Ocean baking was using uninitialized memory, but further investigation it was calcula...
[blender.git] / source / blender / render / intern / source / convertblender.c
1 /*
2  * ***** BEGIN GPL LICENSE BLOCK *****
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17  *
18  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
19  * All rights reserved.
20  *
21  * Contributors: 2004/2005/2006 Blender Foundation, full recode
22  *
23  * ***** END GPL LICENSE BLOCK *****
24  */
25
26 /** \file blender/render/intern/source/convertblender.c
27  *  \ingroup render
28  */
29
30
31 #include <math.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <string.h>
35 #include <limits.h>
36
37 #include "MEM_guardedalloc.h"
38
39 #include "BLI_math.h"
40 #include "BLI_blenlib.h"
41 #include "BLI_utildefines.h"
42 #include "BLI_rand.h"
43 #include "BLI_memarena.h"
44 #include "BLI_ghash.h"
45
46 #include "DNA_armature_types.h"
47 #include "DNA_camera_types.h"
48 #include "DNA_material_types.h"
49 #include "DNA_curve_types.h"
50 #include "DNA_effect_types.h"
51 #include "DNA_group_types.h"
52 #include "DNA_lamp_types.h"
53 #include "DNA_image_types.h"
54 #include "DNA_lattice_types.h"
55 #include "DNA_mesh_types.h"
56 #include "DNA_meshdata_types.h"
57 #include "DNA_meta_types.h"
58 #include "DNA_modifier_types.h"
59 #include "DNA_node_types.h"
60 #include "DNA_object_types.h"
61 #include "DNA_object_force.h"
62 #include "DNA_object_fluidsim.h"
63 #include "DNA_particle_types.h"
64 #include "DNA_scene_types.h"
65 #include "DNA_texture_types.h"
66 #include "DNA_view3d_types.h"
67
68 #include "BKE_anim.h"
69 #include "BKE_armature.h"
70 #include "BKE_action.h"
71 #include "BKE_curve.h"
72 #include "BKE_customdata.h"
73 #include "BKE_colortools.h"
74 #include "BKE_constraint.h"
75 #include "BKE_displist.h"
76 #include "BKE_deform.h"
77 #include "BKE_DerivedMesh.h"
78 #include "BKE_effect.h"
79 #include "BKE_global.h"
80 #include "BKE_group.h"
81 #include "BKE_key.h"
82 #include "BKE_ipo.h"
83 #include "BKE_image.h"
84 #include "BKE_lattice.h"
85 #include "BKE_library.h"
86 #include "BKE_material.h"
87 #include "BKE_main.h"
88 #include "BKE_mball.h"
89 #include "BKE_mesh.h"
90 #include "BKE_modifier.h"
91 #include "BKE_node.h"
92 #include "BKE_object.h"
93 #include "BKE_particle.h"
94 #include "BKE_scene.h"
95 #include "BKE_subsurf.h"
96 #include "BKE_texture.h"
97
98 #include "BKE_world.h"
99
100 #include "PIL_time.h"
101 #include "IMB_imbuf_types.h"
102
103 #include "envmap.h"
104 #include "occlusion.h"
105 #include "pointdensity.h"
106 #include "voxeldata.h"
107 #include "render_types.h"
108 #include "rendercore.h"
109 #include "renderdatabase.h"
110 #include "renderpipeline.h"
111 #include "shadbuf.h"
112 #include "shading.h"
113 #include "strand.h"
114 #include "texture.h"
115 #include "volume_precache.h"
116 #include "sss.h"
117 #include "strand.h"
118 #include "zbuf.h"
119 #include "sunsky.h"
120
121
122 /* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
123 /* or for checking vertex normal flips */
124 #define FLT_EPSILON10 1.19209290e-06F
125
126 /* ------------------------------------------------------------------------- */
127
128 /* Stuff for stars. This sits here because it uses gl-things. Part of
129 this code may move down to the converter.  */
130 /* ------------------------------------------------------------------------- */
131 /* this is a bad beast, since it is misused by the 3d view drawing as well. */
132
133 static HaloRen *initstar(Render *re, ObjectRen *obr, float *vec, float hasize)
134 {
135         HaloRen *har;
136         float hoco[4];
137         
138         projectverto(vec, re->winmat, hoco);
139         
140         har= RE_findOrAddHalo(obr, obr->tothalo++);
141         
142         /* projectvert is done in function zbufvlaggen again, because of parts */
143         copy_v3_v3(har->co, vec);
144         har->hasize= hasize;
145         
146         har->zd= 0.0;
147         
148         return har;
149 }
150
151 /* there must be a 'fixed' amount of stars generated between
152 *         near and far
153 * all stars must by preference lie on the far and solely
154 *        differ in clarity/color
155 */
156
157 void RE_make_stars(Render *re, Scene *scenev3d, void (*initfunc)(void),
158                                    void (*vertexfunc)(float*),  void (*termfunc)(void))
159 {
160         extern unsigned char hash[512];
161         ObjectRen *obr= NULL;
162         World *wrld= NULL;
163         HaloRen *har;
164         Scene *scene;
165         Object *camera;
166         Camera *cam;
167         double dblrand, hlfrand;
168         float vec[4], fx, fy, fz;
169         float fac, starmindist, clipend;
170         float mat[4][4], stargrid, maxrand, maxjit, force, alpha;
171         int x, y, z, sx, sy, sz, ex, ey, ez, done = 0;
172         unsigned int totstar= 0;
173         
174         if(initfunc) {
175                 scene= scenev3d;
176                 wrld= scene->world;
177         }
178         else {
179                 scene= re->scene;
180                 wrld= &(re->wrld);
181         }
182
183         stargrid = wrld->stardist;                      /* distance between stars */
184         maxrand = 2.0;                                          /* amount a star can be shifted (in grid units) */
185         maxjit = (wrld->starcolnoise);          /* amount a color is being shifted */
186         
187         /* size of stars */
188         force = ( wrld->starsize );
189         
190         /* minimal free space (starting at camera) */
191         starmindist= wrld->starmindist;
192         
193         if (stargrid <= 0.10f) return;
194         
195         if (re) re->flag |= R_HALO;
196         else stargrid *= 1.0f;                          /* then it draws fewer */
197         
198         if(re) invert_m4_m4(mat, re->viewmat);
199         else unit_m4(mat);
200         
201         /* BOUNDING BOX CALCULATION
202                 * bbox goes from z = loc_near_var | loc_far_var,
203                 * x = -z | +z,
204                 * y = -z | +z
205                 */
206
207         camera= re ? RE_GetCamera(re) : scene->camera;
208
209         if(camera==NULL || camera->type != OB_CAMERA)
210                 return;
211
212         cam = camera->data;
213         clipend = cam->clipend;
214         
215         /* convert to grid coordinates */
216         
217         sx = ((mat[3][0] - clipend) / stargrid) - maxrand;
218         sy = ((mat[3][1] - clipend) / stargrid) - maxrand;
219         sz = ((mat[3][2] - clipend) / stargrid) - maxrand;
220         
221         ex = ((mat[3][0] + clipend) / stargrid) + maxrand;
222         ey = ((mat[3][1] + clipend) / stargrid) + maxrand;
223         ez = ((mat[3][2] + clipend) / stargrid) + maxrand;
224         
225         dblrand = maxrand * stargrid;
226         hlfrand = 2.0 * dblrand;
227         
228         if (initfunc) {
229                 initfunc();     
230         }
231
232         if(re) /* add render object for stars */
233                 obr= RE_addRenderObject(re, NULL, NULL, 0, 0, 0);
234         
235         for (x = sx, fx = sx * stargrid; x <= ex; x++, fx += stargrid) {
236                 for (y = sy, fy = sy * stargrid; y <= ey ; y++, fy += stargrid) {
237                         for (z = sz, fz = sz * stargrid; z <= ez; z++, fz += stargrid) {
238
239                                 BLI_srand((hash[z & 0xff] << 24) + (hash[y & 0xff] << 16) + (hash[x & 0xff] << 8));
240                                 vec[0] = fx + (hlfrand * BLI_drand()) - dblrand;
241                                 vec[1] = fy + (hlfrand * BLI_drand()) - dblrand;
242                                 vec[2] = fz + (hlfrand * BLI_drand()) - dblrand;
243                                 vec[3] = 1.0;
244                                 
245                                 if (vertexfunc) {
246                                         if(done & 1) vertexfunc(vec);
247                                         done++;
248                                 }
249                                 else {
250                                         mul_m4_v3(re->viewmat, vec);
251                                         
252                                         /* in vec are global coordinates
253                                         * calculate distance to camera
254                                         * and using that, define the alpha
255                                         */
256                                         
257                                         {
258                                                 float tx, ty, tz;
259                                                 
260                                                 tx = vec[0];
261                                                 ty = vec[1];
262                                                 tz = vec[2];
263                                                 
264                                                 alpha = sqrt(tx * tx + ty * ty + tz * tz);
265                                                 
266                                                 if (alpha >= clipend) alpha = 0.0;
267                                                 else if (alpha <= starmindist) alpha = 0.0;
268                                                 else if (alpha <= 2.0f * starmindist) {
269                                                         alpha = (alpha - starmindist) / starmindist;
270                                                 } else {
271                                                         alpha -= 2.0f * starmindist;
272                                                         alpha /= (clipend - 2.0f * starmindist);
273                                                         alpha = 1.0f - alpha;
274                                                 }
275                                         }
276                                         
277                                         
278                                         if (alpha != 0.0f) {
279                                                 fac = force * BLI_drand();
280                                                 
281                                                 har = initstar(re, obr, vec, fac);
282                                                 
283                                                 if (har) {
284                                                         har->alfa = sqrt(sqrt(alpha));
285                                                         har->add= 255;
286                                                         har->r = har->g = har->b = 1.0;
287                                                         if (maxjit) {
288                                                                 har->r += ((maxjit * BLI_drand()) ) - maxjit;
289                                                                 har->g += ((maxjit * BLI_drand()) ) - maxjit;
290                                                                 har->b += ((maxjit * BLI_drand()) ) - maxjit;
291                                                         }
292                                                         har->hard = 32;
293                                                         har->lay= -1;
294                                                         har->type |= HA_ONLYSKY;
295                                                         done++;
296                                                 }
297                                         }
298                                 }
299
300                                 /* break out of the loop if generating stars takes too long */
301                                 if(re && !(totstar % 1000000)) {
302                                         if(re->test_break(re->tbh)) {
303                                                 x= ex + 1;
304                                                 y= ey + 1;
305                                                 z= ez + 1;
306                                         }
307                                 }
308                                 
309                                 totstar++;
310                         }
311                         /* do not call blender_test_break() here, since it is used in UI as well, confusing the callback system */
312                         /* main cause is G.afbreek of course, a global again... (ton) */
313                 }
314         }
315         if (termfunc) termfunc();
316
317         if(obr)
318                 re->tothalo += obr->tothalo;
319 }
320
321
322 /* ------------------------------------------------------------------------- */
323 /* tool functions/defines for ad hoc simplification and possible future 
324    cleanup      */
325 /* ------------------------------------------------------------------------- */
326
327 #define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
328 /*
329
330 NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
331         
332 ^       ()----p4----p3----()
333 |       |     |     |     |
334 u       |     |  F1 |  F2 |
335         |     |     |     |
336         ()----p1----p2----()
337                    v ->
338 */
339
340 /* ------------------------------------------------------------------------- */
341
342 static void split_v_renderfaces(ObjectRen *obr, int startvlak, int UNUSED(startvert), int UNUSED(usize), int vsize, int uIndex, int UNUSED(cyclu), int cyclv)
343 {
344         int vLen = vsize-1+(!!cyclv);
345         int v;
346
347         for (v=0; v<vLen; v++) {
348                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v);
349                 VertRen *vert = RE_vertren_copy(obr, vlr->v2);
350
351                 if (cyclv) {
352                         vlr->v2 = vert;
353
354                         if (v==vLen-1) {
355                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + 0);
356                                 vlr->v1 = vert;
357                         } else {
358                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
359                                 vlr->v1 = vert;
360                         }
361                 } else {
362                         vlr->v2 = vert;
363
364                         if (v<vLen-1) {
365                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
366                                 vlr->v1 = vert;
367                         }
368
369                         if (v==0) {
370                                 vlr->v1 = RE_vertren_copy(obr, vlr->v1);
371                         } 
372                 }
373         }
374 }
375
376 /* ------------------------------------------------------------------------- */
377 /* Stress, tangents and normals                                              */
378 /* ------------------------------------------------------------------------- */
379
380 static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
381 {
382         float len= len_v3v3(v1->co, v2->co)/len_v3v3(v1->orco, v2->orco);
383         float *acc;
384         
385         acc= accum + 2*v1->index;
386         acc[0]+= len;
387         acc[1]+= 1.0f;
388         
389         acc= accum + 2*v2->index;
390         acc[0]+= len;
391         acc[1]+= 1.0f;
392 }
393
394 static void calc_edge_stress(Render *UNUSED(re), ObjectRen *obr, Mesh *me)
395 {
396         float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
397         int a;
398         
399         if(obr->totvert==0) return;
400         
401         mesh_get_texspace(me, loc, NULL, size);
402         
403         accum= MEM_callocN(2*sizeof(float)*obr->totvert, "temp accum for stress");
404         
405         /* de-normalize orco */
406         for(a=0; a<obr->totvert; a++) {
407                 VertRen *ver= RE_findOrAddVert(obr, a);
408                 if(ver->orco) {
409                         ver->orco[0]= ver->orco[0]*size[0] +loc[0];
410                         ver->orco[1]= ver->orco[1]*size[1] +loc[1];
411                         ver->orco[2]= ver->orco[2]*size[2] +loc[2];
412                 }
413         }
414         
415         /* add stress values */
416         accumoffs= accum;       /* so we can use vertex index */
417         for(a=0; a<obr->totvlak; a++) {
418                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
419
420                 if(vlr->v1->orco && vlr->v4) {
421                         calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
422                         calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
423                         calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
424                         if(vlr->v4) {
425                                 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
426                                 calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
427                                 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
428                         }
429                 }
430         }
431         
432         for(a=0; a<obr->totvert; a++) {
433                 VertRen *ver= RE_findOrAddVert(obr, a);
434                 if(ver->orco) {
435                         /* find stress value */
436                         acc= accumoffs + 2*ver->index;
437                         if(acc[1]!=0.0f)
438                                 acc[0]/= acc[1];
439                         stress= RE_vertren_get_stress(obr, ver, 1);
440                         *stress= *acc;
441                         
442                         /* restore orcos */
443                         ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
444                         ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
445                         ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
446                 }
447         }
448         
449         MEM_freeN(accum);
450 }
451
452 /* gets tangent from tface or orco */
453 static void calc_tangent_vector(ObjectRen *obr, VertexTangent **vtangents, MemArena *arena, VlakRen *vlr, int do_nmap_tangent, int do_tangent)
454 {
455         MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
456         VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
457         float tang[3], *tav;
458         float *uv1, *uv2, *uv3, *uv4;
459         float uv[4][2];
460         
461         if(tface) {
462                 uv1= tface->uv[0];
463                 uv2= tface->uv[1];
464                 uv3= tface->uv[2];
465                 uv4= tface->uv[3];
466         }
467         else if(v1->orco) {
468                 uv1= uv[0]; uv2= uv[1]; uv3= uv[2]; uv4= uv[3];
469                 map_to_sphere( &uv[0][0], &uv[0][1],v1->orco[0], v1->orco[1], v1->orco[2]);
470                 map_to_sphere( &uv[1][0], &uv[1][1],v2->orco[0], v2->orco[1], v2->orco[2]);
471                 map_to_sphere( &uv[2][0], &uv[2][1],v3->orco[0], v3->orco[1], v3->orco[2]);
472                 if(v4)
473                         map_to_sphere( &uv[3][0], &uv[3][1],v4->orco[0], v4->orco[1], v4->orco[2]);
474         }
475         else return;
476
477         tangent_from_uv(uv1, uv2, uv3, v1->co, v2->co, v3->co, vlr->n, tang);
478         
479         if(do_tangent) {
480                 tav= RE_vertren_get_tangent(obr, v1, 1);
481                 add_v3_v3(tav, tang);
482                 tav= RE_vertren_get_tangent(obr, v2, 1);
483                 add_v3_v3(tav, tang);
484                 tav= RE_vertren_get_tangent(obr, v3, 1);
485                 add_v3_v3(tav, tang);
486         }
487         
488         if(do_nmap_tangent) {
489                 sum_or_add_vertex_tangent(arena, &vtangents[v1->index], tang, uv1);
490                 sum_or_add_vertex_tangent(arena, &vtangents[v2->index], tang, uv2);
491                 sum_or_add_vertex_tangent(arena, &vtangents[v3->index], tang, uv3);
492         }
493
494         if(v4) {
495                 tangent_from_uv(uv1, uv3, uv4, v1->co, v3->co, v4->co, vlr->n, tang);
496                 
497                 if(do_tangent) {
498                         tav= RE_vertren_get_tangent(obr, v1, 1);
499                         add_v3_v3(tav, tang);
500                         tav= RE_vertren_get_tangent(obr, v3, 1);
501                         add_v3_v3(tav, tang);
502                         tav= RE_vertren_get_tangent(obr, v4, 1);
503                         add_v3_v3(tav, tang);
504                 }
505
506                 if(do_nmap_tangent) {
507                         sum_or_add_vertex_tangent(arena, &vtangents[v1->index], tang, uv1);
508                         sum_or_add_vertex_tangent(arena, &vtangents[v3->index], tang, uv3);
509                         sum_or_add_vertex_tangent(arena, &vtangents[v4->index], tang, uv4);
510                 }
511         }
512 }
513
514
515
516 /****************************************************************
517 ************ tangent space generation interface *****************
518 ****************************************************************/
519
520 typedef struct
521 {
522         ObjectRen *obr;
523
524 } SRenderMeshToTangent;
525
526 // interface
527 #include "mikktspace.h"
528
529 static int GetNumFaces(const SMikkTSpaceContext * pContext)
530 {
531         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
532         return pMesh->obr->totvlak;
533 }
534
535 static int GetNumVertsOfFace(const SMikkTSpaceContext * pContext, const int face_num)
536 {
537         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
538         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
539         return vlr->v4!=NULL ? 4 : 3;
540 }
541
542 static void GetPosition(const SMikkTSpaceContext * pContext, float fPos[], const int face_num, const int vert_index)
543 {
544         //assert(vert_index>=0 && vert_index<4);
545         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
546         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
547         const float *co= (&vlr->v1)[vert_index]->co;
548         copy_v3_v3(fPos, co);
549 }
550
551 static void GetTextureCoordinate(const SMikkTSpaceContext * pContext, float fUV[], const int face_num, const int vert_index)
552 {
553         //assert(vert_index>=0 && vert_index<4);
554         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
555         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
556         MTFace *tface= RE_vlakren_get_tface(pMesh->obr, vlr, pMesh->obr->actmtface, NULL, 0);
557         const float *coord;
558         
559         if(tface != NULL)       {
560                 coord= tface->uv[vert_index];
561                 fUV[0]= coord[0]; fUV[1]= coord[1];
562         }
563         else if((coord= (&vlr->v1)[vert_index]->orco)) {
564                 map_to_sphere(&fUV[0], &fUV[1], coord[0], coord[1], coord[2]);
565         }
566         else { /* else we get un-initialized value, 0.0 ok default? */
567                 fUV[0]= fUV[1]= 0.0f;
568         }
569 }
570
571 static void GetNormal(const SMikkTSpaceContext * pContext, float fNorm[], const int face_num, const int vert_index)
572 {
573         //assert(vert_index>=0 && vert_index<4);
574         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
575         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
576         const float *n= (&vlr->v1)[vert_index]->n;
577         copy_v3_v3(fNorm, n);
578 }
579 static void SetTSpace(const SMikkTSpaceContext * pContext, const float fvTangent[], const float fSign, const int face_num, const int iVert)
580 {
581         //assert(vert_index>=0 && vert_index<4);
582         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
583         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
584         float * ftang= RE_vlakren_get_nmap_tangent(pMesh->obr, vlr, 1);
585         if(ftang!=NULL) {
586                 copy_v3_v3(&ftang[iVert*4+0], fvTangent);
587                 ftang[iVert*4+3]=fSign;
588         }
589 }
590
591 static void calc_vertexnormals(Render *UNUSED(re), ObjectRen *obr, int do_tangent, int do_nmap_tangent)
592 {
593         MemArena *arena= NULL;
594         VertexTangent **vtangents= NULL;
595         int a, iCalcNewMethod;
596
597         if(do_nmap_tangent) {
598                 arena= BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "nmap tangent arena");
599                 BLI_memarena_use_calloc(arena);
600
601                 vtangents= MEM_callocN(sizeof(VertexTangent*)*obr->totvert, "VertexTangent");
602         }
603
604                 /* clear all vertex normals */
605         for(a=0; a<obr->totvert; a++) {
606                 VertRen *ver= RE_findOrAddVert(obr, a);
607                 ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
608         }
609
610                 /* calculate cos of angles and point-masses, use as weight factor to
611                    add face normal to vertex */
612         for(a=0; a<obr->totvlak; a++) {
613                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
614                 if(vlr->flag & ME_SMOOTH) {
615                         float *n4= (vlr->v4)? vlr->v4->n: NULL;
616                         float *c4= (vlr->v4)? vlr->v4->co: NULL;
617
618                         accumulate_vertex_normals(vlr->v1->n, vlr->v2->n, vlr->v3->n, n4,
619                                 vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co, c4);
620                 }
621                 if(do_nmap_tangent || do_tangent) {
622                         /* tangents still need to be calculated for flat faces too */
623                         /* weighting removed, they are not vertexnormals */
624                         calc_tangent_vector(obr, vtangents, arena, vlr, do_nmap_tangent, do_tangent);
625                 }
626         }
627
628                 /* do solid faces */
629         for(a=0; a<obr->totvlak; a++) {
630                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
631
632                 if((vlr->flag & ME_SMOOTH)==0) {
633                         if(is_zero_v3(vlr->v1->n)) copy_v3_v3(vlr->v1->n, vlr->n);
634                         if(is_zero_v3(vlr->v2->n)) copy_v3_v3(vlr->v2->n, vlr->n);
635                         if(is_zero_v3(vlr->v3->n)) copy_v3_v3(vlr->v3->n, vlr->n);
636                         if(vlr->v4 && is_zero_v3(vlr->v4->n)) copy_v3_v3(vlr->v4->n, vlr->n);
637                 }
638
639                 if(do_nmap_tangent) {
640                         VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
641                         MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
642
643                         if(tface) {
644                                 int k=0;
645                                 float *vtang, *ftang= RE_vlakren_get_nmap_tangent(obr, vlr, 1);
646
647                                 vtang= find_vertex_tangent(vtangents[v1->index], tface->uv[0]);
648                                 copy_v3_v3(ftang, vtang);
649                                 normalize_v3(ftang);
650                                 vtang= find_vertex_tangent(vtangents[v2->index], tface->uv[1]);
651                                 copy_v3_v3(ftang+4, vtang);
652                                 normalize_v3(ftang+4);
653                                 vtang= find_vertex_tangent(vtangents[v3->index], tface->uv[2]);
654                                 copy_v3_v3(ftang+8, vtang);
655                                 normalize_v3(ftang+8);
656                                 if(v4) {
657                                         vtang= find_vertex_tangent(vtangents[v4->index], tface->uv[3]);
658                                         copy_v3_v3(ftang+12, vtang);
659                                         normalize_v3(ftang+12);
660                                 }
661                                 for(k=0; k<4; k++) ftang[4*k+3]=1;
662                         }
663                 }
664         }
665         
666                 /* normalize vertex normals */
667         for(a=0; a<obr->totvert; a++) {
668                 VertRen *ver= RE_findOrAddVert(obr, a);
669                 normalize_v3(ver->n);
670                 if(do_tangent) {
671                         float *tav= RE_vertren_get_tangent(obr, ver, 0);
672                         if (tav) {
673                                 /* orthonorm. */
674                                 float tdn = tav[0]*ver->n[0] + tav[1]*ver->n[1] + tav[2]*ver->n[2];
675                                 tav[0] -= ver->n[0]*tdn;
676                                 tav[1] -= ver->n[1]*tdn;
677                                 tav[2] -= ver->n[2]*tdn;
678                                 normalize_v3(tav);
679                         }
680                 }
681         }
682
683         iCalcNewMethod = 1;
684         if(iCalcNewMethod!=0 && do_nmap_tangent!=0)
685         {
686                 SRenderMeshToTangent mesh2tangent;
687                 SMikkTSpaceContext sContext;
688                 SMikkTSpaceInterface sInterface;
689                 memset(&mesh2tangent, 0, sizeof(SRenderMeshToTangent));
690                 memset(&sContext, 0, sizeof(SMikkTSpaceContext));
691                 memset(&sInterface, 0, sizeof(SMikkTSpaceInterface));
692
693                 mesh2tangent.obr = obr;
694
695                 sContext.m_pUserData = &mesh2tangent;
696                 sContext.m_pInterface = &sInterface;
697                 sInterface.m_getNumFaces = GetNumFaces;
698                 sInterface.m_getNumVerticesOfFace = GetNumVertsOfFace;
699                 sInterface.m_getPosition = GetPosition;
700                 sInterface.m_getTexCoord = GetTextureCoordinate;
701                 sInterface.m_getNormal = GetNormal;
702                 sInterface.m_setTSpaceBasic = SetTSpace;
703
704                 // 0 if failed
705                 iCalcNewMethod = genTangSpaceDefault(&sContext);
706         }
707
708
709         if(arena)
710                 BLI_memarena_free(arena);
711         if(vtangents)
712                 MEM_freeN(vtangents);
713 }
714
715 /* ------------------------------------------------------------------------- */
716 /* Autosmoothing:                                                            */
717 /* ------------------------------------------------------------------------- */
718
719 typedef struct ASvert {
720         int totface;
721         ListBase faces;
722 } ASvert;
723
724 typedef struct ASface {
725         struct ASface *next, *prev;
726         VlakRen *vlr[4];
727         VertRen *nver[4];
728 } ASface;
729
730 static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
731 {
732         ASface *asf;
733         int a;
734         
735         if(v1 == NULL) return;
736         
737         if(asv->faces.first==NULL) {
738                 asf= MEM_callocN(sizeof(ASface), "asface");
739                 BLI_addtail(&asv->faces, asf);
740         }
741         
742         asf= asv->faces.last;
743         for(a=0; a<4; a++) {
744                 if(asf->vlr[a]==NULL) {
745                         asf->vlr[a]= vlr;
746                         asv->totface++;
747                         break;
748                 }
749         }
750         
751         /* new face struct */
752         if(a==4) {
753                 asf= MEM_callocN(sizeof(ASface), "asface");
754                 BLI_addtail(&asv->faces, asf);
755                 asf->vlr[0]= vlr;
756                 asv->totface++;
757         }
758 }
759
760 static int as_testvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
761 {
762         /* return 1: vertex needs a copy */
763         ASface *asf;
764         float inp;
765         int a;
766         
767         if(vlr==0) return 0;
768         
769         asf= asv->faces.first;
770         while(asf) {
771                 for(a=0; a<4; a++) {
772                         if(asf->vlr[a] && asf->vlr[a]!=vlr) {
773                                 inp= fabs( vlr->n[0]*asf->vlr[a]->n[0] + vlr->n[1]*asf->vlr[a]->n[1] + vlr->n[2]*asf->vlr[a]->n[2] );
774                                 if(inp < thresh) return 1;
775                         }
776                 }
777                 asf= asf->next;
778         }
779         
780         return 0;
781 }
782
783 static VertRen *as_findvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
784 {
785         /* return when new vertex already was made */
786         ASface *asf;
787         float inp;
788         int a;
789         
790         asf= asv->faces.first;
791         while(asf) {
792                 for(a=0; a<4; a++) {
793                         if(asf->vlr[a] && asf->vlr[a]!=vlr) {
794                                 /* this face already made a copy for this vertex! */
795                                 if(asf->nver[a]) {
796                                         inp= fabs( vlr->n[0]*asf->vlr[a]->n[0] + vlr->n[1]*asf->vlr[a]->n[1] + vlr->n[2]*asf->vlr[a]->n[2] );
797                                         if(inp >= thresh) {
798                                                 return asf->nver[a];
799                                         }
800                                 }
801                         }
802                 }
803                 asf= asf->next;
804         }
805         
806         return NULL;
807 }
808
809 /* note; autosmooth happens in object space still, after applying autosmooth we rotate */
810 /* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
811 static void autosmooth(Render *UNUSED(re), ObjectRen *obr, float mat[][4], int degr)
812 {
813         ASvert *asv, *asverts;
814         ASface *asf;
815         VertRen *ver, *v1;
816         VlakRen *vlr;
817         float thresh;
818         int a, b, totvert;
819         
820         if(obr->totvert==0) return;
821         asverts= MEM_callocN(sizeof(ASvert)*obr->totvert, "all smooth verts");
822         
823         thresh= cosf(DEG2RADF((0.5f + (float)degr)));
824         
825         /* step zero: give faces normals of original mesh, if this is provided */
826         
827         
828         /* step one: construct listbase of all vertices and pointers to faces */
829         for(a=0; a<obr->totvlak; a++) {
830                 vlr= RE_findOrAddVlak(obr, a);
831                 /* skip wire faces */
832                 if(vlr->v2 != vlr->v3) {
833                         as_addvert(asverts+vlr->v1->index, vlr->v1, vlr);
834                         as_addvert(asverts+vlr->v2->index, vlr->v2, vlr);
835                         as_addvert(asverts+vlr->v3->index, vlr->v3, vlr);
836                         if(vlr->v4) 
837                                 as_addvert(asverts+vlr->v4->index, vlr->v4, vlr);
838                 }
839         }
840         
841         totvert= obr->totvert;
842         /* we now test all vertices, when faces have a normal too much different: they get a new vertex */
843         for(a=0, asv=asverts; a<totvert; a++, asv++) {
844                 if(asv && asv->totface>1) {
845                         ver= RE_findOrAddVert(obr, a);
846
847                         asf= asv->faces.first;
848                         while(asf) {
849                                 for(b=0; b<4; b++) {
850                                 
851                                         /* is there a reason to make a new vertex? */
852                                         vlr= asf->vlr[b];
853                                         if( as_testvertex(vlr, ver, asv, thresh) ) {
854                                                 
855                                                 /* already made a new vertex within threshold? */
856                                                 v1= as_findvertex(vlr, ver, asv, thresh);
857                                                 if(v1==NULL) {
858                                                         /* make a new vertex */
859                                                         v1= RE_vertren_copy(obr, ver);
860                                                 }
861                                                 asf->nver[b]= v1;
862                                                 if(vlr->v1==ver) vlr->v1= v1;
863                                                 if(vlr->v2==ver) vlr->v2= v1;
864                                                 if(vlr->v3==ver) vlr->v3= v1;
865                                                 if(vlr->v4==ver) vlr->v4= v1;
866                                         }
867                                 }
868                                 asf= asf->next;
869                         }
870                 }
871         }
872         
873         /* free */
874         for(a=0; a<totvert; a++) {
875                 BLI_freelistN(&asverts[a].faces);
876         }
877         MEM_freeN(asverts);
878         
879         /* rotate vertices and calculate normal of faces */
880         for(a=0; a<obr->totvert; a++) {
881                 ver= RE_findOrAddVert(obr, a);
882                 mul_m4_v3(mat, ver->co);
883         }
884         for(a=0; a<obr->totvlak; a++) {
885                 vlr= RE_findOrAddVlak(obr, a);
886                 
887                 /* skip wire faces */
888                 if(vlr->v2 != vlr->v3) {
889                         if(vlr->v4) 
890                                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
891                         else 
892                                 normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
893                 }
894         }               
895 }
896
897 /* ------------------------------------------------------------------------- */
898 /* Orco hash and Materials                                                   */
899 /* ------------------------------------------------------------------------- */
900
901 static float *get_object_orco(Render *re, Object *ob)
902 {
903         float *orco;
904
905         if (!re->orco_hash)
906                 re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp, "get_object_orco gh");
907
908         orco = BLI_ghash_lookup(re->orco_hash, ob);
909
910         if (!orco) {
911                 if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
912                         orco = make_orco_curve(re->scene, ob);
913                 } else if (ob->type==OB_SURF) {
914                         orco = make_orco_surf(ob);
915                 }
916
917                 if (orco)
918                         BLI_ghash_insert(re->orco_hash, ob, orco);
919         }
920
921         return orco;
922 }
923
924 static void set_object_orco(Render *re, void *ob, float *orco)
925 {
926         if (!re->orco_hash)
927                 re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp, "set_object_orco gh");
928         
929         BLI_ghash_insert(re->orco_hash, ob, orco);
930 }
931
932 static void free_mesh_orco_hash(Render *re) 
933 {
934         if (re->orco_hash) {
935                 BLI_ghash_free(re->orco_hash, NULL, (GHashValFreeFP)MEM_freeN);
936                 re->orco_hash = NULL;
937         }
938 }
939
940 static void check_material_mapto(Material *ma)
941 {
942         int a;
943         ma->mapto_textured = 0;
944         
945         /* cache which inputs are actually textured.
946          * this can avoid a bit of time spent iterating through all the texture slots, map inputs and map tos
947          * every time a property which may or may not be textured is accessed */
948         
949         for(a=0; a<MAX_MTEX; a++) {
950                 if(ma->mtex[a] && ma->mtex[a]->tex) {
951                         /* currently used only in volume render, so we'll check for those flags */
952                         if(ma->mtex[a]->mapto & MAP_DENSITY) ma->mapto_textured |= MAP_DENSITY;
953                         if(ma->mtex[a]->mapto & MAP_EMISSION) ma->mapto_textured |= MAP_EMISSION;
954                         if(ma->mtex[a]->mapto & MAP_EMISSION_COL) ma->mapto_textured |= MAP_EMISSION_COL;
955                         if(ma->mtex[a]->mapto & MAP_SCATTERING) ma->mapto_textured |= MAP_SCATTERING;
956                         if(ma->mtex[a]->mapto & MAP_TRANSMISSION_COL) ma->mapto_textured |= MAP_TRANSMISSION_COL;
957                         if(ma->mtex[a]->mapto & MAP_REFLECTION) ma->mapto_textured |= MAP_REFLECTION;
958                         if(ma->mtex[a]->mapto & MAP_REFLECTION_COL) ma->mapto_textured |= MAP_REFLECTION_COL;
959                 }
960         }
961 }
962 static void flag_render_node_material(Render *re, bNodeTree *ntree)
963 {
964         bNode *node;
965
966         for(node=ntree->nodes.first; node; node= node->next) {
967                 if(node->id) {
968                         if(GS(node->id->name)==ID_MA) {
969                                 Material *ma= (Material *)node->id;
970
971                                 if((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
972                                         re->flag |= R_ZTRA;
973
974                                 ma->flag |= MA_IS_USED;
975                         }
976                         else if(node->type==NODE_GROUP)
977                                 flag_render_node_material(re, (bNodeTree *)node->id);
978                 }
979         }
980 }
981
982 static Material *give_render_material(Render *re, Object *ob, short nr)
983 {
984         extern Material defmaterial;    /* material.c */
985         Material *ma;
986         
987         ma= give_current_material(ob, nr);
988         if(ma==NULL) 
989                 ma= &defmaterial;
990         
991         if(re->r.mode & R_SPEED) ma->texco |= NEED_UV;
992         
993         if(ma->material_type == MA_TYPE_VOLUME) {
994                 ma->mode |= MA_TRANSP;
995                 ma->mode &= ~MA_SHADBUF;
996         }
997         if((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
998                 re->flag |= R_ZTRA;
999         
1000         /* for light groups and SSS */
1001         ma->flag |= MA_IS_USED;
1002
1003         if(ma->nodetree && ma->use_nodes)
1004                 flag_render_node_material(re, ma->nodetree);
1005         
1006         check_material_mapto(ma);
1007         
1008         return ma;
1009 }
1010
1011 /* ------------------------------------------------------------------------- */
1012 /* Particles                                                                 */
1013 /* ------------------------------------------------------------------------- */
1014 typedef struct ParticleStrandData
1015 {
1016         struct MCol *mcol;
1017         float *orco, *uvco, *surfnor;
1018         float time, adapt_angle, adapt_pix, size;
1019         int totuv, totcol;
1020         int first, line, adapt, override_uv;
1021 }
1022 ParticleStrandData;
1023 /* future thread problem... */
1024 static void static_particle_strand(Render *re, ObjectRen *obr, Material *ma, ParticleStrandData *sd, const float vec[3], const float vec1[3])
1025 {
1026         static VertRen *v1= NULL, *v2= NULL;
1027         VlakRen *vlr= NULL;
1028         float nor[3], cross[3], crosslen, w, dx, dy, width;
1029         static float anor[3], avec[3];
1030         int flag, i;
1031         static int second=0;
1032         
1033         sub_v3_v3v3(nor, vec, vec1);
1034         normalize_v3(nor);              // nor needed as tangent 
1035         cross_v3_v3v3(cross, vec, nor);
1036
1037         /* turn cross in pixelsize */
1038         w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1039         dx= re->winx*cross[0]*re->winmat[0][0];
1040         dy= re->winy*cross[1]*re->winmat[1][1];
1041         w= sqrt(dx*dx + dy*dy)/w;
1042         
1043         if(w!=0.0f) {
1044                 float fac;
1045                 if(ma->strand_ease!=0.0f) {
1046                         if(ma->strand_ease<0.0f)
1047                                 fac= pow(sd->time, 1.0f+ma->strand_ease);
1048                         else
1049                                 fac= pow(sd->time, 1.0f/(1.0f-ma->strand_ease));
1050                 }
1051                 else fac= sd->time;
1052
1053                 width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
1054
1055                 /* use actual Blender units for strand width and fall back to minimum width */
1056                 if(ma->mode & MA_STR_B_UNITS){
1057                         crosslen= len_v3(cross);
1058                         w= 2.0f*crosslen*ma->strand_min/w;
1059
1060                         if(width < w)
1061                                 width= w;
1062
1063                         /*cross is the radius of the strand so we want it to be half of full width */
1064                         mul_v3_fl(cross,0.5f/crosslen);
1065                 }
1066                 else
1067                         width/=w;
1068
1069                 mul_v3_fl(cross, width);
1070         }
1071         else width= 1.0f;
1072         
1073         if(ma->mode & MA_TANGENT_STR)
1074                 flag= R_SMOOTH|R_TANGENT;
1075         else
1076                 flag= R_SMOOTH;
1077         
1078         /* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
1079         if(ma->strand_sta==1.0f)
1080                 flag |= R_STRAND;
1081         
1082         /* single face line */
1083         if(sd->line) {
1084                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1085                 vlr->flag= flag;
1086                 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1087                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1088                 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1089                 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1090                 
1091                 copy_v3_v3(vlr->v1->co, vec);
1092                 add_v3_v3(vlr->v1->co, cross);
1093                 copy_v3_v3(vlr->v1->n, nor);
1094                 vlr->v1->orco= sd->orco;
1095                 vlr->v1->accum= -1.0f;  // accum abuse for strand texco
1096                 
1097                 copy_v3_v3(vlr->v2->co, vec);
1098                 sub_v3_v3v3(vlr->v2->co, vlr->v2->co, cross);
1099                 copy_v3_v3(vlr->v2->n, nor);
1100                 vlr->v2->orco= sd->orco;
1101                 vlr->v2->accum= vlr->v1->accum;
1102
1103                 copy_v3_v3(vlr->v4->co, vec1);
1104                 add_v3_v3(vlr->v4->co, cross);
1105                 copy_v3_v3(vlr->v4->n, nor);
1106                 vlr->v4->orco= sd->orco;
1107                 vlr->v4->accum= 1.0f;   // accum abuse for strand texco
1108                 
1109                 copy_v3_v3(vlr->v3->co, vec1);
1110                 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1111                 copy_v3_v3(vlr->v3->n, nor);
1112                 vlr->v3->orco= sd->orco;
1113                 vlr->v3->accum= vlr->v4->accum;
1114
1115                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1116                 
1117                 vlr->mat= ma;
1118                 vlr->ec= ME_V2V3;
1119
1120                 if(sd->surfnor) {
1121                         float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1122                         copy_v3_v3(snor, sd->surfnor);
1123                 }
1124
1125                 if(sd->uvco){
1126                         for(i=0; i<sd->totuv; i++){
1127                                 MTFace *mtf;
1128                                 mtf=RE_vlakren_get_tface(obr,vlr,i,NULL,1);
1129                                 mtf->uv[0][0]=mtf->uv[1][0]=
1130                                 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1131                                 mtf->uv[0][1]=mtf->uv[1][1]=
1132                                 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1133                         }
1134                         if(sd->override_uv>=0){
1135                                 MTFace *mtf;
1136                                 mtf=RE_vlakren_get_tface(obr,vlr,sd->override_uv,NULL,0);
1137                                 
1138                                 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1139                                 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1140
1141                                 mtf->uv[0][1]=mtf->uv[1][1]=0.0f;
1142                                 mtf->uv[2][1]=mtf->uv[3][1]=1.0f;
1143                         }
1144                 }
1145                 if(sd->mcol){
1146                         for(i=0; i<sd->totcol; i++){
1147                                 MCol *mc;
1148                                 mc=RE_vlakren_get_mcol(obr,vlr,i,NULL,1);
1149                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1150                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1151                         }
1152                 }
1153         }
1154         /* first two vertices of a strand */
1155         else if(sd->first) {
1156                 if(sd->adapt){
1157                         copy_v3_v3(anor, nor);
1158                         copy_v3_v3(avec, vec);
1159                         second=1;
1160                 }
1161
1162                 v1= RE_findOrAddVert(obr, obr->totvert++);
1163                 v2= RE_findOrAddVert(obr, obr->totvert++);
1164                 
1165                 copy_v3_v3(v1->co, vec);
1166                 add_v3_v3(v1->co, cross);
1167                 copy_v3_v3(v1->n, nor);
1168                 v1->orco= sd->orco;
1169                 v1->accum= -1.0f;       // accum abuse for strand texco
1170                 
1171                 copy_v3_v3(v2->co, vec);
1172                 sub_v3_v3v3(v2->co, v2->co, cross);
1173                 copy_v3_v3(v2->n, nor);
1174                 v2->orco= sd->orco;
1175                 v2->accum= v1->accum;
1176         }
1177         /* more vertices & faces to strand */
1178         else {
1179                 if(sd->adapt==0 || second){
1180                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1181                         vlr->flag= flag;
1182                         vlr->v1= v1;
1183                         vlr->v2= v2;
1184                         vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1185                         vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1186                         
1187                         v1= vlr->v4; // cycle
1188                         v2= vlr->v3; // cycle
1189
1190                         
1191                         if(sd->adapt){
1192                                 second=0;
1193                                 copy_v3_v3(anor,nor);
1194                                 copy_v3_v3(avec,vec);
1195                         }
1196
1197                 }
1198                 else if(sd->adapt){
1199                         float dvec[3],pvec[3];
1200                         sub_v3_v3v3(dvec,avec,vec);
1201                         project_v3_v3v3(pvec,dvec,vec);
1202                         sub_v3_v3v3(dvec,dvec,pvec);
1203
1204                         w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1205                         dx= re->winx*dvec[0]*re->winmat[0][0]/w;
1206                         dy= re->winy*dvec[1]*re->winmat[1][1]/w;
1207                         w= sqrt(dx*dx + dy*dy);
1208                         if(dot_v3v3(anor,nor)<sd->adapt_angle && w>sd->adapt_pix){
1209                                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1210                                 vlr->flag= flag;
1211                                 vlr->v1= v1;
1212                                 vlr->v2= v2;
1213                                 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1214                                 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1215                                 
1216                                 v1= vlr->v4; // cycle
1217                                 v2= vlr->v3; // cycle
1218
1219                                 copy_v3_v3(anor,nor);
1220                                 copy_v3_v3(avec,vec);
1221                         }
1222                         else{
1223                                 vlr= RE_findOrAddVlak(obr, obr->totvlak-1);
1224                         }
1225                 }
1226         
1227                 copy_v3_v3(vlr->v4->co, vec);
1228                 add_v3_v3(vlr->v4->co, cross);
1229                 copy_v3_v3(vlr->v4->n, nor);
1230                 vlr->v4->orco= sd->orco;
1231                 vlr->v4->accum= -1.0f + 2.0f*sd->time;  // accum abuse for strand texco
1232                 
1233                 copy_v3_v3(vlr->v3->co, vec);
1234                 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1235                 copy_v3_v3(vlr->v3->n, nor);
1236                 vlr->v3->orco= sd->orco;
1237                 vlr->v3->accum= vlr->v4->accum;
1238                 
1239                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1240                 
1241                 vlr->mat= ma;
1242                 vlr->ec= ME_V2V3;
1243
1244                 if(sd->surfnor) {
1245                         float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1246                         copy_v3_v3(snor, sd->surfnor);
1247                 }
1248
1249                 if(sd->uvco){
1250                         for(i=0; i<sd->totuv; i++){
1251                                 MTFace *mtf;
1252                                 mtf=RE_vlakren_get_tface(obr,vlr,i,NULL,1);
1253                                 mtf->uv[0][0]=mtf->uv[1][0]=
1254                                 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1255                                 mtf->uv[0][1]=mtf->uv[1][1]=
1256                                 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1257                         }
1258                         if(sd->override_uv>=0){
1259                                 MTFace *mtf;
1260                                 mtf=RE_vlakren_get_tface(obr,vlr,sd->override_uv,NULL,0);
1261                                 
1262                                 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1263                                 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1264
1265                                 mtf->uv[0][1]=mtf->uv[1][1]=(vlr->v1->accum+1.0f)/2.0f;
1266                                 mtf->uv[2][1]=mtf->uv[3][1]=(vlr->v3->accum+1.0f)/2.0f;
1267                         }
1268                 }
1269                 if(sd->mcol){
1270                         for(i=0; i<sd->totcol; i++){
1271                                 MCol *mc;
1272                                 mc=RE_vlakren_get_mcol(obr,vlr,i,NULL,1);
1273                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1274                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1275                         }
1276                 }
1277         }
1278 }
1279
1280 static void static_particle_wire(ObjectRen *obr, Material *ma, const float vec[3], const float vec1[3], int first, int line)
1281 {
1282         VlakRen *vlr;
1283         static VertRen *v1;
1284
1285         if(line) {
1286                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1287                 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1288                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1289                 vlr->v3= vlr->v2;
1290                 vlr->v4= NULL;
1291                 
1292                 copy_v3_v3(vlr->v1->co, vec);
1293                 copy_v3_v3(vlr->v2->co, vec1);
1294                 
1295                 sub_v3_v3v3(vlr->n, vec, vec1);
1296                 normalize_v3(vlr->n);
1297                 copy_v3_v3(vlr->v1->n, vlr->n);
1298                 copy_v3_v3(vlr->v2->n, vlr->n);
1299                 
1300                 vlr->mat= ma;
1301                 vlr->ec= ME_V1V2;
1302
1303         }
1304         else if(first) {
1305                 v1= RE_findOrAddVert(obr, obr->totvert++);
1306                 copy_v3_v3(v1->co, vec);
1307         }
1308         else {
1309                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1310                 vlr->v1= v1;
1311                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1312                 vlr->v3= vlr->v2;
1313                 vlr->v4= NULL;
1314                 
1315                 v1= vlr->v2; // cycle
1316                 copy_v3_v3(v1->co, vec);
1317                 
1318                 sub_v3_v3v3(vlr->n, vec, vec1);
1319                 normalize_v3(vlr->n);
1320                 copy_v3_v3(v1->n, vlr->n);
1321                 
1322                 vlr->mat= ma;
1323                 vlr->ec= ME_V1V2;
1324         }
1325
1326 }
1327
1328 static void particle_curve(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, float *loc, float *loc1,  int seed, float *pa_co)
1329 {
1330         HaloRen *har=0;
1331
1332         if(ma->material_type == MA_TYPE_WIRE)
1333                 static_particle_wire(obr, ma, loc, loc1, sd->first, sd->line);
1334         else if(ma->material_type == MA_TYPE_HALO) {
1335                 har= RE_inithalo_particle(re, obr, dm, ma, loc, loc1, sd->orco, sd->uvco, sd->size, 1.0, seed, pa_co);
1336                 if(har) har->lay= obr->ob->lay;
1337         }
1338         else
1339                 static_particle_strand(re, obr, ma, sd, loc, loc1);
1340 }
1341 static void particle_billboard(Render *re, ObjectRen *obr, Material *ma, ParticleBillboardData *bb)
1342 {
1343         VlakRen *vlr;
1344         MTFace *mtf;
1345         float xvec[3], yvec[3], zvec[3], bb_center[3];
1346         /* Number of tiles */
1347         int totsplit = bb->uv_split * bb->uv_split;
1348         int tile, x, y;
1349         /* Tile offsets */
1350         float uvx = 0.0f, uvy = 0.0f, uvdx = 1.0f, uvdy = 1.0f, time = 0.0f;
1351
1352         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1353         vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1354         vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1355         vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1356         vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1357
1358         psys_make_billboard(bb, xvec, yvec, zvec, bb_center);
1359
1360         add_v3_v3v3(vlr->v1->co, bb_center, xvec);
1361         add_v3_v3(vlr->v1->co, yvec);
1362         mul_m4_v3(re->viewmat, vlr->v1->co);
1363
1364         sub_v3_v3v3(vlr->v2->co, bb_center, xvec);
1365         add_v3_v3(vlr->v2->co, yvec);
1366         mul_m4_v3(re->viewmat, vlr->v2->co);
1367
1368         sub_v3_v3v3(vlr->v3->co, bb_center, xvec);
1369         sub_v3_v3v3(vlr->v3->co, vlr->v3->co, yvec);
1370         mul_m4_v3(re->viewmat, vlr->v3->co);
1371
1372         add_v3_v3v3(vlr->v4->co, bb_center, xvec);
1373         sub_v3_v3(vlr->v4->co, yvec);
1374         mul_m4_v3(re->viewmat, vlr->v4->co);
1375
1376         normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1377         copy_v3_v3(vlr->v1->n,vlr->n);
1378         copy_v3_v3(vlr->v2->n,vlr->n);
1379         copy_v3_v3(vlr->v3->n,vlr->n);
1380         copy_v3_v3(vlr->v4->n,vlr->n);
1381         
1382         vlr->mat= ma;
1383         vlr->ec= ME_V2V3;
1384
1385         if(bb->uv_split > 1){
1386                 uvdx = uvdy = 1.0f / (float)bb->uv_split;
1387
1388                 if(ELEM(bb->anim, PART_BB_ANIM_AGE, PART_BB_ANIM_FRAME)) {
1389                         if(bb->anim == PART_BB_ANIM_FRAME)
1390                                 time = ((int)(bb->time * bb->lifetime) % totsplit)/(float)totsplit;
1391                         else
1392                                 time = bb->time;
1393                 }
1394                 else if(bb->anim == PART_BB_ANIM_ANGLE) {
1395                         if(bb->align == PART_BB_VIEW) {
1396                                 time = (float)fmod((bb->tilt + 1.0f) / 2.0f, 1.0);
1397                         }
1398                         else {
1399                                 float axis1[3] = {0.0f,0.0f,0.0f};
1400                                 float axis2[3] = {0.0f,0.0f,0.0f};
1401
1402                                 axis1[(bb->align + 1) % 3] = 1.0f;
1403                                 axis2[(bb->align + 2) % 3] = 1.0f;
1404
1405                                 if(bb->lock == 0) {
1406                                         zvec[bb->align] = 0.0f;
1407                                         normalize_v3(zvec);
1408                                 }
1409                                 
1410                                 time = saacos(dot_v3v3(zvec, axis1)) / (float)M_PI;
1411                                 
1412                                 if(dot_v3v3(zvec, axis2) < 0.0f)
1413                                         time = 1.0f - time / 2.0f;
1414                                 else
1415                                         time /= 2.0f;
1416                         }
1417                 }
1418
1419                 if(bb->split_offset == PART_BB_OFF_LINEAR)
1420                         time = (float)fmod(time + (float)bb->num / (float)totsplit, 1.0f);
1421                 else if(bb->split_offset==PART_BB_OFF_RANDOM)
1422                         time = (float)fmod(time + bb->random, 1.0f);
1423
1424                 /* Find the coordinates in tile space (integer), then convert to UV
1425                  * space (float). Note that Y is flipped. */
1426                 tile = (int)((time + FLT_EPSILON10) * totsplit);
1427                 x = tile % bb->uv_split;
1428                 y = tile / bb->uv_split;
1429                 y = (bb->uv_split - 1) - y;
1430                 uvx = uvdx * x;
1431                 uvy = uvdy * y;
1432         }
1433
1434         /* normal UVs */
1435         if(bb->uv[0] >= 0){
1436                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[0], NULL, 1);
1437                 mtf->uv[0][0] = 1.0f;
1438                 mtf->uv[0][1] = 1.0f;
1439                 mtf->uv[1][0] = 0.0f;
1440                 mtf->uv[1][1] = 1.0f;
1441                 mtf->uv[2][0] = 0.0f;
1442                 mtf->uv[2][1] = 0.0f;
1443                 mtf->uv[3][0] = 1.0f;
1444                 mtf->uv[3][1] = 0.0f;
1445         }
1446
1447         /* time-index UVs */
1448         if(bb->uv[1] >= 0){
1449                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[1], NULL, 1);
1450                 mtf->uv[0][0] = mtf->uv[1][0] = mtf->uv[2][0] = mtf->uv[3][0] = bb->time;
1451                 mtf->uv[0][1] = mtf->uv[1][1] = mtf->uv[2][1] = mtf->uv[3][1] = (float)bb->num/(float)bb->totnum;
1452         }
1453
1454         /* split UVs */
1455         if(bb->uv_split > 1 && bb->uv[2] >= 0){
1456                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[2], NULL, 1);
1457                 mtf->uv[0][0] = uvx + uvdx;
1458                 mtf->uv[0][1] = uvy + uvdy;
1459                 mtf->uv[1][0] = uvx;
1460                 mtf->uv[1][1] = uvy + uvdy;
1461                 mtf->uv[2][0] = uvx;
1462                 mtf->uv[2][1] = uvy;
1463                 mtf->uv[3][0] = uvx + uvdx;
1464                 mtf->uv[3][1] = uvy;
1465         }
1466 }
1467 static void particle_normal_ren(short ren_as, ParticleSettings *part, Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, ParticleBillboardData *bb, ParticleKey *state, int seed, float hasize, float *pa_co)
1468 {
1469         float loc[3], loc0[3], loc1[3], vel[3];
1470         
1471         copy_v3_v3(loc, state->co);
1472
1473         if(ren_as != PART_DRAW_BB)
1474                 mul_m4_v3(re->viewmat, loc);
1475
1476         switch(ren_as) {
1477                 case PART_DRAW_LINE:
1478                         sd->line = 1;
1479                         sd->time = 0.0f;
1480                         sd->size = hasize;
1481
1482                         copy_v3_v3(vel, state->vel);
1483                         mul_mat3_m4_v3(re->viewmat, vel);
1484                         normalize_v3(vel);
1485
1486                         if(part->draw & PART_DRAW_VEL_LENGTH)
1487                                 mul_v3_fl(vel, len_v3(state->vel));
1488
1489                         madd_v3_v3v3fl(loc0, loc, vel, -part->draw_line[0]);
1490                         madd_v3_v3v3fl(loc1, loc, vel, part->draw_line[1]);
1491
1492                         particle_curve(re, obr, dm, ma, sd, loc0, loc1, seed, pa_co);
1493
1494                         break;
1495
1496                 case PART_DRAW_BB:
1497
1498                         copy_v3_v3(bb->vec, loc);
1499                         copy_v3_v3(bb->vel, state->vel);
1500
1501                         particle_billboard(re, obr, ma, bb);
1502
1503                         break;
1504
1505                 default:
1506                 {
1507                         HaloRen *har=0;
1508
1509                         har = RE_inithalo_particle(re, obr, dm, ma, loc, NULL, sd->orco, sd->uvco, hasize, 0.0, seed, pa_co);
1510                         
1511                         if(har) har->lay= obr->ob->lay;
1512
1513                         break;
1514                 }
1515         }
1516 }
1517 static void get_particle_uvco_mcol(short from, DerivedMesh *dm, float *fuv, int num, ParticleStrandData *sd)
1518 {
1519         int i;
1520
1521         /* get uvco */
1522         if(sd->uvco && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
1523                 for(i=0; i<sd->totuv; i++) {
1524                         if(num != DMCACHE_NOTFOUND) {
1525                                 MFace *mface = dm->getFaceData(dm, num, CD_MFACE);
1526                                 MTFace *mtface = (MTFace*)CustomData_get_layer_n(&dm->faceData, CD_MTFACE, i);
1527                                 mtface += num;
1528                                 
1529                                 psys_interpolate_uvs(mtface, mface->v4, fuv, sd->uvco + 2 * i);
1530                         }
1531                         else {
1532                                 sd->uvco[2*i] = 0.0f;
1533                                 sd->uvco[2*i + 1] = 0.0f;
1534                         }
1535                 }
1536         }
1537
1538         /* get mcol */
1539         if(sd->mcol && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
1540                 for(i=0; i<sd->totcol; i++) {
1541                         if(num != DMCACHE_NOTFOUND) {
1542                                 MFace *mface = dm->getFaceData(dm, num, CD_MFACE);
1543                                 MCol *mc = (MCol*)CustomData_get_layer_n(&dm->faceData, CD_MCOL, i);
1544                                 mc += num * 4;
1545
1546                                 psys_interpolate_mcol(mc, mface->v4, fuv, sd->mcol + i);
1547                         }
1548                         else
1549                                 memset(&sd->mcol[i], 0, sizeof(MCol));
1550                 }
1551         }
1552 }
1553 static int render_new_particle_system(Render *re, ObjectRen *obr, ParticleSystem *psys, int timeoffset)
1554 {
1555         Object *ob= obr->ob;
1556 //      Object *tob=0;
1557         Material *ma=0;
1558         ParticleSystemModifierData *psmd;
1559         ParticleSystem *tpsys=0;
1560         ParticleSettings *part, *tpart=0;
1561         ParticleData *pars, *pa=0,*tpa=0;
1562         ParticleKey *states=0;
1563         ParticleKey state;
1564         ParticleCacheKey *cache=0;
1565         ParticleBillboardData bb;
1566         ParticleSimulationData sim = {0};
1567         ParticleStrandData sd;
1568         StrandBuffer *strandbuf=0;
1569         StrandVert *svert=0;
1570         StrandBound *sbound= 0;
1571         StrandRen *strand=0;
1572         RNG *rng= 0;
1573         float loc[3],loc1[3],loc0[3],mat[4][4],nmat[3][3],co[3],nor[3],duplimat[4][4];
1574         float strandlen=0.0f, curlen=0.0f;
1575         float hasize, pa_size, r_tilt, r_length;
1576         float pa_time, pa_birthtime, pa_dietime;
1577         float random, simplify[2], pa_co[3];
1578         const float cfra= BKE_curframe(re->scene);
1579         int i, a, k, max_k=0, totpart, dosimplify = 0, dosurfacecache = 0, use_duplimat = 0;
1580         int totchild=0;
1581         int seed, path_nbr=0, orco1=0, num;
1582         int totface, *origindex = 0;
1583         char **uv_name=0;
1584
1585 /* 1. check that everything is ok & updated */
1586         if(psys==NULL)
1587                 return 0;
1588
1589         part=psys->part;
1590         pars=psys->particles;
1591
1592         if(part==NULL || pars==NULL || !psys_check_enabled(ob, psys))
1593                 return 0;
1594         
1595         if(part->ren_as==PART_DRAW_OB || part->ren_as==PART_DRAW_GR || part->ren_as==PART_DRAW_NOT)
1596                 return 1;
1597
1598 /* 2. start initialising things */
1599
1600         /* last possibility to bail out! */
1601         psmd = psys_get_modifier(ob,psys);
1602         if(!(psmd->modifier.mode & eModifierMode_Render))
1603                 return 0;
1604
1605         sim.scene= re->scene;
1606         sim.ob= ob;
1607         sim.psys= psys;
1608         sim.psmd= psmd;
1609
1610         if(part->phystype==PART_PHYS_KEYED)
1611                 psys_count_keyed_targets(&sim);
1612
1613         totchild=psys->totchild;
1614
1615         /* can happen for disconnected/global hair */
1616         if(part->type==PART_HAIR && !psys->childcache)
1617                 totchild= 0;
1618
1619         if(G.rendering == 0) { /* preview render */
1620                 totchild = (int)((float)totchild * (float)part->disp / 100.0f);
1621         }
1622
1623         psys->flag |= PSYS_DRAWING;
1624
1625         rng= rng_new(psys->seed);
1626
1627         totpart=psys->totpart;
1628
1629         memset(&sd, 0, sizeof(ParticleStrandData));
1630         sd.override_uv = -1;
1631
1632 /* 2.1 setup material stff */
1633         ma= give_render_material(re, ob, part->omat);
1634         
1635 #if 0 // XXX old animation system
1636         if(ma->ipo){
1637                 calc_ipo(ma->ipo, cfra);
1638                 execute_ipo((ID *)ma, ma->ipo);
1639         }
1640 #endif // XXX old animation system
1641
1642         hasize = ma->hasize;
1643         seed = ma->seed1;
1644
1645         re->flag |= R_HALO;
1646
1647         RE_set_customdata_names(obr, &psmd->dm->faceData);
1648         sd.totuv = CustomData_number_of_layers(&psmd->dm->faceData, CD_MTFACE);
1649         sd.totcol = CustomData_number_of_layers(&psmd->dm->faceData, CD_MCOL);
1650
1651         if(ma->texco & TEXCO_UV && sd.totuv) {
1652                 sd.uvco = MEM_callocN(sd.totuv * 2 * sizeof(float), "particle_uvs");
1653
1654                 if(ma->strand_uvname[0]) {
1655                         sd.override_uv = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, ma->strand_uvname);
1656                         sd.override_uv -= CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1657                 }
1658         }
1659         else
1660                 sd.uvco = NULL;
1661
1662         if(sd.totcol)
1663                 sd.mcol = MEM_callocN(sd.totcol * sizeof(MCol), "particle_mcols");
1664
1665 /* 2.2 setup billboards */
1666         if(part->ren_as == PART_DRAW_BB) {
1667                 int first_uv = CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1668
1669                 bb.uv[0] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[0]);
1670                 if(bb.uv[0] < 0)
1671                         bb.uv[0] = CustomData_get_active_layer_index(&psmd->dm->faceData, CD_MTFACE);
1672
1673                 bb.uv[1] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[1]);
1674
1675                 bb.uv[2] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[2]);
1676
1677                 if(first_uv >= 0) {
1678                         bb.uv[0] -= first_uv;
1679                         bb.uv[1] -= first_uv;
1680                         bb.uv[2] -= first_uv;
1681                 }
1682
1683                 bb.align = part->bb_align;
1684                 bb.anim = part->bb_anim;
1685                 bb.lock = part->draw & PART_DRAW_BB_LOCK;
1686                 bb.ob = (part->bb_ob ? part->bb_ob : RE_GetCamera(re));
1687                 bb.split_offset = part->bb_split_offset;
1688                 bb.totnum = totpart+totchild;
1689                 bb.uv_split = part->bb_uv_split;
1690         }
1691         
1692 /* 2.5 setup matrices */
1693         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
1694         invert_m4_m4(ob->imat, mat);    /* need to be that way, for imat texture */
1695         copy_m3_m4(nmat, ob->imat);
1696         transpose_m3(nmat);
1697
1698         if(psys->flag & PSYS_USE_IMAT) {
1699                 /* psys->imat is the original emitter's inverse matrix, ob->obmat is the duplicated object's matrix */
1700                 mul_m4_m4m4(duplimat, psys->imat, ob->obmat);
1701                 use_duplimat = 1;
1702         }
1703
1704 /* 2.6 setup strand rendering */
1705         if(part->ren_as == PART_DRAW_PATH && psys->pathcache){
1706                 path_nbr=(int)pow(2.0,(double) part->ren_step);
1707
1708                 if(path_nbr) {
1709                         if(!ELEM(ma->material_type, MA_TYPE_HALO, MA_TYPE_WIRE)) {
1710                                 sd.orco = MEM_mallocN(3*sizeof(float)*(totpart+totchild), "particle orcos");
1711                                 set_object_orco(re, psys, sd.orco);
1712                         }
1713                 }
1714
1715                 if(part->draw & PART_DRAW_REN_ADAPT) {
1716                         sd.adapt = 1;
1717                         sd.adapt_pix = (float)part->adapt_pix;
1718                         sd.adapt_angle = cosf(DEG2RADF((float)part->adapt_angle));
1719                 }
1720
1721                 if(re->r.renderer==R_INTERN && part->draw&PART_DRAW_REN_STRAND) {
1722                         strandbuf= RE_addStrandBuffer(obr, (totpart+totchild)*(path_nbr+1));
1723                         strandbuf->ma= ma;
1724                         strandbuf->lay= ob->lay;
1725                         copy_m4_m4(strandbuf->winmat, re->winmat);
1726                         strandbuf->winx= re->winx;
1727                         strandbuf->winy= re->winy;
1728                         strandbuf->maxdepth= 2;
1729                         strandbuf->adaptcos= cosf(DEG2RADF((float)part->adapt_angle));
1730                         strandbuf->overrideuv= sd.override_uv;
1731                         strandbuf->minwidth= ma->strand_min;
1732
1733                         if(ma->strand_widthfade == 0.0f)
1734                                 strandbuf->widthfade= 0.0f;
1735                         else if(ma->strand_widthfade >= 1.0f)
1736                                 strandbuf->widthfade= 2.0f - ma->strand_widthfade;
1737                         else
1738                                 strandbuf->widthfade= 1.0f/MAX2(ma->strand_widthfade, 1e-5f);
1739
1740                         if(part->flag & PART_HAIR_BSPLINE)
1741                                 strandbuf->flag |= R_STRAND_BSPLINE;
1742                         if(ma->mode & MA_STR_B_UNITS)
1743                                 strandbuf->flag |= R_STRAND_B_UNITS;
1744
1745                         svert= strandbuf->vert;
1746
1747                         if(re->r.mode & R_SPEED)
1748                                 dosurfacecache= 1;
1749                         else if((re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT)) && (re->wrld.ao_gather_method == WO_AOGATHER_APPROX))
1750                                 if(ma->amb != 0.0f)
1751                                         dosurfacecache= 1;
1752
1753                         totface= psmd->dm->getNumFaces(psmd->dm);
1754                         origindex= psmd->dm->getFaceDataArray(psmd->dm, CD_ORIGINDEX);
1755                         for(a=0; a<totface; a++)
1756                                 strandbuf->totbound= MAX2(strandbuf->totbound, (origindex)? origindex[a]: a);
1757
1758                         strandbuf->totbound++;
1759                         strandbuf->bound= MEM_callocN(sizeof(StrandBound)*strandbuf->totbound, "StrandBound");
1760                         sbound= strandbuf->bound;
1761                         sbound->start= sbound->end= 0;
1762                 }
1763         }
1764
1765         if(sd.orco == 0) {
1766                 sd.orco = MEM_mallocN(3 * sizeof(float), "particle orco");
1767                 orco1 = 1;
1768         }
1769
1770         if(path_nbr == 0)
1771                 psys->lattice = psys_get_lattice(&sim);
1772
1773 /* 3. start creating renderable things */
1774         for(a=0,pa=pars; a<totpart+totchild; a++, pa++, seed++) {
1775                 random = rng_getFloat(rng);
1776                 /* setup per particle individual stuff */
1777                 if(a<totpart){
1778                         if(pa->flag & PARS_UNEXIST) continue;
1779
1780                         pa_time=(cfra-pa->time)/pa->lifetime;
1781                         pa_birthtime = pa->time;
1782                         pa_dietime = pa->dietime;
1783
1784                         hasize = ma->hasize;
1785
1786                         /* get orco */
1787                         if(tpsys && part->phystype==PART_PHYS_NO){
1788                                 tpa=tpsys->particles+pa->num;
1789                                 psys_particle_on_emitter(psmd,tpart->from,tpa->num,pa->num_dmcache,tpa->fuv,tpa->foffset,co,nor,0,0,sd.orco,0);
1790                         }
1791                         else
1792                                 psys_particle_on_emitter(psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,sd.orco,0);
1793
1794                         /* get uvco & mcol */
1795                         num= pa->num_dmcache;
1796
1797                         if(num == DMCACHE_NOTFOUND)
1798                                 if(pa->num < psmd->dm->getNumFaces(psmd->dm))
1799                                         num= pa->num;
1800
1801                         get_particle_uvco_mcol(part->from, psmd->dm, pa->fuv, num, &sd);
1802
1803                         pa_size = pa->size;
1804
1805                         r_tilt = 2.0f*(PSYS_FRAND(a) - 0.5f);
1806                         r_length = PSYS_FRAND(a+1);
1807
1808                         if(path_nbr) {
1809                                 cache = psys->pathcache[a];
1810                                 max_k = (int)cache->steps;
1811                         }
1812
1813                         if(totchild && (part->draw&PART_DRAW_PARENT)==0) continue;
1814                 }
1815                 else {
1816                         ChildParticle *cpa= psys->child+a-totpart;
1817
1818                         if(path_nbr) {
1819                                 cache = psys->childcache[a-totpart];
1820
1821                                 if(cache->steps < 0)
1822                                         continue;
1823
1824                                 max_k = (int)cache->steps;
1825                         }
1826                         
1827                         pa_time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
1828                         pa_size = psys_get_child_size(psys, cpa, cfra, &pa_time);
1829
1830                         r_tilt = 2.0f*(PSYS_FRAND(a + 21) - 0.5f);
1831                         r_length = PSYS_FRAND(a + 22);
1832
1833                         num = cpa->num;
1834
1835                         /* get orco */
1836                         if(part->childtype == PART_CHILD_FACES) {
1837                                 psys_particle_on_emitter(psmd,
1838                                         PART_FROM_FACE, cpa->num,DMCACHE_ISCHILD,
1839                                         cpa->fuv,cpa->foffset,co,nor,0,0,sd.orco,0);
1840                         }
1841                         else {
1842                                 ParticleData *par = psys->particles + cpa->parent;
1843                                 psys_particle_on_emitter(psmd, part->from,
1844                                         par->num,DMCACHE_ISCHILD,par->fuv,
1845                                         par->foffset,co,nor,0,0,sd.orco,0);
1846                         }
1847
1848                         /* get uvco & mcol */
1849                         if(part->childtype==PART_CHILD_FACES) {
1850                                 get_particle_uvco_mcol(PART_FROM_FACE, psmd->dm, cpa->fuv, cpa->num, &sd);
1851                         }
1852                         else {
1853                                 ParticleData *parent = psys->particles + cpa->parent;
1854                                 num = parent->num_dmcache;
1855
1856                                 if(num == DMCACHE_NOTFOUND)
1857                                         if(parent->num < psmd->dm->getNumFaces(psmd->dm))
1858                                                 num = parent->num;
1859
1860                                 get_particle_uvco_mcol(part->from, psmd->dm, parent->fuv, num, &sd);
1861                         }
1862
1863                         dosimplify = psys_render_simplify_params(psys, cpa, simplify);
1864
1865                         if(strandbuf) {
1866                                 int orignum= (origindex)? origindex[cpa->num]: cpa->num;
1867
1868                                 if(orignum > sbound - strandbuf->bound) {
1869                                         sbound= strandbuf->bound + orignum;
1870                                         sbound->start= sbound->end= obr->totstrand;
1871                                 }
1872                         }
1873                 }
1874
1875                 /* TEXCO_PARTICLE */
1876                 pa_co[0] = pa_time;
1877                 pa_co[1] = 0.f;
1878                 pa_co[2] = 0.f;
1879
1880                 /* surface normal shading setup */
1881                 if(ma->mode_l & MA_STR_SURFDIFF) {
1882                         mul_m3_v3(nmat, nor);
1883                         sd.surfnor= nor;
1884                 }
1885                 else
1886                         sd.surfnor= NULL;
1887
1888                 /* strand render setup */
1889                 if(strandbuf) {
1890                         strand= RE_findOrAddStrand(obr, obr->totstrand++);
1891                         strand->buffer= strandbuf;
1892                         strand->vert= svert;
1893                         copy_v3_v3(strand->orco, sd.orco);
1894
1895                         if(dosimplify) {
1896                                 float *ssimplify= RE_strandren_get_simplify(obr, strand, 1);
1897                                 ssimplify[0]= simplify[0];
1898                                 ssimplify[1]= simplify[1];
1899                         }
1900
1901                         if(sd.surfnor) {
1902                                 float *snor= RE_strandren_get_surfnor(obr, strand, 1);
1903                                 copy_v3_v3(snor, sd.surfnor);
1904                         }
1905
1906                         if(dosurfacecache && num >= 0) {
1907                                 int *facenum= RE_strandren_get_face(obr, strand, 1);
1908                                 *facenum= num;
1909                         }
1910
1911                         if(sd.uvco) {
1912                                 for(i=0; i<sd.totuv; i++) {
1913                                         if(i != sd.override_uv) {
1914                                                 float *uv= RE_strandren_get_uv(obr, strand, i, NULL, 1);
1915
1916                                                 uv[0]= sd.uvco[2*i];
1917                                                 uv[1]= sd.uvco[2*i+1];
1918                                         }
1919                                 }
1920                         }
1921                         if(sd.mcol) {
1922                                 for(i=0; i<sd.totcol; i++) {
1923                                         MCol *mc= RE_strandren_get_mcol(obr, strand, i, NULL, 1);
1924                                         *mc = sd.mcol[i];
1925                                 }
1926                         }
1927
1928                         sbound->end++;
1929                 }
1930
1931                 /* strandco computation setup */
1932                 if(path_nbr) {
1933                         strandlen= 0.0f;
1934                         curlen= 0.0f;
1935                         for(k=1; k<=path_nbr; k++)
1936                                 if(k<=max_k)
1937                                         strandlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1938                 }
1939
1940                 if(path_nbr) {
1941                         /* render strands */
1942                         for(k=0; k<=path_nbr; k++){
1943                                 float time;
1944
1945                                 if(k<=max_k){
1946                                         copy_v3_v3(state.co,(cache+k)->co);
1947                                         copy_v3_v3(state.vel,(cache+k)->vel);
1948                                 }
1949                                 else
1950                                         continue;       
1951
1952                                 if(k > 0)
1953                                         curlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1954                                 time= curlen/strandlen;
1955
1956                                 copy_v3_v3(loc,state.co);
1957                                 mul_m4_v3(re->viewmat,loc);
1958
1959                                 if(strandbuf) {
1960                                         copy_v3_v3(svert->co, loc);
1961                                         svert->strandco= -1.0f + 2.0f*time;
1962                                         svert++;
1963                                         strand->totvert++;
1964                                 }
1965                                 else{
1966                                         sd.size = hasize;
1967
1968                                         if(k==1){
1969                                                 sd.first = 1;
1970                                                 sd.time = 0.0f;
1971                                                 sub_v3_v3v3(loc0,loc1,loc);
1972                                                 add_v3_v3v3(loc0,loc1,loc0);
1973
1974                                                 particle_curve(re, obr, psmd->dm, ma, &sd, loc1, loc0, seed, pa_co);
1975                                         }
1976
1977                                         sd.first = 0;
1978                                         sd.time = time;
1979
1980                                         if(k)
1981                                                 particle_curve(re, obr, psmd->dm, ma, &sd, loc, loc1, seed, pa_co);
1982
1983                                         copy_v3_v3(loc1,loc);
1984                                 }
1985                         }
1986
1987                 }
1988                 else {
1989                         /* render normal particles */
1990                         if(part->trail_count > 1) {
1991                                 float length = part->path_end * (1.0f - part->randlength * r_length);
1992                                 int trail_count = part->trail_count * (1.0f - part->randlength * r_length);
1993                                 float ct = (part->draw & PART_ABS_PATH_TIME) ? cfra : pa_time;
1994                                 float dt = length / (trail_count ? (float)trail_count : 1.0f);
1995
1996                                 /* make sure we have pointcache in memory before getting particle on path */
1997                                 psys_make_temp_pointcache(ob, psys);
1998
1999                                 for(i=0; i < trail_count; i++, ct -= dt) {
2000                                         if(part->draw & PART_ABS_PATH_TIME) {
2001                                                 if(ct < pa_birthtime || ct > pa_dietime)
2002                                                         continue;
2003                                         }
2004                                         else if(ct < 0.0f || ct > 1.0f)
2005                                                 continue;
2006
2007                                         state.time = (part->draw & PART_ABS_PATH_TIME) ? -ct : ct;
2008                                         psys_get_particle_on_path(&sim,a,&state,1);
2009
2010                                         if(psys->parent)
2011                                                 mul_m4_v3(psys->parent->obmat, state.co);
2012
2013                                         if(use_duplimat)
2014                                                 mul_m4_v4(duplimat, state.co);
2015
2016                                         if(part->ren_as == PART_DRAW_BB) {
2017                                                 bb.random = random;
2018                                                 bb.offset[0] = part->bb_offset[0];
2019                                                 bb.offset[1] = part->bb_offset[1];
2020                                                 bb.size[0] = part->bb_size[0] * pa_size;
2021                                                 if (part->bb_align==PART_BB_VEL) {
2022                                                         float pa_vel = len_v3(state.vel);
2023                                                         float head = part->bb_vel_head*pa_vel;
2024                                                         float tail = part->bb_vel_tail*pa_vel;
2025                                                         bb.size[1] = part->bb_size[1]*pa_size + head + tail;
2026                                                         /* use offset to adjust the particle center. this is relative to size, so need to divide! */
2027                                                         if (bb.size[1] > 0.0f)
2028                                                                 bb.offset[1] += (head-tail) / bb.size[1];
2029                                                 }
2030                                                 else
2031                                                         bb.size[1] = part->bb_size[1] * pa_size;
2032                                                 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2033                                                 bb.time = ct;
2034                                                 bb.num = a;
2035                                         }
2036
2037                                         pa_co[0] = (part->draw & PART_ABS_PATH_TIME) ? (ct-pa_birthtime)/(pa_dietime-pa_birthtime) : ct;
2038                                         pa_co[1] = (float)i/(float)(trail_count-1);
2039
2040                                         particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2041                                 }
2042                         }
2043                         else {
2044                                 state.time=cfra;
2045                                 if(psys_get_particle_state(&sim,a,&state,0)==0)
2046                                         continue;
2047
2048                                 if(psys->parent)
2049                                         mul_m4_v3(psys->parent->obmat, state.co);
2050
2051                                 if(use_duplimat)
2052                                         mul_m4_v3(duplimat, state.co);
2053
2054                                 if(part->ren_as == PART_DRAW_BB) {
2055                                         bb.random = random;
2056                                         bb.offset[0] = part->bb_offset[0];
2057                                         bb.offset[1] = part->bb_offset[1];
2058                                         bb.size[0] = part->bb_size[0] * pa_size;
2059                                         if (part->bb_align==PART_BB_VEL) {
2060                                                 float pa_vel = len_v3(state.vel);
2061                                                 float head = part->bb_vel_head*pa_vel;
2062                                                 float tail = part->bb_vel_tail*pa_vel;
2063                                                 bb.size[1] = part->bb_size[1]*pa_size + head + tail;
2064                                                 /* use offset to adjust the particle center. this is relative to size, so need to divide! */
2065                                                 if (bb.size[1] > 0.0f)
2066                                                         bb.offset[1] += (head-tail) / bb.size[1];
2067                                         }
2068                                         else
2069                                                 bb.size[1] = part->bb_size[1] * pa_size;
2070                                         bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2071                                         bb.time = pa_time;
2072                                         bb.num = a;
2073                                         bb.lifetime = pa_dietime-pa_birthtime;
2074                                 }
2075
2076                                 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2077                         }
2078                 }
2079
2080                 if(orco1==0)
2081                         sd.orco+=3;
2082
2083                 if(re->test_break(re->tbh))
2084                         break;
2085         }
2086
2087         if(dosurfacecache)
2088                 strandbuf->surface= cache_strand_surface(re, obr, psmd->dm, mat, timeoffset);
2089
2090 /* 4. clean up */
2091 #if 0 // XXX old animation system
2092         if(ma) do_mat_ipo(re->scene, ma);
2093 #endif // XXX old animation system
2094         
2095         if(orco1)
2096                 MEM_freeN(sd.orco);
2097
2098         if(sd.uvco)
2099                 MEM_freeN(sd.uvco);
2100         
2101         if(sd.mcol)
2102                 MEM_freeN(sd.mcol);
2103
2104         if(uv_name)
2105                 MEM_freeN(uv_name);
2106
2107         if(states)
2108                 MEM_freeN(states);
2109         
2110         rng_free(rng);
2111
2112         psys->flag &= ~PSYS_DRAWING;
2113
2114         if(psys->lattice){
2115                 end_latt_deform(psys->lattice);
2116                 psys->lattice= NULL;
2117         }
2118
2119         if(path_nbr && (ma->mode_l & MA_TANGENT_STR)==0)
2120                 calc_vertexnormals(re, obr, 0, 0);
2121
2122         return 1;
2123 }
2124
2125 /* ------------------------------------------------------------------------- */
2126 /* Halo's                                                                                                                                */
2127 /* ------------------------------------------------------------------------- */
2128
2129 static void make_render_halos(Render *re, ObjectRen *obr, Mesh *UNUSED(me), int totvert, MVert *mvert, Material *ma, float *orco)
2130 {
2131         Object *ob= obr->ob;
2132         HaloRen *har;
2133         float xn, yn, zn, nor[3], view[3];
2134         float vec[3], hasize, mat[4][4], imat[3][3];
2135         int a, ok, seed= ma->seed1;
2136
2137         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
2138         copy_m3_m4(imat, ob->imat);
2139
2140         re->flag |= R_HALO;
2141
2142         for(a=0; a<totvert; a++, mvert++) {
2143                 ok= 1;
2144
2145                 if(ok) {
2146                         hasize= ma->hasize;
2147
2148                         copy_v3_v3(vec, mvert->co);
2149                         mul_m4_v3(mat, vec);
2150
2151                         if(ma->mode & MA_HALOPUNO) {
2152                                 xn= mvert->no[0];
2153                                 yn= mvert->no[1];
2154                                 zn= mvert->no[2];
2155
2156                                 /* transpose ! */
2157                                 nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2158                                 nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2159                                 nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2160                                 normalize_v3(nor);
2161
2162                                 copy_v3_v3(view, vec);
2163                                 normalize_v3(view);
2164
2165                                 zn= nor[0]*view[0]+nor[1]*view[1]+nor[2]*view[2];
2166                                 if(zn>=0.0f) hasize= 0.0f;
2167                                 else hasize*= zn*zn*zn*zn;
2168                         }
2169
2170                         if(orco) har= RE_inithalo(re, obr, ma, vec, NULL, orco, hasize, 0.0, seed);
2171                         else har= RE_inithalo(re, obr, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
2172                         if(har) har->lay= ob->lay;
2173                 }
2174                 if(orco) orco+= 3;
2175                 seed++;
2176         }
2177 }
2178
2179 static int verghalo(const void *a1, const void *a2)
2180 {
2181         const HaloRen *har1= *(const HaloRen**)a1;
2182         const HaloRen *har2= *(const HaloRen**)a2;
2183         
2184         if(har1->zs < har2->zs) return 1;
2185         else if(har1->zs > har2->zs) return -1;
2186         return 0;
2187 }
2188
2189 static void sort_halos(Render *re, int totsort)
2190 {
2191         ObjectRen *obr;
2192         HaloRen *har= NULL, **haso;
2193         int a;
2194
2195         if(re->tothalo==0) return;
2196
2197         re->sortedhalos= MEM_callocN(sizeof(HaloRen*)*re->tothalo, "sorthalos");
2198         haso= re->sortedhalos;
2199
2200         for(obr=re->objecttable.first; obr; obr=obr->next) {
2201                 for(a=0; a<obr->tothalo; a++) {
2202                         if((a & 255)==0) har= obr->bloha[a>>8];
2203                         else har++;
2204
2205                         *(haso++)= har;
2206                 }
2207         }
2208
2209         qsort(re->sortedhalos, totsort, sizeof(HaloRen*), verghalo);
2210 }
2211
2212 /* ------------------------------------------------------------------------- */
2213 /* Displacement Mapping                                                                                                          */
2214 /* ------------------------------------------------------------------------- */
2215
2216 static short test_for_displace(Render *re, Object *ob)
2217 {
2218         /* return 1 when this object uses displacement textures. */
2219         Material *ma;
2220         int i;
2221         
2222         for (i=1; i<=ob->totcol; i++) {
2223                 ma=give_render_material(re, ob, i);
2224                 /* ma->mapto is ORed total of all mapto channels */
2225                 if(ma && (ma->mapto & MAP_DISPLACE)) return 1;
2226         }
2227         return 0;
2228 }
2229
2230 static void displace_render_vert(Render *re, ObjectRen *obr, ShadeInput *shi, VertRen *vr, int vindex, float *scale, float mat[][4], float imat[][3])
2231 {
2232         MTFace *tface;
2233         short texco= shi->mat->texco;
2234         float sample=0, displace[3];
2235         char *name;
2236         int i;
2237
2238         /* shi->co is current render coord, just make sure at least some vector is here */
2239         copy_v3_v3(shi->co, vr->co);
2240         /* vertex normal is used for textures type 'col' and 'var' */
2241         copy_v3_v3(shi->vn, vr->n);
2242
2243         if(mat)
2244                 mul_m4_v3(mat, shi->co);
2245
2246         if(imat) {
2247                 shi->vn[0]= imat[0][0]*vr->n[0]+imat[0][1]*vr->n[1]+imat[0][2]*vr->n[2];
2248                 shi->vn[1]= imat[1][0]*vr->n[0]+imat[1][1]*vr->n[1]+imat[1][2]*vr->n[2];
2249                 shi->vn[2]= imat[2][0]*vr->n[0]+imat[2][1]*vr->n[1]+imat[2][2]*vr->n[2];
2250         }
2251
2252         if (texco & TEXCO_UV) {
2253                 shi->totuv= 0;
2254                 shi->actuv= obr->actmtface;
2255
2256                 for (i=0; (tface=RE_vlakren_get_tface(obr, shi->vlr, i, &name, 0)); i++) {
2257                         ShadeInputUV *suv= &shi->uv[i];
2258
2259                         /* shi.uv needs scale correction from tface uv */
2260                         suv->uv[0]= 2*tface->uv[vindex][0]-1.0f;
2261                         suv->uv[1]= 2*tface->uv[vindex][1]-1.0f;
2262                         suv->uv[2]= 0.0f;
2263                         suv->name= name;
2264                         shi->totuv++;
2265                 }
2266         }
2267
2268         /* set all rendercoords, 'texco' is an ORed value for all textures needed */
2269         if ((texco & TEXCO_ORCO) && (vr->orco)) {
2270                 copy_v3_v3(shi->lo, vr->orco);
2271         }
2272         if (texco & TEXCO_STICKY) {
2273                 float *sticky= RE_vertren_get_sticky(obr, vr, 0);
2274                 if(sticky) {
2275                         shi->sticky[0]= sticky[0];
2276                         shi->sticky[1]= sticky[1];
2277                         shi->sticky[2]= 0.0f;
2278                 }
2279         }
2280         if (texco & TEXCO_GLOB) {
2281                 copy_v3_v3(shi->gl, shi->co);
2282                 mul_m4_v3(re->viewinv, shi->gl);
2283         }
2284         if (texco & TEXCO_NORM) {
2285                 copy_v3_v3(shi->orn, shi->vn);
2286         }
2287         if(texco & TEXCO_REFL) {
2288                 /* not (yet?) */
2289         }
2290         
2291         shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
2292         
2293         do_material_tex(shi, re);
2294         
2295         //printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2], 
2296         //vr->co[0], vr->co[1], vr->co[2]);
2297
2298         displace[0]= shi->displace[0] * scale[0];
2299         displace[1]= shi->displace[1] * scale[1];
2300         displace[2]= shi->displace[2] * scale[2];
2301         
2302         if(mat)
2303                 mul_m3_v3(imat, displace);
2304
2305         /* 0.5 could become button once?  */
2306         vr->co[0] += displace[0]; 
2307         vr->co[1] += displace[1];
2308         vr->co[2] += displace[2];
2309         
2310         //printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]); 
2311         
2312         /* we just don't do this vertex again, bad luck for other face using same vertex with
2313                 different material... */
2314         vr->flag |= 1;
2315         
2316         /* Pass sample back so displace_face can decide which way to split the quad */
2317         sample  = shi->displace[0]*shi->displace[0];
2318         sample += shi->displace[1]*shi->displace[1];
2319         sample += shi->displace[2]*shi->displace[2];
2320         
2321         vr->accum=sample; 
2322         /* Should be sqrt(sample), but I'm only looking for "bigger".  Save the cycles. */
2323         return;
2324 }
2325
2326 static void displace_render_face(Render *re, ObjectRen *obr, VlakRen *vlr, float *scale, float mat[][4], float imat[][3])
2327 {
2328         ShadeInput shi;
2329
2330         /* Warning, This is not that nice, and possibly a bit slow,
2331         however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
2332         memset(&shi, 0, sizeof(ShadeInput)); 
2333         /* end warning! - Campbell */
2334         
2335         /* set up shadeinput struct for multitex() */
2336         
2337         /* memset above means we dont need this */
2338         /*shi.osatex= 0;*/              /* signal not to use dx[] and dy[] texture AA vectors */
2339
2340         shi.obr= obr;
2341         shi.vlr= vlr;           /* current render face */
2342         shi.mat= vlr->mat;              /* current input material */
2343         shi.thread= 0;
2344         
2345         /* TODO, assign these, displacement with new bumpmap is skipped without - campbell */
2346 #if 0
2347         /* order is not known ? */
2348         shi.v1= vlr->v1;
2349         shi.v2= vlr->v2;
2350         shi.v3= vlr->v3;
2351 #endif
2352
2353         /* Displace the verts, flag is set when done */
2354         if (!vlr->v1->flag)
2355                 displace_render_vert(re, obr, &shi, vlr->v1,0,  scale, mat, imat);
2356         
2357         if (!vlr->v2->flag)
2358                 displace_render_vert(re, obr, &shi, vlr->v2, 1, scale, mat, imat);
2359
2360         if (!vlr->v3->flag)
2361                 displace_render_vert(re, obr, &shi, vlr->v3, 2, scale, mat, imat);
2362
2363         if (vlr->v4) {
2364                 if (!vlr->v4->flag)
2365                         displace_render_vert(re, obr, &shi, vlr->v4, 3, scale, mat, imat);
2366
2367                 /*      closest in displace value.  This will help smooth edges.   */ 
2368                 if ( fabs(vlr->v1->accum - vlr->v3->accum) > fabs(vlr->v2->accum - vlr->v4->accum)) 
2369                         vlr->flag |= R_DIVIDE_24;
2370                 else vlr->flag &= ~R_DIVIDE_24;
2371         }
2372         
2373         /* Recalculate the face normal  - if flipped before, flip now */
2374         if(vlr->v4) {
2375                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2376         }       
2377         else {
2378                 normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
2379         }
2380 }
2381
2382 static void do_displacement(Render *re, ObjectRen *obr, float mat[][4], float imat[][3])
2383 {
2384         VertRen *vr;
2385         VlakRen *vlr;
2386 //      float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
2387         float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
2388         int i; //, texflag=0;
2389         Object *obt;
2390                 
2391         /* Object Size with parenting */
2392         obt=obr->ob;
2393         while(obt){
2394                 mul_v3_v3v3(temp, obt->size, obt->dsize);
2395                 scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
2396                 obt=obt->parent;
2397         }
2398         
2399         /* Clear all flags */
2400         for(i=0; i<obr->totvert; i++){ 
2401                 vr= RE_findOrAddVert(obr, i);
2402                 vr->flag= 0;
2403         }
2404
2405         for(i=0; i<obr->totvlak; i++){
2406                 vlr=RE_findOrAddVlak(obr, i);
2407                 displace_render_face(re, obr, vlr, scale, mat, imat);
2408         }
2409         
2410         /* Recalc vertex normals */
2411         calc_vertexnormals(re, obr, 0, 0);
2412 }
2413
2414 /* ------------------------------------------------------------------------- */
2415 /* Metaball                                                                                                                              */
2416 /* ------------------------------------------------------------------------- */
2417
2418 static void init_render_mball(Render *re, ObjectRen *obr)
2419 {
2420         Object *ob= obr->ob;
2421         DispList *dl;
2422         VertRen *ver;
2423         VlakRen *vlr, *vlr1;
2424         Material *ma;
2425         float *data, *nors, *orco=NULL, mat[4][4], imat[3][3], xn, yn, zn;
2426         int a, need_orco, vlakindex, *index;
2427         ListBase dispbase= {NULL, NULL};
2428
2429         if (ob!=find_basis_mball(re->scene, ob))
2430                 return;
2431
2432         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
2433         invert_m4_m4(ob->imat, mat);
2434         copy_m3_m4(imat, ob->imat);
2435
2436         ma= give_render_material(re, ob, 1);
2437
2438         need_orco= 0;
2439         if(ma->texco & TEXCO_ORCO) {
2440                 need_orco= 1;
2441         }
2442
2443         makeDispListMBall_forRender(re->scene, ob, &dispbase);
2444         dl= dispbase.first;
2445         if(dl==0) return;
2446
2447         data= dl->verts;
2448         nors= dl->nors;
2449         if(need_orco) {
2450                 orco= get_object_orco(re, ob);
2451
2452                 if (!orco) {
2453                         /* orco hasn't been found in cache - create new one and add to cache */
2454                         orco= make_orco_mball(ob, &dispbase);
2455                         set_object_orco(re, ob, orco);
2456                 }
2457         }
2458
2459         for(a=0; a<dl->nr; a++, data+=3, nors+=3) {
2460
2461                 ver= RE_findOrAddVert(obr, obr->totvert++);
2462                 copy_v3_v3(ver->co, data);
2463                 mul_m4_v3(mat, ver->co);
2464
2465                 /* render normals are inverted */
2466                 xn= -nors[0];
2467                 yn= -nors[1];
2468                 zn= -nors[2];
2469
2470                 /* transpose ! */
2471                 ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2472                 ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2473                 ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2474                 normalize_v3(ver->n);
2475                 //if(ob->transflag & OB_NEG_SCALE) negate_v3(ver->n);
2476                 
2477                 if(need_orco) {
2478                         ver->orco= orco;
2479                         orco+=3;
2480                 }
2481         }
2482
2483         index= dl->index;
2484         for(a=0; a<dl->parts; a++, index+=4) {
2485
2486                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2487                 vlr->v1= RE_findOrAddVert(obr, index[0]);
2488                 vlr->v2= RE_findOrAddVert(obr, index[1]);
2489                 vlr->v3= RE_findOrAddVert(obr, index[2]);
2490                 vlr->v4= 0;
2491
2492                 if(ob->transflag & OB_NEG_SCALE) 
2493                         normal_tri_v3( vlr->n,vlr->v1->co, vlr->v2->co, vlr->v3->co);
2494                 else
2495                         normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
2496
2497                 vlr->mat= ma;
2498                 vlr->flag= ME_SMOOTH;
2499                 vlr->ec= 0;
2500
2501                 /* mball -too bad- always has triangles, because quads can be non-planar */
2502                 if(index[3] && index[3]!=index[2]) {
2503                         vlr1= RE_findOrAddVlak(obr, obr->totvlak++);
2504                         vlakindex= vlr1->index;
2505                         *vlr1= *vlr;
2506                         vlr1->index= vlakindex;
2507                         vlr1->v2= vlr1->v3;
2508                         vlr1->v3= RE_findOrAddVert(obr, index[3]);
2509                         if(ob->transflag & OB_NEG_SCALE) 
2510                                 normal_tri_v3( vlr1->n,vlr1->v1->co, vlr1->v2->co, vlr1->v3->co);
2511                         else
2512                                 normal_tri_v3( vlr1->n,vlr1->v3->co, vlr1->v2->co, vlr1->v1->co);
2513                 }
2514         }
2515
2516         /* enforce display lists remade */
2517         freedisplist(&dispbase);
2518 }
2519
2520 /* ------------------------------------------------------------------------- */
2521 /* Surfaces and Curves                                                                                                           */
2522 /* ------------------------------------------------------------------------- */
2523
2524 /* returns amount of vertices added for orco */
2525 static int dl_surf_to_renderdata(ObjectRen *obr, DispList *dl, Material **matar, float *orco, float mat[4][4])
2526 {
2527         VertRen *v1, *v2, *v3, *v4, *ver;
2528         VlakRen *vlr, *vlr1, *vlr2, *vlr3;
2529         float *data, n1[3];
2530         int u, v, orcoret= 0;
2531         int p1, p2, p3, p4, a;
2532         int sizeu, nsizeu, sizev, nsizev;
2533         int startvert, startvlak;
2534         
2535         startvert= obr->totvert;
2536         nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr; 
2537         
2538         data= dl->verts;
2539         for (u = 0; u < sizeu; u++) {
2540                 v1 = RE_findOrAddVert(obr, obr->totvert++); /* save this for possible V wrapping */
2541                 copy_v3_v3(v1->co, data); data += 3;
2542                 if(orco) {
2543                         v1->orco= orco; orco+= 3; orcoret++;
2544                 }       
2545                 mul_m4_v3(mat, v1->co);
2546                 
2547                 for (v = 1; v < sizev; v++) {
2548                         ver= RE_findOrAddVert(obr, obr->totvert++);
2549                         copy_v3_v3(ver->co, data); data += 3;
2550                         if(orco) {
2551                                 ver->orco= orco; orco+= 3; orcoret++;
2552                         }       
2553                         mul_m4_v3(mat, ver->co);
2554                 }
2555                 /* if V-cyclic, add extra vertices at end of the row */
2556                 if (dl->flag & DL_CYCL_U) {
2557                         ver= RE_findOrAddVert(obr, obr->totvert++);
2558                         copy_v3_v3(ver->co, v1->co);
2559                         if(orco) {
2560                                 ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
2561                         }
2562                 }       
2563         }       
2564         
2565         /* Done before next loop to get corner vert */
2566         if (dl->flag & DL_CYCL_U) nsizev++;
2567         if (dl->flag & DL_CYCL_V) nsizeu++;
2568         
2569         /* if U cyclic, add extra row at end of column */
2570         if (dl->flag & DL_CYCL_V) {
2571                 for (v = 0; v < nsizev; v++) {
2572                         v1= RE_findOrAddVert(obr, startvert + v);
2573                         ver= RE_findOrAddVert(obr, obr->totvert++);
2574                         copy_v3_v3(ver->co, v1->co);
2575                         if(orco) {
2576                                 ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
2577                         }
2578                 }
2579         }
2580         
2581         sizeu = nsizeu;
2582         sizev = nsizev;
2583         
2584         startvlak= obr->totvlak;
2585         
2586         for(u = 0; u < sizeu - 1; u++) {
2587                 p1 = startvert + u * sizev; /* walk through face list */
2588                 p2 = p1 + 1;
2589                 p3 = p2 + sizev;
2590                 p4 = p3 - 1;
2591                 
2592                 for(v = 0; v < sizev - 1; v++) {
2593                         v1= RE_findOrAddVert(obr, p1);
2594                         v2= RE_findOrAddVert(obr, p2);
2595                         v3= RE_findOrAddVert(obr, p3);
2596                         v4= RE_findOrAddVert(obr, p4);
2597                         
2598                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2599                         vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
2600                         
2601                         normal_quad_v3( n1,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2602                         
2603                         copy_v3_v3(vlr->n, n1);
2604                         
2605                         vlr->mat= matar[ dl->col];
2606                         vlr->ec= ME_V1V2+ME_V2V3;
2607                         vlr->flag= dl->rt;
2608                         
2609                         add_v3_v3(v1->n, n1);
2610                         add_v3_v3(v2->n, n1);
2611                         add_v3_v3(v3->n, n1);
2612                         add_v3_v3(v4->n, n1);
2613                         
2614                         p1++; p2++; p3++; p4++;
2615                 }
2616         }       
2617         /* fix normals for U resp. V cyclic faces */
2618         sizeu--; sizev--;  /* dec size for face array */
2619         if (dl->flag & DL_CYCL_V) {
2620                 
2621                 for (v = 0; v < sizev; v++)
2622                 {
2623                         /* optimize! :*/
2624                         vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, v));
2625                         vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, v));
2626                         add_v3_v3(vlr1->v1->n, vlr->n);
2627                         add_v3_v3(vlr1->v2->n, vlr->n);
2628                         add_v3_v3(vlr->v3->n, vlr1->n);
2629                         add_v3_v3(vlr->v4->n, vlr1->n);
2630                 }
2631         }
2632         if (dl->flag & DL_CYCL_U) {
2633                 
2634                 for (u = 0; u < sizeu; u++)
2635                 {
2636                         /* optimize! :*/
2637                         vlr= RE_findOrAddVlak(obr, UVTOINDEX(u, 0));
2638                         vlr1= RE_findOrAddVlak(obr, UVTOINDEX(u, sizev-1));
2639                         add_v3_v3(vlr1->v2->n, vlr->n);
2640                         add_v3_v3(vlr1->v3->n, vlr->n);
2641                         add_v3_v3(vlr->v1->n, vlr1->n);
2642                         add_v3_v3(vlr->v4->n, vlr1->n);
2643                 }
2644         }
2645         /* last vertex is an extra case: 
2646                 
2647                 ^       ()----()----()----()
2648                 |       |     |     ||     |
2649                 u       |     |(0,n)||(0,0)|
2650                 |     |     ||     |
2651                 ()====()====[]====()
2652                 |     |     ||     |
2653                 |     |(m,n)||(m,0)|
2654                 |     |     ||     |
2655                 ()----()----()----()
2656                 v ->
2657                 
2658                 vertex [] is no longer shared, therefore distribute
2659                 normals of the surrounding faces to all of the duplicates of []
2660                 */
2661         
2662         if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U))
2663         {
2664                 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m,n) */
2665                 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0,0));  /* (0,0) */
2666                 add_v3_v3v3(n1, vlr->n, vlr1->n);
2667                 vlr2= RE_findOrAddVlak(obr, UVTOINDEX(0, sizev-1)); /* (0,n) */
2668                 add_v3_v3(n1, vlr2->n);
2669                 vlr3= RE_findOrAddVlak(obr, UVTOINDEX(sizeu-1, 0)); /* (m,0) */
2670                 add_v3_v3(n1, vlr3->n);
2671                 copy_v3_v3(vlr->v3->n, n1);
2672                 copy_v3_v3(vlr1->v1->n, n1);
2673                 copy_v3_v3(vlr2->v2->n, n1);
2674                 copy_v3_v3(vlr3->v4->n, n1);
2675         }
2676         for(a = startvert; a < obr->totvert; a++) {
2677                 ver= RE_findOrAddVert(obr, a);
2678                 normalize_v3(ver->n);
2679         }
2680         
2681         
2682         return orcoret;
2683 }
2684
2685 static void init_render_dm(DerivedMesh *dm, Render *re, ObjectRen *obr,
2686         int timeoffset, float *orco, float mat[4][4])
2687 {
2688         Object *ob= obr->ob;
2689         int a, end, totvert, vertofs;
2690         short mat_iter;
2691         VertRen *ver;
2692         VlakRen *vlr;
2693         MVert *mvert = NULL;
2694         MFace *mface;
2695         Material *ma;
2696         /* Curve *cu= ELEM(ob->type, OB_FONT, OB_CURVE) ? ob->data : NULL; */
2697
2698         mvert= dm->getVertArray(dm);
2699         totvert= dm->getNumVerts(dm);
2700
2701         for(a=0; a<totvert; a++, mvert++) {
2702                 ver= RE_findOrAddVert(obr, obr->totvert++);
2703                 copy_v3_v3(ver->co, mvert->co);
2704                 mul_m4_v3(mat, ver->co);
2705
2706                 if(orco) {
2707                         ver->orco= orco;
2708                         orco+=3;
2709                 }
2710         }
2711
2712         if(!timeoffset) {
2713                 /* store customdata names, because DerivedMesh is freed */
2714                 RE_set_customdata_names(obr, &dm->faceData);
2715
2716                 /* still to do for keys: the correct local texture coordinate */
2717
2718                 /* faces in order of color blocks */
2719                 vertofs= obr->totvert - totvert;
2720                 for(mat_iter= 0; (mat_iter < ob->totcol || (mat_iter==0 && ob->totcol==0)); mat_iter++) {
2721
2722                         ma= give_render_material(re, ob, mat_iter+1);
2723                         end= dm->getNumFaces(dm);
2724                         mface= dm->getFaceArray(dm);
2725
2726                         for(a=0; a<end; a++, mface++) {
2727                                 int v1, v2, v3, v4, flag;
2728
2729                                 if(mface->mat_nr == mat_iter) {
2730                                         float len;
2731
2732                                         v1= mface->v1;
2733                                         v2= mface->v2;
2734                                         v3= mface->v3;
2735                                         v4= mface->v4;
2736                                         flag= mface->flag & ME_SMOOTH;
2737
2738                                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2739                                         vlr->v1= RE_findOrAddVert(obr, vertofs+v1);
2740                                         vlr->v2= RE_findOrAddVert(obr, vertofs+v2);
2741                                         vlr->v3= RE_findOrAddVert(obr, vertofs+v3);
2742                                         if(v4) vlr->v4= RE_findOrAddVert(obr, vertofs+v4);
2743                                         else vlr->v4= 0;
2744
2745                                         /* render normals are inverted in render */
2746                                         if(vlr->v4)
2747                                                 len= normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2748                                         else
2749                                                 len= normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
2750
2751                                         vlr->mat= ma;
2752                                         vlr->flag= flag;
2753                                         vlr->ec= 0; /* mesh edges rendered separately */
2754
2755                                         if(len==0) obr->totvlak--;
2756                                         else {
2757                                                 CustomDataLayer *layer;
2758                                                 MTFace *mtface, *mtf;
2759                                                 MCol *mcol, *mc;
2760                                                 int index, mtfn= 0, mcn= 0;
2761                                                 char *name;
2762
2763                                                 for(index=0; index<dm->faceData.totlayer; index++) {
2764                                                         layer= &dm->faceData.layers[index];
2765                                                         name= layer->name;
2766
2767                                                         if(layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
2768                                                                 mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
2769                                                                 mtface= (MTFace*)layer->data;
2770                                                                 *mtf= mtface[a];
2771                                                         }
2772                                                         else if(layer->type == CD_MCOL && mcn < MAX_MCOL) {
2773                                                                 mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
2774                                                                 mcol= (MCol*)layer->data;
2775                                                                 memcpy(mc, &mcol[a*4], sizeof(MCol)*4);
2776                                                         }
2777                                                 }
2778                                         }
2779                                 }
2780                         }
2781                 }
2782
2783                 /* Normals */
2784                 calc_vertexnormals(re, obr, 0, 0);
2785         }
2786
2787 }
2788
2789 static void init_render_surf(Render *re, ObjectRen *obr, int timeoffset)
2790 {
2791         Object *ob= obr->ob;
2792         Nurb *nu=0;
2793         Curve *cu;
2794         ListBase displist= {NULL, NULL};
2795         DispList *dl;
2796         Material **matar;
2797         float *orco=NULL, mat[4][4];
2798         int a, totmat, need_orco=0;
2799         DerivedMesh *dm= NULL;
2800
2801         cu= ob->data;
2802         nu= cu->nurb.first;
2803         if(nu==0) return;
2804
2805         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
2806         invert_m4_m4(ob->imat, mat);
2807
2808         /* material array */
2809         totmat= ob->totcol+1;
2810         matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2811
2812         for(a=0; a<totmat; a++) {
2813                 matar[a]= give_render_material(re, ob, a+1);
2814
2815                 if(matar[a] && matar[a]->texco & TEXCO_ORCO)
2816                         need_orco= 1;
2817         }
2818
2819         if(ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
2820
2821         makeDispListSurf(re->scene, ob, &displist, &dm, 1, 0);
2822
2823         if (dm) {
2824                 if(need_orco) {
2825                         orco= makeOrcoDispList(re->scene, ob, dm, 1);
2826                         if(orco) {
2827                                 set_object_orco(re, ob, orco);
2828                         }
2829                 }
2830
2831                 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2832                 dm->release(dm);
2833         } else {
2834                 if(need_orco) {
2835                         orco= get_object_orco(re, ob);
2836                 }
2837
2838                 /* walk along displaylist and create rendervertices/-faces */
2839                 for(dl=displist.first; dl; dl=dl->next) {
2840                         /* watch out: u ^= y, v ^= x !! */
2841                         if(dl->type==DL_SURF)
2842                                 orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
2843                 }
2844         }
2845
2846         freedisplist(&displist);
2847
2848         MEM_freeN(matar);
2849 }
2850
2851 static void init_render_curve(Render *re, ObjectRen *obr, int timeoffset)
2852 {
2853         Object *ob= obr->ob;
2854         Curve *cu;
2855         VertRen *ver;
2856         VlakRen *vlr;
2857         DispList *dl;
2858         DerivedMesh *dm = NULL;
2859         ListBase disp={NULL, NULL};
2860         Material **matar;
2861         float *data, *fp, *orco=NULL;
2862         float n[3], mat[4][4];
2863         int nr, startvert, a, b;
2864         int need_orco=0, totmat;
2865
2866         cu= ob->data;
2867         if(ob->type==OB_FONT && cu->str==NULL) return;
2868         else if(ob->type==OB_CURVE && cu->nurb.first==NULL) return;
2869
2870         makeDispListCurveTypes_forRender(re->scene, ob, &disp, &dm, 0);
2871         dl= disp.first;
2872         if(dl==NULL) return;
2873         
2874         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
2875         invert_m4_m4(ob->imat, mat);
2876
2877         /* material array */
2878         totmat= ob->totcol+1;
2879         matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2880
2881         for(a=0; a<totmat; a++) {
2882                 matar[a]= give_render_material(re, ob, a+1);
2883
2884                 if(matar[a] && matar[a]->texco & TEXCO_ORCO)
2885                         need_orco= 1;
2886         }
2887
2888         if (dm) {
2889                 if(need_orco) {
2890                         orco= makeOrcoDispList(re->scene, ob, dm, 1);
2891                         if(orco) {
2892                                 set_object_orco(re, ob, orco);
2893                         }
2894                 }
2895
2896                 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2897                 dm->release(dm);
2898         } else {
2899                 if(need_orco) {
2900                   orco= get_object_orco(re, ob);
2901                 }
2902
2903                 while(dl) {
2904                         if(dl->col > ob->totcol) {
2905                                 /* pass */
2906                         }
2907                         else if(dl->type==DL_INDEX3) {
2908                                 int *index;
2909
2910                                 startvert= obr->totvert;
2911                                 data= dl->verts;
2912
2913                                 for(a=0; a<dl->nr; a++, data+=3) {
2914                                         ver= RE_findOrAddVert(obr, obr->totvert++);
2915                                         copy_v3_v3(ver->co, data);
2916
2917                                         mul_m4_v3(mat, ver->co);
2918
2919                                         if (orco) {
2920                                                 ver->orco = orco;
2921                                                 orco += 3;
2922                                         }
2923                                 }
2924
2925                                 if(timeoffset==0) {
2926                                         float tmp[3];
2927                                         const int startvlak= obr->totvlak;
2928
2929                                         zero_v3(n);
2930                                         index= dl->index;
2931                                         for(a=0; a<dl->parts; a++, index+=3) {
2932                 &nb