2 * ***** BEGIN GPL LICENSE BLOCK *****
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
19 * All rights reserved.
21 * Contributors: 2004/2005/2006 Blender Foundation, full recode
23 * ***** END GPL LICENSE BLOCK *****
26 /** \file blender/render/intern/source/convertblender.c
36 #include "MEM_guardedalloc.h"
39 #include "BLI_blenlib.h"
40 #include "BLI_utildefines.h"
42 #include "BLI_memarena.h"
43 #include "BLI_ghash.h"
44 #include "BLI_linklist.h"
46 #include "DNA_armature_types.h"
47 #include "DNA_camera_types.h"
48 #include "DNA_material_types.h"
49 #include "DNA_curve_types.h"
50 #include "DNA_effect_types.h"
51 #include "DNA_group_types.h"
52 #include "DNA_lamp_types.h"
53 #include "DNA_image_types.h"
54 #include "DNA_lattice_types.h"
55 #include "DNA_mesh_types.h"
56 #include "DNA_meshdata_types.h"
57 #include "DNA_meta_types.h"
58 #include "DNA_modifier_types.h"
59 #include "DNA_node_types.h"
60 #include "DNA_object_types.h"
61 #include "DNA_object_force.h"
62 #include "DNA_object_fluidsim.h"
63 #include "DNA_particle_types.h"
64 #include "DNA_scene_types.h"
65 #include "DNA_texture_types.h"
66 #include "DNA_view3d_types.h"
69 #include "BKE_armature.h"
70 #include "BKE_action.h"
71 #include "BKE_curve.h"
72 #include "BKE_customdata.h"
73 #include "BKE_colortools.h"
74 #include "BKE_constraint.h"
75 #include "BKE_displist.h"
76 #include "BKE_deform.h"
77 #include "BKE_DerivedMesh.h"
78 #include "BKE_effect.h"
79 #include "BKE_global.h"
80 #include "BKE_group.h"
83 #include "BKE_image.h"
84 #include "BKE_lattice.h"
85 #include "BKE_library.h"
86 #include "BKE_material.h"
88 #include "BKE_mball.h"
90 #include "BKE_modifier.h"
92 #include "BKE_object.h"
93 #include "BKE_particle.h"
94 #include "BKE_scene.h"
95 #include "BKE_subsurf.h"
96 #include "BKE_texture.h"
98 #include "BKE_world.h"
100 #include "PIL_time.h"
101 #include "IMB_imbuf_types.h"
104 #include "occlusion.h"
105 #include "pointdensity.h"
106 #include "voxeldata.h"
107 #include "render_types.h"
108 #include "rendercore.h"
109 #include "renderdatabase.h"
110 #include "renderpipeline.h"
115 #include "volume_precache.h"
121 #include "RE_render_ext.h"
123 /* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
124 /* or for checking vertex normal flips */
125 #define FLT_EPSILON10 1.19209290e-06F
127 /* could enable at some point but for now there are far too many conversions */
128 #pragma GCC diagnostic ignored "-Wdouble-promotion"
130 /* ------------------------------------------------------------------------- */
132 /* Stuff for stars. This sits here because it uses gl-things. Part of
133 * this code may move down to the converter. */
134 /* ------------------------------------------------------------------------- */
135 /* this is a bad beast, since it is misused by the 3d view drawing as well. */
137 static HaloRen *initstar(Render *re, ObjectRen *obr, const float vec[3], float hasize)
142 projectverto(vec, re->winmat, hoco);
144 har= RE_findOrAddHalo(obr, obr->tothalo++);
146 /* projectvert is done in function zbufvlaggen again, because of parts */
147 copy_v3_v3(har->co, vec);
155 /* there must be a 'fixed' amount of stars generated between
157 * all stars must by preference lie on the far and solely
158 * differ in clarity/color
161 void RE_make_stars(Render *re, Scene *scenev3d, void (*initfunc)(void),
162 void (*vertexfunc)(float*), void (*termfunc)(void))
164 extern unsigned char hash[512];
165 ObjectRen *obr= NULL;
171 double dblrand, hlfrand;
172 float vec[4], fx, fy, fz;
173 float fac, starmindist, clipend;
174 float mat[4][4], stargrid, maxrand, maxjit, force, alpha;
175 int x, y, z, sx, sy, sz, ex, ey, ez, done = FALSE;
176 unsigned int totstar= 0;
187 stargrid = wrld->stardist; /* distance between stars */
188 maxrand = 2.0; /* amount a star can be shifted (in grid units) */
189 maxjit = (wrld->starcolnoise); /* amount a color is being shifted */
192 force = ( wrld->starsize );
194 /* minimal free space (starting at camera) */
195 starmindist= wrld->starmindist;
197 if (stargrid <= 0.10f) return;
199 if (re) re->flag |= R_HALO;
200 else stargrid *= 1.0f; /* then it draws fewer */
202 if (re) invert_m4_m4(mat, re->viewmat);
205 /* BOUNDING BOX CALCULATION
206 * bbox goes from z = loc_near_var | loc_far_var,
211 camera= re ? RE_GetCamera(re) : scene->camera;
213 if (camera==NULL || camera->type != OB_CAMERA)
217 clipend = cam->clipend;
219 /* convert to grid coordinates */
221 sx = ((mat[3][0] - clipend) / stargrid) - maxrand;
222 sy = ((mat[3][1] - clipend) / stargrid) - maxrand;
223 sz = ((mat[3][2] - clipend) / stargrid) - maxrand;
225 ex = ((mat[3][0] + clipend) / stargrid) + maxrand;
226 ey = ((mat[3][1] + clipend) / stargrid) + maxrand;
227 ez = ((mat[3][2] + clipend) / stargrid) + maxrand;
229 dblrand = maxrand * stargrid;
230 hlfrand = 2.0 * dblrand;
236 if (re) /* add render object for stars */
237 obr= RE_addRenderObject(re, NULL, NULL, 0, 0, 0);
239 for (x = sx, fx = sx * stargrid; x <= ex; x++, fx += stargrid) {
240 for (y = sy, fy = sy * stargrid; y <= ey; y++, fy += stargrid) {
241 for (z = sz, fz = sz * stargrid; z <= ez; z++, fz += stargrid) {
243 BLI_srand((hash[z & 0xff] << 24) + (hash[y & 0xff] << 16) + (hash[x & 0xff] << 8));
244 vec[0] = fx + (hlfrand * BLI_drand()) - dblrand;
245 vec[1] = fy + (hlfrand * BLI_drand()) - dblrand;
246 vec[2] = fz + (hlfrand * BLI_drand()) - dblrand;
250 if (done & 1) vertexfunc(vec);
255 mul_m4_v3(re->viewmat, vec);
257 /* in vec are global coordinates
258 * calculate distance to camera
259 * and using that, define the alpha
263 if (alpha >= clipend) alpha = 0.0;
264 else if (alpha <= starmindist) alpha = 0.0;
265 else if (alpha <= 2.0f * starmindist) {
266 alpha = (alpha - starmindist) / starmindist;
269 alpha -= 2.0f * starmindist;
270 alpha /= (clipend - 2.0f * starmindist);
271 alpha = 1.0f - alpha;
276 fac = force * BLI_drand();
278 har = initstar(re, obr, vec, fac);
281 har->alfa = sqrt(sqrt(alpha));
283 har->r = har->g = har->b = 1.0;
285 har->r += ((maxjit * BLI_drand()) ) - maxjit;
286 har->g += ((maxjit * BLI_drand()) ) - maxjit;
287 har->b += ((maxjit * BLI_drand()) ) - maxjit;
291 har->type |= HA_ONLYSKY;
297 /* break out of the loop if generating stars takes too long */
298 if (re && !(totstar % 1000000)) {
299 if (re->test_break(re->tbh)) {
308 /* do not call blender_test_break() here, since it is used in UI as well, confusing the callback system */
309 /* main cause is G.is_break of course, a global again... (ton) */
312 if (termfunc) termfunc();
315 re->tothalo += obr->tothalo;
319 /* ------------------------------------------------------------------------- */
320 /* tool functions/defines for ad hoc simplification and possible future
322 /* ------------------------------------------------------------------------- */
324 #define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
327 * NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
329 * ^ ()----p4----p3----()
333 * ()----p1----p2----()
337 /* ------------------------------------------------------------------------- */
339 static void split_v_renderfaces(ObjectRen *obr, int startvlak, int UNUSED(startvert), int UNUSED(usize), int vsize, int uIndex, int UNUSED(cyclu), int cyclv)
341 int vLen = vsize-1+(!!cyclv);
344 for (v=0; v<vLen; v++) {
345 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v);
346 VertRen *vert = RE_vertren_copy(obr, vlr->v2);
352 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + 0);
356 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
364 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
369 vlr->v1 = RE_vertren_copy(obr, vlr->v1);
375 /* ------------------------------------------------------------------------- */
376 /* Stress, tangents and normals */
377 /* ------------------------------------------------------------------------- */
379 static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
381 float len= len_v3v3(v1->co, v2->co)/len_v3v3(v1->orco, v2->orco);
384 acc= accum + 2*v1->index;
388 acc= accum + 2*v2->index;
393 static void calc_edge_stress(Render *UNUSED(re), ObjectRen *obr, Mesh *me)
395 float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
398 if (obr->totvert==0) return;
400 BKE_mesh_texspace_get(me, loc, NULL, size);
402 accum= MEM_callocN(2*sizeof(float)*obr->totvert, "temp accum for stress");
404 /* de-normalize orco */
405 for (a=0; a<obr->totvert; a++) {
406 VertRen *ver= RE_findOrAddVert(obr, a);
408 ver->orco[0]= ver->orco[0]*size[0] +loc[0];
409 ver->orco[1]= ver->orco[1]*size[1] +loc[1];
410 ver->orco[2]= ver->orco[2]*size[2] +loc[2];
414 /* add stress values */
415 accumoffs= accum; /* so we can use vertex index */
416 for (a=0; a<obr->totvlak; a++) {
417 VlakRen *vlr= RE_findOrAddVlak(obr, a);
419 if (vlr->v1->orco && vlr->v4) {
420 calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
421 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
422 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
424 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
425 calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
426 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
431 for (a=0; a<obr->totvert; a++) {
432 VertRen *ver= RE_findOrAddVert(obr, a);
434 /* find stress value */
435 acc= accumoffs + 2*ver->index;
438 stress= RE_vertren_get_stress(obr, ver, 1);
442 ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
443 ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
444 ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
451 /* gets tangent from tface or orco */
452 static void calc_tangent_vector(ObjectRen *obr, VlakRen *vlr, int do_tangent)
454 MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
455 VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
457 float *uv1, *uv2, *uv3, *uv4;
467 uv1= uv[0]; uv2= uv[1]; uv3= uv[2]; uv4= uv[3];
468 map_to_sphere(&uv[0][0], &uv[0][1], v1->orco[0], v1->orco[1], v1->orco[2]);
469 map_to_sphere(&uv[1][0], &uv[1][1], v2->orco[0], v2->orco[1], v2->orco[2]);
470 map_to_sphere(&uv[2][0], &uv[2][1], v3->orco[0], v3->orco[1], v3->orco[2]);
472 map_to_sphere(&uv[3][0], &uv[3][1], v4->orco[0], v4->orco[1], v4->orco[2]);
476 tangent_from_uv(uv1, uv2, uv3, v1->co, v2->co, v3->co, vlr->n, tang);
479 tav= RE_vertren_get_tangent(obr, v1, 1);
480 add_v3_v3(tav, tang);
481 tav= RE_vertren_get_tangent(obr, v2, 1);
482 add_v3_v3(tav, tang);
483 tav= RE_vertren_get_tangent(obr, v3, 1);
484 add_v3_v3(tav, tang);
488 tangent_from_uv(uv1, uv3, uv4, v1->co, v3->co, v4->co, vlr->n, tang);
491 tav= RE_vertren_get_tangent(obr, v1, 1);
492 add_v3_v3(tav, tang);
493 tav= RE_vertren_get_tangent(obr, v3, 1);
494 add_v3_v3(tav, tang);
495 tav= RE_vertren_get_tangent(obr, v4, 1);
496 add_v3_v3(tav, tang);
503 /****************************************************************
504 ************ tangent space generation interface ****************
505 ****************************************************************/
510 } SRenderMeshToTangent;
513 #include "mikktspace.h"
515 static int GetNumFaces(const SMikkTSpaceContext * pContext)
517 SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
518 return pMesh->obr->totvlak;
521 static int GetNumVertsOfFace(const SMikkTSpaceContext * pContext, const int face_num)
523 SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
524 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
525 return vlr->v4!=NULL ? 4 : 3;
528 static void GetPosition(const SMikkTSpaceContext * pContext, float fPos[], const int face_num, const int vert_index)
530 //assert(vert_index>=0 && vert_index<4);
531 SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
532 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
533 const float *co= (&vlr->v1)[vert_index]->co;
534 copy_v3_v3(fPos, co);
537 static void GetTextureCoordinate(const SMikkTSpaceContext * pContext, float fUV[], const int face_num, const int vert_index)
539 //assert(vert_index>=0 && vert_index<4);
540 SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
541 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
542 MTFace *tface= RE_vlakren_get_tface(pMesh->obr, vlr, pMesh->obr->actmtface, NULL, 0);
546 coord= tface->uv[vert_index];
547 fUV[0]= coord[0]; fUV[1]= coord[1];
549 else if ((coord= (&vlr->v1)[vert_index]->orco)) {
550 map_to_sphere(&fUV[0], &fUV[1], coord[0], coord[1], coord[2]);
552 else { /* else we get un-initialized value, 0.0 ok default? */
553 fUV[0]= fUV[1]= 0.0f;
557 static void GetNormal(const SMikkTSpaceContext * pContext, float fNorm[], const int face_num, const int vert_index)
559 //assert(vert_index>=0 && vert_index<4);
560 SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
561 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
563 if (vlr->flag & ME_SMOOTH) {
564 const float *n = (&vlr->v1)[vert_index]->n;
565 copy_v3_v3(fNorm, n);
568 negate_v3_v3(fNorm, vlr->n);
571 static void SetTSpace(const SMikkTSpaceContext * pContext, const float fvTangent[], const float fSign, const int face_num, const int iVert)
573 //assert(vert_index>=0 && vert_index<4);
574 SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
575 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
576 float * ftang= RE_vlakren_get_nmap_tangent(pMesh->obr, vlr, 1);
578 copy_v3_v3(&ftang[iVert*4+0], fvTangent);
579 ftang[iVert*4+3]=fSign;
583 static void calc_vertexnormals(Render *UNUSED(re), ObjectRen *obr, int do_tangent, int do_nmap_tangent)
587 /* clear all vertex normals */
588 for (a=0; a<obr->totvert; a++) {
589 VertRen *ver= RE_findOrAddVert(obr, a);
590 ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
593 /* calculate cos of angles and point-masses, use as weight factor to
594 * add face normal to vertex */
595 for (a=0; a<obr->totvlak; a++) {
596 VlakRen *vlr= RE_findOrAddVlak(obr, a);
597 if (vlr->flag & ME_SMOOTH) {
598 float *n4= (vlr->v4)? vlr->v4->n: NULL;
599 float *c4= (vlr->v4)? vlr->v4->co: NULL;
601 accumulate_vertex_normals(vlr->v1->n, vlr->v2->n, vlr->v3->n, n4,
602 vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co, c4);
605 /* tangents still need to be calculated for flat faces too */
606 /* weighting removed, they are not vertexnormals */
607 calc_tangent_vector(obr, vlr, do_tangent);
612 for (a=0; a<obr->totvlak; a++) {
613 VlakRen *vlr= RE_findOrAddVlak(obr, a);
615 if ((vlr->flag & ME_SMOOTH)==0) {
616 if (is_zero_v3(vlr->v1->n)) copy_v3_v3(vlr->v1->n, vlr->n);
617 if (is_zero_v3(vlr->v2->n)) copy_v3_v3(vlr->v2->n, vlr->n);
618 if (is_zero_v3(vlr->v3->n)) copy_v3_v3(vlr->v3->n, vlr->n);
619 if (vlr->v4 && is_zero_v3(vlr->v4->n)) copy_v3_v3(vlr->v4->n, vlr->n);
623 /* normalize vertex normals */
624 for (a=0; a<obr->totvert; a++) {
625 VertRen *ver= RE_findOrAddVert(obr, a);
626 normalize_v3(ver->n);
628 float *tav= RE_vertren_get_tangent(obr, ver, 0);
631 const float tdn = dot_v3v3(tav, ver->n);
632 tav[0] -= ver->n[0]*tdn;
633 tav[1] -= ver->n[1]*tdn;
634 tav[2] -= ver->n[2]*tdn;
640 /* normal mapping tangent with mikktspace */
641 if (do_nmap_tangent != FALSE) {
642 SRenderMeshToTangent mesh2tangent;
643 SMikkTSpaceContext sContext;
644 SMikkTSpaceInterface sInterface;
645 memset(&mesh2tangent, 0, sizeof(SRenderMeshToTangent));
646 memset(&sContext, 0, sizeof(SMikkTSpaceContext));
647 memset(&sInterface, 0, sizeof(SMikkTSpaceInterface));
649 mesh2tangent.obr = obr;
651 sContext.m_pUserData = &mesh2tangent;
652 sContext.m_pInterface = &sInterface;
653 sInterface.m_getNumFaces = GetNumFaces;
654 sInterface.m_getNumVerticesOfFace = GetNumVertsOfFace;
655 sInterface.m_getPosition = GetPosition;
656 sInterface.m_getTexCoord = GetTextureCoordinate;
657 sInterface.m_getNormal = GetNormal;
658 sInterface.m_setTSpaceBasic = SetTSpace;
660 genTangSpaceDefault(&sContext);
664 /* ------------------------------------------------------------------------- */
666 /* ------------------------------------------------------------------------- */
668 typedef struct ASvert {
673 typedef struct ASface {
674 struct ASface *next, *prev;
679 static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
684 if (v1 == NULL) return;
686 if (asv->faces.first==NULL) {
687 asf= MEM_callocN(sizeof(ASface), "asface");
688 BLI_addtail(&asv->faces, asf);
691 asf= asv->faces.last;
692 for (a=0; a<4; a++) {
693 if (asf->vlr[a]==NULL) {
700 /* new face struct */
702 asf= MEM_callocN(sizeof(ASface), "asface");
703 BLI_addtail(&asv->faces, asf);
709 static int as_testvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
711 /* return 1: vertex needs a copy */
716 if (vlr==0) return 0;
718 asf= asv->faces.first;
720 for (a=0; a<4; a++) {
721 if (asf->vlr[a] && asf->vlr[a]!=vlr) {
722 inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
723 if (inp < thresh) return 1;
732 static VertRen *as_findvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
734 /* return when new vertex already was made */
739 asf= asv->faces.first;
741 for (a=0; a<4; a++) {
742 if (asf->vlr[a] && asf->vlr[a]!=vlr) {
743 /* this face already made a copy for this vertex! */
745 inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
758 /* note; autosmooth happens in object space still, after applying autosmooth we rotate */
759 /* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
760 static void autosmooth(Render *UNUSED(re), ObjectRen *obr, float mat[][4], int degr)
762 ASvert *asv, *asverts;
769 if (obr->totvert==0) return;
770 asverts= MEM_callocN(sizeof(ASvert)*obr->totvert, "all smooth verts");
772 thresh= cosf(DEG2RADF((0.5f + (float)degr)));
774 /* step zero: give faces normals of original mesh, if this is provided */
777 /* step one: construct listbase of all vertices and pointers to faces */
778 for (a=0; a<obr->totvlak; a++) {
779 vlr= RE_findOrAddVlak(obr, a);
780 /* skip wire faces */
781 if (vlr->v2 != vlr->v3) {
782 as_addvert(asverts+vlr->v1->index, vlr->v1, vlr);
783 as_addvert(asverts+vlr->v2->index, vlr->v2, vlr);
784 as_addvert(asverts+vlr->v3->index, vlr->v3, vlr);
786 as_addvert(asverts+vlr->v4->index, vlr->v4, vlr);
790 totvert= obr->totvert;
791 /* we now test all vertices, when faces have a normal too much different: they get a new vertex */
792 for (a=0, asv=asverts; a<totvert; a++, asv++) {
793 if (asv && asv->totface>1) {
794 ver= RE_findOrAddVert(obr, a);
796 asf= asv->faces.first;
798 for (b=0; b<4; b++) {
800 /* is there a reason to make a new vertex? */
802 if ( as_testvertex(vlr, ver, asv, thresh) ) {
804 /* already made a new vertex within threshold? */
805 v1= as_findvertex(vlr, ver, asv, thresh);
807 /* make a new vertex */
808 v1= RE_vertren_copy(obr, ver);
811 if (vlr->v1==ver) vlr->v1= v1;
812 if (vlr->v2==ver) vlr->v2= v1;
813 if (vlr->v3==ver) vlr->v3= v1;
814 if (vlr->v4==ver) vlr->v4= v1;
823 for (a=0; a<totvert; a++) {
824 BLI_freelistN(&asverts[a].faces);
828 /* rotate vertices and calculate normal of faces */
829 for (a=0; a<obr->totvert; a++) {
830 ver= RE_findOrAddVert(obr, a);
831 mul_m4_v3(mat, ver->co);
833 for (a=0; a<obr->totvlak; a++) {
834 vlr= RE_findOrAddVlak(obr, a);
836 /* skip wire faces */
837 if (vlr->v2 != vlr->v3) {
839 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
841 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
846 /* ------------------------------------------------------------------------- */
847 /* Orco hash and Materials */
848 /* ------------------------------------------------------------------------- */
850 static float *get_object_orco(Render *re, Object *ob)
855 re->orco_hash = BLI_ghash_ptr_new("get_object_orco gh");
857 orco = BLI_ghash_lookup(re->orco_hash, ob);
860 if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
861 orco = BKE_curve_make_orco(re->scene, ob);
863 else if (ob->type==OB_SURF) {
864 orco = BKE_curve_surf_make_orco(ob);
868 BLI_ghash_insert(re->orco_hash, ob, orco);
874 static void set_object_orco(Render *re, void *ob, float *orco)
877 re->orco_hash = BLI_ghash_ptr_new("set_object_orco gh");
879 BLI_ghash_insert(re->orco_hash, ob, orco);
882 static void free_mesh_orco_hash(Render *re)
885 BLI_ghash_free(re->orco_hash, NULL, (GHashValFreeFP)MEM_freeN);
886 re->orco_hash = NULL;
890 static void check_material_mapto(Material *ma)
893 ma->mapto_textured = 0;
895 /* cache which inputs are actually textured.
896 * this can avoid a bit of time spent iterating through all the texture slots, map inputs and map tos
897 * every time a property which may or may not be textured is accessed */
899 for (a=0; a<MAX_MTEX; a++) {
900 if (ma->mtex[a] && ma->mtex[a]->tex) {
901 /* currently used only in volume render, so we'll check for those flags */
902 if (ma->mtex[a]->mapto & MAP_DENSITY) ma->mapto_textured |= MAP_DENSITY;
903 if (ma->mtex[a]->mapto & MAP_EMISSION) ma->mapto_textured |= MAP_EMISSION;
904 if (ma->mtex[a]->mapto & MAP_EMISSION_COL) ma->mapto_textured |= MAP_EMISSION_COL;
905 if (ma->mtex[a]->mapto & MAP_SCATTERING) ma->mapto_textured |= MAP_SCATTERING;
906 if (ma->mtex[a]->mapto & MAP_TRANSMISSION_COL) ma->mapto_textured |= MAP_TRANSMISSION_COL;
907 if (ma->mtex[a]->mapto & MAP_REFLECTION) ma->mapto_textured |= MAP_REFLECTION;
908 if (ma->mtex[a]->mapto & MAP_REFLECTION_COL) ma->mapto_textured |= MAP_REFLECTION_COL;
912 static void flag_render_node_material(Render *re, bNodeTree *ntree)
916 for (node=ntree->nodes.first; node; node= node->next) {
918 if (GS(node->id->name)==ID_MA) {
919 Material *ma= (Material *)node->id;
921 if ((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
924 ma->flag |= MA_IS_USED;
926 else if (node->type==NODE_GROUP)
927 flag_render_node_material(re, (bNodeTree *)node->id);
932 static Material *give_render_material(Render *re, Object *ob, short nr)
934 extern Material defmaterial; /* material.c */
937 ma= give_current_material(ob, nr);
941 if (re->r.mode & R_SPEED) ma->texco |= NEED_UV;
943 if (ma->material_type == MA_TYPE_VOLUME) {
944 ma->mode |= MA_TRANSP;
945 ma->mode &= ~MA_SHADBUF;
947 if ((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
950 /* for light groups and SSS */
951 ma->flag |= MA_IS_USED;
953 if (ma->nodetree && ma->use_nodes)
954 flag_render_node_material(re, ma->nodetree);
956 check_material_mapto(ma);
961 /* ------------------------------------------------------------------------- */
963 /* ------------------------------------------------------------------------- */
964 typedef struct ParticleStrandData {
966 float *orco, *uvco, *surfnor;
967 float time, adapt_angle, adapt_pix, size;
969 int first, line, adapt, override_uv;
972 /* future thread problem... */
973 static void static_particle_strand(Render *re, ObjectRen *obr, Material *ma, ParticleStrandData *sd, const float vec[3], const float vec1[3])
975 static VertRen *v1= NULL, *v2= NULL;
977 float nor[3], cross[3], crosslen, w, dx, dy, width;
978 static float anor[3], avec[3];
982 sub_v3_v3v3(nor, vec, vec1);
983 normalize_v3(nor); /* nor needed as tangent */
984 cross_v3_v3v3(cross, vec, nor);
986 /* turn cross in pixelsize */
987 w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
988 dx= re->winx*cross[0]*re->winmat[0][0];
989 dy= re->winy*cross[1]*re->winmat[1][1];
990 w= sqrt(dx*dx + dy*dy)/w;
994 if (ma->strand_ease!=0.0f) {
995 if (ma->strand_ease<0.0f)
996 fac= pow(sd->time, 1.0f+ma->strand_ease);
998 fac= pow(sd->time, 1.0f/(1.0f-ma->strand_ease));
1002 width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
1004 /* use actual Blender units for strand width and fall back to minimum width */
1005 if (ma->mode & MA_STR_B_UNITS) {
1006 crosslen= len_v3(cross);
1007 w= 2.0f*crosslen*ma->strand_min/w;
1012 /*cross is the radius of the strand so we want it to be half of full width */
1013 mul_v3_fl(cross, 0.5f/crosslen);
1018 mul_v3_fl(cross, width);
1021 if (ma->mode & MA_TANGENT_STR)
1022 flag= R_SMOOTH|R_TANGENT;
1026 /* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
1027 if (ma->strand_sta==1.0f)
1030 /* single face line */
1032 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1034 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1035 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1036 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1037 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1039 copy_v3_v3(vlr->v1->co, vec);
1040 add_v3_v3(vlr->v1->co, cross);
1041 copy_v3_v3(vlr->v1->n, nor);
1042 vlr->v1->orco= sd->orco;
1043 vlr->v1->accum = -1.0f; /* accum abuse for strand texco */
1045 copy_v3_v3(vlr->v2->co, vec);
1046 sub_v3_v3v3(vlr->v2->co, vlr->v2->co, cross);
1047 copy_v3_v3(vlr->v2->n, nor);
1048 vlr->v2->orco= sd->orco;
1049 vlr->v2->accum= vlr->v1->accum;
1051 copy_v3_v3(vlr->v4->co, vec1);
1052 add_v3_v3(vlr->v4->co, cross);
1053 copy_v3_v3(vlr->v4->n, nor);
1054 vlr->v4->orco= sd->orco;
1055 vlr->v4->accum = 1.0f; /* accum abuse for strand texco */
1057 copy_v3_v3(vlr->v3->co, vec1);
1058 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1059 copy_v3_v3(vlr->v3->n, nor);
1060 vlr->v3->orco= sd->orco;
1061 vlr->v3->accum= vlr->v4->accum;
1063 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1069 float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1070 copy_v3_v3(snor, sd->surfnor);
1074 for (i=0; i<sd->totuv; i++) {
1076 mtf=RE_vlakren_get_tface(obr, vlr, i, NULL, 1);
1077 mtf->uv[0][0]=mtf->uv[1][0]=
1078 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1079 mtf->uv[0][1]=mtf->uv[1][1]=
1080 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1082 if (sd->override_uv>=0) {
1084 mtf=RE_vlakren_get_tface(obr, vlr, sd->override_uv, NULL, 0);
1086 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1087 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1089 mtf->uv[0][1]=mtf->uv[1][1]=0.0f;
1090 mtf->uv[2][1]=mtf->uv[3][1]=1.0f;
1094 for (i=0; i<sd->totcol; i++) {
1096 mc=RE_vlakren_get_mcol(obr, vlr, i, NULL, 1);
1097 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1098 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1102 /* first two vertices of a strand */
1103 else if (sd->first) {
1105 copy_v3_v3(anor, nor);
1106 copy_v3_v3(avec, vec);
1110 v1= RE_findOrAddVert(obr, obr->totvert++);
1111 v2= RE_findOrAddVert(obr, obr->totvert++);
1113 copy_v3_v3(v1->co, vec);
1114 add_v3_v3(v1->co, cross);
1115 copy_v3_v3(v1->n, nor);
1117 v1->accum = -1.0f; /* accum abuse for strand texco */
1119 copy_v3_v3(v2->co, vec);
1120 sub_v3_v3v3(v2->co, v2->co, cross);
1121 copy_v3_v3(v2->n, nor);
1123 v2->accum= v1->accum;
1125 /* more vertices & faces to strand */
1127 if (sd->adapt==0 || second) {
1128 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1132 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1133 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1135 v1= vlr->v4; /* cycle */
1136 v2= vlr->v3; /* cycle */
1141 copy_v3_v3(anor, nor);
1142 copy_v3_v3(avec, vec);
1146 else if (sd->adapt) {
1147 float dvec[3], pvec[3];
1148 sub_v3_v3v3(dvec, avec, vec);
1149 project_v3_v3v3(pvec, dvec, vec);
1150 sub_v3_v3v3(dvec, dvec, pvec);
1152 w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1153 dx= re->winx*dvec[0]*re->winmat[0][0]/w;
1154 dy= re->winy*dvec[1]*re->winmat[1][1]/w;
1155 w= sqrt(dx*dx + dy*dy);
1156 if (dot_v3v3(anor, nor)<sd->adapt_angle && w>sd->adapt_pix) {
1157 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1161 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1162 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1164 v1= vlr->v4; /* cycle */
1165 v2= vlr->v3; /* cycle */
1167 copy_v3_v3(anor, nor);
1168 copy_v3_v3(avec, vec);
1171 vlr= RE_findOrAddVlak(obr, obr->totvlak-1);
1175 copy_v3_v3(vlr->v4->co, vec);
1176 add_v3_v3(vlr->v4->co, cross);
1177 copy_v3_v3(vlr->v4->n, nor);
1178 vlr->v4->orco= sd->orco;
1179 vlr->v4->accum= -1.0f + 2.0f * sd->time; /* accum abuse for strand texco */
1181 copy_v3_v3(vlr->v3->co, vec);
1182 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1183 copy_v3_v3(vlr->v3->n, nor);
1184 vlr->v3->orco= sd->orco;
1185 vlr->v3->accum= vlr->v4->accum;
1187 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1193 float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1194 copy_v3_v3(snor, sd->surfnor);
1198 for (i=0; i<sd->totuv; i++) {
1200 mtf=RE_vlakren_get_tface(obr, vlr, i, NULL, 1);
1201 mtf->uv[0][0]=mtf->uv[1][0]=
1202 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1203 mtf->uv[0][1]=mtf->uv[1][1]=
1204 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1206 if (sd->override_uv>=0) {
1208 mtf=RE_vlakren_get_tface(obr, vlr, sd->override_uv, NULL, 0);
1210 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1211 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1213 mtf->uv[0][1]=mtf->uv[1][1]=(vlr->v1->accum+1.0f)/2.0f;
1214 mtf->uv[2][1]=mtf->uv[3][1]=(vlr->v3->accum+1.0f)/2.0f;
1218 for (i=0; i<sd->totcol; i++) {
1220 mc=RE_vlakren_get_mcol(obr, vlr, i, NULL, 1);
1221 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1222 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1228 static void static_particle_wire(ObjectRen *obr, Material *ma, const float vec[3], const float vec1[3], int first, int line)
1234 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1235 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1236 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1240 copy_v3_v3(vlr->v1->co, vec);
1241 copy_v3_v3(vlr->v2->co, vec1);
1243 sub_v3_v3v3(vlr->n, vec, vec1);
1244 normalize_v3(vlr->n);
1245 copy_v3_v3(vlr->v1->n, vlr->n);
1246 copy_v3_v3(vlr->v2->n, vlr->n);
1253 v1= RE_findOrAddVert(obr, obr->totvert++);
1254 copy_v3_v3(v1->co, vec);
1257 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1259 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1263 v1= vlr->v2; /* cycle */
1264 copy_v3_v3(v1->co, vec);
1266 sub_v3_v3v3(vlr->n, vec, vec1);
1267 normalize_v3(vlr->n);
1268 copy_v3_v3(v1->n, vlr->n);
1276 static void particle_curve(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd,
1277 const float loc[3], const float loc1[3], int seed, float *pa_co)
1281 if (ma->material_type == MA_TYPE_WIRE)
1282 static_particle_wire(obr, ma, loc, loc1, sd->first, sd->line);
1283 else if (ma->material_type == MA_TYPE_HALO) {
1284 har= RE_inithalo_particle(re, obr, dm, ma, loc, loc1, sd->orco, sd->uvco, sd->size, 1.0, seed, pa_co);
1285 if (har) har->lay= obr->ob->lay;
1288 static_particle_strand(re, obr, ma, sd, loc, loc1);
1290 static void particle_billboard(Render *re, ObjectRen *obr, Material *ma, ParticleBillboardData *bb)
1294 float xvec[3], yvec[3], zvec[3], bb_center[3];
1295 /* Number of tiles */
1296 int totsplit = bb->uv_split * bb->uv_split;
1299 float uvx = 0.0f, uvy = 0.0f, uvdx = 1.0f, uvdy = 1.0f, time = 0.0f;
1301 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1302 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1303 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1304 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1305 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1307 psys_make_billboard(bb, xvec, yvec, zvec, bb_center);
1309 add_v3_v3v3(vlr->v1->co, bb_center, xvec);
1310 add_v3_v3(vlr->v1->co, yvec);
1311 mul_m4_v3(re->viewmat, vlr->v1->co);
1313 sub_v3_v3v3(vlr->v2->co, bb_center, xvec);
1314 add_v3_v3(vlr->v2->co, yvec);
1315 mul_m4_v3(re->viewmat, vlr->v2->co);
1317 sub_v3_v3v3(vlr->v3->co, bb_center, xvec);
1318 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, yvec);
1319 mul_m4_v3(re->viewmat, vlr->v3->co);
1321 add_v3_v3v3(vlr->v4->co, bb_center, xvec);
1322 sub_v3_v3(vlr->v4->co, yvec);
1323 mul_m4_v3(re->viewmat, vlr->v4->co);
1325 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1326 copy_v3_v3(vlr->v1->n, vlr->n);
1327 copy_v3_v3(vlr->v2->n, vlr->n);
1328 copy_v3_v3(vlr->v3->n, vlr->n);
1329 copy_v3_v3(vlr->v4->n, vlr->n);
1334 if (bb->uv_split > 1) {
1335 uvdx = uvdy = 1.0f / (float)bb->uv_split;
1337 if (ELEM(bb->anim, PART_BB_ANIM_AGE, PART_BB_ANIM_FRAME)) {
1338 if (bb->anim == PART_BB_ANIM_FRAME)
1339 time = ((int)(bb->time * bb->lifetime) % totsplit)/(float)totsplit;
1343 else if (bb->anim == PART_BB_ANIM_ANGLE) {
1344 if (bb->align == PART_BB_VIEW) {
1345 time = (float)fmod((bb->tilt + 1.0f) / 2.0f, 1.0);
1348 float axis1[3] = {0.0f, 0.0f, 0.0f};
1349 float axis2[3] = {0.0f, 0.0f, 0.0f};
1351 axis1[(bb->align + 1) % 3] = 1.0f;
1352 axis2[(bb->align + 2) % 3] = 1.0f;
1354 if (bb->lock == 0) {
1355 zvec[bb->align] = 0.0f;
1359 time = saacos(dot_v3v3(zvec, axis1)) / (float)M_PI;
1361 if (dot_v3v3(zvec, axis2) < 0.0f)
1362 time = 1.0f - time / 2.0f;
1368 if (bb->split_offset == PART_BB_OFF_LINEAR)
1369 time = (float)fmod(time + (float)bb->num / (float)totsplit, 1.0f);
1370 else if (bb->split_offset==PART_BB_OFF_RANDOM)
1371 time = (float)fmod(time + bb->random, 1.0f);
1373 /* Find the coordinates in tile space (integer), then convert to UV
1374 * space (float). Note that Y is flipped. */
1375 tile = (int)((time + FLT_EPSILON10) * totsplit);
1376 x = tile % bb->uv_split;
1377 y = tile / bb->uv_split;
1378 y = (bb->uv_split - 1) - y;
1384 if (bb->uv[0] >= 0) {
1385 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[0], NULL, 1);
1386 mtf->uv[0][0] = 1.0f;
1387 mtf->uv[0][1] = 1.0f;
1388 mtf->uv[1][0] = 0.0f;
1389 mtf->uv[1][1] = 1.0f;
1390 mtf->uv[2][0] = 0.0f;
1391 mtf->uv[2][1] = 0.0f;
1392 mtf->uv[3][0] = 1.0f;
1393 mtf->uv[3][1] = 0.0f;
1396 /* time-index UVs */
1397 if (bb->uv[1] >= 0) {
1398 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[1], NULL, 1);
1399 mtf->uv[0][0] = mtf->uv[1][0] = mtf->uv[2][0] = mtf->uv[3][0] = bb->time;
1400 mtf->uv[0][1] = mtf->uv[1][1] = mtf->uv[2][1] = mtf->uv[3][1] = (float)bb->num/(float)bb->totnum;
1404 if (bb->uv_split > 1 && bb->uv[2] >= 0) {
1405 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[2], NULL, 1);
1406 mtf->uv[0][0] = uvx + uvdx;
1407 mtf->uv[0][1] = uvy + uvdy;
1408 mtf->uv[1][0] = uvx;
1409 mtf->uv[1][1] = uvy + uvdy;
1410 mtf->uv[2][0] = uvx;
1411 mtf->uv[2][1] = uvy;
1412 mtf->uv[3][0] = uvx + uvdx;
1413 mtf->uv[3][1] = uvy;
1416 static void particle_normal_ren(short ren_as, ParticleSettings *part, Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, ParticleBillboardData *bb, ParticleKey *state, int seed, float hasize, float *pa_co)
1418 float loc[3], loc0[3], loc1[3], vel[3];
1420 copy_v3_v3(loc, state->co);
1422 if (ren_as != PART_DRAW_BB)
1423 mul_m4_v3(re->viewmat, loc);
1426 case PART_DRAW_LINE:
1431 copy_v3_v3(vel, state->vel);
1432 mul_mat3_m4_v3(re->viewmat, vel);
1435 if (part->draw & PART_DRAW_VEL_LENGTH)
1436 mul_v3_fl(vel, len_v3(state->vel));
1438 madd_v3_v3v3fl(loc0, loc, vel, -part->draw_line[0]);
1439 madd_v3_v3v3fl(loc1, loc, vel, part->draw_line[1]);
1441 particle_curve(re, obr, dm, ma, sd, loc0, loc1, seed, pa_co);
1447 copy_v3_v3(bb->vec, loc);
1448 copy_v3_v3(bb->vel, state->vel);
1450 particle_billboard(re, obr, ma, bb);
1458 har = RE_inithalo_particle(re, obr, dm, ma, loc, NULL, sd->orco, sd->uvco, hasize, 0.0, seed, pa_co);
1460 if (har) har->lay= obr->ob->lay;
1466 static void get_particle_uvco_mcol(short from, DerivedMesh *dm, float *fuv, int num, ParticleStrandData *sd)
1471 if (sd->uvco && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
1472 for (i=0; i<sd->totuv; i++) {
1473 if (num != DMCACHE_NOTFOUND) {
1474 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1475 MTFace *mtface = (MTFace*)CustomData_get_layer_n(&dm->faceData, CD_MTFACE, i);
1478 psys_interpolate_uvs(mtface, mface->v4, fuv, sd->uvco + 2 * i);
1481 sd->uvco[2*i] = 0.0f;
1482 sd->uvco[2*i + 1] = 0.0f;
1488 if (sd->mcol && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
1489 for (i=0; i<sd->totcol; i++) {
1490 if (num != DMCACHE_NOTFOUND) {
1491 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1492 MCol *mc = (MCol*)CustomData_get_layer_n(&dm->faceData, CD_MCOL, i);
1495 psys_interpolate_mcol(mc, mface->v4, fuv, sd->mcol + i);
1498 memset(&sd->mcol[i], 0, sizeof(MCol));
1502 static int render_new_particle_system(Render *re, ObjectRen *obr, ParticleSystem *psys, int timeoffset)
1504 Object *ob= obr->ob;
1507 ParticleSystemModifierData *psmd;
1508 ParticleSystem *tpsys=0;
1509 ParticleSettings *part, *tpart=0;
1510 ParticleData *pars, *pa=0, *tpa=0;
1511 ParticleKey *states=0;
1513 ParticleCacheKey *cache=0;
1514 ParticleBillboardData bb;
1515 ParticleSimulationData sim = {0};
1516 ParticleStrandData sd;
1517 StrandBuffer *strandbuf=0;
1518 StrandVert *svert=0;
1519 StrandBound *sbound= 0;
1520 StrandRen *strand=0;
1522 float loc[3], loc1[3], loc0[3], mat[4][4], nmat[3][3], co[3], nor[3], duplimat[4][4];
1523 float strandlen=0.0f, curlen=0.0f;
1524 float hasize, pa_size, r_tilt, r_length;
1525 float pa_time, pa_birthtime, pa_dietime;
1526 float random, simplify[2], pa_co[3];
1527 const float cfra= BKE_scene_frame_get(re->scene);
1528 int i, a, k, max_k=0, totpart, do_simplify = FALSE, do_surfacecache = FALSE, use_duplimat = FALSE;
1530 int seed, path_nbr=0, orco1=0, num;
1534 const int *index_mf_to_mpoly = NULL;
1535 const int *index_mp_to_orig = NULL;
1537 /* 1. check that everything is ok & updated */
1542 pars=psys->particles;
1544 if (part==NULL || pars==NULL || !psys_check_enabled(ob, psys))
1547 if (part->ren_as==PART_DRAW_OB || part->ren_as==PART_DRAW_GR || part->ren_as==PART_DRAW_NOT)
1550 /* 2. start initializing things */
1552 /* last possibility to bail out! */
1553 psmd = psys_get_modifier(ob, psys);
1554 if (!(psmd->modifier.mode & eModifierMode_Render))
1557 sim.scene= re->scene;
1562 if (part->phystype==PART_PHYS_KEYED)
1563 psys_count_keyed_targets(&sim);
1565 totchild=psys->totchild;
1567 /* can happen for disconnected/global hair */
1568 if (part->type==PART_HAIR && !psys->childcache)
1571 if (G.is_rendering == FALSE) { /* preview render */
1572 totchild = (int)((float)totchild * (float)part->disp / 100.0f);
1575 psys->flag |= PSYS_DRAWING;
1577 rng= BLI_rng_new(psys->seed);
1579 totpart=psys->totpart;
1581 memset(&sd, 0, sizeof(ParticleStrandData));
1582 sd.override_uv = -1;
1584 /* 2.1 setup material stff */
1585 ma= give_render_material(re, ob, part->omat);
1587 #if 0 /* XXX old animation system */
1589 calc_ipo(ma->ipo, cfra);
1590 execute_ipo((ID *)ma, ma->ipo);
1592 #endif /* XXX old animation system */
1594 hasize = ma->hasize;
1599 RE_set_customdata_names(obr, &psmd->dm->faceData);
1600 sd.totuv = CustomData_number_of_layers(&psmd->dm->faceData, CD_MTFACE);
1601 sd.totcol = CustomData_number_of_layers(&psmd->dm->faceData, CD_MCOL);
1603 if (ma->texco & TEXCO_UV && sd.totuv) {
1604 sd.uvco = MEM_callocN(sd.totuv * 2 * sizeof(float), "particle_uvs");
1606 if (ma->strand_uvname[0]) {
1607 sd.override_uv = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, ma->strand_uvname);
1608 sd.override_uv -= CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1615 sd.mcol = MEM_callocN(sd.totcol * sizeof(MCol), "particle_mcols");
1617 /* 2.2 setup billboards */
1618 if (part->ren_as == PART_DRAW_BB) {
1619 int first_uv = CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1621 bb.uv[0] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[0]);
1623 bb.uv[0] = CustomData_get_active_layer_index(&psmd->dm->faceData, CD_MTFACE);
1625 bb.uv[1] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[1]);
1627 bb.uv[2] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[2]);
1629 if (first_uv >= 0) {
1630 bb.uv[0] -= first_uv;
1631 bb.uv[1] -= first_uv;
1632 bb.uv[2] -= first_uv;
1635 bb.align = part->bb_align;
1636 bb.anim = part->bb_anim;
1637 bb.lock = part->draw & PART_DRAW_BB_LOCK;
1638 bb.ob = (part->bb_ob ? part->bb_ob : RE_GetCamera(re));
1639 bb.split_offset = part->bb_split_offset;
1640 bb.totnum = totpart+totchild;
1641 bb.uv_split = part->bb_uv_split;
1644 /* 2.5 setup matrices */
1645 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
1646 invert_m4_m4(ob->imat, mat); /* need to be that way, for imat texture */
1647 copy_m3_m4(nmat, ob->imat);
1650 if (psys->flag & PSYS_USE_IMAT) {
1651 /* psys->imat is the original emitter's inverse matrix, ob->obmat is the duplicated object's matrix */
1652 mult_m4_m4m4(duplimat, ob->obmat, psys->imat);
1653 use_duplimat = TRUE;
1656 /* 2.6 setup strand rendering */
1657 if (part->ren_as == PART_DRAW_PATH && psys->pathcache) {
1658 path_nbr=(int)pow(2.0, (double) part->ren_step);
1661 if (!ELEM(ma->material_type, MA_TYPE_HALO, MA_TYPE_WIRE)) {
1662 sd.orco = MEM_mallocN(3*sizeof(float)*(totpart+totchild), "particle orcos");
1663 set_object_orco(re, psys, sd.orco);
1667 if (part->draw & PART_DRAW_REN_ADAPT) {
1669 sd.adapt_pix = (float)part->adapt_pix;
1670 sd.adapt_angle = cosf(DEG2RADF((float)part->adapt_angle));
1673 if (part->draw & PART_DRAW_REN_STRAND) {
1674 strandbuf= RE_addStrandBuffer(obr, (totpart+totchild)*(path_nbr+1));
1676 strandbuf->lay= ob->lay;
1677 copy_m4_m4(strandbuf->winmat, re->winmat);
1678 strandbuf->winx= re->winx;
1679 strandbuf->winy= re->winy;
1680 strandbuf->maxdepth= 2;
1681 strandbuf->adaptcos= cosf(DEG2RADF((float)part->adapt_angle));
1682 strandbuf->overrideuv= sd.override_uv;
1683 strandbuf->minwidth= ma->strand_min;
1685 if (ma->strand_widthfade == 0.0f)
1686 strandbuf->widthfade= -1.0f;
1687 else if (ma->strand_widthfade >= 1.0f)
1688 strandbuf->widthfade= 2.0f - ma->strand_widthfade;
1690 strandbuf->widthfade= 1.0f/MAX2(ma->strand_widthfade, 1e-5f);
1692 if (part->flag & PART_HAIR_BSPLINE)
1693 strandbuf->flag |= R_STRAND_BSPLINE;
1694 if (ma->mode & MA_STR_B_UNITS)
1695 strandbuf->flag |= R_STRAND_B_UNITS;
1697 svert= strandbuf->vert;
1699 if (re->r.mode & R_SPEED)
1700 do_surfacecache = TRUE;
1701 else if ((re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT)) && (re->wrld.ao_gather_method == WO_AOGATHER_APPROX))
1702 if (ma->amb != 0.0f)
1703 do_surfacecache = TRUE;
1705 totface= psmd->dm->getNumTessFaces(psmd->dm);
1706 index_mf_to_mpoly = psmd->dm->getTessFaceDataArray(psmd->dm, CD_ORIGINDEX);
1707 index_mp_to_orig = psmd->dm->getPolyDataArray(psmd->dm, CD_ORIGINDEX);
1708 if ((index_mf_to_mpoly && index_mp_to_orig) == FALSE) {
1709 index_mf_to_mpoly = index_mp_to_orig = NULL;
1711 for (a=0; a<totface; a++)
1712 strandbuf->totbound = max_ii(strandbuf->totbound, (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a): a);
1714 strandbuf->totbound++;
1715 strandbuf->bound= MEM_callocN(sizeof(StrandBound)*strandbuf->totbound, "StrandBound");
1716 sbound= strandbuf->bound;
1717 sbound->start= sbound->end= 0;
1722 sd.orco = MEM_mallocN(3 * sizeof(float), "particle orco");
1727 psys->lattice = psys_get_lattice(&sim);
1729 /* 3. start creating renderable things */
1730 for (a=0, pa=pars; a<totpart+totchild; a++, pa++, seed++) {
1731 random = BLI_rng_get_float(rng);
1732 /* setup per particle individual stuff */
1734 if (pa->flag & PARS_UNEXIST) continue;
1736 pa_time=(cfra-pa->time)/pa->lifetime;
1737 pa_birthtime = pa->time;
1738 pa_dietime = pa->dietime;
1740 hasize = ma->hasize;
1742 /* XXX 'tpsys' is alwyas NULL, this code won't run! */
1744 if (tpsys && part->phystype == PART_PHYS_NO) {
1745 tpa = tpsys->particles + pa->num;
1746 psys_particle_on_emitter(psmd, tpart->from, tpa->num, pa->num_dmcache, tpa->fuv, tpa->foffset, co, nor, 0, 0, sd.orco, 0);
1749 psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, co, nor, 0, 0, sd.orco, 0);
1751 /* get uvco & mcol */
1752 num= pa->num_dmcache;
1754 if (num == DMCACHE_NOTFOUND)
1755 if (pa->num < psmd->dm->getNumTessFaces(psmd->dm))
1758 get_particle_uvco_mcol(part->from, psmd->dm, pa->fuv, num, &sd);
1762 r_tilt = 2.0f*(PSYS_FRAND(a) - 0.5f);
1763 r_length = PSYS_FRAND(a+1);
1766 cache = psys->pathcache[a];
1767 max_k = (int)cache->steps;
1770 if (totchild && (part->draw&PART_DRAW_PARENT)==0) continue;
1773 ChildParticle *cpa= psys->child+a-totpart;
1776 cache = psys->childcache[a-totpart];
1778 if (cache->steps < 0)
1781 max_k = (int)cache->steps;
1784 pa_time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
1785 pa_size = psys_get_child_size(psys, cpa, cfra, &pa_time);
1787 r_tilt = 2.0f*(PSYS_FRAND(a + 21) - 0.5f);
1788 r_length = PSYS_FRAND(a + 22);
1793 if (part->childtype == PART_CHILD_FACES) {
1794 psys_particle_on_emitter(psmd,
1795 PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD,
1796 cpa->fuv, cpa->foffset, co, nor, 0, 0, sd.orco, 0);
1799 ParticleData *par = psys->particles + cpa->parent;
1800 psys_particle_on_emitter(psmd, part->from,
1801 par->num, DMCACHE_ISCHILD, par->fuv,
1802 par->foffset, co, nor, 0, 0, sd.orco, 0);
1805 /* get uvco & mcol */
1806 if (part->childtype==PART_CHILD_FACES) {
1807 get_particle_uvco_mcol(PART_FROM_FACE, psmd->dm, cpa->fuv, cpa->num, &sd);
1810 ParticleData *parent = psys->particles + cpa->parent;
1811 num = parent->num_dmcache;
1813 if (num == DMCACHE_NOTFOUND)
1814 if (parent->num < psmd->dm->getNumTessFaces(psmd->dm))
1817 get_particle_uvco_mcol(part->from, psmd->dm, parent->fuv, num, &sd);
1820 do_simplify = psys_render_simplify_params(psys, cpa, simplify);
1823 int orignum = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, cpa->num) : cpa->num;
1825 if (orignum > sbound - strandbuf->bound) {
1826 sbound= strandbuf->bound + orignum;
1827 sbound->start= sbound->end= obr->totstrand;
1832 /* TEXCO_PARTICLE */
1837 /* surface normal shading setup */
1838 if (ma->mode_l & MA_STR_SURFDIFF) {
1839 mul_m3_v3(nmat, nor);
1845 /* strand render setup */
1847 strand= RE_findOrAddStrand(obr, obr->totstrand++);
1848 strand->buffer= strandbuf;
1849 strand->vert= svert;
1850 copy_v3_v3(strand->orco, sd.orco);
1853 float *ssimplify= RE_strandren_get_simplify(obr, strand, 1);
1854 ssimplify[0]= simplify[0];
1855 ssimplify[1]= simplify[1];
1859 float *snor= RE_strandren_get_surfnor(obr, strand, 1);
1860 copy_v3_v3(snor, sd.surfnor);
1863 if (do_surfacecache && num >= 0) {
1864 int *facenum= RE_strandren_get_face(obr, strand, 1);
1869 for (i=0; i<sd.totuv; i++) {
1870 if (i != sd.override_uv) {
1871 float *uv= RE_strandren_get_uv(obr, strand, i, NULL, 1);
1873 uv[0]= sd.uvco[2*i];
1874 uv[1]= sd.uvco[2*i+1];
1879 for (i=0; i<sd.totcol; i++) {
1880 MCol *mc= RE_strandren_get_mcol(obr, strand, i, NULL, 1);
1888 /* strandco computation setup */
1892 for (k=1; k<=path_nbr; k++)
1894 strandlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1898 /* render strands */
1899 for (k=0; k<=path_nbr; k++) {
1903 copy_v3_v3(state.co, (cache+k)->co);
1904 copy_v3_v3(state.vel, (cache+k)->vel);
1910 curlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1911 time= curlen/strandlen;
1913 copy_v3_v3(loc, state.co);
1914 mul_m4_v3(re->viewmat, loc);
1917 copy_v3_v3(svert->co, loc);
1918 svert->strandco= -1.0f + 2.0f*time;
1928 sub_v3_v3v3(loc0, loc1, loc);
1929 add_v3_v3v3(loc0, loc1, loc0);
1931 particle_curve(re, obr, psmd->dm, ma, &sd, loc1, loc0, seed, pa_co);
1938 particle_curve(re, obr, psmd->dm, ma, &sd, loc, loc1, seed, pa_co);
1940 copy_v3_v3(loc1, loc);
1946 /* render normal particles */
1947 if (part->trail_count > 1) {
1948 float length = part->path_end * (1.0f - part->randlength * r_length);
1949 int trail_count = part->trail_count * (1.0f - part->randlength * r_length);
1950 float ct = (part->draw & PART_ABS_PATH_TIME) ? cfra : pa_time;
1951 float dt = length / (trail_count ? (float)trail_count : 1.0f);
1953 /* make sure we have pointcache in memory before getting particle on path */
1954 psys_make_temp_pointcache(ob, psys);
1956 for (i=0; i < trail_count; i++, ct -= dt) {
1957 if (part->draw & PART_ABS_PATH_TIME) {
1958 if (ct < pa_birthtime || ct > pa_dietime)
1961 else if (ct < 0.0f || ct > 1.0f)
1964 state.time = (part->draw & PART_ABS_PATH_TIME) ? -ct : ct;
1965 psys_get_particle_on_path(&sim, a, &state, 1);
1968 mul_m4_v3(psys->parent->obmat, state.co);
1971 mul_m4_v4(duplimat, state.co);
1973 if (part->ren_as == PART_DRAW_BB) {
1975 bb.offset[0] = part->bb_offset[0];
1976 bb.offset[1] = part->bb_offset[1];
1977 bb.size[0] = part->bb_size[0] * pa_size;
1978 if (part->bb_align==PART_BB_VEL) {
1979 float pa_vel = len_v3(state.vel);
1980 float head = part->bb_vel_head*pa_vel;
1981 float tail = part->bb_vel_tail*pa_vel;
1982 bb.size[1] = part->bb_size[1]*pa_size + head + tail;
1983 /* use offset to adjust the particle center. this is relative to size, so need to divide! */
1984 if (bb.size[1] > 0.0f)
1985 bb.offset[1] += (head-tail) / bb.size[1];
1988 bb.size[1] = part->bb_size[1] * pa_size;
1989 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
1994 pa_co[0] = (part->draw & PART_ABS_PATH_TIME) ? (ct-pa_birthtime)/(pa_dietime-pa_birthtime) : ct;
1995 pa_co[1] = (float)i/(float)(trail_count-1);
1997 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2002 if (psys_get_particle_state(&sim, a, &state, 0)==0)
2006 mul_m4_v3(psys->parent->obmat, state.co);
2009 mul_m4_v3(duplimat, state.co);
2011 if (part->ren_as == PART_DRAW_BB) {
2013 bb.offset[0] = part->bb_offset[0];
2014 bb.offset[1] = part->bb_offset[1];
2015 bb.size[0] = part->bb_size[0] * pa_size;
2016 if (part->bb_align==PART_BB_VEL) {
2017 float pa_vel = len_v3(state.vel);
2018 float head = part->bb_vel_head*pa_vel;
2019 float tail = part->bb_vel_tail*pa_vel;
2020 bb.size[1] = part->bb_size[1]*pa_size + head + tail;
2021 /* use offset to adjust the particle center. this is relative to size, so need to divide! */
2022 if (bb.size[1] > 0.0f)
2023 bb.offset[1] += (head-tail) / bb.size[1];
2026 bb.size[1] = part->bb_size[1] * pa_size;
2027 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2030 bb.lifetime = pa_dietime-pa_birthtime;
2033 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2040 if (re->test_break(re->tbh))
2044 if (do_surfacecache)
2045 strandbuf->surface= cache_strand_surface(re, obr, psmd->dm, mat, timeoffset);
2048 #if 0 /* XXX old animation system */
2049 if (ma) do_mat_ipo(re->scene, ma);
2050 #endif /* XXX old animation system */
2069 psys->flag &= ~PSYS_DRAWING;
2071 if (psys->lattice) {
2072 end_latt_deform(psys->lattice);
2073 psys->lattice= NULL;
2076 if (path_nbr && (ma->mode_l & MA_TANGENT_STR)==0)
2077 calc_vertexnormals(re, obr, 0, 0);
2082 /* ------------------------------------------------------------------------- */
2084 /* ------------------------------------------------------------------------- */
2086 static void make_render_halos(Render *re, ObjectRen *obr, Mesh *UNUSED(me), int totvert, MVert *mvert, Material *ma, float *orco)
2088 Object *ob= obr->ob;
2090 float xn, yn, zn, nor[3], view[3];
2091 float vec[3], hasize, mat[4][4], imat[3][3];
2092 int a, ok, seed= ma->seed1;
2094 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2095 copy_m3_m4(imat, ob->imat);
2099 for (a=0; a<totvert; a++, mvert++) {
2105 copy_v3_v3(vec, mvert->co);
2106 mul_m4_v3(mat, vec);
2108 if (ma->mode & MA_HALOPUNO) {
2114 nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2115 nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2116 nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2119 copy_v3_v3(view, vec);
2122 zn = dot_v3v3(nor, view);
2123 if (zn>=0.0f) hasize= 0.0f;
2124 else hasize*= zn*zn*zn*zn;
2127 if (orco) har= RE_inithalo(re, obr, ma, vec, NULL, orco, hasize, 0.0, seed);
2128 else har= RE_inithalo(re, obr, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
2129 if (har) har->lay= ob->lay;
2136 static int verghalo(const void *a1, const void *a2)
2138 const HaloRen *har1= *(const HaloRen**)a1;
2139 const HaloRen *har2= *(const HaloRen**)a2;
2141 if (har1->zs < har2->zs) return 1;
2142 else if (har1->zs > har2->zs) return -1;
2146 static void sort_halos(Render *re, int totsort)
2149 HaloRen *har= NULL, **haso;
2152 if (re->tothalo==0) return;
2154 re->sortedhalos= MEM_callocN(sizeof(HaloRen*)*re->tothalo, "sorthalos");
2155 haso= re->sortedhalos;
2157 for (obr=re->objecttable.first; obr; obr=obr->next) {
2158 for (a=0; a<obr->tothalo; a++) {
2159 if ((a & 255)==0) har= obr->bloha[a>>8];
2166 qsort(re->sortedhalos, totsort, sizeof(HaloRen*), verghalo);
2169 /* ------------------------------------------------------------------------- */
2170 /* Displacement Mapping */
2171 /* ------------------------------------------------------------------------- */
2173 static short test_for_displace(Render *re, Object *ob)
2175 /* return 1 when this object uses displacement textures. */
2179 for (i=1; i<=ob->totcol; i++) {
2180 ma=give_render_material(re, ob, i);
2181 /* ma->mapto is ORed total of all mapto channels */
2182 if (ma && (ma->mapto & MAP_DISPLACE)) return 1;
2187 static void displace_render_vert(Render *re, ObjectRen *obr, ShadeInput *shi, VertRen *vr, int vindex, float *scale, float mat[][4], float imat[][3])
2190 short texco= shi->mat->texco;
2191 float sample=0, displace[3];
2195 /* shi->co is current render coord, just make sure at least some vector is here */
2196 copy_v3_v3(shi->co, vr->co);
2197 /* vertex normal is used for textures type 'col' and 'var' */
2198 copy_v3_v3(shi->vn, vr->n);
2201 mul_m4_v3(mat, shi->co);
2204 shi->vn[0] = dot_v3v3(imat[0], vr->n);
2205 shi->vn[1] = dot_v3v3(imat[1], vr->n);
2206 shi->vn[2] = dot_v3v3(imat[2], vr->n);
2209 if (texco & TEXCO_UV) {
2211 shi->actuv= obr->actmtface;
2213 for (i=0; (tface=RE_vlakren_get_tface(obr, shi->vlr, i, &name, 0)); i++) {
2214 ShadeInputUV *suv= &shi->uv[i];
2216 /* shi.uv needs scale correction from tface uv */
2217 suv->uv[0]= 2*tface->uv[vindex][0]-1.0f;
2218 suv->uv[1]= 2*tface->uv[vindex][1]-1.0f;
2225 /* set all rendercoords, 'texco' is an ORed value for all textures needed */
2226 if ((texco & TEXCO_ORCO) && (vr->orco)) {
2227 copy_v3_v3(shi->lo, vr->orco);
2229 if (texco & TEXCO_GLOB) {
2230 copy_v3_v3(shi->gl, shi->co);
2231 mul_m4_v3(re->viewinv, shi->gl);
2233 if (texco & TEXCO_NORM) {
2234 copy_v3_v3(shi->orn, shi->vn);
2236 if (texco & TEXCO_REFL) {
2239 if (texco & TEXCO_STRESS) {
2240 float *s= RE_vertren_get_stress(obr, vr, 0);
2244 if (shi->stress<1.0f) shi->stress-= 1.0f;
2245 else shi->stress= (shi->stress-1.0f)/shi->stress;
2251 shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
2253 do_material_tex(shi, re);
2255 //printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2],
2256 //vr->co[0], vr->co[1], vr->co[2]);
2258 displace[0]= shi->displace[0] * scale[0];
2259 displace[1]= shi->displace[1] * scale[1];
2260 displace[2]= shi->displace[2] * scale[2];
2263 mul_m3_v3(imat, displace);
2265 /* 0.5 could become button once? */
2266 vr->co[0] += displace[0];
2267 vr->co[1] += displace[1];
2268 vr->co[2] += displace[2];
2270 //printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]);
2272 /* we just don't do this vertex again, bad luck for other face using same vertex with
2273 * different material... */
2276 /* Pass sample back so displace_face can decide which way to split the quad */
2277 sample = shi->displace[0]*shi->displace[0];
2278 sample += shi->displace[1]*shi->displace[1];
2279 sample += shi->displace[2]*shi->displace[2];
2282 /* Should be sqrt(sample), but I'm only looking for "bigger". Save the cycles. */
2286 static void displace_render_face(Render *re, ObjectRen *obr, VlakRen *vlr, float *scale, float mat[][4], float imat[][3])
2290 /* Warning, This is not that nice, and possibly a bit slow,
2291 * however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
2292 memset(&shi, 0, sizeof(ShadeInput));
2293 /* end warning! - Campbell */
2295 /* set up shadeinput struct for multitex() */
2297 /* memset above means we don't need this */
2298 /*shi.osatex= 0;*/ /* signal not to use dx[] and dy[] texture AA vectors */
2301 shi.vlr= vlr; /* current render face */
2302 shi.mat= vlr->mat; /* current input material */
2305 /* TODO, assign these, displacement with new bumpmap is skipped without - campbell */
2307 /* order is not known ? */
2313 /* Displace the verts, flag is set when done */
2315 displace_render_vert(re, obr, &shi, vlr->v1, 0, scale, mat, imat);
2318 displace_render_vert(re, obr, &shi, vlr->v2, 1, scale, mat, imat);
2321 displace_render_vert(re, obr, &shi, vlr->v3, 2, scale, mat, imat);
2325 displace_render_vert(re, obr, &shi, vlr->v4, 3, scale, mat, imat);
2327 /* closest in displace value. This will help smooth edges. */
2328 if (fabsf(vlr->v1->accum - vlr->v3->accum) > fabsf(vlr->v2->accum - vlr->v4->accum)) vlr->flag |= R_DIVIDE_24;
2329 else vlr->flag &= ~R_DIVIDE_24;
2332 /* Recalculate the face normal - if flipped before, flip now */
2334 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2337 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2341 static void do_displacement(Render *re, ObjectRen *obr, float mat[][4], float imat[][3])
2345 // float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
2346 float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
2347 int i; //, texflag=0;
2350 /* Object Size with parenting */
2353 mul_v3_v3v3(temp, obt->size, obt->dscale);
2354 scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
2358 /* Clear all flags */
2359 for (i=0; i<obr->totvert; i++) {
2360 vr= RE_findOrAddVert(obr, i);
2364 for (i=0; i<obr->totvlak; i++) {
2365 vlr=RE_findOrAddVlak(obr, i);
2366 displace_render_face(re, obr, vlr, scale, mat, imat);
2369 /* Recalc vertex normals */
2370 calc_vertexnormals(re, obr, 0, 0);
2373 /* ------------------------------------------------------------------------- */
2375 /* ------------------------------------------------------------------------- */
2377 static void init_render_mball(Render *re, ObjectRen *obr)
2379 Object *ob= obr->ob;
2382 VlakRen *vlr, *vlr1;
2384 float *data, *nors, *orco=NULL, mat[4][4], imat[3][3], xn, yn, zn;
2385 int a, need_orco, vlakindex, *index, negative_scale;
2386 ListBase dispbase= {NULL, NULL};
2388 if (ob!=BKE_mball_basis_find(re->scene, ob))
2391 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2392 invert_m4_m4(ob->imat, mat);
2393 copy_m3_m4(imat, ob->imat);
2394 negative_scale = is_negative_m4(mat);
2396 ma= give_render_material(re, ob, 1);
2399 if (ma->texco & TEXCO_ORCO) {
2403 BKE_displist_make_mball_forRender(re->scene, ob, &dispbase);
2410 orco= get_object_orco(re, ob);
2413 /* orco hasn't been found in cache - create new one and add to cache */
2414 orco= BKE_mball_make_orco(ob, &dispbase);
2415 set_object_orco(re, ob, orco);
2419 for (a=0; a<dl->nr; a++, data+=3, nors+=3) {
2421 ver= RE_findOrAddVert(obr, obr->totvert++);
2422 copy_v3_v3(ver->co, data);
2423 mul_m4_v3(mat, ver->co);
2425 /* render normals are inverted */
2431 ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2432 ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2433 ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2434 normalize_v3(ver->n);
2435 //if (ob->transflag & OB_NEG_SCALE) negate_v3(ver->n);
2444 for (a=0; a<dl->parts; a++, index+=4) {
2446 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2447 vlr->v1= RE_findOrAddVert(obr, index[0]);
2448 vlr->v2= RE_findOrAddVert(obr, index[1]);
2449 vlr->v3= RE_findOrAddVert(obr, index[2]);
2453 normal_tri_v3(vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co);
2455 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2458 vlr->flag= ME_SMOOTH;
2461 /* mball -too bad- always has triangles, because quads can be non-planar */
2462 if (index[3] && index[3]!=index[2]) {
2463 vlr1= RE_findOrAddVlak(obr, obr->totvlak++);
2464 vlakindex= vlr1->index;
2466 vlr1->index= vlakindex;
2468 vlr1->v3= RE_findOrAddVert(obr, index[3]);
2470 normal_tri_v3(vlr1->n, vlr1->v1->co, vlr1->v2->co, vlr1->v3->co);
2472 normal_tri_v3(vlr1->n, vlr1->v3->co, vlr1->v2->co, vlr1->v1->co);
2476 /* enforce display lists remade */
2477 BKE_displist_free(&dispbase);
2480 /* ------------------------------------------------------------------------- */
2481 /* Surfaces and Curves */
2482 /* ------------------------------------------------------------------------- */
2484 /* returns amount of vertices added for orco */
2485 static int dl_surf_to_renderdata(ObjectRen *obr, DispList *dl, Material **matar, float *orco, float mat[4][4])
2487 VertRen *v1, *v2, *v3, *v4, *ver;
2488 VlakRen *vlr, *vlr1, *vlr2, *vlr3;
2490 int u, v, orcoret= 0;
2491 int p1, p2, p3, p4, a;
2492 int sizeu, nsizeu, sizev, nsizev;
2493 int startvert, startvlak;
2495 startvert= obr->totvert;
2496 nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr;
2499 for (u = 0; u < sizeu; u++) {
2500 v1 = RE_findOrAddVert(obr, obr->totvert++); /* save this for possible V wrapping */
2501 copy_v3_v3(v1->co, data); data += 3;
2503 v1->orco= orco; orco+= 3; orcoret++;
2505 mul_m4_v3(mat, v1->co);
2507 for (v = 1; v < sizev; v++) {
2508 ver= RE_findOrAddVert(obr, obr->totvert++);
2509 copy_v3_v3(ver->co, data); data += 3;
2511 ver->orco= orco; orco+= 3; orcoret++;
2513 mul_m4_v3(mat, ver->co);
2515 /* if V-cyclic, add extra vertices at end of the row */
2516 if (dl->flag & DL_CYCL_U) {
2517 ver= RE_findOrAddVert(obr, obr->totvert++);
2518 copy_v3_v3(ver->co, v1->co);
2520 ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
2525 /* Done before next loop to get corner vert */
2526 if (dl->flag & DL_CYCL_U) nsizev++;
2527 if (dl->flag & DL_CYCL_V) nsizeu++;
2529 /* if U cyclic, add extra row at end of column */
2530 if (dl->flag & DL_CYCL_V) {
2531 for (v = 0; v < nsizev; v++) {
2532 v1= RE_findOrAddVert(obr, startvert + v);
2533 ver= RE_findOrAddVert(obr, obr->totvert++);
2534 copy_v3_v3(ver->co, v1->co);
2536 ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
2544 startvlak= obr->totvlak;
2546 for (u = 0; u < sizeu - 1; u++) {
2547 p1 = startvert + u * sizev; /* walk through face list */
2552 for (v = 0; v < sizev - 1; v++) {
2553 v1= RE_findOrAddVert(obr, p1);
2554 v2= RE_findOrAddVert(obr, p2);
2555 v3= RE_findOrAddVert(obr, p3);
2556 v4= RE_findOrAddVert(obr, p4);
2558 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2559 vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
2561 normal_quad_v3(n1, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2563 copy_v3_v3(vlr->n, n1);
2565 vlr->mat= matar[ dl->col];
2566 vlr->ec= ME_V1V2+ME_V2V3;
2569 add_v3_v3(v1->n, n1);
2570 add_v3_v3(v2->n, n1);
2571 add_v3_v3(v3->n, n1);
2572 add_v3_v3(v4->n, n1);
2574 p1++; p2++; p3++; p4++;
2577 /* fix normals for U resp. V cyclic faces */
2578 sizeu--; sizev--; /* dec size for face array */
2579 if (dl->flag & DL_CYCL_V) {
2581 for (v = 0; v < sizev; v++) {
2583 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, v));
2584 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, v));
2585 add_v3_v3(vlr1->v1->n, vlr->n);
2586 add_v3_v3(vlr1->v2->n, vlr->n);
2587 add_v3_v3(vlr->v3->n, vlr1->n);
2588 add_v3_v3(vlr->v4->n, vlr1->n);
2591 if (dl->flag & DL_CYCL_U) {
2593 for (u = 0; u < sizeu; u++) {
2595 vlr= RE_findOrAddVlak(obr, UVTOINDEX(u, 0));
2596 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(u, sizev-1));
2597 add_v3_v3(vlr1->v2->n, vlr->n);
2598 add_v3_v3(vlr1->v3->n, vlr->n);
2599 add_v3_v3(vlr->v1->n, vlr1->n);
2600 add_v3_v3(vlr->v4->n, vlr1->n);
2604 /* last vertex is an extra case:
2606 * ^ ()----()----()----()
2608 * u | |(0,n)||(0,0)|
2610 * ()====()====[]====()
2614 * ()----()----()----()
2617 * vertex [] is no longer shared, therefore distribute
2618 * normals of the surrounding faces to all of the duplicates of []
2621 if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U)) {
2622 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m, n) */
2623 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, 0)); /* (0, 0) */
2624 add_v3_v3v3(n1, vlr->n, vlr1->n);
2625 vlr2= RE_findOrAddVlak(obr, UVTOINDEX(0, sizev-1)); /* (0, n) */
2626 add_v3_v3(n1, vlr2->n);
2627 vlr3= RE_findOrAddVlak(obr, UVTOINDEX(sizeu-1, 0)); /* (m, 0) */
2628 add_v3_v3(n1, vlr3->n);
2629 copy_v3_v3(vlr->v3->n, n1);
2630 copy_v3_v3(vlr1->v1->n, n1);
2631 copy_v3_v3(vlr2->v2->n, n1);
2632 copy_v3_v3(vlr3->v4->n, n1);
2634 for (a = startvert; a < obr->totvert; a++) {
2635 ver= RE_findOrAddVert(obr, a);
2636 normalize_v3(ver->n);
2643 static void init_render_dm(DerivedMesh *dm, Render *re, ObjectRen *obr,
2644 int timeoffset, float *orco, float mat[4][4])
2646 Object *ob= obr->ob;
2647 int a, end, totvert, vertofs;
2651 MVert *mvert = NULL;
2654 /* Curve *cu= ELEM(ob->type, OB_FONT, OB_CURVE) ? ob->data : NULL; */
2656 mvert= dm->getVertArray(dm);
2657 totvert= dm->getNumVerts(dm);
2659 for (a=0; a<totvert; a++, mvert++) {
2660 ver= RE_findOrAddVert(obr, obr->totvert++);
2661 copy_v3_v3(ver->co, mvert->co);
2662 mul_m4_v3(mat, ver->co);
2671 /* store customdata names, because DerivedMesh is freed */
2672 RE_set_customdata_names(obr, &dm->faceData);
2674 /* still to do for keys: the correct local texture coordinate */
2676 /* faces in order of color blocks */
2677 vertofs= obr->totvert - totvert;
2678 for (mat_iter= 0; (mat_iter < ob->totcol || (mat_iter==0 && ob->totcol==0)); mat_iter++) {
2680 ma= give_render_material(re, ob, mat_iter+1);
2681 end= dm->getNumTessFaces(dm);
2682 mface= dm->getTessFaceArray(dm);
2684 for (a=0; a<end; a++, mface++) {
2685 int v1, v2, v3, v4, flag;
2687 if (mface->mat_nr == mat_iter) {
2694 flag= mface->flag & ME_SMOOTH;
2696 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2697 vlr->v1= RE_findOrAddVert(obr, vertofs+v1);
2698 vlr->v2= RE_findOrAddVert(obr, vertofs+v2);
2699 vlr->v3= RE_findOrAddVert(obr, vertofs+v3);
2700 if (v4) vlr->v4= RE_findOrAddVert(obr, vertofs+v4);
2703 /* render normals are inverted in render */
2705 len= normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2707 len= normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2711 vlr->ec= 0; /* mesh edges rendered separately */
2713 if (len==0) obr->totvlak--;
2715 CustomDataLayer *layer;
2716 MTFace *mtface, *mtf;
2718 int index, mtfn= 0, mcn= 0;
2721 for (index=0; index<dm->faceData.totlayer; index++) {
2722 layer= &dm->faceData.layers[index];
2725 if (layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
2726 mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
2727 mtface= (MTFace*)layer->data;
2730 else if (layer->type == CD_MCOL && mcn < MAX_MCOL) {
2731 mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
2732 mcol= (MCol*)layer->data;
2733 memcpy(mc, &mcol[a*4], sizeof(MCol)*4);
2742 calc_vertexnormals(re, obr, 0, 0);
2747 static void init_render_surf(Render *re, ObjectRen *obr, int timeoffset)
2749 Object *ob= obr->ob;
2752 ListBase displist= {NULL, NULL};
2755 float *orco=NULL, mat[4][4];
2756 int a, totmat, need_orco=0;
2757 DerivedMesh *dm= NULL;
2763 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2764 invert_m4_m4(ob->imat, mat);
2766 /* material array */
2767 totmat= ob->totcol+1;
2768 matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2770 for (a=0; a<totmat; a++) {
2771 matar[a]= give_render_material(re, ob, a+1);
2773 if (matar[a] && matar[a]->texco & TEXCO_ORCO)
2777 if (ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
2779 BKE_displist_make_surf(re->scene, ob, &displist, &dm, 1, 0);
2783 orco= BKE_displist_make_orco(re->scene, ob, dm, 1);
2785 set_object_orco(re, ob, orco);
2789 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2794 orco= get_object_orco(re, ob);
2797 /* walk along displaylist and create rendervertices/-faces */
2798 for (dl=displist.first; dl; dl=dl->next) {
2799 /* watch out: u ^= y, v ^= x !! */
2800 if (dl->type==DL_SURF)
2801 orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
2805 BKE_displist_free(&displist);
2810 static void init_render_curve(Render *re, ObjectRen *obr, int timeoffset)
2812 Object *ob= obr->ob;
2817 DerivedMesh *dm = NULL;
2818 ListBase disp={NULL, NULL};
2820 float *data, *fp, *orco=NULL;
2821 float n[3], mat[4][4];
2822 int nr, startvert, a, b;
2823 int need_orco=0, totmat;
2826 if (ob->type==OB_FONT && cu->str==NULL) return;
2827 else if (ob->type==OB_CURVE && cu->nurb.first==NULL) return;
2829 BKE_displist_make_curveTypes_forRender(re->scene, ob, &disp, &dm, 0);
2831 if (dl==NULL) return;
2833 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2834 invert_m4_m4(ob->imat, mat);
2836 /* material array */
2837 totmat= ob->totcol+1;
2838 matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2840 for (a=0; a<totmat; a++) {
2841 matar[a]= give_render_material(re, ob, a+1);
2843 if (matar[a] && matar[a]->texco & TEXCO_ORCO)
2849 orco= BKE_displist_make_orco(re->scene, ob, dm, 1);
2851 set_object_orco(re, ob, orco);
2855 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2860 orco= get_object_orco(re, ob);
2864 if (dl->col > ob->totcol) {
2867 else if (dl->type==DL_INDEX3) {
2870 startvert= obr->totvert;
2873 for (a=0; a<dl->nr; a++, data+=3) {
2874 ver= RE_findOrAddVert(obr, obr->totvert++);
2875 copy_v3_v3(ver->co, data);
2877 mul_m4_v3(mat, ver->co);
2885 if (timeoffset==0) {
2887 const int startvlak= obr->totvlak;
2891 for (a=0; a<dl->parts; a++, index+=3) {
2892 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2893 vlr->v1= RE_findOrAddVert(obr, startvert+index[0]);
2894 vlr->v2= RE_findOrAddVert(obr, startvert+index[1]);
2895 vlr->v3= RE_findOrAddVert(obr, startvert+index[2]);
2897 if (area_tri_v3(vlr->v3->co, vlr->v2->co, vlr->v1->co)>FLT_EPSILON10) {
2898 normal_tri_v3(tmp, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2902 vlr->mat= matar[ dl->col ];
2909 /* vertex normals */
2910 for (a= startvlak; a<obr->totvlak; a++) {
2911 vlr= RE_findOrAddVlak(obr, a);
2913 copy_v3_v3(vlr->n, n);
2914 add_v3_v3(vlr->v1->n, vlr->n);
2915 add_v3_v3(vlr->v3->n, vlr->n);
2916 add_v3_v3(vlr->v2->n, vlr->n);
2918 for (a=startvert; a<obr->totvert; a++) {
2919 ver= RE_findOrAddVert(obr, a);
2920 normalize_v3(ver->n);