone(cop, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
750
751         if (fac > 0.0f) {
752                 fac *= bone->weight;
753                 contrib = fac;
754                 if (contrib > 0.0f) {
755                         if (vec) {
756                                 if (bone->segments > 1)
757                                         /* applies on cop and bbonemat */
758                                         b_bone_deform(pdef_info, bone, cop, NULL, (mat) ? bbonemat : NULL);
759                                 else
760                                         mul_m4_v3(pchan->chan_mat, cop);
761
762                                 /* Make this a delta from the base position */
763                                 sub_v3_v3(cop, co);
764                                 madd_v3_v3fl(vec, cop, fac);
765
766                                 if (mat)
767                                         pchan_deform_mat_add(pchan, fac, bbonemat, mat);
768                         }
769                         else {
770                                 if (bone->segments > 1) {
771                                         b_bone_deform(pdef_info, bone, cop, &bbonedq, NULL);
772                                         add_weighted_dq_dq(dq, &bbonedq, fac);
773                                 }
774                                 else
775                                         add_weighted_dq_dq(dq, pdef_info->dual_quat, fac);
776                         }
777                 }
778         }
779
780         return contrib;
781 }
782
783 static void pchan_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float weight, float vec[3], DualQuat *dq,
784                               float mat[][3], float *co, float *contrib)
785 {
786         float cop[3], bbonemat[3][3];
787         DualQuat bbonedq;
788
789         if (!weight)
790                 return;
791
792         copy_v3_v3(cop, co);
793
794         if (vec) {
795                 if (pchan->bone->segments > 1)
796                         /* applies on cop and bbonemat */
797                         b_bone_deform(pdef_info, pchan->bone, cop, NULL, (mat) ? bbonemat : NULL);
798                 else
799                         mul_m4_v3(pchan->chan_mat, cop);
800
801                 vec[0] += (cop[0] - co[0]) * weight;
802                 vec[1] += (cop[1] - co[1]) * weight;
803                 vec[2] += (cop[2] - co[2]) * weight;
804
805                 if (mat)
806                         pchan_deform_mat_add(pchan, weight, bbonemat, mat);
807         }
808         else {
809                 if (pchan->bone->segments > 1) {
810                         b_bone_deform(pdef_info, pchan->bone, cop, &bbonedq, NULL);
811                         add_weighted_dq_dq(dq, &bbonedq, weight);
812                 }
813                 else
814                         add_weighted_dq_dq(dq, pdef_info->dual_quat, weight);
815         }
816
817         (*contrib) += weight;
818 }
819
820 void armature_deform_verts(Object *armOb, Object *target, DerivedMesh *dm, float (*vertexCos)[3],
821                            float (*defMats)[3][3], int numVerts, int deformflag,
822                            float (*prevCos)[3], const char *defgrp_name)
823 {
824         bPoseChanDeform *pdef_info_array;
825         bPoseChanDeform *pdef_info = NULL;
826         bArmature *arm = armOb->data;
827         bPoseChannel *pchan, **defnrToPC = NULL;
828         int *defnrToPCIndex = NULL;
829         MDeformVert *dverts = NULL;
830         bDeformGroup *dg;
831         DualQuat *dualquats = NULL;
832         float obinv[4][4], premat[4][4], postmat[4][4];
833         const short use_envelope = deformflag & ARM_DEF_ENVELOPE;
834         const short use_quaternion = deformflag & ARM_DEF_QUATERNION;
835         const short invert_vgroup = deformflag & ARM_DEF_INVERT_VGROUP;
836         int defbase_tot = 0;       /* safety for vertexgroup index overflow */
837         int i, target_totvert = 0; /* safety for vertexgroup overflow */
838         int use_dverts = FALSE;
839         int armature_def_nr;
840         int totchan;
841
842         if (arm->edbo) return;
843
844         invert_m4_m4(obinv, target->obmat);
845         copy_m4_m4(premat, target->obmat);
846         mult_m4_m4m4(postmat, obinv, armOb->obmat);
847         invert_m4_m4(premat, postmat);
848
849         /* bone defmats are already in the channels, chan_mat */
850
851         /* initialize B_bone matrices and dual quaternions */
852         totchan = BLI_countlist(&armOb->pose->chanbase);
853
854         if (use_quaternion) {
855                 dualquats = MEM_callocN(sizeof(DualQuat) * totchan, "dualquats");
856         }
857
858         pdef_info_array = MEM_callocN(sizeof(bPoseChanDeform) * totchan, "bPoseChanDeform");
859
860         totchan = 0;
861         pdef_info = pdef_info_array;
862         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
863                 if (!(pchan->bone->flag & BONE_NO_DEFORM)) {
864                         if (pchan->bone->segments > 1)
865                                 pchan_b_bone_defmats(pchan, pdef_info, use_quaternion);
866
867                         if (use_quaternion) {
868                                 pdef_info->dual_quat = &dualquats[totchan++];
869                                 mat4_to_dquat(pdef_info->dual_quat, pchan->bone->arm_mat, pchan->chan_mat);
870                         }
871                 }
872         }
873
874         /* get the def_nr for the overall armature vertex group if present */
875         armature_def_nr = defgroup_name_index(target, defgrp_name);
876
877         if (ELEM(target->type, OB_MESH, OB_LATTICE)) {
878                 defbase_tot = BLI_countlist(&target->defbase);
879
880                 if (target->type == OB_MESH) {
881                         Mesh *me = target->data;
882                         dverts = me->dvert;
883                         if (dverts)
884                                 target_totvert = me->totvert;
885                 }
886                 else {
887                         Lattice *lt = target->data;
888                         dverts = lt->dvert;
889                         if (dverts)
890                                 target_totvert = lt->pntsu * lt->pntsv * lt->pntsw;
891                 }
892         }
893
894         /* get a vertex-deform-index to posechannel array */
895         if (deformflag & ARM_DEF_VGROUP) {
896                 if (ELEM(target->type, OB_MESH, OB_LATTICE)) {
897                         /* if we have a DerivedMesh, only use dverts if it has them */
898                         if (dm) {
899                                 use_dverts = (dm->getVertData(dm, 0, CD_MDEFORMVERT) != NULL);
900                         }
901                         else if (dverts) {
902                                 use_dverts = TRUE;
903                         }
904
905                         if (use_dverts) {
906                                 defnrToPC = MEM_callocN(sizeof(*defnrToPC) * defbase_tot, "defnrToBone");
907                                 defnrToPCIndex = MEM_callocN(sizeof(*defnrToPCIndex) * defbase_tot, "defnrToIndex");
908                                 for (i = 0, dg = target->defbase.first; dg; i++, dg = dg->next) {
909                                         defnrToPC[i] = BKE_pose_channel_find_name(armOb->pose, dg->name);
910                                         /* exclude non-deforming bones */
911                                         if (defnrToPC[i]) {
912                                                 if (defnrToPC[i]->bone->flag & BONE_NO_DEFORM) {
913                                                         defnrToPC[i] = NULL;
914                                                 }
915                                                 else {
916                                                         defnrToPCIndex[i] = BLI_findindex(&armOb->pose->chanbase, defnrToPC[i]);
917                                                 }
918                                         }
919                                 }
920                         }
921                 }
922         }
923
924         for (i = 0; i < numVerts; i++) {
925                 MDeformVert *dvert;
926                 DualQuat sumdq, *dq = NULL;
927                 float *co, dco[3];
928                 float sumvec[3], summat[3][3];
929                 float *vec = NULL, (*smat)[3] = NULL;
930                 float contrib = 0.0f;
931                 float armature_weight = 1.0f; /* default to 1 if no overall def group */
932                 float prevco_weight = 1.0f;   /* weight for optional cached vertexcos */
933
934                 if (use_quaternion) {
935                         memset(&sumdq, 0, sizeof(DualQuat));
936                         dq = &sumdq;
937                 }
938                 else {
939                         sumvec[0] = sumvec[1] = sumvec[2] = 0.0f;
940                         vec = sumvec;
941
942                         if (defMats) {
943                                 zero_m3(summat);
944                                 smat = summat;
945                         }
946                 }
947
948                 if (use_dverts || armature_def_nr >= 0) {
949                         if (dm)
950                                 dvert = dm->getVertData(dm, i, CD_MDEFORMVERT);
951                         else if (dverts && i < target_totvert)
952                                 dvert = dverts + i;
953                         else
954                                 dvert = NULL;
955                 }
956                 else
957                         dvert = NULL;
958
959                 if (armature_def_nr >= 0 && dvert) {
960                         armature_weight = defvert_find_weight(dvert, armature_def_nr);
961
962                         if (invert_vgroup)
963                                 armature_weight = 1.0f - armature_weight;
964
965                         /* hackish: the blending factor can be used for blending with prevCos too */
966                         if (prevCos) {
967                                 prevco_weight = armature_weight;
968                                 armature_weight = 1.0f;
969                         }
970                 }
971
972                 /* check if there's any  point in calculating for this vert */
973                 if (armature_weight == 0.0f)
974                         continue;
975
976                 /* get the coord we work on */
977                 co = prevCos ? prevCos[i] : vertexCos[i];
978
979                 /* Apply the object's matrix */
980                 mul_m4_v3(premat, co);
981
982                 if (use_dverts && dvert && dvert->totweight) { /* use weight groups ? */
983                         MDeformWeight *dw = dvert->dw;
984                         int deformed = 0;
985                         unsigned int j;
986
987                         for (j = dvert->totweight; j != 0; j--, dw++) {
988                                 const int index = dw->def_nr;
989                                 if (index < defbase_tot && (pchan = defnrToPC[index])) {
990                                         float weight = dw->weight;
991                                         Bone *bone = pchan->bone;
992                                         pdef_info = pdef_info_array + defnrToPCIndex[index];
993
994                                         deformed = 1;
995
996                                         if (bone && bone->flag & BONE_MULT_VG_ENV) {
997                                                 weight *= distfactor_to_bone(co, bone->arm_head, bone->arm_tail,
998                                                                              bone->rad_head, bone->rad_tail, bone->dist);
999                                         }
1000                                         pchan_bone_deform(pchan, pdef_info, weight, vec, dq, smat, co, &contrib);
1001                                 }
1002                         }
1003                         /* if there are vertexgroups but not groups with bones
1004                          * (like for softbody groups) */
1005                         if (deformed == 0 && use_envelope) {
1006                                 pdef_info = pdef_info_array;
1007                                 for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1008                                         if (!(pchan->bone->flag & BONE_NO_DEFORM))
1009                                                 contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
1010                                 }
1011                         }
1012                 }
1013                 else if (use_envelope) {
1014                         pdef_info = pdef_info_array;
1015                         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1016                                 if (!(pchan->bone->flag & BONE_NO_DEFORM))
1017                                         contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
1018                         }
1019                 }
1020
1021                 /* actually should be EPSILON? weight values and contrib can be like 10e-39 small */
1022                 if (contrib > 0.0001f) {
1023                         if (use_quaternion) {
1024                                 normalize_dq(dq, contrib);
1025
1026                                 if (armature_weight != 1.0f) {
1027                                         copy_v3_v3(dco, co);
1028                                         mul_v3m3_dq(dco, (defMats) ? summat : NULL, dq);
1029                                         sub_v3_v3(dco, co);
1030                                         mul_v3_fl(dco, armature_weight);
1031                                         add_v3_v3(co, dco);
1032                                 }
1033                                 else
1034                                         mul_v3m3_dq(co, (defMats) ? summat : NULL, dq);
1035
1036                                 smat = summat;
1037                         }
1038                         else {
1039                                 mul_v3_fl(vec, armature_weight / contrib);
1040                                 add_v3_v3v3(co, vec, co);
1041                         }
1042
1043                         if (defMats) {
1044                                 float pre[3][3], post[3][3], tmpmat[3][3];
1045
1046                                 copy_m3_m4(pre, premat);
1047                                 copy_m3_m4(post, postmat);
1048                                 copy_m3_m3(tmpmat, defMats[i]);
1049
1050                                 if (!use_quaternion) /* quaternion already is scale corrected */
1051                                         mul_m3_fl(smat, armature_weight / contrib);
1052
1053                                 mul_serie_m3(defMats[i], tmpmat, pre, smat, post, NULL, NULL, NULL, NULL);
1054                         }
1055                 }
1056
1057                 /* always, check above code */
1058                 mul_m4_v3(postmat, co);
1059
1060                 /* interpolate with previous modifier position using weight group */
1061                 if (prevCos) {
1062                         float mw = 1.0f - prevco_weight;
1063                         vertexCos[i][0] = prevco_weight * vertexCos[i][0] + mw * co[0];
1064                         vertexCos[i][1] = prevco_weight * vertexCos[i][1] + mw * co[1];
1065                         vertexCos[i][2] = prevco_weight * vertexCos[i][2] + mw * co[2];
1066                 }
1067         }
1068
1069         if (dualquats)
1070                 MEM_freeN(dualquats);
1071         if (defnrToPC)
1072                 MEM_freeN(defnrToPC);
1073         if (defnrToPCIndex)
1074                 MEM_freeN(defnrToPCIndex);
1075
1076         /* free B_bone matrices */
1077         pdef_info = pdef_info_array;
1078         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1079                 if (pdef_info->b_bone_mats)
1080                         MEM_freeN(pdef_info->b_bone_mats);
1081                 if (pdef_info->b_bone_dual_quats)
1082                         MEM_freeN(pdef_info->b_bone_dual_quats);
1083         }
1084
1085         MEM_freeN(pdef_info_array);
1086 }
1087
1088 /* ************ END Armature Deform ******************* */
1089
1090 void get_objectspace_bone_matrix(struct Bone *bone, float M_accumulatedMatrix[][4], int UNUSED(root),
1091                                  int UNUSED(posed))
1092 {
1093         copy_m4_m4(M_accumulatedMatrix, bone->arm_mat);
1094 }
1095
1096 /* **************** Space to Space API ****************** */
1097
1098 /* Convert World-Space Matrix to Pose-Space Matrix */
1099 void BKE_armature_mat_world_to_pose(Object *ob, float inmat[][4], float outmat[][4])
1100 {
1101         float obmat[4][4];
1102
1103         /* prevent crashes */
1104         if (ob == NULL)
1105                 return;
1106
1107         /* get inverse of (armature) object's matrix  */
1108         invert_m4_m4(obmat, ob->obmat);
1109
1110         /* multiply given matrix by object's-inverse to find pose-space matrix */
1111         mult_m4_m4m4(outmat, inmat, obmat);
1112 }
1113
1114 /* Convert World-Space Location to Pose-Space Location
1115  * NOTE: this cannot be used to convert to pose-space location of the supplied
1116  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1117 void BKE_armature_loc_world_to_pose(Object *ob, const float inloc[3], float outloc[3])
1118 {
1119         float xLocMat[4][4] = MAT4_UNITY;
1120         float nLocMat[4][4];
1121
1122         /* build matrix for location */
1123         copy_v3_v3(xLocMat[3], inloc);
1124
1125         /* get bone-space cursor matrix and extract location */
1126         BKE_armature_mat_world_to_pose(ob, xLocMat, nLocMat);
1127         copy_v3_v3(outloc, nLocMat[3]);
1128 }
1129
1130 /* Simple helper, computes the offset bone matrix.
1131  *     offs_bone = yoffs(b-1) + root(b) + bonemat(b).
1132  * Not exported, as it is only used in this file currently... */
1133 static void get_offset_bone_mat(Bone *bone, float offs_bone[][4])
1134 {
1135         if (!bone->parent)
1136                 return;
1137
1138         /* Bone transform itself. */
1139         copy_m4_m3(offs_bone, bone->bone_mat);
1140
1141         /* The bone's root offset (is in the parent's coordinate system). */
1142         copy_v3_v3(offs_bone[3], bone->head);
1143
1144         /* Get the length translation of parent (length along y axis). */
1145         offs_bone[3][1] += bone->parent->length;
1146 }
1147
1148 /* Construct the matrices (rot/scale and loc) to apply the PoseChannels into the armature (object) space.
1149  * I.e. (roughly) the "pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)" in the
1150  *     pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
1151  * ...function.
1152  *
1153  * This allows to get the transformations of a bone in its object space, *before* constraints (and IK)
1154  * get applied (used by pose evaluation code).
1155  * And reverse: to find pchan transformations needed to place a bone at a given loc/rot/scale
1156  * in object space (used by interactive transform, and snapping code).
1157  *
1158  * Note that, with the HINGE/NO_SCALE/NO_LOCAL_LOCATION options, the location matrix
1159  * will differ from the rotation/scale matrix...
1160  *
1161  * NOTE: This cannot be used to convert to pose-space transforms of the supplied
1162  *       pose-channel into its local space (i.e. 'visual'-keyframing).
1163  *       (note: I don't understand that, so I keep it :p --mont29).
1164  */
1165 void BKE_pchan_to_pose_mat(bPoseChannel *pchan, float rotscale_mat[][4], float loc_mat[][4])
1166 {
1167         Bone *bone, *parbone;
1168         bPoseChannel *parchan;
1169
1170         /* set up variables for quicker access below */
1171         bone = pchan->bone;
1172         parbone = bone->parent;
1173         parchan = pchan->parent;
1174
1175         if (parchan) {
1176                 float offs_bone[4][4];
1177                 /* yoffs(b-1) + root(b) + bonemat(b). */
1178                 get_offset_bone_mat(bone, offs_bone);
1179
1180                 /* Compose the rotscale matrix for this bone. */
1181                 if ((bone->flag & BONE_HINGE) && (bone->flag & BONE_NO_SCALE)) {
1182                         /* Parent rest rotation and scale. */
1183                         mult_m4_m4m4(rotscale_mat, parbone->arm_mat, offs_bone);
1184                 }
1185                 else if (bone->flag & BONE_HINGE) {
1186                         /* Parent rest rotation and pose scale. */
1187                         float tmat[4][4], tscale[3];
1188
1189                         /* Extract the scale of the parent pose matrix. */
1190                         mat4_to_size(tscale, parchan->pose_mat);
1191                         size_to_mat4(tmat, tscale);
1192
1193                         /* Applies the parent pose scale to the rest matrix. */
1194                         mult_m4_m4m4(tmat, tmat, parbone->arm_mat);
1195
1196                         mult_m4_m4m4(rotscale_mat, tmat, offs_bone);
1197                 }
1198                 else if (bone->flag & BONE_NO_SCALE) {
1199                         /* Parent pose rotation and rest scale (i.e. no scaling). */
1200                         float tmat[4][4];
1201                         copy_m4_m4(tmat, parchan->pose_mat);
1202                         normalize_m4(tmat);
1203                         mult_m4_m4m4(rotscale_mat, tmat, offs_bone);
1204                 }
1205                 else
1206                         mult_m4_m4m4(rotscale_mat, parchan->pose_mat, offs_bone);
1207
1208                 /* Compose the loc matrix for this bone. */
1209                 /* NOTE: That version does not modify bone's loc when HINGE/NO_SCALE options are set. */
1210
1211                 /* In this case, use the object's space *orientation*. */
1212                 if (bone->flag & BONE_NO_LOCAL_LOCATION) {
1213                         /* XXX I'm sure that code can be simplified! */
1214                         float bone_loc[4][4], bone_rotscale[3][3], tmat4[4][4], tmat3[3][3];
1215                         unit_m4(bone_loc);
1216                         unit_m4(loc_mat);
1217                         unit_m4(tmat4);
1218
1219                         mul_v3_m4v3(bone_loc[3], parchan->pose_mat, offs_bone[3]);
1220
1221                         unit_m3(bone_rotscale);
1222                         copy_m3_m4(tmat3, parchan->pose_mat);
1223                         mul_m3_m3m3(bone_rotscale, tmat3, bone_rotscale);
1224
1225                         copy_m4_m3(tmat4, bone_rotscale);
1226                         mult_m4_m4m4(loc_mat, bone_loc, tmat4);
1227                 }
1228                 /* Those flags do not affect position, use plain parent transform space! */
1229                 else if (bone->flag & (BONE_HINGE | BONE_NO_SCALE)) {
1230                         mult_m4_m4m4(loc_mat, parchan->pose_mat, offs_bone);
1231                 }
1232                 /* Else (i.e. default, usual case), just use the same matrix for rotation/scaling, and location. */
1233                 else
1234                         copy_m4_m4(loc_mat, rotscale_mat);
1235         }
1236         /* Root bones. */
1237         else {
1238                 /* Rotation/scaling. */
1239                 copy_m4_m4(rotscale_mat, pchan->bone->arm_mat);
1240                 /* Translation. */
1241                 if (pchan->bone->flag & BONE_NO_LOCAL_LOCATION) {
1242                         /* Translation of arm_mat, without the rotation. */
1243                         unit_m4(loc_mat);
1244                         copy_v3_v3(loc_mat[3], pchan->bone->arm_mat[3]);
1245                 }
1246                 else
1247                         copy_m4_m4(loc_mat, rotscale_mat);
1248         }
1249 }
1250
1251 /* Convert Pose-Space Matrix to Bone-Space Matrix.
1252  * NOTE: this cannot be used to convert to pose-space transforms of the supplied
1253  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1254 void BKE_armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[][4], float outmat[][4])
1255 {
1256         float rotscale_mat[4][4], loc_mat[4][4], inmat_[4][4];
1257
1258         /* Security, this allows to call with inmat == outmat! */
1259         copy_m4_m4(inmat_, inmat);
1260
1261         BKE_pchan_to_pose_mat(pchan, rotscale_mat, loc_mat);
1262         invert_m4(rotscale_mat);
1263         invert_m4(loc_mat);
1264
1265         mult_m4_m4m4(outmat, rotscale_mat, inmat_);
1266         mul_v3_m4v3(outmat[3], loc_mat, inmat_[3]);
1267 }
1268
1269 /* Convert Bone-Space Matrix to Pose-Space Matrix. */
1270 void BKE_armature_mat_bone_to_pose(bPoseChannel *pchan, float inmat[][4], float outmat[][4])
1271 {
1272         float rotscale_mat[4][4], loc_mat[4][4], inmat_[4][4];
1273
1274         /* Security, this allows to call with inmat == outmat! */
1275         copy_m4_m4(inmat_, inmat);
1276
1277         BKE_pchan_to_pose_mat(pchan, rotscale_mat, loc_mat);
1278
1279         mult_m4_m4m4(outmat, rotscale_mat, inmat_);
1280         mul_v3_m4v3(outmat[3], loc_mat, inmat_[3]);
1281 }
1282
1283 /* Convert Pose-Space Location to Bone-Space Location
1284  * NOTE: this cannot be used to convert to pose-space location of the supplied
1285  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1286 void BKE_armature_loc_pose_to_bone(bPoseChannel *pchan, const float inloc[3], float outloc[3])
1287 {
1288         float xLocMat[4][4] = MAT4_UNITY;
1289         float nLocMat[4][4];
1290
1291         /* build matrix for location */
1292         copy_v3_v3(xLocMat[3], inloc);
1293
1294         /* get bone-space cursor matrix and extract location */
1295         BKE_armature_mat_pose_to_bone(pchan, xLocMat, nLocMat);
1296         copy_v3_v3(outloc, nLocMat[3]);
1297 }
1298
1299 void BKE_armature_mat_pose_to_bone_ex(Object *ob, bPoseChannel *pchan, float inmat[][4], float outmat[][4])
1300 {
1301         bPoseChannel work_pchan = *pchan;
1302
1303         /* recalculate pose matrix with only parent transformations,
1304          * bone loc/sca/rot is ignored, scene and frame are not used. */
1305         BKE_pose_where_is_bone(NULL, ob, &work_pchan, 0.0f, FALSE);
1306
1307         /* find the matrix, need to remove the bone transforms first so this is
1308          * calculated as a matrix to set rather then a difference ontop of whats
1309          * already there. */
1310         unit_m4(outmat);
1311         BKE_pchan_apply_mat4(&work_pchan, outmat, FALSE);
1312
1313         BKE_armature_mat_pose_to_bone(&work_pchan, inmat, outmat);
1314 }
1315
1316 /* same as BKE_object_mat3_to_rot() */
1317 void BKE_pchan_mat3_to_rot(bPoseChannel *pchan, float mat[][3], short use_compat)
1318 {
1319         switch (pchan->rotmode) {
1320                 case ROT_MODE_QUAT:
1321                         mat3_to_quat(pchan->quat, mat);
1322                         break;
1323                 case ROT_MODE_AXISANGLE:
1324                         mat3_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat);
1325                         break;
1326                 default: /* euler */
1327                         if (use_compat)
1328                                 mat3_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat);
1329                         else
1330                                 mat3_to_eulO(pchan->eul, pchan->rotmode, mat);
1331         }
1332 }
1333
1334 /* Apply a 4x4 matrix to the pose bone,
1335  * similar to BKE_object_apply_mat4() */
1336 void BKE_pchan_apply_mat4(bPoseChannel *pchan, float mat[][4], short use_compat)
1337 {
1338         float rot[3][3];
1339         mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat);
1340         BKE_pchan_mat3_to_rot(pchan, rot, use_compat);
1341 }
1342
1343 /* Remove rest-position effects from pose-transform for obtaining
1344  * 'visual' transformation of pose-channel.
1345  * (used by the Visual-Keyframing stuff) */
1346 void BKE_armature_mat_pose_to_delta(float delta_mat[][4], float pose_mat[][4], float arm_mat[][4])
1347 {
1348         float imat[4][4];
1349
1350         invert_m4_m4(imat, arm_mat);
1351         mult_m4_m4m4(delta_mat, imat, pose_mat);
1352 }
1353
1354 /* **************** Rotation Mode Conversions ****************************** */
1355 /* Used for Objects and Pose Channels, since both can have multiple rotation representations */
1356
1357 /* Called from RNA when rotation mode changes
1358  * - the result should be that the rotations given in the provided pointers have had conversions
1359  *   applied (as appropriate), such that the rotation of the element hasn't 'visually' changed  */
1360 void BKE_rotMode_change_values(float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode)
1361 {
1362         /* check if any change - if so, need to convert data */
1363         if (newMode > 0) { /* to euler */
1364                 if (oldMode == ROT_MODE_AXISANGLE) {
1365                         /* axis-angle to euler */
1366                         axis_angle_to_eulO(eul, newMode, axis, *angle);
1367                 }
1368                 else if (oldMode == ROT_MODE_QUAT) {
1369                         /* quat to euler */
1370                         normalize_qt(quat);
1371                         quat_to_eulO(eul, newMode, quat);
1372                 }
1373                 /* else { no conversion needed } */
1374         }
1375         else if (newMode == ROT_MODE_QUAT) { /* to quat */
1376                 if (oldMode == ROT_MODE_AXISANGLE) {
1377                         /* axis angle to quat */
1378                         axis_angle_to_quat(quat, axis, *angle);
1379                 }
1380                 else if (oldMode > 0) {
1381                         /* euler to quat */
1382                         eulO_to_quat(quat, eul, oldMode);
1383                 }
1384                 /* else { no conversion needed } */
1385         }
1386         else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */
1387                 if (oldMode > 0) {
1388                         /* euler to axis angle */
1389                         eulO_to_axis_angle(axis, angle, eul, oldMode);
1390                 }
1391                 else if (oldMode == ROT_MODE_QUAT) {
1392                         /* quat to axis angle */
1393                         normalize_qt(quat);
1394                         quat_to_axis_angle(axis, angle, quat);
1395                 }
1396
1397                 /* when converting to axis-angle, we need a special exception for the case when there is no axis */
1398                 if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
1399                         /* for now, rotate around y-axis then (so that it simply becomes the roll) */
1400                         axis[1] = 1.0f;
1401                 }
1402         }
1403 }
1404
1405 /* **************** The new & simple (but OK!) armature evaluation ********* */
1406
1407 /* ****************** And how it works! ****************************************
1408  *
1409  * This is the bone transformation trick; they're hierarchical so each bone(b)
1410  * is in the coord system of bone(b-1):
1411  *
1412  * arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)
1413  *
1414  * -> yoffs is just the y axis translation in parent's coord system
1415  * -> d_root is the translation of the bone root, also in parent's coord system
1416  *
1417  * pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
1418  *
1419  * we then - in init deform - store the deform in chan_mat, such that:
1420  *
1421  * pose_mat(b)= arm_mat(b) * chan_mat(b)
1422  *
1423  * *************************************************************************** */
1424 /* Computes vector and roll based on a rotation.
1425  * "mat" must contain only a rotation, and no scaling. */
1426 void mat3_to_vec_roll(float mat[][3], float vec[3], float *roll)
1427 {
1428         if (vec)
1429                 copy_v3_v3(vec, mat[1]);
1430
1431         if (roll) {
1432                 float vecmat[3][3], vecmatinv[3][3], rollmat[3][3];
1433
1434                 vec_roll_to_mat3(mat[1], 0.0f, vecmat);
1435                 invert_m3_m3(vecmatinv, vecmat);
1436                 mul_m3_m3m3(rollmat, vecmatinv, mat);
1437
1438                 *roll = (float)atan2(rollmat[2][0], rollmat[2][2]);
1439         }
1440 }
1441
1442 /* Calculates the rest matrix of a bone based
1443  * On its vector and a roll around that vector */
1444 void vec_roll_to_mat3(const float vec[3], const float roll, float mat[][3])
1445 {
1446         float nor[3], axis[3], target[3] = {0, 1, 0};
1447         float theta;
1448         float rMatrix[3][3], bMatrix[3][3];
1449
1450         normalize_v3_v3(nor, vec);
1451
1452         /* Find Axis & Amount for bone matrix */
1453         cross_v3_v3v3(axis, target, nor);
1454
1455         /* was 0.0000000000001, caused bug [#23954], smaller values give unstable
1456          * roll when toggling editmode.
1457          *
1458          * was 0.00001, causes bug [#27675], with 0.00000495,
1459          * so a value inbetween these is needed.
1460          *
1461          * was 0.000001, causes bug [#30438] (which is same as [#27675, imho).
1462          * Reseting it to org value seems to cause no more [#23954]...
1463          *
1464          * was 0.0000000000001, caused bug [#31333], smaller values give unstable
1465          * roll when toggling editmode again...
1466          * No good value here, trying 0.000000001 as best compromize. :/
1467          */
1468         if (dot_v3v3(axis, axis) > 1.0e-9f) {
1469                 /* if nor is *not* a multiple of target ... */
1470                 normalize_v3(axis);
1471
1472                 theta = angle_normalized_v3v3(target, nor);
1473
1474                 /* Make Bone matrix*/
1475                 vec_rot_to_mat3(bMatrix, axis, theta);
1476         }
1477         else {
1478                 /* if nor is a multiple of target ... */
1479                 float updown;
1480
1481                 /* point same direction, or opposite? */
1482                 updown = (dot_v3v3(target, nor) > 0) ? 1.0f : -1.0f;
1483
1484                 /* I think this should work... */
1485                 bMatrix[0][0] = updown; bMatrix[0][1] = 0.0;    bMatrix[0][2] = 0.0;
1486                 bMatrix[1][0] = 0.0;    bMatrix[1][1] = updown; bMatrix[1][2] = 0.0;
1487                 bMatrix[2][0] = 0.0;    bMatrix[2][1] = 0.0;    bMatrix[2][2] = 1.0;
1488         }
1489
1490         /* Make Roll matrix */
1491         vec_rot_to_mat3(rMatrix, nor, roll);
1492
1493         /* Combine and output result */
1494         mul_m3_m3m3(mat, rMatrix, bMatrix);
1495 }
1496
1497
1498 /* recursive part, calculates restposition of entire tree of children */
1499 /* used by exiting editmode too */
1500 void BKE_armature_where_is_bone(Bone *bone, Bone *prevbone)
1501 {
1502         float vec[3];
1503
1504         /* Bone Space */
1505         sub_v3_v3v3(vec, bone->tail, bone->head);
1506         vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);
1507
1508         bone->length = len_v3v3(bone->head, bone->tail);
1509
1510         /* this is called on old file reading too... */
1511         if (bone->xwidth == 0.0f) {
1512                 bone->xwidth = 0.1f;
1513                 bone->zwidth = 0.1f;
1514                 bone->segments = 1;
1515         }
1516
1517         if (prevbone) {
1518                 float offs_bone[4][4];
1519                 /* yoffs(b-1) + root(b) + bonemat(b) */
1520                 get_offset_bone_mat(bone, offs_bone);
1521
1522                 /* Compose the matrix for this bone  */
1523                 mult_m4_m4m4(bone->arm_mat, prevbone->arm_mat, offs_bone);
1524         }
1525         else {
1526                 copy_m4_m3(bone->arm_mat, bone->bone_mat);
1527                 copy_v3_v3(bone->arm_mat[3], bone->head);
1528         }
1529
1530         /* and the kiddies */
1531         prevbone = bone;
1532         for (bone = bone->childbase.first; bone; bone = bone->next) {
1533                 BKE_armature_where_is_bone(bone, prevbone);
1534         }
1535 }
1536
1537 /* updates vectors and matrices on rest-position level, only needed
1538  * after editing armature itself, now only on reading file */
1539 void BKE_armature_where_is(bArmature *arm)
1540 {
1541         Bone *bone;
1542
1543         /* hierarchical from root to children */
1544         for (bone = arm->bonebase.first; bone; bone = bone->next) {
1545                 BKE_armature_where_is_bone(bone, NULL);
1546         }
1547 }
1548
1549 /* if bone layer is protected, copy the data from from->pose
1550  * when used with linked libraries this copies from the linked pose into the local pose */
1551 static void pose_proxy_synchronize(Object *ob, Object *from, int layer_protected)
1552 {
1553         bPose *pose = ob->pose, *frompose = from->pose;
1554         bPoseChannel *pchan, *pchanp, pchanw;
1555         bConstraint *con;
1556         int error = 0;
1557
1558         if (frompose == NULL)
1559                 return;
1560
1561         /* in some cases when rigs change, we cant synchronize
1562          * to avoid crashing check for possible errors here */
1563         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1564                 if (pchan->bone->layer & layer_protected) {
1565                         if (BKE_pose_channel_find_name(frompose, pchan->name) == NULL) {
1566                                 printf("failed to sync proxy armature because '%s' is missing pose channel '%s'\n",
1567                                        from->id.name, pchan->name);
1568                                 error = 1;
1569                         }
1570                 }
1571         }
1572
1573         if (error)
1574                 return;
1575
1576         /* clear all transformation values from library */
1577         BKE_pose_rest(frompose);
1578
1579         /* copy over all of the proxy's bone groups */
1580         /* TODO for later
1581          * - implement 'local' bone groups as for constraints
1582          * Note: this isn't trivial, as bones reference groups by index not by pointer,
1583          *       so syncing things correctly needs careful attention */
1584         BLI_freelistN(&pose->agroups);
1585         BLI_duplicatelist(&pose->agroups, &frompose->agroups);
1586         pose->active_group = frompose->active_group;
1587
1588         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1589                 pchanp = BKE_pose_channel_find_name(frompose, pchan->name);
1590
1591                 if (pchan->bone->layer & layer_protected) {
1592                         ListBase proxylocal_constraints = {NULL, NULL};
1593
1594                         /* copy posechannel to temp, but restore important pointers */
1595                         pchanw = *pchanp;
1596                         pchanw.prev = pchan->prev;
1597                         pchanw.next = pchan->next;
1598                         pchanw.parent = pchan->parent;
1599                         pchanw.child = pchan->child;
1600
1601                         /* this is freed so copy a copy, else undo crashes */
1602                         if (pchanw.prop) {
1603                                 pchanw.prop = IDP_CopyProperty(pchanw.prop);
1604
1605                                 /* use the values from the the existing props */
1606                                 if (pchan->prop) {
1607                                         IDP_SyncGroupValues(pchanw.prop, pchan->prop);
1608                                 }
1609                         }
1610
1611                         /* constraints - proxy constraints are flushed... local ones are added after
1612                          *     1. extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints
1613                          *     2. copy proxy-pchan's constraints on-to new
1614                          *     3. add extracted local constraints back on top
1615                          *
1616                          * Note for copy_constraints: when copying constraints, disable 'do_extern' otherwise
1617                          *                            we get the libs direct linked in this blend. */
1618                         extract_proxylocal_constraints(&proxylocal_constraints, &pchan->constraints);
1619                         copy_constraints(&pchanw.constraints, &pchanp->constraints, FALSE);
1620                         BLI_movelisttolist(&pchanw.constraints, &proxylocal_constraints);
1621
1622                         /* constraints - set target ob pointer to own object */
1623                         for (con = pchanw.constraints.first; con; con = con->next) {
1624                                 bConstraintTypeInfo *cti = constraint_get_typeinfo(con);
1625                                 ListBase targets = {NULL, NULL};
1626                                 bConstraintTarget *ct;
1627
1628                                 if (cti && cti->get_constraint_targets) {
1629                                         cti->get_constraint_targets(con, &targets);
1630
1631                                         for (ct = targets.first; ct; ct = ct->next) {
1632                                                 if (ct->tar == from)
1633                                                         ct->tar = ob;
1634                                         }
1635
1636                                         if (cti->flush_constraint_targets)
1637                                                 cti->flush_constraint_targets(con, &targets, 0);
1638                                 }
1639                         }
1640
1641                         /* free stuff from current channel */
1642                         BKE_pose_channel_free(pchan);
1643
1644                         /* the final copy */
1645                         *pchan = pchanw;
1646                 }
1647                 else {
1648                         /* always copy custom shape */
1649                         pchan->custom = pchanp->custom;
1650                         pchan->custom_tx = pchanp->custom_tx;
1651
1652                         /* ID-Property Syncing */
1653                         {
1654                                 IDProperty *prop_orig = pchan->prop;
1655                                 if (pchanp->prop) {
1656                                         pchan->prop = IDP_CopyProperty(pchanp->prop);
1657                                         if (prop_orig) {
1658                                                 /* copy existing values across when types match */
1659                                                 IDP_SyncGroupValues(pchan->prop, prop_orig);
1660                                         }
1661                                 }
1662                                 else {
1663                                         pchan->prop = NULL;
1664                                 }
1665                                 if (prop_orig) {
1666                                         IDP_FreeProperty(prop_orig);
1667                                         MEM_freeN(prop_orig);
1668                                 }
1669                         }
1670                 }
1671         }
1672 }
1673
1674 static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
1675 {
1676         bPoseChannel *pchan = BKE_pose_channel_verify(pose, bone->name); /* verify checks and/or adds */
1677
1678         pchan->bone = bone;
1679         pchan->parent = parchan;
1680
1681         counter++;
1682
1683         for (bone = bone->childbase.first; bone; bone = bone->next) {
1684                 counter = rebuild_pose_bone(pose, bone, pchan, counter);
1685                 /* for quick detecting of next bone in chain, only b-bone uses it now */
1686                 if (bone->flag & BONE_CONNECTED)
1687                         pchan->child = BKE_pose_channel_find_name(pose, bone->name);
1688         }
1689
1690         return counter;
1691 }
1692
1693 /* only after leave editmode, duplicating, validating older files, library syncing */
1694 /* NOTE: pose->flag is set for it */
1695 void BKE_pose_rebuild(Object *ob, bArmature *arm)
1696 {
1697         Bone *bone;
1698         bPose *pose;
1699         bPoseChannel *pchan, *next;
1700         int counter = 0;
1701
1702         /* only done here */
1703         if (ob->pose == NULL) {
1704                 /* create new pose */
1705                 ob->pose = MEM_callocN(sizeof(bPose), "new pose");
1706
1707                 /* set default settings for animviz */
1708                 animviz_settings_init(&ob->pose->avs);
1709         }
1710         pose = ob->pose;
1711
1712         /* clear */
1713         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1714                 pchan->bone = NULL;
1715                 pchan->child = NULL;
1716         }
1717
1718         /* first step, check if all channels are there */
1719         for (bone = arm->bonebase.first; bone; bone = bone->next) {
1720                 counter = rebuild_pose_bone(pose, bone, NULL, counter);
1721         }
1722
1723         /* and a check for garbage */
1724         for (pchan = pose->chanbase.first; pchan; pchan = next) {
1725                 next = pchan->next;
1726                 if (pchan->bone == NULL) {
1727                         BKE_pose_channel_free(pchan);
1728                         BKE_pose_channels_hash_free(pose);
1729                         BLI_freelinkN(&pose->chanbase, pchan);
1730                 }
1731         }
1732         /* printf("rebuild pose %s, %d bones\n", ob->id.name, counter); */
1733
1734         /* synchronize protected layers with proxy */
1735         if (ob->proxy) {
1736                 BKE_object_copy_proxy_drivers(ob, ob->proxy);
1737                 pose_proxy_synchronize(ob, ob->proxy, arm->layer_protected);
1738         }
1739
1740         BKE_pose_update_constraint_flags(ob->pose); /* for IK detection for example */
1741
1742         /* the sorting */
1743         if (counter > 1)
1744                 DAG_pose_sort(ob);
1745
1746         ob->pose->flag &= ~POSE_RECALC;
1747         ob->pose->flag |= POSE_WAS_REBUILT;
1748
1749         BKE_pose_channels_hash_make(ob->pose);
1750 }
1751
1752
1753 /* ********************** SPLINE IK SOLVER ******************* */
1754
1755 /* Temporary evaluation tree data used for Spline IK */
1756 typedef struct tSplineIK_Tree {
1757         struct tSplineIK_Tree *next, *prev;
1758
1759         int type;                    /* type of IK that this serves (CONSTRAINT_TYPE_KINEMATIC or ..._SPLINEIK) */
1760
1761         short free_points;           /* free the point positions array */
1762         short chainlen;              /* number of bones in the chain */
1763
1764         float *points;               /* parametric positions for the joints along the curve */
1765         bPoseChannel **chain;        /* chain of bones to affect using Spline IK (ordered from the tip) */
1766
1767         bPoseChannel *root;          /* bone that is the root node of the chain */
1768
1769         bConstraint *con;            /* constraint for this chain */
1770         bSplineIKConstraint *ikData; /* constraint settings for this chain */
1771 } tSplineIK_Tree;
1772
1773 /* ----------- */
1774
1775 /* Tag the bones in the chain formed by the given bone for IK */
1776 static void splineik_init_tree_from_pchan(Scene *scene, Object *UNUSED(ob), bPoseChannel *pchan_tip)
1777 {
1778         bPoseChannel *pchan, *pchanRoot = NULL;
1779         bPoseChannel *pchanChain[255];
1780         bConstraint *con = NULL;
1781         bSplineIKConstraint *ikData = NULL;
1782         float boneLengths[255], *jointPoints;
1783         float totLength = 0.0f;
1784         short free_joints = 0;
1785         int segcount = 0;
1786
1787         /* find the SplineIK constraint */
1788         for (con = pchan_tip->constraints.first; con; con = con->next) {
1789                 if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
1790                         ikData = con->data;
1791
1792                         /* target can only be curve */
1793                         if ((ikData->tar == NULL) || (ikData->tar->type != OB_CURVE))
1794                                 continue;
1795                         /* skip if disabled */
1796                         if ((con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)))
1797                                 continue;
1798
1799                         /* otherwise, constraint is ok... */
1800                         break;
1801                 }
1802         }
1803         if (con == NULL)
1804                 return;
1805
1806         /* make sure that the constraint targets are ok
1807          *     - this is a workaround for a depsgraph bug...
1808          */
1809         if (ikData->tar) {
1810                 Curve *cu = ikData->tar->data;
1811
1812                 /* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
1813                  *       currently for paths to work it needs to go through the bevlist/displist system (ton)
1814                  */
1815
1816                 /* only happens on reload file, but violates depsgraph still... fix! */
1817                 if ((cu->path == NULL) || (cu->path->data == NULL))
1818                         BKE_displist_make_curveTypes(scene, ikData->tar, 0);
1819         }
1820
1821         /* find the root bone and the chain of bones from the root to the tip
1822          * NOTE: this assumes that the bones are connected, but that may not be true... */
1823         for (pchan = pchan_tip; pchan && (segcount < ikData->chainlen); pchan = pchan->parent, segcount++) {
1824                 /* store this segment in the chain */
1825                 pchanChain[segcount] = pchan;
1826
1827                 /* if performing rebinding, calculate the length of the bone */
1828                 boneLengths[segcount] = pchan->bone->length;
1829                 totLength += boneLengths[segcount];
1830         }
1831
1832         if (segcount == 0)
1833                 return;
1834         else
1835                 pchanRoot = pchanChain[segcount - 1];
1836
1837         /* perform binding step if required */
1838         if ((ikData->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
1839                 float segmentLen = (1.0f / (float)segcount);
1840                 int i;
1841
1842                 /* setup new empty array for the points list */
1843                 if (ikData->points)
1844                         MEM_freeN(ikData->points);
1845                 ikData->numpoints = ikData->chainlen + 1;
1846                 ikData->points = MEM_callocN(sizeof(float) * ikData->numpoints, "Spline IK Binding");
1847
1848                 /* bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint) */
1849                 ikData->points[0] = 1.0f;
1850
1851                 /* perform binding of the joints to parametric positions along the curve based
1852                  * proportion of the total length that each bone occupies
1853                  */
1854                 for (i = 0; i < segcount; i++) {
1855                         /* 'head' joints, traveling towards the root of the chain
1856                          *  - 2 methods; the one chosen depends on whether we've got usable lengths
1857                          */
1858                         if ((ikData->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totLength == 0.0f)) {
1859                                 /* 1) equi-spaced joints */
1860                                 ikData->points[i + 1] = ikData->points[i] - segmentLen;
1861                         }
1862                         else {
1863                                 /* 2) to find this point on the curve, we take a step from the previous joint
1864                                  *    a distance given by the proportion that this bone takes
1865                                  */
1866                                 ikData->points[i + 1] = ikData->points[i] - (boneLengths[i] / totLength);
1867                         }
1868                 }
1869
1870                 /* spline has now been bound */
1871                 ikData->flag |= CONSTRAINT_SPLINEIK_BOUND;
1872         }
1873
1874         /* apply corrections for sensitivity to scaling on a copy of the bind points,
1875          * since it's easier to determine the positions of all the joints beforehand this way
1876          */
1877         if ((ikData->flag & CONSTRAINT_SPLINEIK_SCALE_LIMITED) && (totLength != 0.0f)) {
1878                 Curve *cu = (Curve *)ikData->tar->data;
1879                 float splineLen, maxScale;
1880                 int i;
1881
1882                 /* make a copy of the points array, that we'll store in the tree
1883                  *     - although we could just multiply the points on the fly, this approach means that
1884                  *       we can introduce per-segment stretchiness later if it is necessary
1885                  */
1886                 jointPoints = MEM_dupallocN(ikData->points);
1887                 free_joints = 1;
1888
1889                 /* get the current length of the curve */
1890                 /* NOTE: this is assumed to be correct even after the curve was resized */
1891                 splineLen = cu->path->totdist;
1892
1893                 /* calculate the scale factor to multiply all the path values by so that the
1894                  * bone chain retains its current length, such that
1895                  *     maxScale * splineLen = totLength
1896                  */
1897                 maxScale = totLength / splineLen;
1898
1899                 /* apply scaling correction to all of the temporary points */
1900                 /* TODO: this is really not adequate enough on really short chains */
1901                 for (i = 0; i < segcount; i++)
1902                         jointPoints[i] *= maxScale;
1903         }
1904         else {
1905                 /* just use the existing points array */
1906                 jointPoints = ikData->points;
1907                 free_joints = 0;
1908         }
1909
1910         /* make a new Spline-IK chain, and store it in the IK chains */
1911         /* TODO: we should check if there is already an IK chain on this, since that would take presidence... */
1912         {
1913                 /* make new tree */
1914                 tSplineIK_Tree *tree = MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree");
1915                 tree->type = CONSTRAINT_TYPE_SPLINEIK;
1916
1917                 tree->chainlen = segcount;
1918
1919                 /* copy over the array of links to bones in the chain (from tip to root) */
1920                 tree->chain = MEM_callocN(sizeof(bPoseChannel *) * segcount, "SplineIK Chain");
1921                 memcpy(tree->chain, pchanChain, sizeof(bPoseChannel *) * segcount);
1922
1923                 /* store reference to joint position array */
1924                 tree->points = jointPoints;
1925                 tree->free_points = free_joints;
1926
1927                 /* store references to different parts of the chain */
1928                 tree->root = pchanRoot;
1929                 tree->con = con;
1930                 tree->ikData = ikData;
1931
1932                 /* AND! link the tree to the root */
1933                 BLI_addtail(&pchanRoot->siktree, tree);
1934         }
1935
1936         /* mark root channel having an IK tree */
1937         pchanRoot->flag |= POSE_IKSPLINE;
1938 }
1939
1940 /* Tag which bones are members of Spline IK chains */
1941 static void splineik_init_tree(Scene *scene, Object *ob, float UNUSED(ctime))
1942 {
1943         bPoseChannel *pchan;
1944
1945         /* find the tips of Spline IK chains, which are simply the bones which have been tagged as such */
1946         for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
1947                 if (pchan->constflag & PCHAN_HAS_SPLINEIK)
1948                         splineik_init_tree_from_pchan(scene, ob, pchan);
1949         }
1950 }
1951
1952 /* ----------- */
1953
1954 /* Evaluate spline IK for a given bone */
1955 static void splineik_evaluate_bone(tSplineIK_Tree *tree, Scene *scene, Object *ob, bPoseChannel *pchan,
1956                                    int index, float ctime)
1957 {
1958         bSplineIKConstraint *ikData = tree->ikData;
1959         float poseHead[3], poseTail[3], poseMat[4][4];
1960         float splineVec[3], scaleFac, radius = 1.0f;
1961
1962         /* firstly, calculate the bone matrix the standard way, since this is needed for roll control */
1963         BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);
1964
1965         copy_v3_v3(poseHead, pchan->pose_head);
1966         copy_v3_v3(poseTail, pchan->pose_tail);
1967
1968         /* step 1: determine the positions for the endpoints of the bone */
1969         {
1970                 float vec[4], dir[3], rad;
1971                 float tailBlendFac = 1.0f;
1972
1973                 /* determine if the bone should still be affected by SplineIK */
1974                 if (tree->points[index + 1] >= 1.0f) {
1975                         /* spline doesn't affect the bone anymore, so done... */
1976                         pchan->flag |= POSE_DONE;
1977                         return;
1978                 }
1979                 else if ((tree->points[index] >= 1.0f) && (tree->points[index + 1] < 1.0f)) {
1980                         /* blending factor depends on the amount of the bone still left on the chain */
1981                         tailBlendFac = (1.0f - tree->points[index + 1]) / (tree->points[index] - tree->points[index + 1]);
1982                 }
1983
1984                 /* tail endpoint */
1985                 if (where_on_path(ikData->tar, tree->points[index], vec, dir, NULL, &rad, NULL)) {
1986                         /* apply curve's object-mode transforms to the position
1987                          * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
1988                          */
1989                         if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
1990                                 mul_m4_v3(ikData->tar->obmat, vec);
1991
1992                         /* convert the position to pose-space, then store it */
1993                         mul_m4_v3(ob->imat, vec);
1994                         interp_v3_v3v3(poseTail, pchan->pose_tail, vec, tailBlendFac);
1995
1996                         /* set the new radius */
1997                         radius = rad;
1998                 }
1999
2000                 /* head endpoint */
2001                 if (where_on_path(ikData->tar, tree->points[index + 1], vec, dir, NULL, &rad, NULL)) {
2002                         /* apply curve's object-mode transforms to the position
2003                          * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
2004                          */
2005                         if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
2006                                 mul_m4_v3(ikData->tar->obmat, vec);
2007
2008                         /* store the position, and convert it to pose space */
2009                         mul_m4_v3(ob->imat, vec);
2010                         copy_v3_v3(poseHead, vec);
2011
2012                         /* set the new radius (it should be the average value) */
2013                         radius = (radius + rad) / 2;
2014                 }
2015         }
2016
2017         /* step 2: determine the implied transform from these endpoints
2018          *     - splineVec: the vector direction that the spline applies on the bone
2019          *     - scaleFac: the factor that the bone length is scaled by to get the desired amount
2020          */
2021         sub_v3_v3v3(splineVec, poseTail, poseHead);
2022         scaleFac = len_v3(splineVec) / pchan->bone->length;
2023
2024         /* step 3: compute the shortest rotation needed to map from the bone rotation to the current axis
2025          *      - this uses the same method as is used for the Damped Track Constraint (see the code there for details)
2026          */
2027         {
2028                 float dmat[3][3], rmat[3][3], tmat[3][3];
2029                 float raxis[3], rangle;
2030
2031                 /* compute the raw rotation matrix from the bone's current matrix by extracting only the
2032                  * orientation-relevant axes, and normalizing them
2033                  */
2034                 copy_v3_v3(rmat[0], pchan->pose_mat[0]);
2035                 copy_v3_v3(rmat[1], pchan->pose_mat[1]);
2036                 copy_v3_v3(rmat[2], pchan->pose_mat[2]);
2037                 normalize_m3(rmat);
2038
2039                 /* also, normalize the orientation imposed by the bone, now that we've extracted the scale factor */
2040                 normalize_v3(splineVec);
2041
2042                 /* calculate smallest axis-angle rotation necessary for getting from the
2043                  * current orientation of the bone, to the spline-imposed direction
2044                  */
2045                 cross_v3_v3v3(raxis, rmat[1], splineVec);
2046
2047                 rangle = dot_v3v3(rmat[1], splineVec);
2048                 rangle = acos(MAX2(-1.0f, MIN2(1.0f, rangle)));
2049
2050                 /* multiply the magnitude of the angle by the influence of the constraint to
2051                  * control the influence of the SplineIK effect
2052                  */
2053                 rangle *= tree->con->enforce;
2054
2055                 /* construct rotation matrix from the axis-angle rotation found above
2056                  *      - this call takes care to make sure that the axis provided is a unit vector first
2057                  */
2058                 axis_angle_to_mat3(dmat, raxis, rangle);
2059
2060                 /* combine these rotations so that the y-axis of the bone is now aligned as the spline dictates,
2061                  * while still maintaining roll control from the existing bone animation
2062                  */
2063                 mul_m3_m3m3(tmat, dmat, rmat); /* m1, m3, m2 */
2064                 normalize_m3(tmat); /* attempt to reduce shearing, though I doubt this'll really help too much now... */
2065                 copy_m4_m3(poseMat, tmat);
2066         }
2067
2068         /* step 4: set the scaling factors for the axes */
2069         {
2070                 /* only multiply the y-axis by the scaling factor to get nice volume-preservation */
2071                 mul_v3_fl(poseMat[1], scaleFac);
2072
2073                 /* set the scaling factors of the x and z axes from... */
2074                 switch (ikData->xzScaleMode) {
2075                         case CONSTRAINT_SPLINEIK_XZS_ORIGINAL:
2076                         {
2077                                 /* original scales get used */
2078                                 float scale;
2079
2080                                 /* x-axis scale */
2081                                 scale = len_v3(pchan->pose_mat[0]);
2082                                 mul_v3_fl(poseMat[0], scale);
2083                                 /* z-axis scale */
2084                                 scale = len_v3(pchan->pose_mat[2]);
2085                                 mul_v3_fl(poseMat[2], scale);
2086                         }
2087                         break;
2088                         case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC:
2089                         {
2090                                 /* 'volume preservation' */
2091                                 float scale;
2092
2093                                 /* calculate volume preservation factor which is
2094                                  * basically the inverse of the y-scaling factor
2095                                  */
2096                                 if (fabsf(scaleFac) != 0.0f) {
2097                                         scale = 1.0f / fabsf(scaleFac);
2098
2099                                         /* we need to clamp this within sensible values */
2100                                         /* NOTE: these should be fine for now, but should get sanitised in future */
2101                                         CLAMP(scale, 0.0001f, 100000.0f);
2102                                 }
2103                                 else
2104                                         scale = 1.0f;
2105
2106                                 /* apply the scaling */
2107                                 mul_v3_fl(poseMat[0], scale);
2108                                 mul_v3_fl(poseMat[2], scale);
2109                         }
2110                         break;
2111                 }
2112
2113                 /* finally, multiply the x and z scaling by the radius of the curve too,
2114                  * to allow automatic scales to get tweaked still
2115                  */
2116                 if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
2117                         mul_v3_fl(poseMat[0], radius);
2118                         mul_v3_fl(poseMat[2], radius);
2119                 }
2120         }
2121
2122         /* step 5: set the location of the bone in the matrix */
2123         if (ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
2124                 /* when the 'no-root' option is affected, the chain can retain
2125                  * the shape but be moved elsewhere
2126                  */
2127                 copy_v3_v3(poseHead, pchan->pose_head);
2128         }
2129         else if (tree->con->enforce < 1.0f) {
2130                 /* when the influence is too low
2131                  *      - blend the positions for the 'root' bone
2132                  *      - stick to the parent for any other
2133                  */
2134                 if (pchan->parent) {
2135                         copy_v3_v3(poseHead, pchan->pose_head);
2136                 }
2137                 else {
2138                         /* FIXME: this introduces popping artifacts when we reach 0.0 */
2139                         interp_v3_v3v3(poseHead, pchan->pose_head, poseHead, tree->con->enforce);
2140                 }
2141         }
2142         copy_v3_v3(poseMat[3], poseHead);
2143
2144         /* finally, store the new transform */
2145         copy_m4_m4(pchan->pose_mat, poseMat);
2146         copy_v3_v3(pchan->pose_head, poseHead);
2147
2148         /* recalculate tail, as it's now outdated after the head gets adjusted above! */
2149         BKE_pose_where_is_bone_tail(pchan);
2150
2151         /* done! */
2152         pchan->flag |= POSE_DONE;
2153 }
2154
2155 /* Evaluate the chain starting from the nominated bone */
2156 static void splineik_execute_tree(Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
2157 {
2158         tSplineIK_Tree *tree;
2159
2160         /* for each pose-tree, execute it if it is spline, otherwise just free it */
2161         while ((tree = pchan_root->siktree.first) != NULL) {
2162                 int i;
2163
2164                 /* walk over each bone in the chain, calculating the effects of spline IK
2165                  *     - the chain is traversed in the opposite order to storage order (i.e. parent to children)
2166                  *       so that dependencies are correct
2167                  */
2168                 for (i = tree->chainlen - 1; i >= 0; i--) {
2169                         bPoseChannel *pchan = tree->chain[i];
2170                         splineik_evaluate_bone(tree, scene, ob, pchan, i, ctime);
2171                 }
2172
2173                 /* free the tree info specific to SplineIK trees now */
2174                 if (tree->chain)
2175                         MEM_freeN(tree->chain);
2176                 if (tree->free_points)
2177                         MEM_freeN(tree->points);
2178
2179                 /* free this tree */
2180                 BLI_freelinkN(&pchan_root->siktree, tree);
2181         }
2182 }
2183
2184 /* ********************** THE POSE SOLVER ******************* */
2185
2186 /* loc/rot/size to given mat4 */
2187 void BKE_pchan_to_mat4(bPoseChannel *pchan, float chan_mat[4][4])
2188 {
2189         float smat[3][3];
2190         float rmat[3][3];
2191         float tmat[3][3];
2192
2193         /* get scaling matrix */
2194         size_to_mat3(smat, pchan->size);
2195
2196         /* rotations may either be quats, eulers (with various rotation orders), or axis-angle */
2197         if (pchan->rotmode > 0) {
2198                 /* euler rotations (will cause gimble lock, but this can be alleviated a bit with rotation orders) */
2199                 eulO_to_mat3(rmat, pchan->eul, pchan->rotmode);
2200         }
2201         else if (pchan->rotmode == ROT_MODE_AXISANGLE) {
2202                 /* axis-angle - not really that great for 3D-changing orientations */
2203                 axis_angle_to_mat3(rmat, pchan->rotAxis, pchan->rotAngle);
2204         }
2205         else {
2206                 /* quats are normalised before use to eliminate scaling issues */
2207                 float quat[4];
2208
2209                 /* NOTE: we now don't normalize the stored values anymore, since this was kindof evil in some cases
2210                  * but if this proves to be too problematic, switch back to the old system of operating directly on
2211                  * the stored copy
2212                  */
2213                 normalize_qt_qt(quat, pchan->quat);
2214                 quat_to_mat3(rmat, quat);
2215         }
2216
2217         /* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */
2218         mul_m3_m3m3(tmat, rmat, smat);
2219         copy_m4_m3(chan_mat, tmat);
2220
2221         /* prevent action channels breaking chains */
2222         /* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
2223         if ((pchan->bone == NULL) || !(pchan->bone->flag & BONE_CONNECTED)) {
2224                 copy_v3_v3(chan_mat[3], pchan->loc);
2225         }
2226 }
2227
2228 /* loc/rot/size to mat4 */
2229 /* used in constraint.c too */
2230 void BKE_pchan_calc_mat(bPoseChannel *pchan)
2231 {
2232         /* this is just a wrapper around the copy of this function which calculates the matrix
2233          * and stores the result in any given channel
2234          */
2235         BKE_pchan_to_mat4(pchan, pchan->chan_mat);
2236 }
2237
2238 #if 0 /* XXX OLD ANIMSYS, NLASTRIPS ARE NO LONGER USED */
2239
2240 /* NLA strip modifiers */
2241 static void do_strip_modifiers(Scene *scene, Object *armob, Bone *bone, bPoseChannel *pchan)
2242 {
2243         bActionModifier *amod;
2244         bActionStrip *strip, *strip2;
2245         float scene_cfra = (float)scene->r.cfra;
2246         int do_modif;
2247
2248         for (strip = armob->nlastrips.first; strip; strip = strip->next) {
2249                 do_modif = FALSE;
2250
2251                 if (scene_cfra >= strip->start && scene_cfra <= strip->end)
2252                         do_modif = TRUE;
2253
2254                 if ((scene_cfra > strip->end) && (strip->flag & ACTSTRIP_HOLDLASTFRAME)) {
2255                         do_modif = TRUE;
2256
2257                         /* if there are any other strips active, ignore modifiers for this strip -
2258                          * 'hold' option should only hold action modifiers if there are
2259                          * no other active strips */
2260                         for (strip2 = strip->next; strip2; strip2 = strip2->next) {
2261                                 if (strip2 == strip) continue;
2262
2263                                 if (scene_cfra >= strip2->start && scene_cfra <= strip2->end) {
2264                                         if (!(strip2->flag & ACTSTRIP_MUTE))
2265                                                 do_modif = FALSE;
2266                                 }
2267                         }
2268
2269                         /* if there are any later, activated, strips with 'hold' set, they take precedence,
2270                          * so ignore modifiers for this strip */
2271                         for (strip2 = strip->next; strip2; strip2 = strip2->next) {
2272                                 if (scene_cfra < strip2->start) continue;
2273                                 if ((strip2->flag & ACTSTRIP_HOLDLASTFRAME) && !(strip2->flag & ACTSTRIP_MUTE)) {
2274                                         do_modif = FALSE;
2275                                 }
2276                         }
2277                 }
2278
2279                 if (do_modif) {
2280                         /* temporal solution to prevent 2 strips accumulating */
2281                         if (scene_cfra == strip->end && strip->next && strip->next->start == scene_cfra)
2282                                 continue;
2283
2284                         for (amod = strip->modifiers.first; amod; amod = amod->next) {
2285                                 switch (amod->type) {
2286                                         case ACTSTRIP_MOD_DEFORM:
2287                                         {
2288                                                 /* validate first */
2289                                                 if (amod->ob && amod->ob->type == OB_CURVE && amod->channel[0]) {
2290
2291                                                         if (strcmp(pchan->name, amod->channel) == 0) {
2292                                                                 float mat4[4][4], mat3[3][3];
2293
2294                                                                 curve_deform_vector(scene, amod->ob, armob, bone->arm_mat[3], pchan->pose_mat[3], mat3, amod->no_rot_axis);
2295                                                                 copy_m4_m4(mat4, pchan->pose_mat);
2296                                                                 mul_m4_m3m4(pchan->pose_mat, mat3, mat4);
2297
2298                                                         }
2299                                                 }
2300                                         }
2301                                         break;
2302                                         case ACTSTRIP_MOD_NOISE:
2303                                         {
2304                                                 if (strcmp(pchan->name, amod->channel) == 0) {
2305                                                         float nor[3], loc[3], ofs;
2306                                                         float eul[3], size[3], eulo[3], sizeo[3];
2307
2308                                                         /* calculate turbulance */
2309                                                         ofs = amod->turbul / 200.0f;
2310
2311                                                         /* make a copy of starting conditions */
2312                                                         copy_v3_v3(loc, pchan->pose_mat[3]);
2313                                                         mat4_to_eul(eul, pchan->pose_mat);
2314                                                         mat4_to_size(size, pchan->pose_mat);
2315                                                         copy_v3_v3(eulo, eul);
2316                                                         copy_v3_v3(sizeo, size);
2317
2318                                                         /* apply noise to each set of channels */
2319                                                         if (amod->channels & 4) {
2320                                                                 /* for scaling */
2321                                                                 nor[0] = BLI_gNoise(amod->noisesize, size[0] + ofs, size[1], size[2], 0, 0) - ofs;
2322                                                                 nor[1] = BLI_gNoise(amod->noisesize, size[0], size[1] + ofs, size[2], 0, 0) - ofs;
2323                                                                 nor[2] = BLI_gNoise(amod->noisesize, size[0], size[1], size[2] + ofs, 0, 0) - ofs;
2324                                                                 add_v3_v3(size, nor);
2325
2326                                                                 if (sizeo[0] != 0)
2327                                                                         mul_v3_fl(pchan->pose_mat[0], size[0] / sizeo[0]);
2328                                                                 if (sizeo[1] != 0)
2329                                                                         mul_v3_fl(pchan->pose_mat[1], size[1] / sizeo[1]);
2330                                                                 if (sizeo[2] != 0)
2331                                                                         mul_v3_fl(pchan->pose_mat[2], size[2] / sizeo[2]);
2332                                                         }
2333                                                         if (amod->channels & 2) {
2334                                                                 /* for rotation */
2335                                                                 nor[0] = BLI_gNoise(amod->noisesize, eul[0] + ofs, eul[1], eul[2], 0, 0) - ofs;
2336                                                                 nor[1] = BLI_gNoise(amod->noisesize, eul[0], eul[1] + ofs, eul[2], 0, 0) - ofs;
2337                                                                 nor[2] = BLI_gNoise(amod->noisesize, eul[0], eul[1], eul[2] + ofs, 0, 0) - ofs;
2338
2339                                                                 compatible_eul(nor, eulo);
2340                                                                 add_v3_v3(eul, nor);
2341                                                                 compatible_eul(eul, eulo);
2342
2343                                                                 loc_eul_size_to_mat4(pchan->pose_mat, loc, eul, size);
2344                                                         }
2345                                                         if (amod->channels & 1) {
2346                                                                 /* for location */
2347                                                                 nor[0] = BLI_gNoise(amod->noisesize, loc[0] + ofs, loc[1], loc[2], 0, 0) - ofs;
2348                                                                 nor[1] = BLI_gNoise(amod->noisesize, loc[0], loc[1] + ofs, loc[2], 0, 0) - ofs;
2349                                                                 nor[2] = BLI_gNoise(amod->noisesize, loc[0], loc[1], loc[2] + ofs, 0, 0) - ofs;
2350
2351                                                                 add_v3_v3v3(pchan->pose_mat[3], loc, nor);
2352                                                         }
2353                                                 }
2354                                         }
2355                                         break;
2356                                 }
2357                         }
2358                 }
2359         }
2360 }
2361
2362 #endif
2363
2364 /* calculate tail of posechannel */
2365 void BKE_pose_where_is_bone_tail(bPoseChannel *pchan)
2366 {
2367         float vec[3];
2368
2369         copy_v3_v3(vec, pchan->pose_mat[1]);
2370         mul_v3_fl(vec, pchan->bone->length);
2371         add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec);
2372 }
2373
2374 /* The main armature solver, does all constraints excluding IK */
2375 /* pchan is validated, as having bone and parent pointer
2376  * 'do_extra': when zero skips loc/size/rot, constraints and strip modifiers.
2377  */
2378 void BKE_pose_where_is_bone(Scene *scene, Object *ob, bPoseChannel *pchan, float ctime, int do_extra)
2379 {
2380         /* This gives a chan_mat with actions (ipos) results. */
2381         if (do_extra)
2382                 BKE_pchan_calc_mat(pchan);
2383         else
2384                 unit_m4(pchan->chan_mat);
2385
2386         /* Construct the posemat based on PoseChannels, that we do before applying constraints. */
2387         /* pose_mat(b) = pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
2388         BKE_armature_mat_bone_to_pose(pchan, pchan->chan_mat, pchan->pose_mat);
2389
2390         /* Only rootbones get the cyclic offset (unless user doesn't want that). */
2391         /* XXX That could be a problem for snapping and other "reverse transform" features... */
2392         if (!pchan->parent) {
2393                 if ((pchan->bone->flag & BONE_NO_CYCLICOFFSET) == 0)
2394                         add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset);
2395         }
2396
2397         if (do_extra) {
2398 #if 0   /* XXX OLD ANIMSYS, NLASTRIPS ARE NO LONGER USED */
2399                 /* do NLA strip modifiers - i.e. curve follow */
2400                 do_strip_modifiers(scene, ob, bone, pchan);
2401 #endif
2402
2403                 /* Do constraints */
2404                 if (pchan->constraints.first) {
2405                         bConstraintOb *cob;
2406                         float vec[3];
2407
2408                         /* make a copy of location of PoseChannel for later */
2409                         copy_v3_v3(vec, pchan->pose_mat[3]);
2410
2411                         /* prepare PoseChannel for Constraint solving
2412                          * - makes a copy of matrix, and creates temporary struct to use
2413                          */
2414                         cob = constraints_make_evalob(scene, ob, pchan, CONSTRAINT_OBTYPE_BONE);
2415
2416                         /* Solve PoseChannel's Constraints */
2417                         solve_constraints(&pchan->constraints, cob, ctime); /* ctime doesnt alter objects */
2418
2419                         /* cleanup after Constraint Solving
2420                          * - applies matrix back to pchan, and frees temporary struct used
2421                          */
2422                         constraints_clear_evalob(cob);
2423
2424                         /* prevent constraints breaking a chain */
2425                         if (pchan->bone->flag & BONE_CONNECTED) {
2426                                 copy_v3_v3(pchan->pose_mat[3], vec);
2427                         }
2428                 }
2429         }
2430
2431         /* calculate head */
2432         copy_v3_v3(pchan->pose_head, pchan->pose_mat[3]);
2433         /* calculate tail */
2434         BKE_pose_where_is_bone_tail(pchan);
2435 }
2436
2437 /* This only reads anim data from channels, and writes to channels */
2438 /* This is the only function adding poses */
2439 void BKE_pose_where_is(Scene *scene, Object *ob)
2440 {
2441         bArmature *arm;
2442         Bone *bone;
2443         bPoseChannel *pchan;
2444         float imat[4][4];
2445         float ctime;
2446
2447         if (ob->type != OB_ARMATURE)
2448                 return;
2449         arm = ob->data;
2450
2451         if (ELEM(NULL, arm, scene))
2452                 return;
2453         if ((ob->pose == NULL) || (ob->pose->flag & POSE_RECALC))
2454                 BKE_pose_rebuild(ob, arm);
2455
2456         ctime = BKE_scene_frame_get(scene); /* not accurate... */
2457
2458         /* In editmode or restposition we read the data from the bones */
2459         if (arm->edbo || (arm->flag & ARM_RESTPOS)) {
2460                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2461                         bone = pchan->bone;
2462                         if (bone) {
2463                                 copy_m4_m4(pchan->pose_mat, bone->arm_mat);
2464                                 copy_v3_v3(pchan->pose_head, bone->arm_head);
2465                                 copy_v3_v3(pchan->pose_tail, bone->arm_tail);
2466                         }
2467                 }
2468         }
2469         else {
2470                 invert_m4_m4(ob->imat, ob->obmat); /* imat is needed */
2471
2472                 /* 1. clear flags */
2473                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2474                         pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE);
2475                 }
2476
2477                 /* 2a. construct the IK tree (standard IK) */
2478                 BIK_initialize_tree(scene, ob, ctime);
2479
2480                 /* 2b. construct the Spline IK trees
2481                  *  - this is not integrated as an IK plugin, since it should be able
2482                  *        to function in conjunction with standard IK
2483                  */
2484                 splineik_init_tree(scene, ob, ctime);
2485
2486                 /* 3. the main loop, channels are already hierarchical sorted from root to children */
2487                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2488                         /* 4a. if we find an IK root, we handle it separated */
2489                         if (pchan->flag & POSE_IKTREE) {
2490                                 BIK_execute_tree(scene, ob, pchan, ctime);
2491                         }
2492                         /* 4b. if we find a Spline IK root, we handle it separated too */
2493                         else if (pchan->flag & POSE_IKSPLINE) {
2494                                 splineik_execute_tree(scene, ob, pchan, ctime);
2495                         }
2496                         /* 5. otherwise just call the normal solver */
2497                         else if (!(pchan->flag & POSE_DONE)) {
2498                                 BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);
2499                         }
2500                 }
2501                 /* 6. release the IK tree */
2502                 BIK_release_tree(scene, ob, ctime);
2503         }
2504
2505         /* calculating deform matrices */
2506         for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2507                 if (pchan->bone) {
2508                         invert_m4_m4(imat, pchan->bone->arm_mat);
2509                         mult_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat);
2510                 }
2511         }
2512 }
2513
2514
2515 /* Returns total selected vgroups,
2516  * wpi.defbase_sel is assumed malloc'd, all values are set */
2517 int get_selected_defgroups(Object *ob, char *dg_selection, int defbase_tot)
2518 {
2519         bDeformGroup *defgroup;
2520         unsigned int i;
2521         Object *armob = BKE_object_pose_armature_get(ob);
2522         int dg_flags_sel_tot = 0;
2523
2524         if (armob) {
2525                 bPose *pose = armob->pose;
2526                 for (i = 0, defgroup = ob->defbase.first; i < defbase_tot && defgroup; defgroup = defgroup->next, i++) {
2527                         bPoseChannel *pchan = BKE_pose_channel_find_name(pose, defgroup->name);
2528                         if (pchan && (pchan->bone->flag & BONE_SELECTED)) {
2529                                 dg_selection[i] = TRUE;
2530                                 dg_flags_sel_tot++;
2531                         }
2532                         else {
2533                                 dg_selection[i] = FALSE;
2534                         }
2535                 }
2536         }
2537         else {
2538                 memset(dg_selection, FALSE, sizeof(char) * defbase_tot);
2539         }
2540
2541         return dg_flags_sel_tot;
2542 }
2543
2544 /************** Bounding box ********************/
2545 static int minmax_armature(Object *ob, float r_min[3], float r_max[3])
2546 {
2547         bPoseChannel *pchan;
2548
2549         /* For now, we assume BKE_pose_where_is has already been called (hence we have valid data in pachan). */
2550         for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2551                 minmax_v3v3_v3(r_min, r_max, pchan->pose_head);
2552                 minmax_v3v3_v3(r_min, r_max, pchan->pose_tail);
2553         }
2554
2555         return (ob->pose->chanbase.first != NULL);
2556 }
2557
2558 static void boundbox_armature(Object *ob, float loc[3], float size[3])
2559 {
2560         BoundBox *bb;
2561         float min[3], max[3];
2562         float mloc[3], msize[3];
2563
2564         if (ob->bb == NULL)
2565                 ob->bb = MEM_callocN(sizeof(BoundBox), "Armature boundbox");
2566         bb = ob->bb;
2567
2568         if (!loc)
2569                 loc = mloc;
2570         if (!size)
2571                 size = msize;
2572
2573         INIT_MINMAX(min, max);
2574         if (!minmax_armature(ob, min, max)) {
2575                 min[0] = min[1] = min[2] = -1.0f;
2576                 max[0] = max[1] = max[2] = 1.0f;
2577         }
2578
2579         mid_v3_v3v3(loc, min, max);
2580
2581         size[0] = (max[0] - min[0]) / 2.0f;
2582         size[1] = (max[1] - min[1]) / 2.0f;
2583         size[2] = (max[2] - min[2]) / 2.0f;
2584
2585         BKE_boundbox_init_from_minmax(bb, min, max);
2586 }
2587
2588 BoundBox *BKE_armature_boundbox_get(Object *ob)
2589 {
2590         boundbox_armature(ob, NULL, NULL);
2591
2592         return ob->bb;
2593 }