9a8bcaabe0ce6305bfb4bb20dd83b5fabf35c1ba
[blender.git] / source / blender / blenkernel / intern / shrinkwrap.c
1 /*
2  * ***** BEGIN GPL LICENSE BLOCK *****
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17  *
18  * The Original Code is Copyright (C) Blender Foundation.
19  * All rights reserved.
20  *
21  * The Original Code is: all of this file.
22  *
23  * Contributor(s): Andr Pinto
24  *
25  * ***** END GPL LICENSE BLOCK *****
26  */
27
28 /** \file blender/blenkernel/intern/shrinkwrap.c
29  *  \ingroup bke
30  */
31
32 #include <string.h>
33 #include <float.h>
34 #include <math.h>
35 #include <memory.h>
36 #include <stdio.h>
37 #include <time.h>
38 #include <assert.h>
39
40 #include "DNA_object_types.h"
41 #include "DNA_modifier_types.h"
42 #include "DNA_meshdata_types.h"
43 #include "DNA_mesh_types.h"
44 #include "DNA_scene_types.h"
45
46 #include "BLI_math.h"
47 #include "BLI_utildefines.h"
48
49 #include "BKE_shrinkwrap.h"
50 #include "BKE_DerivedMesh.h"
51 #include "BKE_lattice.h"
52
53 #include "BKE_deform.h"
54 #include "BKE_mesh.h"
55 #include "BKE_subsurf.h"
56 #include "BKE_mesh.h"
57 #include "BKE_tessmesh.h"
58
59 /* Util macros */
60 #define OUT_OF_MEMORY() ((void)printf("Shrinkwrap: Out of memory\n"))
61
62 /* Benchmark macros */
63 #if !defined(_WIN32) && 0
64
65 #include <sys/time.h>
66
67 #define BENCH(a)        \
68         do {                    \
69                 double _t1, _t2;                                \
70                 struct timeval _tstart, _tend;  \
71                 clock_t _clock_init = clock();  \
72                 gettimeofday ( &_tstart, NULL); \
73                 (a);                                                    \
74                 gettimeofday ( &_tend, NULL);   \
75                 _t1 = ( double ) _tstart.tv_sec + ( double ) _tstart.tv_usec/ ( 1000*1000 );    \
76                 _t2 = ( double )   _tend.tv_sec + ( double )   _tend.tv_usec/ ( 1000*1000 );    \
77                 printf("%s: %fs (real) %fs (cpu)\n", #a, _t2-_t1, (float)(clock()-_clock_init)/CLOCKS_PER_SEC);\
78         } while (0)
79
80 #else
81
82 #define BENCH(a)    (a)
83
84 #endif
85
86 /* get derived mesh */
87 //TODO is anyfunction that does this? returning the derivedFinal without we caring if its in edit mode or not?
88 DerivedMesh *object_get_derived_final(Object *ob)
89 {
90         Mesh *me = ob->data;
91         BMEditMesh *em = me->edit_btmesh;
92
93         if (em) {
94                 DerivedMesh *dm = em->derivedFinal;
95                 return dm;
96         }
97
98         return ob->derivedFinal;
99 }
100
101 /* Space transform */
102 void space_transform_from_matrixs(SpaceTransform *data, float local[4][4], float target[4][4])
103 {
104         float itarget[4][4];
105         invert_m4_m4(itarget, target);
106         mul_serie_m4(data->local2target, itarget, local, NULL, NULL, NULL, NULL, NULL, NULL);
107         invert_m4_m4(data->target2local, data->local2target);
108 }
109
110 void space_transform_apply(const SpaceTransform *data, float co[3])
111 {
112         mul_v3_m4v3(co, ((SpaceTransform *)data)->local2target, co);
113 }
114
115 void space_transform_invert(const SpaceTransform *data, float co[3])
116 {
117         mul_v3_m4v3(co, ((SpaceTransform *)data)->target2local, co);
118 }
119
120 static void space_transform_apply_normal(const SpaceTransform *data, float no[3])
121 {
122         mul_mat3_m4_v3(((SpaceTransform *)data)->local2target, no);
123         normalize_v3(no); /* TODO: could we just determine de scale value from the matrix? */
124 }
125
126 static void space_transform_invert_normal(const SpaceTransform *data, float no[3])
127 {
128         mul_mat3_m4_v3(((SpaceTransform *)data)->target2local, no);
129         normalize_v3(no); /* TODO: could we just determine de scale value from the matrix? */
130 }
131
132 /*
133  * Shrinkwrap to the nearest vertex
134  *
135  * it builds a kdtree of vertexs we can attach to and then
136  * for each vertex performs a nearest vertex search on the tree
137  */
138 static void shrinkwrap_calc_nearest_vertex(ShrinkwrapCalcData *calc)
139 {
140         int i;
141
142         BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
143         BVHTreeNearest nearest  = NULL_BVHTreeNearest;
144
145
146         BENCH(bvhtree_from_mesh_verts(&treeData, calc->target, 0.0, 2, 6));
147         if (treeData.tree == NULL) {
148                 OUT_OF_MEMORY();
149                 return;
150         }
151
152         //Setup nearest
153         nearest.index = -1;
154         nearest.dist = FLT_MAX;
155 #ifndef __APPLE__
156 #pragma omp parallel for default(none) private(i) firstprivate(nearest) shared(treeData,calc) schedule(static)
157 #endif
158         for (i = 0; i < calc->numVerts; ++i) {
159                 float *co = calc->vertexCos[i];
160                 float tmp_co[3];
161                 float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
162                 if (weight == 0.0f) continue;
163
164
165                 //Convert the vertex to tree coordinates
166                 if (calc->vert) {
167                         copy_v3_v3(tmp_co, calc->vert[i].co);
168                 }
169                 else {
170                         copy_v3_v3(tmp_co, co);
171                 }
172                 space_transform_apply(&calc->local2target, tmp_co);
173
174                 //Use local proximity heuristics (to reduce the nearest search)
175                 //
176                 //If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex
177                 //so we can initiate the "nearest.dist" with the expected value to that last hit.
178                 //This will lead in prunning of the search tree.
179                 if (nearest.index != -1)
180                         nearest.dist = len_squared_v3v3(tmp_co, nearest.co);
181                 else
182                         nearest.dist = FLT_MAX;
183
184                 BLI_bvhtree_find_nearest(treeData.tree, tmp_co, &nearest, treeData.nearest_callback, &treeData);
185
186
187                 //Found the nearest vertex
188                 if (nearest.index != -1) {
189                         //Adjusting the vertex weight, so that after interpolating it keeps a certain distance from the nearest position
190                         float dist = sasqrt(nearest.dist);
191                         if (dist > FLT_EPSILON) weight *= (dist - calc->keepDist) / dist;
192
193                         //Convert the coordinates back to mesh coordinates
194                         copy_v3_v3(tmp_co, nearest.co);
195                         space_transform_invert(&calc->local2target, tmp_co);
196
197                         interp_v3_v3v3(co, co, tmp_co, weight); //linear interpolation
198                 }
199         }
200
201         free_bvhtree_from_mesh(&treeData);
202 }
203
204 /*
205  * This function raycast a single vertex and updates the hit if the "hit" is considered valid.
206  * Returns TRUE if "hit" was updated.
207  * Opts control whether an hit is valid or not
208  * Supported options are:
209  *      MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE (front faces hits are ignored)
210  *      MOD_SHRINKWRAP_CULL_TARGET_BACKFACE (back faces hits are ignored)
211  */
212 int normal_projection_project_vertex(char options, const float vert[3], const float dir[3], const SpaceTransform *transf, BVHTree *tree, BVHTreeRayHit *hit, BVHTree_RayCastCallback callback, void *userdata)
213 {
214         float tmp_co[3], tmp_no[3];
215         const float *co, *no;
216         BVHTreeRayHit hit_tmp;
217
218         //Copy from hit (we need to convert hit rays from one space coordinates to the other
219         memcpy(&hit_tmp, hit, sizeof(hit_tmp));
220
221         //Apply space transform (TODO readjust dist)
222         if (transf) {
223                 copy_v3_v3(tmp_co, vert);
224                 space_transform_apply(transf, tmp_co);
225                 co = tmp_co;
226
227                 copy_v3_v3(tmp_no, dir);
228                 space_transform_apply_normal(transf, tmp_no);
229                 no = tmp_no;
230
231                 hit_tmp.dist *= mat4_to_scale(((SpaceTransform *)transf)->local2target);
232         }
233         else {
234                 co = vert;
235                 no = dir;
236         }
237
238         hit_tmp.index = -1;
239
240         BLI_bvhtree_ray_cast(tree, co, no, 0.0f, &hit_tmp, callback, userdata);
241
242         if (hit_tmp.index != -1) {
243                 /* invert the normal first so face culling works on rotated objects */
244                 if (transf) {
245                         space_transform_invert_normal(transf, hit_tmp.no);
246                 }
247
248                 if (options & (MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE | MOD_SHRINKWRAP_CULL_TARGET_BACKFACE)) {
249                         /* apply backface */
250                         const float dot = dot_v3v3(dir, hit_tmp.no);
251                         if (((options & MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE) && dot <= 0.0f) ||
252                             ((options & MOD_SHRINKWRAP_CULL_TARGET_BACKFACE) && dot >= 0.0f))
253                         {
254                                 return FALSE; /* Ignore hit */
255                         }
256                 }
257
258                 if (transf) {
259                         /* Inverting space transform (TODO make coeherent with the initial dist readjust) */
260                         space_transform_invert(transf, hit_tmp.co);
261                         hit_tmp.dist = len_v3v3((float *)vert, hit_tmp.co);
262                 }
263
264                 memcpy(hit, &hit_tmp, sizeof(hit_tmp));
265                 return TRUE;
266         }
267         return FALSE;
268 }
269
270
271 static void shrinkwrap_calc_normal_projection(ShrinkwrapCalcData *calc)
272 {
273         int i;
274
275         //Options about projection direction
276         const char use_normal   = calc->smd->shrinkOpts;
277         float proj_axis[3]      = {0.0f, 0.0f, 0.0f};
278
279         //Raycast and tree stuff
280         BVHTreeRayHit hit;
281         BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
282
283         //auxiliary target
284         DerivedMesh *auxMesh    = NULL;
285         BVHTreeFromMesh auxData = NULL_BVHTreeFromMesh;
286         SpaceTransform local2aux;
287
288         //If the user doesn't allows to project in any direction of projection axis
289         //then theres nothing todo.
290         if ((use_normal & (MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR | MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR)) == 0)
291                 return;
292
293
294         //Prepare data to retrieve the direction in which we should project each vertex
295         if (calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) {
296                 if (calc->vert == NULL) return;
297         }
298         else {
299                 //The code supports any axis that is a combination of X,Y,Z
300                 //although currently UI only allows to set the 3 different axis
301                 if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_X_AXIS) proj_axis[0] = 1.0f;
302                 if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Y_AXIS) proj_axis[1] = 1.0f;
303                 if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Z_AXIS) proj_axis[2] = 1.0f;
304
305                 normalize_v3(proj_axis);
306
307                 //Invalid projection direction
308                 if (dot_v3v3(proj_axis, proj_axis) < FLT_EPSILON)
309                         return; 
310         }
311
312         if (calc->smd->auxTarget) {
313                 auxMesh = object_get_derived_final(calc->smd->auxTarget);
314                 if (!auxMesh)
315                         return;
316                 SPACE_TRANSFORM_SETUP(&local2aux, calc->ob, calc->smd->auxTarget);
317         }
318
319         //After sucessufuly build the trees, start projection vertexs
320         if (bvhtree_from_mesh_faces(&treeData, calc->target, 0.0, 4, 6) &&
321             (auxMesh == NULL || bvhtree_from_mesh_faces(&auxData, auxMesh, 0.0, 4, 6)))
322         {
323
324 #ifndef __APPLE__
325 #pragma omp parallel for private(i,hit) schedule(static)
326 #endif
327                 for (i = 0; i < calc->numVerts; ++i) {
328                         float *co = calc->vertexCos[i];
329                         float tmp_co[3], tmp_no[3];
330                         float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
331
332                         if (weight == 0.0f) continue;
333
334                         if (calc->vert) {
335                                 /* calc->vert contains verts from derivedMesh  */
336                                 /* this coordinated are deformed by vertexCos only for normal projection (to get correct normals) */
337                                 /* for other cases calc->varts contains undeformed coordinates and vertexCos should be used */
338                                 if (calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) {
339                                         copy_v3_v3(tmp_co, calc->vert[i].co);
340                                         normal_short_to_float_v3(tmp_no, calc->vert[i].no);
341                                 }
342                                 else {
343                                         copy_v3_v3(tmp_co, co);
344                                         copy_v3_v3(tmp_no, proj_axis);
345                                 }
346                         }
347                         else {
348                                 copy_v3_v3(tmp_co, co);
349                                 copy_v3_v3(tmp_no, proj_axis);
350                         }
351
352
353                         hit.index = -1;
354                         hit.dist = 10000.0f; //TODO: we should use FLT_MAX here, but sweepsphere code isn't prepared for that
355
356                         //Project over positive direction of axis
357                         if (use_normal & MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR) {
358
359                                 if (auxData.tree)
360                                         normal_projection_project_vertex(0, tmp_co, tmp_no, &local2aux, auxData.tree, &hit, auxData.raycast_callback, &auxData);
361
362                                 normal_projection_project_vertex(calc->smd->shrinkOpts, tmp_co, tmp_no, &calc->local2target, treeData.tree, &hit, treeData.raycast_callback, &treeData);
363                         }
364
365                         //Project over negative direction of axis
366                         if (use_normal & MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR && hit.index == -1) {
367                                 float inv_no[3];
368                                 negate_v3_v3(inv_no, tmp_no);
369
370                                 if (auxData.tree)
371                                         normal_projection_project_vertex(0, tmp_co, inv_no, &local2aux, auxData.tree, &hit, auxData.raycast_callback, &auxData);
372
373                                 normal_projection_project_vertex(calc->smd->shrinkOpts, tmp_co, inv_no, &calc->local2target, treeData.tree, &hit, treeData.raycast_callback, &treeData);
374                         }
375
376
377                         if (hit.index != -1) {
378                                 madd_v3_v3v3fl(hit.co, hit.co, tmp_no, calc->keepDist);
379                                 interp_v3_v3v3(co, co, hit.co, weight);
380                         }
381                 }
382         }
383
384         //free data structures
385         free_bvhtree_from_mesh(&treeData);
386         free_bvhtree_from_mesh(&auxData);
387 }
388
389 /*
390  * Shrinkwrap moving vertexs to the nearest surface point on the target
391  *
392  * it builds a BVHTree from the target mesh and then performs a
393  * NN matches for each vertex
394  */
395 static void shrinkwrap_calc_nearest_surface_point(ShrinkwrapCalcData *calc)
396 {
397         int i;
398
399         BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
400         BVHTreeNearest nearest  = NULL_BVHTreeNearest;
401
402         //Create a bvh-tree of the given target
403         BENCH(bvhtree_from_mesh_faces(&treeData, calc->target, 0.0, 2, 6));
404         if (treeData.tree == NULL) {
405                 OUT_OF_MEMORY();
406                 return;
407         }
408
409         //Setup nearest
410         nearest.index = -1;
411         nearest.dist = FLT_MAX;
412
413
414         //Find the nearest vertex
415 #ifndef __APPLE__
416 #pragma omp parallel for default(none) private(i) firstprivate(nearest) shared(calc,treeData) schedule(static)
417 #endif
418         for (i = 0; i < calc->numVerts; ++i) {
419                 float *co = calc->vertexCos[i];
420                 float tmp_co[3];
421                 float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
422                 if (weight == 0.0f) continue;
423
424                 //Convert the vertex to tree coordinates
425                 if (calc->vert) {
426                         copy_v3_v3(tmp_co, calc->vert[i].co);
427                 }
428                 else {
429                         copy_v3_v3(tmp_co, co);
430                 }
431                 space_transform_apply(&calc->local2target, tmp_co);
432
433                 //Use local proximity heuristics (to reduce the nearest search)
434                 //
435                 //If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex
436                 //so we can initiate the "nearest.dist" with the expected value to that last hit.
437                 //This will lead in prunning of the search tree.
438                 if (nearest.index != -1)
439                         nearest.dist = len_squared_v3v3(tmp_co, nearest.co);
440                 else
441                         nearest.dist = FLT_MAX;
442
443                 BLI_bvhtree_find_nearest(treeData.tree, tmp_co, &nearest, treeData.nearest_callback, &treeData);
444
445                 //Found the nearest vertex
446                 if (nearest.index != -1) {
447                         if (calc->smd->shrinkOpts & MOD_SHRINKWRAP_KEEP_ABOVE_SURFACE) {
448                                 //Make the vertex stay on the front side of the face
449                                 madd_v3_v3v3fl(tmp_co, nearest.co, nearest.no, calc->keepDist);
450                         }
451                         else {
452                                 //Adjusting the vertex weight, so that after interpolating it keeps a certain distance from the nearest position
453                                 float dist = sasqrt(nearest.dist);
454                                 if (dist > FLT_EPSILON)
455                                         interp_v3_v3v3(tmp_co, tmp_co, nearest.co, (dist - calc->keepDist) / dist);  //linear interpolation
456                                 else
457                                         copy_v3_v3(tmp_co, nearest.co);
458                         }
459
460                         //Convert the coordinates back to mesh coordinates
461                         space_transform_invert(&calc->local2target, tmp_co);
462                         interp_v3_v3v3(co, co, tmp_co, weight); //linear interpolation
463                 }
464         }
465
466         free_bvhtree_from_mesh(&treeData);
467 }
468
469 /* Main shrinkwrap function */
470 void shrinkwrapModifier_deform(ShrinkwrapModifierData *smd, Object *ob, DerivedMesh *dm, float (*vertexCos)[3], int numVerts)
471 {
472
473         DerivedMesh *ss_mesh    = NULL;
474         ShrinkwrapCalcData calc = NULL_ShrinkwrapCalcData;
475
476         //remove loop dependencies on derived meshs (TODO should this be done elsewhere?)
477         if (smd->target == ob) smd->target = NULL;
478         if (smd->auxTarget == ob) smd->auxTarget = NULL;
479
480
481         //Configure Shrinkwrap calc data
482         calc.smd = smd;
483         calc.ob = ob;
484         calc.numVerts = numVerts;
485         calc.vertexCos = vertexCos;
486
487         //DeformVertex
488         calc.vgroup = defgroup_name_index(calc.ob, calc.smd->vgroup_name);
489         if (dm) {
490                 calc.dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
491         }
492         else if (calc.ob->type == OB_LATTICE) {
493                 calc.dvert = BKE_lattice_deform_verts_get(calc.ob);
494         }
495
496
497         if (smd->target) {
498                 calc.target = object_get_derived_final(smd->target);
499
500                 //TODO there might be several "bugs" on non-uniform scales matrixs
501                 //because it will no longer be nearest surface, not sphere projection
502                 //because space has been deformed
503                 SPACE_TRANSFORM_SETUP(&calc.local2target, ob, smd->target);
504
505                 //TODO: smd->keepDist is in global units.. must change to local
506                 calc.keepDist = smd->keepDist;
507         }
508
509
510
511         calc.vgroup = defgroup_name_index(calc.ob, smd->vgroup_name);
512
513         if (dm != NULL && smd->shrinkType == MOD_SHRINKWRAP_PROJECT) {
514                 //Setup arrays to get vertexs positions, normals and deform weights
515                 calc.vert   = dm->getVertDataArray(dm, CD_MVERT);
516                 calc.dvert  = dm->getVertDataArray(dm, CD_MDEFORMVERT);
517
518                 //Using vertexs positions/normals as if a subsurface was applied 
519                 if (smd->subsurfLevels) {
520                         SubsurfModifierData ssmd = {{NULL}};
521                         ssmd.subdivType = ME_CC_SUBSURF;        //catmull clark
522                         ssmd.levels     = smd->subsurfLevels;   //levels
523
524                         ss_mesh = subsurf_make_derived_from_derived(dm, &ssmd, NULL, (ob->mode & OB_MODE_EDIT) ? SUBSURF_IN_EDIT_MODE : 0);
525
526                         if (ss_mesh) {
527                                 calc.vert = ss_mesh->getVertDataArray(ss_mesh, CD_MVERT);
528                                 if (calc.vert) {
529                                         /* TRICKY: this code assumes subsurface will have the transformed original vertices
530                                          * in their original order at the end of the vert array. */
531                                         calc.vert = calc.vert + ss_mesh->getNumVerts(ss_mesh) - dm->getNumVerts(dm);
532                                 }
533                         }
534
535                         //Just to make sure we are not leaving any memory behind
536                         assert(ssmd.emCache == NULL);
537                         assert(ssmd.mCache == NULL);
538                 }
539         }
540
541         //Projecting target defined - lets work!
542         if (calc.target) {
543                 switch (smd->shrinkType) {
544                         case MOD_SHRINKWRAP_NEAREST_SURFACE:
545                                 BENCH(shrinkwrap_calc_nearest_surface_point(&calc));
546                                 break;
547
548                         case MOD_SHRINKWRAP_PROJECT:
549                                 BENCH(shrinkwrap_calc_normal_projection(&calc));
550                                 break;
551
552                         case MOD_SHRINKWRAP_NEAREST_VERTEX:
553                                 BENCH(shrinkwrap_calc_nearest_vertex(&calc));
554                                 break;
555                 }
556         }
557
558         //free memory
559         if (ss_mesh)
560                 ss_mesh->release(ss_mesh);
561 }
562