2 * ***** BEGIN GPL LICENSE BLOCK *****
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
19 * All rights reserved.
21 * Contributors: 2004/2005/2006 Blender Foundation, full recode
23 * ***** END GPL LICENSE BLOCK *****
26 /** \file blender/render/intern/source/convertblender.c
36 #include "MEM_guardedalloc.h"
39 #include "BLI_blenlib.h"
40 #include "BLI_utildefines.h"
42 #include "BLI_memarena.h"
43 #include "BLI_ghash.h"
44 #include "BLI_linklist.h"
46 # include "BLI_edgehash.h"
49 #include "BLF_translation.h"
51 #include "DNA_armature_types.h"
52 #include "DNA_camera_types.h"
53 #include "DNA_material_types.h"
54 #include "DNA_curve_types.h"
55 #include "DNA_effect_types.h"
56 #include "DNA_group_types.h"
57 #include "DNA_lamp_types.h"
58 #include "DNA_image_types.h"
59 #include "DNA_lattice_types.h"
60 #include "DNA_mesh_types.h"
61 #include "DNA_meshdata_types.h"
62 #include "DNA_meta_types.h"
63 #include "DNA_modifier_types.h"
64 #include "DNA_node_types.h"
65 #include "DNA_object_types.h"
66 #include "DNA_object_force.h"
67 #include "DNA_object_fluidsim.h"
68 #include "DNA_particle_types.h"
69 #include "DNA_scene_types.h"
70 #include "DNA_texture_types.h"
71 #include "DNA_view3d_types.h"
74 #include "BKE_armature.h"
75 #include "BKE_action.h"
76 #include "BKE_curve.h"
77 #include "BKE_customdata.h"
78 #include "BKE_colortools.h"
79 #include "BKE_constraint.h"
80 #include "BKE_displist.h"
81 #include "BKE_deform.h"
82 #include "BKE_DerivedMesh.h"
83 #include "BKE_effect.h"
84 #include "BKE_global.h"
85 #include "BKE_group.h"
88 #include "BKE_image.h"
89 #include "BKE_lattice.h"
90 #include "BKE_library.h"
91 #include "BKE_material.h"
93 #include "BKE_mball.h"
95 #include "BKE_modifier.h"
97 #include "BKE_object.h"
98 #include "BKE_particle.h"
99 #include "BKE_scene.h"
100 #include "BKE_subsurf.h"
101 #include "BKE_texture.h"
103 #include "BKE_world.h"
105 #include "PIL_time.h"
106 #include "IMB_imbuf_types.h"
109 #include "occlusion.h"
110 #include "pointdensity.h"
111 #include "voxeldata.h"
112 #include "render_types.h"
113 #include "rendercore.h"
114 #include "renderdatabase.h"
115 #include "renderpipeline.h"
120 #include "volume_precache.h"
126 #include "RE_render_ext.h"
128 /* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
129 /* or for checking vertex normal flips */
130 #define FLT_EPSILON10 1.19209290e-06F
132 /* could enable at some point but for now there are far too many conversions */
134 # pragma GCC diagnostic ignored "-Wdouble-promotion"
137 /* ------------------------------------------------------------------------- */
139 /* Stuff for stars. This sits here because it uses gl-things. Part of
140 * this code may move down to the converter. */
141 /* ------------------------------------------------------------------------- */
142 /* this is a bad beast, since it is misused by the 3d view drawing as well. */
144 static HaloRen *initstar(Render *re, ObjectRen *obr, const float vec[3], float hasize)
149 projectverto(vec, re->winmat, hoco);
151 har= RE_findOrAddHalo(obr, obr->tothalo++);
153 /* projectvert is done in function zbufvlaggen again, because of parts */
154 copy_v3_v3(har->co, vec);
158 har->pool = re->pool;
163 /* there must be a 'fixed' amount of stars generated between
165 * all stars must by preference lie on the far and solely
166 * differ in clarity/color
169 void RE_make_stars(Render *re, Scene *scenev3d, void (*initfunc)(void),
170 void (*vertexfunc)(float *), void (*termfunc)(void))
172 extern unsigned char hash[512];
173 ObjectRen *obr= NULL;
179 double dblrand, hlfrand;
180 float vec[4], fx, fy, fz;
181 float fac, starmindist, clipend;
182 float mat[4][4], stargrid, maxrand, maxjit, force, alpha;
183 int x, y, z, sx, sy, sz, ex, ey, ez, done = FALSE;
184 unsigned int totstar= 0;
195 stargrid = wrld->stardist; /* distance between stars */
196 maxrand = 2.0; /* amount a star can be shifted (in grid units) */
197 maxjit = (wrld->starcolnoise); /* amount a color is being shifted */
200 force = ( wrld->starsize );
202 /* minimal free space (starting at camera) */
203 starmindist= wrld->starmindist;
205 if (stargrid <= 0.10f) return;
207 if (re) re->flag |= R_HALO;
208 else stargrid *= 1.0f; /* then it draws fewer */
210 if (re) invert_m4_m4(mat, re->viewmat);
213 /* BOUNDING BOX CALCULATION
214 * bbox goes from z = loc_near_var | loc_far_var,
219 camera= re ? RE_GetCamera(re) : scene->camera;
221 if (camera==NULL || camera->type != OB_CAMERA)
225 clipend = cam->clipend;
227 /* convert to grid coordinates */
229 sx = ((mat[3][0] - clipend) / stargrid) - maxrand;
230 sy = ((mat[3][1] - clipend) / stargrid) - maxrand;
231 sz = ((mat[3][2] - clipend) / stargrid) - maxrand;
233 ex = ((mat[3][0] + clipend) / stargrid) + maxrand;
234 ey = ((mat[3][1] + clipend) / stargrid) + maxrand;
235 ez = ((mat[3][2] + clipend) / stargrid) + maxrand;
237 dblrand = maxrand * stargrid;
238 hlfrand = 2.0 * dblrand;
244 if (re) /* add render object for stars */
245 obr= RE_addRenderObject(re, NULL, NULL, 0, 0, 0);
247 for (x = sx, fx = sx * stargrid; x <= ex; x++, fx += stargrid) {
248 for (y = sy, fy = sy * stargrid; y <= ey; y++, fy += stargrid) {
249 for (z = sz, fz = sz * stargrid; z <= ez; z++, fz += stargrid) {
251 BLI_srand((hash[z & 0xff] << 24) + (hash[y & 0xff] << 16) + (hash[x & 0xff] << 8));
252 vec[0] = fx + (hlfrand * BLI_drand()) - dblrand;
253 vec[1] = fy + (hlfrand * BLI_drand()) - dblrand;
254 vec[2] = fz + (hlfrand * BLI_drand()) - dblrand;
258 if (done & 1) vertexfunc(vec);
263 mul_m4_v3(re->viewmat, vec);
265 /* in vec are global coordinates
266 * calculate distance to camera
267 * and using that, define the alpha
271 if (alpha >= clipend) alpha = 0.0;
272 else if (alpha <= starmindist) alpha = 0.0;
273 else if (alpha <= 2.0f * starmindist) {
274 alpha = (alpha - starmindist) / starmindist;
277 alpha -= 2.0f * starmindist;
278 alpha /= (clipend - 2.0f * starmindist);
279 alpha = 1.0f - alpha;
284 fac = force * BLI_drand();
286 har = initstar(re, obr, vec, fac);
289 har->alfa = sqrt(sqrt(alpha));
291 har->r = har->g = har->b = 1.0;
293 har->r += ((maxjit * BLI_drand()) ) - maxjit;
294 har->g += ((maxjit * BLI_drand()) ) - maxjit;
295 har->b += ((maxjit * BLI_drand()) ) - maxjit;
299 har->type |= HA_ONLYSKY;
305 /* break out of the loop if generating stars takes too long */
306 if (re && !(totstar % 1000000)) {
307 if (re->test_break(re->tbh)) {
316 /* do not call blender_test_break() here, since it is used in UI as well, confusing the callback system */
317 /* main cause is G.is_break of course, a global again... (ton) */
320 if (termfunc) termfunc();
323 re->tothalo += obr->tothalo;
327 /* ------------------------------------------------------------------------- */
328 /* tool functions/defines for ad hoc simplification and possible future
330 /* ------------------------------------------------------------------------- */
332 #define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
335 * NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
337 * ^ ()----p4----p3----()
341 * ()----p1----p2----()
345 /* ------------------------------------------------------------------------- */
347 static void split_v_renderfaces(ObjectRen *obr, int startvlak, int UNUSED(startvert), int UNUSED(usize), int vsize, int uIndex, int UNUSED(cyclu), int cyclv)
349 int vLen = vsize-1+(!!cyclv);
352 for (v=0; v<vLen; v++) {
353 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v);
354 VertRen *vert = RE_vertren_copy(obr, vlr->v2);
360 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + 0);
364 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
372 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
377 vlr->v1 = RE_vertren_copy(obr, vlr->v1);
383 /* ------------------------------------------------------------------------- */
384 /* Stress, tangents and normals */
385 /* ------------------------------------------------------------------------- */
387 static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
389 float len= len_v3v3(v1->co, v2->co)/len_v3v3(v1->orco, v2->orco);
392 acc= accum + 2*v1->index;
396 acc= accum + 2*v2->index;
401 static void calc_edge_stress(Render *UNUSED(re), ObjectRen *obr, Mesh *me)
403 float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
406 if (obr->totvert==0) return;
408 BKE_mesh_texspace_get(me, loc, NULL, size);
410 accum= MEM_callocN(2*sizeof(float)*obr->totvert, "temp accum for stress");
412 /* de-normalize orco */
413 for (a=0; a<obr->totvert; a++) {
414 VertRen *ver= RE_findOrAddVert(obr, a);
416 ver->orco[0]= ver->orco[0]*size[0] +loc[0];
417 ver->orco[1]= ver->orco[1]*size[1] +loc[1];
418 ver->orco[2]= ver->orco[2]*size[2] +loc[2];
422 /* add stress values */
423 accumoffs= accum; /* so we can use vertex index */
424 for (a=0; a<obr->totvlak; a++) {
425 VlakRen *vlr= RE_findOrAddVlak(obr, a);
427 if (vlr->v1->orco && vlr->v4) {
428 calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
429 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
430 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
432 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
433 calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
434 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
439 for (a=0; a<obr->totvert; a++) {
440 VertRen *ver= RE_findOrAddVert(obr, a);
442 /* find stress value */
443 acc= accumoffs + 2*ver->index;
446 stress= RE_vertren_get_stress(obr, ver, 1);
450 ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
451 ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
452 ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
459 /* gets tangent from tface or orco */
460 static void calc_tangent_vector(ObjectRen *obr, VlakRen *vlr, int do_tangent)
462 MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
463 VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
465 float *uv1, *uv2, *uv3, *uv4;
475 uv1= uv[0]; uv2= uv[1]; uv3= uv[2]; uv4= uv[3];
476 map_to_sphere(&uv[0][0], &uv[0][1], v1->orco[0], v1->orco[1], v1->orco[2]);
477 map_to_sphere(&uv[1][0], &uv[1][1], v2->orco[0], v2->orco[1], v2->orco[2]);
478 map_to_sphere(&uv[2][0], &uv[2][1], v3->orco[0], v3->orco[1], v3->orco[2]);
480 map_to_sphere(&uv[3][0], &uv[3][1], v4->orco[0], v4->orco[1], v4->orco[2]);
484 tangent_from_uv(uv1, uv2, uv3, v1->co, v2->co, v3->co, vlr->n, tang);
487 tav= RE_vertren_get_tangent(obr, v1, 1);
488 add_v3_v3(tav, tang);
489 tav= RE_vertren_get_tangent(obr, v2, 1);
490 add_v3_v3(tav, tang);
491 tav= RE_vertren_get_tangent(obr, v3, 1);
492 add_v3_v3(tav, tang);
496 tangent_from_uv(uv1, uv3, uv4, v1->co, v3->co, v4->co, vlr->n, tang);
499 tav= RE_vertren_get_tangent(obr, v1, 1);
500 add_v3_v3(tav, tang);
501 tav= RE_vertren_get_tangent(obr, v3, 1);
502 add_v3_v3(tav, tang);
503 tav= RE_vertren_get_tangent(obr, v4, 1);
504 add_v3_v3(tav, tang);
511 /****************************************************************
512 ************ tangent space generation interface ****************
513 ****************************************************************/
518 } SRenderMeshToTangent;
521 #include "mikktspace.h"
523 static int GetNumFaces(const SMikkTSpaceContext *pContext)
525 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
526 return pMesh->obr->totvlak;
529 static int GetNumVertsOfFace(const SMikkTSpaceContext *pContext, const int face_num)
531 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
532 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
533 return vlr->v4!=NULL ? 4 : 3;
536 static void GetPosition(const SMikkTSpaceContext *pContext, float r_co[3], const int face_num, const int vert_index)
538 //assert(vert_index>=0 && vert_index<4);
539 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
540 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
541 const float *co = (&vlr->v1)[vert_index]->co;
542 copy_v3_v3(r_co, co);
545 static void GetTextureCoordinate(const SMikkTSpaceContext *pContext, float r_uv[2], const int face_num, const int vert_index)
547 //assert(vert_index>=0 && vert_index<4);
548 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
549 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
550 MTFace *tface= RE_vlakren_get_tface(pMesh->obr, vlr, pMesh->obr->actmtface, NULL, 0);
554 coord= tface->uv[vert_index];
555 copy_v2_v2(r_uv, coord);
557 else if ((coord = (&vlr->v1)[vert_index]->orco)) {
558 map_to_sphere(&r_uv[0], &r_uv[1], coord[0], coord[1], coord[2]);
560 else { /* else we get un-initialized value, 0.0 ok default? */
565 static void GetNormal(const SMikkTSpaceContext *pContext, float r_no[3], const int face_num, const int vert_index)
567 //assert(vert_index>=0 && vert_index<4);
568 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
569 VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
571 if (vlr->flag & ME_SMOOTH) {
572 const float *n = (&vlr->v1)[vert_index]->n;
576 negate_v3_v3(r_no, vlr->n);
579 static void SetTSpace(const SMikkTSpaceContext *pContext, const float fvTangent[3], const float fSign, const int face_num, const int iVert)
581 //assert(vert_index>=0 && vert_index<4);
582 SRenderMeshToTangent *pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
583 VlakRen *vlr = RE_findOrAddVlak(pMesh->obr, face_num);
584 float *ftang = RE_vlakren_get_nmap_tangent(pMesh->obr, vlr, 1);
586 copy_v3_v3(&ftang[iVert*4+0], fvTangent);
587 ftang[iVert*4+3]=fSign;
591 static void calc_vertexnormals(Render *UNUSED(re), ObjectRen *obr, int do_tangent, int do_nmap_tangent)
595 /* clear all vertex normals */
596 for (a=0; a<obr->totvert; a++) {
597 VertRen *ver= RE_findOrAddVert(obr, a);
598 ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
601 /* calculate cos of angles and point-masses, use as weight factor to
602 * add face normal to vertex */
603 for (a=0; a<obr->totvlak; a++) {
604 VlakRen *vlr= RE_findOrAddVlak(obr, a);
605 if (vlr->flag & ME_SMOOTH) {
606 float *n4= (vlr->v4)? vlr->v4->n: NULL;
607 float *c4= (vlr->v4)? vlr->v4->co: NULL;
609 accumulate_vertex_normals(vlr->v1->n, vlr->v2->n, vlr->v3->n, n4,
610 vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co, c4);
613 /* tangents still need to be calculated for flat faces too */
614 /* weighting removed, they are not vertexnormals */
615 calc_tangent_vector(obr, vlr, do_tangent);
620 for (a=0; a<obr->totvlak; a++) {
621 VlakRen *vlr= RE_findOrAddVlak(obr, a);
623 if ((vlr->flag & ME_SMOOTH)==0) {
624 if (is_zero_v3(vlr->v1->n)) copy_v3_v3(vlr->v1->n, vlr->n);
625 if (is_zero_v3(vlr->v2->n)) copy_v3_v3(vlr->v2->n, vlr->n);
626 if (is_zero_v3(vlr->v3->n)) copy_v3_v3(vlr->v3->n, vlr->n);
627 if (vlr->v4 && is_zero_v3(vlr->v4->n)) copy_v3_v3(vlr->v4->n, vlr->n);
631 /* normalize vertex normals */
632 for (a=0; a<obr->totvert; a++) {
633 VertRen *ver= RE_findOrAddVert(obr, a);
634 normalize_v3(ver->n);
636 float *tav= RE_vertren_get_tangent(obr, ver, 0);
639 const float tdn = dot_v3v3(tav, ver->n);
640 tav[0] -= ver->n[0]*tdn;
641 tav[1] -= ver->n[1]*tdn;
642 tav[2] -= ver->n[2]*tdn;
648 /* normal mapping tangent with mikktspace */
649 if (do_nmap_tangent != FALSE) {
650 SRenderMeshToTangent mesh2tangent;
651 SMikkTSpaceContext sContext;
652 SMikkTSpaceInterface sInterface;
653 memset(&mesh2tangent, 0, sizeof(SRenderMeshToTangent));
654 memset(&sContext, 0, sizeof(SMikkTSpaceContext));
655 memset(&sInterface, 0, sizeof(SMikkTSpaceInterface));
657 mesh2tangent.obr = obr;
659 sContext.m_pUserData = &mesh2tangent;
660 sContext.m_pInterface = &sInterface;
661 sInterface.m_getNumFaces = GetNumFaces;
662 sInterface.m_getNumVerticesOfFace = GetNumVertsOfFace;
663 sInterface.m_getPosition = GetPosition;
664 sInterface.m_getTexCoord = GetTextureCoordinate;
665 sInterface.m_getNormal = GetNormal;
666 sInterface.m_setTSpaceBasic = SetTSpace;
668 genTangSpaceDefault(&sContext);
672 /* ------------------------------------------------------------------------- */
674 /* ------------------------------------------------------------------------- */
676 typedef struct ASvert {
681 typedef struct ASface {
682 struct ASface *next, *prev;
687 static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
692 if (v1 == NULL) return;
694 if (asv->faces.first==NULL) {
695 asf= MEM_callocN(sizeof(ASface), "asface");
696 BLI_addtail(&asv->faces, asf);
699 asf= asv->faces.last;
700 for (a=0; a<4; a++) {
701 if (asf->vlr[a]==NULL) {
708 /* new face struct */
710 asf= MEM_callocN(sizeof(ASface), "asface");
711 BLI_addtail(&asv->faces, asf);
717 static int as_testvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
719 /* return 1: vertex needs a copy */
724 if (vlr==0) return 0;
726 asf= asv->faces.first;
728 for (a=0; a<4; a++) {
729 if (asf->vlr[a] && asf->vlr[a]!=vlr) {
730 inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
731 if (inp < thresh) return 1;
740 static VertRen *as_findvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
742 /* return when new vertex already was made */
747 asf= asv->faces.first;
749 for (a=0; a<4; a++) {
750 if (asf->vlr[a] && asf->vlr[a]!=vlr) {
751 /* this face already made a copy for this vertex! */
753 inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
766 /* note; autosmooth happens in object space still, after applying autosmooth we rotate */
767 /* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
768 static void autosmooth(Render *UNUSED(re), ObjectRen *obr, float mat[4][4], int degr)
770 ASvert *asv, *asverts;
777 if (obr->totvert==0) return;
778 asverts= MEM_callocN(sizeof(ASvert)*obr->totvert, "all smooth verts");
780 thresh= cosf(DEG2RADF((0.5f + (float)degr)));
782 /* step zero: give faces normals of original mesh, if this is provided */
785 /* step one: construct listbase of all vertices and pointers to faces */
786 for (a=0; a<obr->totvlak; a++) {
787 vlr= RE_findOrAddVlak(obr, a);
788 /* skip wire faces */
789 if (vlr->v2 != vlr->v3) {
790 as_addvert(asverts+vlr->v1->index, vlr->v1, vlr);
791 as_addvert(asverts+vlr->v2->index, vlr->v2, vlr);
792 as_addvert(asverts+vlr->v3->index, vlr->v3, vlr);
794 as_addvert(asverts+vlr->v4->index, vlr->v4, vlr);
798 totvert= obr->totvert;
799 /* we now test all vertices, when faces have a normal too much different: they get a new vertex */
800 for (a=0, asv=asverts; a<totvert; a++, asv++) {
801 if (asv && asv->totface>1) {
802 ver= RE_findOrAddVert(obr, a);
804 asf= asv->faces.first;
806 for (b=0; b<4; b++) {
808 /* is there a reason to make a new vertex? */
810 if ( as_testvertex(vlr, ver, asv, thresh) ) {
812 /* already made a new vertex within threshold? */
813 v1= as_findvertex(vlr, ver, asv, thresh);
815 /* make a new vertex */
816 v1= RE_vertren_copy(obr, ver);
819 if (vlr->v1==ver) vlr->v1= v1;
820 if (vlr->v2==ver) vlr->v2= v1;
821 if (vlr->v3==ver) vlr->v3= v1;
822 if (vlr->v4==ver) vlr->v4= v1;
831 for (a=0; a<totvert; a++) {
832 BLI_freelistN(&asverts[a].faces);
836 /* rotate vertices and calculate normal of faces */
837 for (a=0; a<obr->totvert; a++) {
838 ver= RE_findOrAddVert(obr, a);
839 mul_m4_v3(mat, ver->co);
841 for (a=0; a<obr->totvlak; a++) {
842 vlr= RE_findOrAddVlak(obr, a);
844 /* skip wire faces */
845 if (vlr->v2 != vlr->v3) {
847 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
849 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
854 /* ------------------------------------------------------------------------- */
855 /* Orco hash and Materials */
856 /* ------------------------------------------------------------------------- */
858 static float *get_object_orco(Render *re, Object *ob)
863 re->orco_hash = BLI_ghash_ptr_new("get_object_orco gh");
865 orco = BLI_ghash_lookup(re->orco_hash, ob);
868 if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
869 orco = BKE_curve_make_orco(re->scene, ob);
871 else if (ob->type==OB_SURF) {
872 orco = BKE_curve_surf_make_orco(ob);
876 BLI_ghash_insert(re->orco_hash, ob, orco);
882 static void set_object_orco(Render *re, void *ob, float *orco)
885 re->orco_hash = BLI_ghash_ptr_new("set_object_orco gh");
887 BLI_ghash_insert(re->orco_hash, ob, orco);
890 static void free_mesh_orco_hash(Render *re)
893 BLI_ghash_free(re->orco_hash, NULL, (GHashValFreeFP)MEM_freeN);
894 re->orco_hash = NULL;
898 static void check_material_mapto(Material *ma)
901 ma->mapto_textured = 0;
903 /* cache which inputs are actually textured.
904 * this can avoid a bit of time spent iterating through all the texture slots, map inputs and map tos
905 * every time a property which may or may not be textured is accessed */
907 for (a=0; a<MAX_MTEX; a++) {
908 if (ma->mtex[a] && ma->mtex[a]->tex) {
909 /* currently used only in volume render, so we'll check for those flags */
910 if (ma->mtex[a]->mapto & MAP_DENSITY) ma->mapto_textured |= MAP_DENSITY;
911 if (ma->mtex[a]->mapto & MAP_EMISSION) ma->mapto_textured |= MAP_EMISSION;
912 if (ma->mtex[a]->mapto & MAP_EMISSION_COL) ma->mapto_textured |= MAP_EMISSION_COL;
913 if (ma->mtex[a]->mapto & MAP_SCATTERING) ma->mapto_textured |= MAP_SCATTERING;
914 if (ma->mtex[a]->mapto & MAP_TRANSMISSION_COL) ma->mapto_textured |= MAP_TRANSMISSION_COL;
915 if (ma->mtex[a]->mapto & MAP_REFLECTION) ma->mapto_textured |= MAP_REFLECTION;
916 if (ma->mtex[a]->mapto & MAP_REFLECTION_COL) ma->mapto_textured |= MAP_REFLECTION_COL;
920 static void flag_render_node_material(Render *re, bNodeTree *ntree)
924 for (node = ntree->nodes.first; node; node = node->next) {
926 if (GS(node->id->name)==ID_MA) {
927 Material *ma= (Material *)node->id;
929 if ((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
932 ma->flag |= MA_IS_USED;
934 else if (node->type==NODE_GROUP)
935 flag_render_node_material(re, (bNodeTree *)node->id);
940 static Material *give_render_material(Render *re, Object *ob, short nr)
942 extern Material defmaterial; /* material.c */
945 ma= give_current_material(ob, nr);
949 if (re->r.mode & R_SPEED) ma->texco |= NEED_UV;
951 if (ma->material_type == MA_TYPE_VOLUME) {
952 ma->mode |= MA_TRANSP;
953 ma->mode &= ~MA_SHADBUF;
955 if ((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
958 /* for light groups and SSS */
959 ma->flag |= MA_IS_USED;
961 if (ma->nodetree && ma->use_nodes)
962 flag_render_node_material(re, ma->nodetree);
964 check_material_mapto(ma);
969 /* ------------------------------------------------------------------------- */
971 /* ------------------------------------------------------------------------- */
972 typedef struct ParticleStrandData {
974 float *orco, *uvco, *surfnor;
975 float time, adapt_angle, adapt_pix, size;
977 int first, line, adapt, override_uv;
980 /* future thread problem... */
981 static void static_particle_strand(Render *re, ObjectRen *obr, Material *ma, ParticleStrandData *sd, const float vec[3], const float vec1[3])
983 static VertRen *v1= NULL, *v2= NULL;
985 float nor[3], cross[3], crosslen, w, dx, dy, width;
986 static float anor[3], avec[3];
990 sub_v3_v3v3(nor, vec, vec1);
991 normalize_v3(nor); /* nor needed as tangent */
992 cross_v3_v3v3(cross, vec, nor);
994 /* turn cross in pixelsize */
995 w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
996 dx= re->winx*cross[0]*re->winmat[0][0];
997 dy= re->winy*cross[1]*re->winmat[1][1];
998 w= sqrt(dx*dx + dy*dy)/w;
1002 if (ma->strand_ease!=0.0f) {
1003 if (ma->strand_ease<0.0f)
1004 fac= pow(sd->time, 1.0f+ma->strand_ease);
1006 fac= pow(sd->time, 1.0f/(1.0f-ma->strand_ease));
1010 width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
1012 /* use actual Blender units for strand width and fall back to minimum width */
1013 if (ma->mode & MA_STR_B_UNITS) {
1014 crosslen= len_v3(cross);
1015 w= 2.0f*crosslen*ma->strand_min/w;
1020 /*cross is the radius of the strand so we want it to be half of full width */
1021 mul_v3_fl(cross, 0.5f/crosslen);
1026 mul_v3_fl(cross, width);
1029 if (ma->mode & MA_TANGENT_STR)
1030 flag= R_SMOOTH|R_TANGENT;
1034 /* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
1035 if (ma->strand_sta==1.0f)
1038 /* single face line */
1040 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1042 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1043 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1044 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1045 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1047 copy_v3_v3(vlr->v1->co, vec);
1048 add_v3_v3(vlr->v1->co, cross);
1049 copy_v3_v3(vlr->v1->n, nor);
1050 vlr->v1->orco= sd->orco;
1051 vlr->v1->accum = -1.0f; /* accum abuse for strand texco */
1053 copy_v3_v3(vlr->v2->co, vec);
1054 sub_v3_v3v3(vlr->v2->co, vlr->v2->co, cross);
1055 copy_v3_v3(vlr->v2->n, nor);
1056 vlr->v2->orco= sd->orco;
1057 vlr->v2->accum= vlr->v1->accum;
1059 copy_v3_v3(vlr->v4->co, vec1);
1060 add_v3_v3(vlr->v4->co, cross);
1061 copy_v3_v3(vlr->v4->n, nor);
1062 vlr->v4->orco= sd->orco;
1063 vlr->v4->accum = 1.0f; /* accum abuse for strand texco */
1065 copy_v3_v3(vlr->v3->co, vec1);
1066 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1067 copy_v3_v3(vlr->v3->n, nor);
1068 vlr->v3->orco= sd->orco;
1069 vlr->v3->accum= vlr->v4->accum;
1071 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1077 float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1078 copy_v3_v3(snor, sd->surfnor);
1082 for (i=0; i<sd->totuv; i++) {
1084 mtf=RE_vlakren_get_tface(obr, vlr, i, NULL, 1);
1085 mtf->uv[0][0]=mtf->uv[1][0]=
1086 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1087 mtf->uv[0][1]=mtf->uv[1][1]=
1088 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1090 if (sd->override_uv>=0) {
1092 mtf=RE_vlakren_get_tface(obr, vlr, sd->override_uv, NULL, 0);
1094 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1095 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1097 mtf->uv[0][1]=mtf->uv[1][1]=0.0f;
1098 mtf->uv[2][1]=mtf->uv[3][1]=1.0f;
1102 for (i=0; i<sd->totcol; i++) {
1104 mc=RE_vlakren_get_mcol(obr, vlr, i, NULL, 1);
1105 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1106 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1110 /* first two vertices of a strand */
1111 else if (sd->first) {
1113 copy_v3_v3(anor, nor);
1114 copy_v3_v3(avec, vec);
1118 v1= RE_findOrAddVert(obr, obr->totvert++);
1119 v2= RE_findOrAddVert(obr, obr->totvert++);
1121 copy_v3_v3(v1->co, vec);
1122 add_v3_v3(v1->co, cross);
1123 copy_v3_v3(v1->n, nor);
1125 v1->accum = -1.0f; /* accum abuse for strand texco */
1127 copy_v3_v3(v2->co, vec);
1128 sub_v3_v3v3(v2->co, v2->co, cross);
1129 copy_v3_v3(v2->n, nor);
1131 v2->accum= v1->accum;
1133 /* more vertices & faces to strand */
1135 if (sd->adapt==0 || second) {
1136 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1140 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1141 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1143 v1= vlr->v4; /* cycle */
1144 v2= vlr->v3; /* cycle */
1149 copy_v3_v3(anor, nor);
1150 copy_v3_v3(avec, vec);
1154 else if (sd->adapt) {
1155 float dvec[3], pvec[3];
1156 sub_v3_v3v3(dvec, avec, vec);
1157 project_v3_v3v3(pvec, dvec, vec);
1158 sub_v3_v3v3(dvec, dvec, pvec);
1160 w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1161 dx= re->winx*dvec[0]*re->winmat[0][0]/w;
1162 dy= re->winy*dvec[1]*re->winmat[1][1]/w;
1163 w= sqrt(dx*dx + dy*dy);
1164 if (dot_v3v3(anor, nor)<sd->adapt_angle && w>sd->adapt_pix) {
1165 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1169 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1170 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1172 v1= vlr->v4; /* cycle */
1173 v2= vlr->v3; /* cycle */
1175 copy_v3_v3(anor, nor);
1176 copy_v3_v3(avec, vec);
1179 vlr= RE_findOrAddVlak(obr, obr->totvlak-1);
1183 copy_v3_v3(vlr->v4->co, vec);
1184 add_v3_v3(vlr->v4->co, cross);
1185 copy_v3_v3(vlr->v4->n, nor);
1186 vlr->v4->orco= sd->orco;
1187 vlr->v4->accum= -1.0f + 2.0f * sd->time; /* accum abuse for strand texco */
1189 copy_v3_v3(vlr->v3->co, vec);
1190 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1191 copy_v3_v3(vlr->v3->n, nor);
1192 vlr->v3->orco= sd->orco;
1193 vlr->v3->accum= vlr->v4->accum;
1195 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1201 float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1202 copy_v3_v3(snor, sd->surfnor);
1206 for (i=0; i<sd->totuv; i++) {
1208 mtf=RE_vlakren_get_tface(obr, vlr, i, NULL, 1);
1209 mtf->uv[0][0]=mtf->uv[1][0]=
1210 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1211 mtf->uv[0][1]=mtf->uv[1][1]=
1212 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1214 if (sd->override_uv>=0) {
1216 mtf=RE_vlakren_get_tface(obr, vlr, sd->override_uv, NULL, 0);
1218 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1219 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1221 mtf->uv[0][1]=mtf->uv[1][1]=(vlr->v1->accum+1.0f)/2.0f;
1222 mtf->uv[2][1]=mtf->uv[3][1]=(vlr->v3->accum+1.0f)/2.0f;
1226 for (i=0; i<sd->totcol; i++) {
1228 mc=RE_vlakren_get_mcol(obr, vlr, i, NULL, 1);
1229 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1230 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1236 static void static_particle_wire(ObjectRen *obr, Material *ma, const float vec[3], const float vec1[3], int first, int line)
1242 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1243 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1244 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1248 copy_v3_v3(vlr->v1->co, vec);
1249 copy_v3_v3(vlr->v2->co, vec1);
1251 sub_v3_v3v3(vlr->n, vec, vec1);
1252 normalize_v3(vlr->n);
1253 copy_v3_v3(vlr->v1->n, vlr->n);
1254 copy_v3_v3(vlr->v2->n, vlr->n);
1261 v1= RE_findOrAddVert(obr, obr->totvert++);
1262 copy_v3_v3(v1->co, vec);
1265 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1267 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1271 v1= vlr->v2; /* cycle */
1272 copy_v3_v3(v1->co, vec);
1274 sub_v3_v3v3(vlr->n, vec, vec1);
1275 normalize_v3(vlr->n);
1276 copy_v3_v3(v1->n, vlr->n);
1284 static void particle_curve(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd,
1285 const float loc[3], const float loc1[3], int seed, float *pa_co)
1289 if (ma->material_type == MA_TYPE_WIRE)
1290 static_particle_wire(obr, ma, loc, loc1, sd->first, sd->line);
1291 else if (ma->material_type == MA_TYPE_HALO) {
1292 har= RE_inithalo_particle(re, obr, dm, ma, loc, loc1, sd->orco, sd->uvco, sd->size, 1.0, seed, pa_co);
1293 if (har) har->lay= obr->ob->lay;
1296 static_particle_strand(re, obr, ma, sd, loc, loc1);
1298 static void particle_billboard(Render *re, ObjectRen *obr, Material *ma, ParticleBillboardData *bb)
1302 float xvec[3], yvec[3], zvec[3], bb_center[3];
1303 /* Number of tiles */
1304 int totsplit = bb->uv_split * bb->uv_split;
1307 float uvx = 0.0f, uvy = 0.0f, uvdx = 1.0f, uvdy = 1.0f, time = 0.0f;
1309 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1310 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1311 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1312 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1313 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1315 psys_make_billboard(bb, xvec, yvec, zvec, bb_center);
1317 add_v3_v3v3(vlr->v1->co, bb_center, xvec);
1318 add_v3_v3(vlr->v1->co, yvec);
1319 mul_m4_v3(re->viewmat, vlr->v1->co);
1321 sub_v3_v3v3(vlr->v2->co, bb_center, xvec);
1322 add_v3_v3(vlr->v2->co, yvec);
1323 mul_m4_v3(re->viewmat, vlr->v2->co);
1325 sub_v3_v3v3(vlr->v3->co, bb_center, xvec);
1326 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, yvec);
1327 mul_m4_v3(re->viewmat, vlr->v3->co);
1329 add_v3_v3v3(vlr->v4->co, bb_center, xvec);
1330 sub_v3_v3(vlr->v4->co, yvec);
1331 mul_m4_v3(re->viewmat, vlr->v4->co);
1333 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1334 copy_v3_v3(vlr->v1->n, vlr->n);
1335 copy_v3_v3(vlr->v2->n, vlr->n);
1336 copy_v3_v3(vlr->v3->n, vlr->n);
1337 copy_v3_v3(vlr->v4->n, vlr->n);
1342 if (bb->uv_split > 1) {
1343 uvdx = uvdy = 1.0f / (float)bb->uv_split;
1345 if (ELEM(bb->anim, PART_BB_ANIM_AGE, PART_BB_ANIM_FRAME)) {
1346 if (bb->anim == PART_BB_ANIM_FRAME)
1347 time = ((int)(bb->time * bb->lifetime) % totsplit)/(float)totsplit;
1351 else if (bb->anim == PART_BB_ANIM_ANGLE) {
1352 if (bb->align == PART_BB_VIEW) {
1353 time = (float)fmod((bb->tilt + 1.0f) / 2.0f, 1.0);
1356 float axis1[3] = {0.0f, 0.0f, 0.0f};
1357 float axis2[3] = {0.0f, 0.0f, 0.0f};
1359 axis1[(bb->align + 1) % 3] = 1.0f;
1360 axis2[(bb->align + 2) % 3] = 1.0f;
1362 if (bb->lock == 0) {
1363 zvec[bb->align] = 0.0f;
1367 time = saacos(dot_v3v3(zvec, axis1)) / (float)M_PI;
1369 if (dot_v3v3(zvec, axis2) < 0.0f)
1370 time = 1.0f - time / 2.0f;
1376 if (bb->split_offset == PART_BB_OFF_LINEAR)
1377 time = (float)fmod(time + (float)bb->num / (float)totsplit, 1.0f);
1378 else if (bb->split_offset==PART_BB_OFF_RANDOM)
1379 time = (float)fmod(time + bb->random, 1.0f);
1381 /* Find the coordinates in tile space (integer), then convert to UV
1382 * space (float). Note that Y is flipped. */
1383 tile = (int)((time + FLT_EPSILON10) * totsplit);
1384 x = tile % bb->uv_split;
1385 y = tile / bb->uv_split;
1386 y = (bb->uv_split - 1) - y;
1392 if (bb->uv[0] >= 0) {
1393 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[0], NULL, 1);
1394 mtf->uv[0][0] = 1.0f;
1395 mtf->uv[0][1] = 1.0f;
1396 mtf->uv[1][0] = 0.0f;
1397 mtf->uv[1][1] = 1.0f;
1398 mtf->uv[2][0] = 0.0f;
1399 mtf->uv[2][1] = 0.0f;
1400 mtf->uv[3][0] = 1.0f;
1401 mtf->uv[3][1] = 0.0f;
1404 /* time-index UVs */
1405 if (bb->uv[1] >= 0) {
1406 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[1], NULL, 1);
1407 mtf->uv[0][0] = mtf->uv[1][0] = mtf->uv[2][0] = mtf->uv[3][0] = bb->time;
1408 mtf->uv[0][1] = mtf->uv[1][1] = mtf->uv[2][1] = mtf->uv[3][1] = (float)bb->num/(float)bb->totnum;
1412 if (bb->uv_split > 1 && bb->uv[2] >= 0) {
1413 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[2], NULL, 1);
1414 mtf->uv[0][0] = uvx + uvdx;
1415 mtf->uv[0][1] = uvy + uvdy;
1416 mtf->uv[1][0] = uvx;
1417 mtf->uv[1][1] = uvy + uvdy;
1418 mtf->uv[2][0] = uvx;
1419 mtf->uv[2][1] = uvy;
1420 mtf->uv[3][0] = uvx + uvdx;
1421 mtf->uv[3][1] = uvy;
1424 static void particle_normal_ren(short ren_as, ParticleSettings *part, Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, ParticleBillboardData *bb, ParticleKey *state, int seed, float hasize, float *pa_co)
1426 float loc[3], loc0[3], loc1[3], vel[3];
1428 copy_v3_v3(loc, state->co);
1430 if (ren_as != PART_DRAW_BB)
1431 mul_m4_v3(re->viewmat, loc);
1434 case PART_DRAW_LINE:
1439 copy_v3_v3(vel, state->vel);
1440 mul_mat3_m4_v3(re->viewmat, vel);
1443 if (part->draw & PART_DRAW_VEL_LENGTH)
1444 mul_v3_fl(vel, len_v3(state->vel));
1446 madd_v3_v3v3fl(loc0, loc, vel, -part->draw_line[0]);
1447 madd_v3_v3v3fl(loc1, loc, vel, part->draw_line[1]);
1449 particle_curve(re, obr, dm, ma, sd, loc0, loc1, seed, pa_co);
1455 copy_v3_v3(bb->vec, loc);
1456 copy_v3_v3(bb->vel, state->vel);
1458 particle_billboard(re, obr, ma, bb);
1466 har = RE_inithalo_particle(re, obr, dm, ma, loc, NULL, sd->orco, sd->uvco, hasize, 0.0, seed, pa_co);
1468 if (har) har->lay= obr->ob->lay;
1474 static void get_particle_uvco_mcol(short from, DerivedMesh *dm, float *fuv, int num, ParticleStrandData *sd)
1479 if (sd->uvco && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
1480 for (i=0; i<sd->totuv; i++) {
1481 if (num != DMCACHE_NOTFOUND) {
1482 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1483 MTFace *mtface = (MTFace*)CustomData_get_layer_n(&dm->faceData, CD_MTFACE, i);
1486 psys_interpolate_uvs(mtface, mface->v4, fuv, sd->uvco + 2 * i);
1489 sd->uvco[2*i] = 0.0f;
1490 sd->uvco[2*i + 1] = 0.0f;
1496 if (sd->mcol && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
1497 for (i=0; i<sd->totcol; i++) {
1498 if (num != DMCACHE_NOTFOUND) {
1499 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1500 MCol *mc = (MCol*)CustomData_get_layer_n(&dm->faceData, CD_MCOL, i);
1503 psys_interpolate_mcol(mc, mface->v4, fuv, sd->mcol + i);
1506 memset(&sd->mcol[i], 0, sizeof(MCol));
1510 static int render_new_particle_system(Render *re, ObjectRen *obr, ParticleSystem *psys, int timeoffset)
1512 Object *ob= obr->ob;
1515 ParticleSystemModifierData *psmd;
1516 ParticleSystem *tpsys=0;
1517 ParticleSettings *part, *tpart=0;
1518 ParticleData *pars, *pa=0, *tpa=0;
1519 ParticleKey *states=0;
1521 ParticleCacheKey *cache=0;
1522 ParticleBillboardData bb;
1523 ParticleSimulationData sim = {0};
1524 ParticleStrandData sd;
1525 StrandBuffer *strandbuf=0;
1526 StrandVert *svert=0;
1527 StrandBound *sbound= 0;
1528 StrandRen *strand=0;
1530 float loc[3], loc1[3], loc0[3], mat[4][4], nmat[3][3], co[3], nor[3], duplimat[4][4];
1531 float strandlen=0.0f, curlen=0.0f;
1532 float hasize, pa_size, r_tilt, r_length;
1533 float pa_time, pa_birthtime, pa_dietime;
1534 float random, simplify[2], pa_co[3];
1535 const float cfra= BKE_scene_frame_get(re->scene);
1536 int i, a, k, max_k=0, totpart, do_simplify = FALSE, do_surfacecache = FALSE, use_duplimat = FALSE;
1538 int seed, path_nbr=0, orco1=0, num;
1542 const int *index_mf_to_mpoly = NULL;
1543 const int *index_mp_to_orig = NULL;
1545 /* 1. check that everything is ok & updated */
1550 pars=psys->particles;
1552 if (part==NULL || pars==NULL || !psys_check_enabled(ob, psys))
1555 if (part->ren_as==PART_DRAW_OB || part->ren_as==PART_DRAW_GR || part->ren_as==PART_DRAW_NOT)
1558 /* 2. start initializing things */
1560 /* last possibility to bail out! */
1561 psmd = psys_get_modifier(ob, psys);
1562 if (!(psmd->modifier.mode & eModifierMode_Render))
1565 sim.scene= re->scene;
1570 if (part->phystype==PART_PHYS_KEYED)
1571 psys_count_keyed_targets(&sim);
1573 totchild=psys->totchild;
1575 /* can happen for disconnected/global hair */
1576 if (part->type==PART_HAIR && !psys->childcache)
1579 if (G.is_rendering == FALSE) { /* preview render */
1580 totchild = (int)((float)totchild * (float)part->disp / 100.0f);
1583 psys->flag |= PSYS_DRAWING;
1585 rng= BLI_rng_new(psys->seed);
1587 totpart=psys->totpart;
1589 memset(&sd, 0, sizeof(ParticleStrandData));
1590 sd.override_uv = -1;
1592 /* 2.1 setup material stff */
1593 ma= give_render_material(re, ob, part->omat);
1595 #if 0 /* XXX old animation system */
1597 calc_ipo(ma->ipo, cfra);
1598 execute_ipo((ID *)ma, ma->ipo);
1600 #endif /* XXX old animation system */
1602 hasize = ma->hasize;
1607 RE_set_customdata_names(obr, &psmd->dm->faceData);
1608 sd.totuv = CustomData_number_of_layers(&psmd->dm->faceData, CD_MTFACE);
1609 sd.totcol = CustomData_number_of_layers(&psmd->dm->faceData, CD_MCOL);
1611 if (ma->texco & TEXCO_UV && sd.totuv) {
1612 sd.uvco = MEM_callocN(sd.totuv * 2 * sizeof(float), "particle_uvs");
1614 if (ma->strand_uvname[0]) {
1615 sd.override_uv = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, ma->strand_uvname);
1616 sd.override_uv -= CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1623 sd.mcol = MEM_callocN(sd.totcol * sizeof(MCol), "particle_mcols");
1625 /* 2.2 setup billboards */
1626 if (part->ren_as == PART_DRAW_BB) {
1627 int first_uv = CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1629 bb.uv[0] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[0]);
1631 bb.uv[0] = CustomData_get_active_layer_index(&psmd->dm->faceData, CD_MTFACE);
1633 bb.uv[1] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[1]);
1635 bb.uv[2] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[2]);
1637 if (first_uv >= 0) {
1638 bb.uv[0] -= first_uv;
1639 bb.uv[1] -= first_uv;
1640 bb.uv[2] -= first_uv;
1643 bb.align = part->bb_align;
1644 bb.anim = part->bb_anim;
1645 bb.lock = part->draw & PART_DRAW_BB_LOCK;
1646 bb.ob = (part->bb_ob ? part->bb_ob : RE_GetCamera(re));
1647 bb.split_offset = part->bb_split_offset;
1648 bb.totnum = totpart+totchild;
1649 bb.uv_split = part->bb_uv_split;
1652 /* 2.5 setup matrices */
1653 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
1654 invert_m4_m4(ob->imat, mat); /* need to be that way, for imat texture */
1655 copy_m3_m4(nmat, ob->imat);
1658 if (psys->flag & PSYS_USE_IMAT) {
1659 /* psys->imat is the original emitter's inverse matrix, ob->obmat is the duplicated object's matrix */
1660 mult_m4_m4m4(duplimat, ob->obmat, psys->imat);
1661 use_duplimat = TRUE;
1664 /* 2.6 setup strand rendering */
1665 if (part->ren_as == PART_DRAW_PATH && psys->pathcache) {
1666 path_nbr=(int)pow(2.0, (double) part->ren_step);
1669 if (!ELEM(ma->material_type, MA_TYPE_HALO, MA_TYPE_WIRE)) {
1670 sd.orco = MEM_mallocN(3*sizeof(float)*(totpart+totchild), "particle orcos");
1671 set_object_orco(re, psys, sd.orco);
1675 if (part->draw & PART_DRAW_REN_ADAPT) {
1677 sd.adapt_pix = (float)part->adapt_pix;
1678 sd.adapt_angle = cosf(DEG2RADF((float)part->adapt_angle));
1681 if (part->draw & PART_DRAW_REN_STRAND) {
1682 strandbuf= RE_addStrandBuffer(obr, (totpart+totchild)*(path_nbr+1));
1684 strandbuf->lay= ob->lay;
1685 copy_m4_m4(strandbuf->winmat, re->winmat);
1686 strandbuf->winx= re->winx;
1687 strandbuf->winy= re->winy;
1688 strandbuf->maxdepth= 2;
1689 strandbuf->adaptcos= cosf(DEG2RADF((float)part->adapt_angle));
1690 strandbuf->overrideuv= sd.override_uv;
1691 strandbuf->minwidth= ma->strand_min;
1693 if (ma->strand_widthfade == 0.0f)
1694 strandbuf->widthfade= -1.0f;
1695 else if (ma->strand_widthfade >= 1.0f)
1696 strandbuf->widthfade= 2.0f - ma->strand_widthfade;
1698 strandbuf->widthfade= 1.0f/MAX2(ma->strand_widthfade, 1e-5f);
1700 if (part->flag & PART_HAIR_BSPLINE)
1701 strandbuf->flag |= R_STRAND_BSPLINE;
1702 if (ma->mode & MA_STR_B_UNITS)
1703 strandbuf->flag |= R_STRAND_B_UNITS;
1705 svert= strandbuf->vert;
1707 if (re->r.mode & R_SPEED)
1708 do_surfacecache = TRUE;
1709 else if ((re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT)) && (re->wrld.ao_gather_method == WO_AOGATHER_APPROX))
1710 if (ma->amb != 0.0f)
1711 do_surfacecache = TRUE;
1713 totface= psmd->dm->getNumTessFaces(psmd->dm);
1714 index_mf_to_mpoly = psmd->dm->getTessFaceDataArray(psmd->dm, CD_ORIGINDEX);
1715 index_mp_to_orig = psmd->dm->getPolyDataArray(psmd->dm, CD_ORIGINDEX);
1716 if (index_mf_to_mpoly == NULL) {
1717 index_mp_to_orig = NULL;
1719 for (a=0; a<totface; a++)
1720 strandbuf->totbound = max_ii(strandbuf->totbound, (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a): a);
1722 strandbuf->totbound++;
1723 strandbuf->bound= MEM_callocN(sizeof(StrandBound)*strandbuf->totbound, "StrandBound");
1724 sbound= strandbuf->bound;
1725 sbound->start= sbound->end= 0;
1730 sd.orco = MEM_mallocN(3 * sizeof(float), "particle orco");
1735 psys->lattice = psys_get_lattice(&sim);
1737 /* 3. start creating renderable things */
1738 for (a=0, pa=pars; a<totpart+totchild; a++, pa++, seed++) {
1739 random = BLI_rng_get_float(rng);
1740 /* setup per particle individual stuff */
1742 if (pa->flag & PARS_UNEXIST) continue;
1744 pa_time=(cfra-pa->time)/pa->lifetime;
1745 pa_birthtime = pa->time;
1746 pa_dietime = pa->dietime;
1748 hasize = ma->hasize;
1750 /* XXX 'tpsys' is alwyas NULL, this code won't run! */
1752 if (tpsys && part->phystype == PART_PHYS_NO) {
1753 tpa = tpsys->particles + pa->num;
1754 psys_particle_on_emitter(psmd, tpart->from, tpa->num, pa->num_dmcache, tpa->fuv, tpa->foffset, co, nor, 0, 0, sd.orco, 0);
1757 psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, co, nor, 0, 0, sd.orco, 0);
1759 /* get uvco & mcol */
1760 num= pa->num_dmcache;
1762 if (num == DMCACHE_NOTFOUND)
1763 if (pa->num < psmd->dm->getNumTessFaces(psmd->dm))
1766 get_particle_uvco_mcol(part->from, psmd->dm, pa->fuv, num, &sd);
1770 r_tilt = 2.0f*(PSYS_FRAND(a) - 0.5f);
1771 r_length = PSYS_FRAND(a+1);
1774 cache = psys->pathcache[a];
1775 max_k = (int)cache->steps;
1778 if (totchild && (part->draw&PART_DRAW_PARENT)==0) continue;
1781 ChildParticle *cpa= psys->child+a-totpart;
1784 cache = psys->childcache[a-totpart];
1786 if (cache->steps < 0)
1789 max_k = (int)cache->steps;
1792 pa_time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
1793 pa_size = psys_get_child_size(psys, cpa, cfra, &pa_time);
1795 r_tilt = 2.0f*(PSYS_FRAND(a + 21) - 0.5f);
1796 r_length = PSYS_FRAND(a + 22);
1801 if (part->childtype == PART_CHILD_FACES) {
1802 psys_particle_on_emitter(psmd,
1803 PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD,
1804 cpa->fuv, cpa->foffset, co, nor, 0, 0, sd.orco, 0);
1807 ParticleData *par = psys->particles + cpa->parent;
1808 psys_particle_on_emitter(psmd, part->from,
1809 par->num, DMCACHE_ISCHILD, par->fuv,
1810 par->foffset, co, nor, 0, 0, sd.orco, 0);
1813 /* get uvco & mcol */
1814 if (part->childtype==PART_CHILD_FACES) {
1815 get_particle_uvco_mcol(PART_FROM_FACE, psmd->dm, cpa->fuv, cpa->num, &sd);
1818 ParticleData *parent = psys->particles + cpa->parent;
1819 num = parent->num_dmcache;
1821 if (num == DMCACHE_NOTFOUND)
1822 if (parent->num < psmd->dm->getNumTessFaces(psmd->dm))
1825 get_particle_uvco_mcol(part->from, psmd->dm, parent->fuv, num, &sd);
1828 do_simplify = psys_render_simplify_params(psys, cpa, simplify);
1831 int orignum = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, cpa->num) : cpa->num;
1833 if (orignum > sbound - strandbuf->bound) {
1834 sbound= strandbuf->bound + orignum;
1835 sbound->start= sbound->end= obr->totstrand;
1840 /* TEXCO_PARTICLE */
1845 /* surface normal shading setup */
1846 if (ma->mode_l & MA_STR_SURFDIFF) {
1847 mul_m3_v3(nmat, nor);
1853 /* strand render setup */
1855 strand= RE_findOrAddStrand(obr, obr->totstrand++);
1856 strand->buffer= strandbuf;
1857 strand->vert= svert;
1858 copy_v3_v3(strand->orco, sd.orco);
1861 float *ssimplify= RE_strandren_get_simplify(obr, strand, 1);
1862 ssimplify[0]= simplify[0];
1863 ssimplify[1]= simplify[1];
1867 float *snor= RE_strandren_get_surfnor(obr, strand, 1);
1868 copy_v3_v3(snor, sd.surfnor);
1871 if (do_surfacecache && num >= 0) {
1872 int *facenum= RE_strandren_get_face(obr, strand, 1);
1877 for (i=0; i<sd.totuv; i++) {
1878 if (i != sd.override_uv) {
1879 float *uv= RE_strandren_get_uv(obr, strand, i, NULL, 1);
1881 uv[0]= sd.uvco[2*i];
1882 uv[1]= sd.uvco[2*i+1];
1887 for (i=0; i<sd.totcol; i++) {
1888 MCol *mc= RE_strandren_get_mcol(obr, strand, i, NULL, 1);
1896 /* strandco computation setup */
1900 for (k=1; k<=path_nbr; k++)
1902 strandlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1906 /* render strands */
1907 for (k=0; k<=path_nbr; k++) {
1911 copy_v3_v3(state.co, (cache+k)->co);
1912 copy_v3_v3(state.vel, (cache+k)->vel);
1918 curlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1919 time= curlen/strandlen;
1921 copy_v3_v3(loc, state.co);
1922 mul_m4_v3(re->viewmat, loc);
1925 copy_v3_v3(svert->co, loc);
1926 svert->strandco= -1.0f + 2.0f*time;
1936 sub_v3_v3v3(loc0, loc1, loc);
1937 add_v3_v3v3(loc0, loc1, loc0);
1939 particle_curve(re, obr, psmd->dm, ma, &sd, loc1, loc0, seed, pa_co);
1946 particle_curve(re, obr, psmd->dm, ma, &sd, loc, loc1, seed, pa_co);
1948 copy_v3_v3(loc1, loc);
1954 /* render normal particles */
1955 if (part->trail_count > 1) {
1956 float length = part->path_end * (1.0f - part->randlength * r_length);
1957 int trail_count = part->trail_count * (1.0f - part->randlength * r_length);
1958 float ct = (part->draw & PART_ABS_PATH_TIME) ? cfra : pa_time;
1959 float dt = length / (trail_count ? (float)trail_count : 1.0f);
1961 /* make sure we have pointcache in memory before getting particle on path */
1962 psys_make_temp_pointcache(ob, psys);
1964 for (i=0; i < trail_count; i++, ct -= dt) {
1965 if (part->draw & PART_ABS_PATH_TIME) {
1966 if (ct < pa_birthtime || ct > pa_dietime)
1969 else if (ct < 0.0f || ct > 1.0f)
1972 state.time = (part->draw & PART_ABS_PATH_TIME) ? -ct : ct;
1973 psys_get_particle_on_path(&sim, a, &state, 1);
1976 mul_m4_v3(psys->parent->obmat, state.co);
1979 mul_m4_v4(duplimat, state.co);
1981 if (part->ren_as == PART_DRAW_BB) {
1983 bb.offset[0] = part->bb_offset[0];
1984 bb.offset[1] = part->bb_offset[1];
1985 bb.size[0] = part->bb_size[0] * pa_size;
1986 if (part->bb_align==PART_BB_VEL) {
1987 float pa_vel = len_v3(state.vel);
1988 float head = part->bb_vel_head*pa_vel;
1989 float tail = part->bb_vel_tail*pa_vel;
1990 bb.size[1] = part->bb_size[1]*pa_size + head + tail;
1991 /* use offset to adjust the particle center. this is relative to size, so need to divide! */
1992 if (bb.size[1] > 0.0f)
1993 bb.offset[1] += (head-tail) / bb.size[1];
1996 bb.size[1] = part->bb_size[1] * pa_size;
1997 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2002 pa_co[0] = (part->draw & PART_ABS_PATH_TIME) ? (ct-pa_birthtime)/(pa_dietime-pa_birthtime) : ct;
2003 pa_co[1] = (float)i/(float)(trail_count-1);
2005 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2010 if (psys_get_particle_state(&sim, a, &state, 0)==0)
2014 mul_m4_v3(psys->parent->obmat, state.co);
2017 mul_m4_v3(duplimat, state.co);
2019 if (part->ren_as == PART_DRAW_BB) {
2021 bb.offset[0] = part->bb_offset[0];
2022 bb.offset[1] = part->bb_offset[1];
2023 bb.size[0] = part->bb_size[0] * pa_size;
2024 if (part->bb_align==PART_BB_VEL) {
2025 float pa_vel = len_v3(state.vel);
2026 float head = part->bb_vel_head*pa_vel;
2027 float tail = part->bb_vel_tail*pa_vel;
2028 bb.size[1] = part->bb_size[1]*pa_size + head + tail;
2029 /* use offset to adjust the particle center. this is relative to size, so need to divide! */
2030 if (bb.size[1] > 0.0f)
2031 bb.offset[1] += (head-tail) / bb.size[1];
2034 bb.size[1] = part->bb_size[1] * pa_size;
2035 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2038 bb.lifetime = pa_dietime-pa_birthtime;
2041 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2048 if (re->test_break(re->tbh))
2052 if (do_surfacecache)
2053 strandbuf->surface= cache_strand_surface(re, obr, psmd->dm, mat, timeoffset);
2056 #if 0 /* XXX old animation system */
2057 if (ma) do_mat_ipo(re->scene, ma);
2058 #endif /* XXX old animation system */
2077 psys->flag &= ~PSYS_DRAWING;
2079 if (psys->lattice) {
2080 end_latt_deform(psys->lattice);
2081 psys->lattice= NULL;
2084 if (path_nbr && (ma->mode_l & MA_TANGENT_STR)==0)
2085 calc_vertexnormals(re, obr, 0, 0);
2090 /* ------------------------------------------------------------------------- */
2092 /* ------------------------------------------------------------------------- */
2094 static void make_render_halos(Render *re, ObjectRen *obr, Mesh *UNUSED(me), int totvert, MVert *mvert, Material *ma, float *orco)
2096 Object *ob= obr->ob;
2098 float xn, yn, zn, nor[3], view[3];
2099 float vec[3], hasize, mat[4][4], imat[3][3];
2100 int a, ok, seed= ma->seed1;
2102 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2103 copy_m3_m4(imat, ob->imat);
2107 for (a=0; a<totvert; a++, mvert++) {
2113 copy_v3_v3(vec, mvert->co);
2114 mul_m4_v3(mat, vec);
2116 if (ma->mode & MA_HALOPUNO) {
2122 nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2123 nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2124 nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2127 copy_v3_v3(view, vec);
2130 zn = dot_v3v3(nor, view);
2131 if (zn>=0.0f) hasize= 0.0f;
2132 else hasize*= zn*zn*zn*zn;
2135 if (orco) har= RE_inithalo(re, obr, ma, vec, NULL, orco, hasize, 0.0, seed);
2136 else har= RE_inithalo(re, obr, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
2137 if (har) har->lay= ob->lay;
2144 static int verghalo(const void *a1, const void *a2)
2146 const HaloRen *har1= *(const HaloRen**)a1;
2147 const HaloRen *har2= *(const HaloRen**)a2;
2149 if (har1->zs < har2->zs) return 1;
2150 else if (har1->zs > har2->zs) return -1;
2154 static void sort_halos(Render *re, int totsort)
2157 HaloRen *har= NULL, **haso;
2160 if (re->tothalo==0) return;
2162 re->sortedhalos= MEM_callocN(sizeof(HaloRen*)*re->tothalo, "sorthalos");
2163 haso= re->sortedhalos;
2165 for (obr=re->objecttable.first; obr; obr=obr->next) {
2166 for (a=0; a<obr->tothalo; a++) {
2167 if ((a & 255)==0) har= obr->bloha[a>>8];
2174 qsort(re->sortedhalos, totsort, sizeof(HaloRen*), verghalo);
2177 /* ------------------------------------------------------------------------- */
2178 /* Displacement Mapping */
2179 /* ------------------------------------------------------------------------- */
2181 static short test_for_displace(Render *re, Object *ob)
2183 /* return 1 when this object uses displacement textures. */
2187 for (i=1; i<=ob->totcol; i++) {
2188 ma=give_render_material(re, ob, i);
2189 /* ma->mapto is ORed total of all mapto channels */
2190 if (ma && (ma->mapto & MAP_DISPLACE)) return 1;
2195 static void displace_render_vert(Render *re, ObjectRen *obr, ShadeInput *shi, VertRen *vr, int vindex, float *scale, float mat[4][4], float imat[3][3])
2198 short texco= shi->mat->texco;
2199 float sample=0, displace[3];
2203 /* shi->co is current render coord, just make sure at least some vector is here */
2204 copy_v3_v3(shi->co, vr->co);
2205 /* vertex normal is used for textures type 'col' and 'var' */
2206 copy_v3_v3(shi->vn, vr->n);
2209 mul_m4_v3(mat, shi->co);
2212 shi->vn[0] = dot_v3v3(imat[0], vr->n);
2213 shi->vn[1] = dot_v3v3(imat[1], vr->n);
2214 shi->vn[2] = dot_v3v3(imat[2], vr->n);
2217 if (texco & TEXCO_UV) {
2219 shi->actuv= obr->actmtface;
2221 for (i=0; (tface=RE_vlakren_get_tface(obr, shi->vlr, i, &name, 0)); i++) {
2222 ShadeInputUV *suv= &shi->uv[i];
2224 /* shi.uv needs scale correction from tface uv */
2225 suv->uv[0]= 2*tface->uv[vindex][0]-1.0f;
2226 suv->uv[1]= 2*tface->uv[vindex][1]-1.0f;
2233 /* set all rendercoords, 'texco' is an ORed value for all textures needed */
2234 if ((texco & TEXCO_ORCO) && (vr->orco)) {
2235 copy_v3_v3(shi->lo, vr->orco);
2237 if (texco & TEXCO_GLOB) {
2238 copy_v3_v3(shi->gl, shi->co);
2239 mul_m4_v3(re->viewinv, shi->gl);
2241 if (texco & TEXCO_NORM) {
2242 copy_v3_v3(shi->orn, shi->vn);
2244 if (texco & TEXCO_REFL) {
2247 if (texco & TEXCO_STRESS) {
2248 float *s= RE_vertren_get_stress(obr, vr, 0);
2252 if (shi->stress<1.0f) shi->stress-= 1.0f;
2253 else shi->stress= (shi->stress-1.0f)/shi->stress;
2259 shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
2261 do_material_tex(shi, re);
2263 //printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2],
2264 //vr->co[0], vr->co[1], vr->co[2]);
2266 displace[0]= shi->displace[0] * scale[0];
2267 displace[1]= shi->displace[1] * scale[1];
2268 displace[2]= shi->displace[2] * scale[2];
2271 mul_m3_v3(imat, displace);
2273 /* 0.5 could become button once? */
2274 vr->co[0] += displace[0];
2275 vr->co[1] += displace[1];
2276 vr->co[2] += displace[2];
2278 //printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]);
2280 /* we just don't do this vertex again, bad luck for other face using same vertex with
2281 * different material... */
2284 /* Pass sample back so displace_face can decide which way to split the quad */
2285 sample = shi->displace[0]*shi->displace[0];
2286 sample += shi->displace[1]*shi->displace[1];
2287 sample += shi->displace[2]*shi->displace[2];
2290 /* Should be sqrt(sample), but I'm only looking for "bigger". Save the cycles. */
2294 static void displace_render_face(Render *re, ObjectRen *obr, VlakRen *vlr, float *scale, float mat[4][4], float imat[3][3])
2298 /* Warning, This is not that nice, and possibly a bit slow,
2299 * however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
2300 memset(&shi, 0, sizeof(ShadeInput));
2301 /* end warning! - Campbell */
2303 /* set up shadeinput struct for multitex() */
2305 /* memset above means we don't need this */
2306 /*shi.osatex= 0;*/ /* signal not to use dx[] and dy[] texture AA vectors */
2309 shi.vlr= vlr; /* current render face */
2310 shi.mat= vlr->mat; /* current input material */
2313 /* TODO, assign these, displacement with new bumpmap is skipped without - campbell */
2315 /* order is not known ? */
2321 /* Displace the verts, flag is set when done */
2323 displace_render_vert(re, obr, &shi, vlr->v1, 0, scale, mat, imat);
2326 displace_render_vert(re, obr, &shi, vlr->v2, 1, scale, mat, imat);
2329 displace_render_vert(re, obr, &shi, vlr->v3, 2, scale, mat, imat);
2333 displace_render_vert(re, obr, &shi, vlr->v4, 3, scale, mat, imat);
2335 /* closest in displace value. This will help smooth edges. */
2336 if (fabsf(vlr->v1->accum - vlr->v3->accum) > fabsf(vlr->v2->accum - vlr->v4->accum)) vlr->flag |= R_DIVIDE_24;
2337 else vlr->flag &= ~R_DIVIDE_24;
2340 /* Recalculate the face normal - if flipped before, flip now */
2342 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2345 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2349 static void do_displacement(Render *re, ObjectRen *obr, float mat[4][4], float imat[3][3])
2353 // float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
2354 float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
2355 int i; //, texflag=0;
2358 /* Object Size with parenting */
2361 mul_v3_v3v3(temp, obt->size, obt->dscale);
2362 scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
2366 /* Clear all flags */
2367 for (i=0; i<obr->totvert; i++) {
2368 vr= RE_findOrAddVert(obr, i);
2372 for (i=0; i<obr->totvlak; i++) {
2373 vlr=RE_findOrAddVlak(obr, i);
2374 displace_render_face(re, obr, vlr, scale, mat, imat);
2377 /* Recalc vertex normals */
2378 calc_vertexnormals(re, obr, 0, 0);
2381 /* ------------------------------------------------------------------------- */
2383 /* ------------------------------------------------------------------------- */
2385 static void init_render_mball(Render *re, ObjectRen *obr)
2387 Object *ob= obr->ob;
2390 VlakRen *vlr, *vlr1;
2392 float *data, *nors, *orco=NULL, mat[4][4], imat[3][3], xn, yn, zn;
2393 int a, need_orco, vlakindex, *index, negative_scale;
2394 ListBase dispbase= {NULL, NULL};
2396 if (ob!=BKE_mball_basis_find(re->scene, ob))
2399 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2400 invert_m4_m4(ob->imat, mat);
2401 copy_m3_m4(imat, ob->imat);
2402 negative_scale = is_negative_m4(mat);
2404 ma= give_render_material(re, ob, 1);
2407 if (ma->texco & TEXCO_ORCO) {
2411 BKE_displist_make_mball_forRender(re->scene, ob, &dispbase);
2418 orco= get_object_orco(re, ob);
2421 /* orco hasn't been found in cache - create new one and add to cache */
2422 orco= BKE_mball_make_orco(ob, &dispbase);
2423 set_object_orco(re, ob, orco);
2427 for (a=0; a<dl->nr; a++, data+=3, nors+=3) {
2429 ver= RE_findOrAddVert(obr, obr->totvert++);
2430 copy_v3_v3(ver->co, data);
2431 mul_m4_v3(mat, ver->co);
2433 /* render normals are inverted */
2439 ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2440 ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2441 ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2442 normalize_v3(ver->n);
2443 //if (ob->transflag & OB_NEG_SCALE) negate_v3(ver->n);
2452 for (a=0; a<dl->parts; a++, index+=4) {
2454 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2455 vlr->v1= RE_findOrAddVert(obr, index[0]);
2456 vlr->v2= RE_findOrAddVert(obr, index[1]);
2457 vlr->v3= RE_findOrAddVert(obr, index[2]);
2461 normal_tri_v3(vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co);
2463 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2466 vlr->flag= ME_SMOOTH;
2469 /* mball -too bad- always has triangles, because quads can be non-planar */
2470 if (index[3] && index[3]!=index[2]) {
2471 vlr1= RE_findOrAddVlak(obr, obr->totvlak++);
2472 vlakindex= vlr1->index;
2474 vlr1->index= vlakindex;
2476 vlr1->v3= RE_findOrAddVert(obr, index[3]);
2478 normal_tri_v3(vlr1->n, vlr1->v1->co, vlr1->v2->co, vlr1->v3->co);
2480 normal_tri_v3(vlr1->n, vlr1->v3->co, vlr1->v2->co, vlr1->v1->co);
2484 /* enforce display lists remade */
2485 BKE_displist_free(&dispbase);
2488 /* ------------------------------------------------------------------------- */
2489 /* Surfaces and Curves */
2490 /* ------------------------------------------------------------------------- */
2492 /* returns amount of vertices added for orco */
2493 static int dl_surf_to_renderdata(ObjectRen *obr, DispList *dl, Material **matar, float *orco, float mat[4][4])
2495 VertRen *v1, *v2, *v3, *v4, *ver;
2496 VlakRen *vlr, *vlr1, *vlr2, *vlr3;
2498 int u, v, orcoret= 0;
2499 int p1, p2, p3, p4, a;
2500 int sizeu, nsizeu, sizev, nsizev;
2501 int startvert, startvlak;
2503 startvert= obr->totvert;
2504 nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr;
2507 for (u = 0; u < sizeu; u++) {
2508 v1 = RE_findOrAddVert(obr, obr->totvert++); /* save this for possible V wrapping */
2509 copy_v3_v3(v1->co, data); data += 3;
2511 v1->orco= orco; orco+= 3; orcoret++;
2513 mul_m4_v3(mat, v1->co);
2515 for (v = 1; v < sizev; v++) {
2516 ver= RE_findOrAddVert(obr, obr->totvert++);
2517 copy_v3_v3(ver->co, data); data += 3;
2519 ver->orco= orco; orco+= 3; orcoret++;
2521 mul_m4_v3(mat, ver->co);
2523 /* if V-cyclic, add extra vertices at end of the row */
2524 if (dl->flag & DL_CYCL_U) {
2525 ver= RE_findOrAddVert(obr, obr->totvert++);
2526 copy_v3_v3(ver->co, v1->co);
2528 ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
2533 /* Done before next loop to get corner vert */
2534 if (dl->flag & DL_CYCL_U) nsizev++;
2535 if (dl->flag & DL_CYCL_V) nsizeu++;
2537 /* if U cyclic, add extra row at end of column */
2538 if (dl->flag & DL_CYCL_V) {
2539 for (v = 0; v < nsizev; v++) {
2540 v1= RE_findOrAddVert(obr, startvert + v);
2541 ver= RE_findOrAddVert(obr, obr->totvert++);
2542 copy_v3_v3(ver->co, v1->co);
2544 ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
2552 startvlak= obr->totvlak;
2554 for (u = 0; u < sizeu - 1; u++) {
2555 p1 = startvert + u * sizev; /* walk through face list */
2560 for (v = 0; v < sizev - 1; v++) {
2561 v1= RE_findOrAddVert(obr, p1);
2562 v2= RE_findOrAddVert(obr, p2);
2563 v3= RE_findOrAddVert(obr, p3);
2564 v4= RE_findOrAddVert(obr, p4);
2566 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2567 vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
2569 normal_quad_v3(n1, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2571 copy_v3_v3(vlr->n, n1);
2573 vlr->mat= matar[ dl->col];
2574 vlr->ec= ME_V1V2+ME_V2V3;
2577 add_v3_v3(v1->n, n1);
2578 add_v3_v3(v2->n, n1);
2579 add_v3_v3(v3->n, n1);
2580 add_v3_v3(v4->n, n1);
2582 p1++; p2++; p3++; p4++;
2585 /* fix normals for U resp. V cyclic faces */
2586 sizeu--; sizev--; /* dec size for face array */
2587 if (dl->flag & DL_CYCL_V) {
2589 for (v = 0; v < sizev; v++) {
2591 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, v));
2592 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, v));
2593 add_v3_v3(vlr1->v1->n, vlr->n);
2594 add_v3_v3(vlr1->v2->n, vlr->n);
2595 add_v3_v3(vlr->v3->n, vlr1->n);
2596 add_v3_v3(vlr->v4->n, vlr1->n);
2599 if (dl->flag & DL_CYCL_U) {
2601 for (u = 0; u < sizeu; u++) {
2603 vlr= RE_findOrAddVlak(obr, UVTOINDEX(u, 0));
2604 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(u, sizev-1));
2605 add_v3_v3(vlr1->v2->n, vlr->n);
2606 add_v3_v3(vlr1->v3->n, vlr->n);
2607 add_v3_v3(vlr->v1->n, vlr1->n);
2608 add_v3_v3(vlr->v4->n, vlr1->n);
2612 /* last vertex is an extra case:
2614 * ^ ()----()----()----()
2616 * u | |(0,n)||(0,0)|
2618 * ()====()====[]====()
2622 * ()----()----()----()
2625 * vertex [] is no longer shared, therefore distribute
2626 * normals of the surrounding faces to all of the duplicates of []
2629 if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U)) {
2630 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m, n) */
2631 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, 0)); /* (0, 0) */
2632 add_v3_v3v3(n1, vlr->n, vlr1->n);
2633 vlr2= RE_findOrAddVlak(obr, UVTOINDEX(0, sizev-1)); /* (0, n) */
2634 add_v3_v3(n1, vlr2->n);
2635 vlr3= RE_findOrAddVlak(obr, UVTOINDEX(sizeu-1, 0)); /* (m, 0) */
2636 add_v3_v3(n1, vlr3->n);
2637 copy_v3_v3(vlr->v3->n, n1);
2638 copy_v3_v3(vlr1->v1->n, n1);
2639 copy_v3_v3(vlr2->v2->n, n1);
2640 copy_v3_v3(vlr3->v4->n, n1);
2642 for (a = startvert; a < obr->totvert; a++) {
2643 ver= RE_findOrAddVert(obr, a);
2644 normalize_v3(ver->n);
2651 static void init_render_dm(DerivedMesh *dm, Render *re, ObjectRen *obr,
2652 int timeoffset, float *orco, float mat[4][4])
2654 Object *ob= obr->ob;
2655 int a, end, totvert, vertofs;
2659 MVert *mvert = NULL;
2662 #ifdef WITH_FREESTYLE
2663 const int *index_mf_to_mpoly = NULL;
2664 const int *index_mp_to_orig = NULL;
2667 /* Curve *cu= ELEM(ob->type, OB_FONT, OB_CURVE) ? ob->data : NULL; */
2669 mvert= dm->getVertArray(dm);
2670 totvert= dm->getNumVerts(dm);
2672 for (a=0; a<totvert; a++, mvert++) {
2673 ver= RE_findOrAddVert(obr, obr->totvert++);
2674 copy_v3_v3(ver->co, mvert->co);
2675 mul_m4_v3(mat, ver->co);
2684 /* store customdata names, because DerivedMesh is freed */
2685 RE_set_customdata_names(obr, &dm->faceData);
2687 /* still to do for keys: the correct local texture coordinate */
2689 /* faces in order of color blocks */
2690 vertofs= obr->totvert - totvert;
2691 for (mat_iter= 0; (mat_iter < ob->totcol || (mat_iter==0 && ob->totcol==0)); mat_iter++) {
2693 ma= give_render_material(re, ob, mat_iter+1);
2694 end= dm->getNumTessFaces(dm);
2695 mface= dm->getTessFaceArray(dm);
2696 #ifdef WITH_FREESTYLE
2697 index_mf_to_mpoly= dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
2698 index_mp_to_orig= dm->getPolyDataArray(dm, CD_ORIGINDEX);
2699 ffa= dm->getPolyDataArray(dm, CD_FREESTYLE_FACE);
2702 for (a=0; a<end; a++, mface++) {
2703 int v1, v2, v3, v4, flag;
2705 if (mface->mat_nr == mat_iter) {
2712 flag= mface->flag & ME_SMOOTH;
2714 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2715 vlr->v1= RE_findOrAddVert(obr, vertofs+v1);
2716 vlr->v2= RE_findOrAddVert(obr, vertofs+v2);
2717 vlr->v3= RE_findOrAddVert(obr, vertofs+v3);
2718 if (v4) vlr->v4= RE_findOrAddVert(obr, vertofs+v4);
2721 /* render normals are inverted in render */
2723 len= normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2725 len= normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2729 vlr->ec= 0; /* mesh edges rendered separately */
2730 #ifdef WITH_FREESTYLE
2732 int index = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a) : a;
2733 vlr->freestyle_face_mark= (ffa[index].flag & FREESTYLE_FACE_MARK) ? 1 : 0;
2735 vlr->freestyle_face_mark= 0;
2739 if (len==0) obr->totvlak--;
2741 CustomDataLayer *layer;
2742 MTFace *mtface, *mtf;
2744 int index, mtfn= 0, mcn= 0;
2747 for (index=0; index<dm->faceData.totlayer; index++) {
2748 layer= &dm->faceData.layers[index];
2751 if (layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
2752 mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
2753 mtface= (MTFace*)layer->data;
2756 else if (layer->type == CD_MCOL && mcn < MAX_MCOL) {
2757 mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
2758 mcol= (MCol*)layer->data;
2759 memcpy(mc, &mcol[a*4], sizeof(MCol)*4);
2768 calc_vertexnormals(re, obr, 0, 0);
2773 static void init_render_surf(Render *re, ObjectRen *obr, int timeoffset)
2775 Object *ob= obr->ob;
2778 ListBase displist= {NULL, NULL};
2781 float *orco=NULL, mat[4][4];
2782 int a, totmat, need_orco=0;
2783 DerivedMesh *dm= NULL;
2789 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2790 invert_m4_m4(ob->imat, mat);
2792 /* material array */
2793 totmat= ob->totcol+1;
2794 matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2796 for (a=0; a<totmat; a++) {
2797 matar[a]= give_render_material(re, ob, a+1);
2799 if (matar[a] && matar[a]->texco & TEXCO_ORCO)
2803 if (ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
2805 BKE_displist_make_surf(re->scene, ob, &displist, &dm, 1, 0);
2809 orco= BKE_displist_make_orco(re->scene, ob, dm, 1);
2811 set_object_orco(re, ob, orco);
2815 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2820 orco= get_object_orco(re, ob);
2823 /* walk along displaylist and create rendervertices/-faces */
2824 for (dl=displist.first; dl; dl=dl->next) {
2825 /* watch out: u ^= y, v ^= x !! */
2826 if (dl->type==DL_SURF)
2827 orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
2831 BKE_displist_free(&displist);
2836 static void init_render_curve(Render *re, ObjectRen *obr, int timeoffset)
2838 Object *ob= obr->ob;
2843 DerivedMesh *dm = NULL;
2844 ListBase disp={NULL, NULL};
2846 float *data, *fp, *orco=NULL;
2847 float n[3], mat[4][4], nmat[4][4];
2848 int nr, startvert, a, b;
2849 int need_orco=0, totmat;
2852 if (ob->type==OB_FONT && cu->str==NULL) return;
2853 else if (ob->type==OB_CURVE && cu->nurb.first==NULL) return;
2855 BKE_displist_make_curveTypes_forRender(re->scene, ob, &disp, &dm, 0);
2857 if (dl==NULL) return;
2859 mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2860 invert_m4_m4(ob->imat, mat);
2862 /* local object -> world space transform for normals */
2863 copy_m4_m4(nmat, mat);
2867 /* material array */
2868 totmat= ob->totcol+1;
2869 matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2871 for (a=0; a<totmat; a++) {
2872 matar[a]= give_render_material(re, ob, a+1);
2874 if (matar[a] && matar[a]->texco & TEXCO_ORCO)
2880 orco= BKE_displist_make_orco(re->scene, ob, dm, 1);
2882 set_object_orco(re, ob, orco);
2886 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2891 orco = get_object_orco(re, ob);
2895 if (dl->col > ob->totcol) {
2898 else if (dl->type==DL_INDEX3) {
2901 startvert= obr->totvert;
2904 for (a=0; a<dl->nr; a++, data+=3) {
2905 ver= RE_findOrAddVert(obr, obr->totvert++);
2906 copy_v3_v3(ver->co, data);
2908 mul_m4_v3(mat, ver->co);
2916 if (timeoffset==0) {
2918 const int startvlak= obr->totvlak;
2922 for (a=0; a<dl->parts; a++, index+=3) {
2923 int v1 = index[0], v2 = index[1], v3 = index[2];
2924 float *co1 = &dl->verts[v1 * 3],
2925 *co2 = &dl->verts[v2 * 3],
2926 *co3 = &dl->verts[v3 * 3];
2928 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2929 vlr->v1= RE_findOrAddVert(obr, startvert + v1);
2930 vlr->v2= RE_findOrAddVert(obr, startvert + v2);
2931 vlr->v3= RE_findOrAddVert(obr, startvert + v3);