Cleanup: spelling
[blender.git] / source / blender / editors / sculpt_paint / paint_image_proj.c
1 /*
2  * ***** BEGIN GPL LICENSE BLOCK *****
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * along with this program; if not, write to the Free Software Foundation,
15  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
16  *
17  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
18  * All rights reserved.
19  *
20  * The Original Code is: some of this file.
21  *
22  * Contributor(s): Jens Ole Wund (bjornmose), Campbell Barton (ideasman42)
23  *
24  * ***** END GPL LICENSE BLOCK *****
25  */
26
27 /** \file blender/editors/sculpt_paint/paint_image_proj.c
28  *  \ingroup edsculpt
29  *  \brief Functions to paint images in 2D and 3D.
30  */
31
32 #include <float.h>
33 #include <string.h>
34 #include <stdio.h>
35 #include <math.h>
36
37 #include "MEM_guardedalloc.h"
38
39 #ifdef WIN32
40 #  include "BLI_winstuff.h"
41 #endif
42
43 #include "BLI_blenlib.h"
44 #include "BLI_linklist.h"
45 #include "BLI_math.h"
46 #include "BLI_math_bits.h"
47 #include "BLI_math_color_blend.h"
48 #include "BLI_memarena.h"
49 #include "BLI_threads.h"
50 #include "BLI_utildefines.h"
51
52 #include "BLT_translation.h"
53
54
55 #include "IMB_imbuf.h"
56 #include "IMB_imbuf_types.h"
57
58 #include "DNA_brush_types.h"
59 #include "DNA_material_types.h"
60 #include "DNA_mesh_types.h"
61 #include "DNA_node_types.h"
62 #include "DNA_object_types.h"
63
64 #include "BKE_camera.h"
65 #include "BKE_context.h"
66 #include "BKE_colortools.h"
67 #include "BKE_depsgraph.h"
68 #include "BKE_DerivedMesh.h"
69 #include "BKE_idprop.h"
70 #include "BKE_brush.h"
71 #include "BKE_image.h"
72 #include "BKE_library.h"
73 #include "BKE_main.h"
74 #include "BKE_material.h"
75 #include "BKE_mesh.h"
76 #include "BKE_mesh_mapping.h"
77 #include "BKE_node.h"
78 #include "BKE_paint.h"
79 #include "BKE_report.h"
80 #include "BKE_scene.h"
81 #include "BKE_texture.h"
82
83 #include "UI_interface.h"
84
85 #include "ED_mesh.h"
86 #include "ED_node.h"
87 #include "ED_paint.h"
88 #include "ED_screen.h"
89 #include "ED_uvedit.h"
90 #include "ED_view3d.h"
91
92 #include "GPU_extensions.h"
93
94 #include "WM_api.h"
95 #include "WM_types.h"
96
97 #include "RNA_access.h"
98 #include "RNA_define.h"
99 #include "RNA_enum_types.h"
100
101 #include "GPU_draw.h"
102
103 #include "IMB_colormanagement.h"
104
105 #include "bmesh.h"
106 //#include "bmesh_tools.h"
107
108 #include "paint_intern.h"
109
110 static void partial_redraw_array_init(ImagePaintPartialRedraw *pr);
111
112 /* Defines and Structs */
113 /* FTOCHAR as inline function */
114 BLI_INLINE unsigned char f_to_char(const float val)
115 {
116         return FTOCHAR(val);
117 }
118
119 /* ProjectionPaint defines */
120
121 /* approx the number of buckets to have under the brush,
122  * used with the brush size to set the ps->buckets_x and ps->buckets_y value.
123  *
124  * When 3 - a brush should have ~9 buckets under it at once
125  * ...this helps for threading while painting as well as
126  * avoiding initializing pixels that wont touch the brush */
127 #define PROJ_BUCKET_BRUSH_DIV 4
128
129 #define PROJ_BUCKET_RECT_MIN 4
130 #define PROJ_BUCKET_RECT_MAX 256
131
132 #define PROJ_BOUNDBOX_DIV 8
133 #define PROJ_BOUNDBOX_SQUARED  (PROJ_BOUNDBOX_DIV * PROJ_BOUNDBOX_DIV)
134
135 //#define PROJ_DEBUG_PAINT 1
136 //#define PROJ_DEBUG_NOSEAMBLEED 1
137 //#define PROJ_DEBUG_PRINT_CLIP 1
138 #define PROJ_DEBUG_WINCLIP 1
139
140
141 #ifndef PROJ_DEBUG_NOSEAMBLEED
142 /* projectFaceSeamFlags options */
143 //#define PROJ_FACE_IGNORE      (1<<0)  /* When the face is hidden, backfacing or occluded */
144 //#define PROJ_FACE_INIT        (1<<1)  /* When we have initialized the faces data */
145 #define PROJ_FACE_SEAM1 (1 << 0)  /* If this face has a seam on any of its edges */
146 #define PROJ_FACE_SEAM2 (1 << 1)
147 #define PROJ_FACE_SEAM3 (1 << 2)
148
149 #define PROJ_FACE_NOSEAM1   (1 << 4)
150 #define PROJ_FACE_NOSEAM2   (1 << 5)
151 #define PROJ_FACE_NOSEAM3   (1 << 6)
152
153 /* face winding */
154 #define PROJ_FACE_WINDING_INIT 1
155 #define PROJ_FACE_WINDING_CW 2
156
157 /* a slightly scaled down face is used to get fake 3D location for edge pixels in the seams
158  * as this number approaches  1.0f the likelihood increases of float precision errors where
159  * it is occluded by an adjacent face */
160 #define PROJ_FACE_SCALE_SEAM    0.99f
161 #endif  /* PROJ_DEBUG_NOSEAMBLEED */
162
163
164 #define PROJ_SRC_VIEW       1
165 #define PROJ_SRC_IMAGE_CAM  2
166 #define PROJ_SRC_IMAGE_VIEW 3
167 #define PROJ_SRC_VIEW_FILL  4
168
169 #define PROJ_VIEW_DATA_ID "view_data"
170 #define PROJ_VIEW_DATA_SIZE (4 * 4 + 4 * 4 + 3) /* viewmat + winmat + clipsta + clipend + is_ortho */
171
172 #define PROJ_BUCKET_NULL        0
173 #define PROJ_BUCKET_INIT        (1 << 0)
174 // #define PROJ_BUCKET_CLONE_INIT       (1<<1)
175
176 /* used for testing doubles, if a point is on a line etc */
177 #define PROJ_GEOM_TOLERANCE 0.00075f
178 #define PROJ_PIXEL_TOLERANCE 0.01f
179
180 /* vert flags */
181 #define PROJ_VERT_CULL 1
182
183 /* to avoid locking in tile initialization */
184 #define TILE_PENDING SET_INT_IN_POINTER(-1)
185
186 /* This is mainly a convenience struct used so we can keep an array of images we use -
187  * their imbufs, etc, in 1 array, When using threads this array is copied for each thread
188  * because 'partRedrawRect' and 'touch' values would not be thread safe */
189 typedef struct ProjPaintImage {
190         Image *ima;
191         ImBuf *ibuf;
192         ImagePaintPartialRedraw *partRedrawRect;
193         volatile void **undoRect; /* only used to build undo tiles during painting */
194         unsigned short **maskRect; /* the mask accumulation must happen on canvas, not on space screen bucket.
195                                     * Here we store the mask rectangle */
196         bool **valid; /* store flag to enforce validation of undo rectangle */
197         bool touch;
198 } ProjPaintImage;
199
200 /**
201  * Handle for stroke (operator customdata)
202  */
203 typedef struct ProjStrokeHandle {
204         /* Support for painting from multiple views at once,
205          * currently used to implement symmetry painting,
206          * we can assume at least the first is set while painting. */
207         struct ProjPaintState *ps_views[8];
208         int ps_views_tot;
209         int symmetry_flags;
210
211         int orig_brush_size;
212
213         bool need_redraw;
214
215         /* trick to bypass regular paint and allow clone picking */
216         bool is_clone_cursor_pick;
217
218         /* In ProjPaintState, only here for convenience */
219         Scene *scene;
220         Brush *brush;
221 } ProjStrokeHandle;
222
223 /* Main projection painting struct passed to all projection painting functions */
224 typedef struct ProjPaintState {
225         View3D *v3d;
226         RegionView3D *rv3d;
227         ARegion *ar;
228         Scene *scene;
229         int source; /* PROJ_SRC_**** */
230
231         /* the paint color. It can change depending of inverted mode or not */
232         float paint_color[3];
233         float paint_color_linear[3];
234         float dither;
235
236         Brush *brush;
237         short tool, blend, mode;
238
239         float brush_size;
240         Object *ob;
241         /* for symmetry, we need to store modified object matrix */
242         float obmat[4][4];
243         float obmat_imat[4][4];
244         /* end similarities with ImagePaintState */
245
246         Image *stencil_ima;
247         Image *canvas_ima;
248         Image *clone_ima;
249         float stencil_value;
250
251         /* projection painting only */
252         MemArena *arena_mt[BLENDER_MAX_THREADS]; /* for multithreading, the first item is sometimes used for non threaded cases too */
253         LinkNode **bucketRect;              /* screen sized 2D array, each pixel has a linked list of ProjPixel's */
254         LinkNode **bucketFaces;             /* bucketRect aligned array linkList of faces overlapping each bucket */
255         unsigned char *bucketFlags;         /* store if the bucks have been initialized  */
256
257         char *vertFlags;                    /* store options per vert, now only store if the vert is pointing away from the view */
258         int buckets_x;                      /* The size of the bucket grid, the grid span's screenMin/screenMax so you can paint outsize the screen or with 2 brushes at once */
259         int buckets_y;
260
261         int pixel_sizeof;           /* result of project_paint_pixel_sizeof(), constant per stroke */
262
263         int image_tot;              /* size of projectImages array */
264
265         float (*screenCoords)[4];   /* verts projected into floating point screen space */
266         float screenMin[2];         /* 2D bounds for mesh verts on the screen's plane (screenspace) */
267         float screenMax[2];
268         float screen_width;         /* Calculated from screenMin & screenMax */
269         float screen_height;
270         int winx, winy;             /* from the carea or from the projection render */
271
272         /* options for projection painting */
273         bool  do_layer_clone;
274         bool  do_layer_stencil;
275         bool  do_layer_stencil_inv;
276         bool  do_stencil_brush;
277         bool  do_material_slots;
278
279         bool  do_occlude;               /* Use raytraced occlusion? - ortherwise will paint right through to the back*/
280         bool  do_backfacecull;          /* ignore faces with normals pointing away, skips a lot of raycasts if your normals are correctly flipped */
281         bool  do_mask_normal;           /* mask out pixels based on their normals */
282         bool  do_mask_cavity;           /* mask out pixels based on cavity */
283         bool  do_new_shading_nodes;     /* cache BKE_scene_use_new_shading_nodes value */
284         float normal_angle;             /* what angle to mask at */
285         float normal_angle__cos;         /* cos(normal_angle), faster to compare */
286         float normal_angle_inner;
287         float normal_angle_inner__cos;
288         float normal_angle_range;       /* difference between normal_angle and normal_angle_inner, for easy access */
289
290         bool do_face_sel;               /* quick access to (me->editflag & ME_EDIT_PAINT_FACE_SEL) */
291         bool is_ortho;
292         bool is_flip_object;            /* the object is negative scaled */
293         bool do_masking;              /* use masking during painting. Some operations such as airbrush may disable */
294         bool is_texbrush;              /* only to avoid running  */
295         bool is_maskbrush;            /* mask brush is applied before masking */
296 #ifndef PROJ_DEBUG_NOSEAMBLEED
297         float seam_bleed_px;
298 #endif
299         /* clone vars */
300         float cloneOffset[2];
301
302         float projectMat[4][4];     /* Projection matrix, use for getting screen coords */
303         float projectMatInv[4][4];  /* inverse of projectMat */
304         float viewDir[3];           /* View vector, use for do_backfacecull and for ray casting with an ortho viewport  */
305         float viewPos[3];           /* View location in object relative 3D space, so can compare to verts  */
306         float clipsta, clipend;
307
308         /* reproject vars */
309         Image *reproject_image;
310         ImBuf *reproject_ibuf;
311         bool   reproject_ibuf_free_float;
312         bool   reproject_ibuf_free_uchar;
313
314         /* threads */
315         int thread_tot;
316         int bucketMin[2];
317         int bucketMax[2];
318         int context_bucket_x, context_bucket_y; /* must lock threads while accessing these */
319
320         struct CurveMapping *cavity_curve;
321         BlurKernel *blurkernel;
322
323
324
325         /* -------------------------------------------------------------------- */
326         /* Vars shared between multiple views (keep last) */
327         /**
328          * This data is owned by ``ProjStrokeHandle.ps_views[0]``,
329          * all other views re-use the data.
330          */
331
332 #define PROJ_PAINT_STATE_SHARED_MEMCPY(ps_dst, ps_src) \
333         MEMCPY_STRUCT_OFS(ps_dst, ps_src, is_shared_user)
334
335 #define PROJ_PAINT_STATE_SHARED_CLEAR(ps) \
336         MEMSET_STRUCT_OFS(ps, 0, is_shared_user)
337
338         bool is_shared_user;
339
340         ProjPaintImage *projImages;
341         float *cavities;            /* cavity amount for vertices */
342
343 #ifndef PROJ_DEBUG_NOSEAMBLEED
344         char *faceSeamFlags;                /* store info about faces, if they are initialized etc*/
345         char *faceWindingFlags;             /* save the winding of the face in uv space, helps as an extra validation step for seam detection */
346         float (*faceSeamUVs)[3][2];         /* expanded UVs for faces to use as seams */
347         LinkNode **vertFaces;               /* Only needed for when seam_bleed_px is enabled, use to find UV seams */
348 #endif
349
350         SpinLock *tile_lock;
351
352         DerivedMesh    *dm;
353         int  dm_totlooptri;
354         int  dm_totpoly;
355         int  dm_totedge;
356         int  dm_totvert;
357         bool dm_release;
358
359         const MVert    *dm_mvert;
360         const MEdge    *dm_medge;
361         const MPoly    *dm_mpoly;
362         const MLoop    *dm_mloop;
363         const MLoopTri *dm_mlooptri;
364
365         const MLoopUV  *dm_mloopuv_stencil;
366
367         /**
368          * \note These UV layers are aligned to \a dm_mpoly
369          * but each pointer references the start of the layer,
370          * so a loop indirection is needed as well.
371          */
372         const MLoopUV **dm_mloopuv;
373         const MLoopUV **dm_mloopuv_clone;    /* other UV map, use for cloning between layers */
374 } ProjPaintState;
375
376 typedef union pixelPointer {
377         float *f_pt;            /* float buffer */
378         unsigned int *uint_pt; /* 2 ways to access a char buffer */
379         unsigned char *ch_pt;
380 } PixelPointer;
381
382 typedef union pixelStore {
383         unsigned char ch[4];
384         unsigned int uint;
385         float f[4];
386 } PixelStore;
387
388 typedef struct ProjPixel {
389         float projCoSS[2]; /* the floating point screen projection of this pixel */
390         float worldCoSS[3];
391
392         short x_px, y_px;
393
394         unsigned short image_index; /* if anyone wants to paint onto more than 65535 images they can bite me */
395         unsigned char bb_cell_index;
396
397         /* for various reasons we may want to mask out painting onto this pixel */
398         unsigned short mask;
399
400         /* Only used when the airbrush is disabled.
401          * Store the max mask value to avoid painting over an area with a lower opacity
402          * with an advantage that we can avoid touching the pixel at all, if the
403          * new mask value is lower then mask_accum */
404         unsigned short *mask_accum;
405
406         /* horrible hack, store tile valid flag pointer here to re-validate tiles used for anchored and drag-dot strokes */
407         bool *valid;
408
409         PixelPointer origColor;
410         PixelStore newColor;
411         PixelPointer pixel;
412 } ProjPixel;
413
414 typedef struct ProjPixelClone {
415         struct ProjPixel __pp;
416         PixelStore clonepx;
417 } ProjPixelClone;
418
419 /* undo tile pushing */
420 typedef struct {
421         SpinLock *lock;
422         bool masked;
423         unsigned short tile_width;
424         ImBuf **tmpibuf;
425         ProjPaintImage *pjima;
426 } TileInfo;
427
428
429
430 /* -------------------------------------------------------------------- */
431
432 /** \name MLoopTri accessor functions.
433  * \{ */
434
435 BLI_INLINE const MPoly *ps_tri_index_to_mpoly(const ProjPaintState *ps, int tri_index)
436 {
437         return &ps->dm_mpoly[ps->dm_mlooptri[tri_index].poly];
438 }
439
440 #define PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) \
441         ps->dm_mloop[lt->tri[0]].v, \
442         ps->dm_mloop[lt->tri[1]].v, \
443         ps->dm_mloop[lt->tri[2]].v,
444
445 #define PS_LOOPTRI_AS_UV_3(uvlayer, lt) \
446         uvlayer[lt->poly][lt->tri[0]].uv, \
447         uvlayer[lt->poly][lt->tri[1]].uv, \
448         uvlayer[lt->poly][lt->tri[2]].uv,
449
450 #define PS_LOOPTRI_ASSIGN_UV_3(uv_tri, uvlayer, lt)  { \
451         (uv_tri)[0] = uvlayer[lt->poly][lt->tri[0]].uv; \
452         (uv_tri)[1] = uvlayer[lt->poly][lt->tri[1]].uv; \
453         (uv_tri)[2] = uvlayer[lt->poly][lt->tri[2]].uv; \
454 } ((void)0)
455
456 /** \} */
457
458
459
460 /* Finish projection painting structs */
461
462 static TexPaintSlot *project_paint_face_paint_slot(const ProjPaintState *ps, int tri_index)
463 {
464         const MPoly *mp = ps_tri_index_to_mpoly(ps, tri_index);
465         Material *ma = ps->dm->mat[mp->mat_nr];
466         return ma ? ma->texpaintslot + ma->paint_active_slot : NULL;
467 }
468
469 static Image *project_paint_face_paint_image(const ProjPaintState *ps, int tri_index)
470 {
471         if (ps->do_stencil_brush) {
472                 return ps->stencil_ima;
473         }
474         else {
475                 const MPoly *mp = ps_tri_index_to_mpoly(ps, tri_index);
476                 Material *ma = ps->dm->mat[mp->mat_nr];
477                 TexPaintSlot *slot = ma ? ma->texpaintslot + ma->paint_active_slot : NULL;
478                 return slot ? slot->ima : ps->canvas_ima;
479         }
480 }
481
482 static TexPaintSlot *project_paint_face_clone_slot(const ProjPaintState *ps, int tri_index)
483 {
484         const MPoly *mp = ps_tri_index_to_mpoly(ps, tri_index);
485         Material *ma = ps->dm->mat[mp->mat_nr];
486         return ma ? ma->texpaintslot + ma->paint_clone_slot : NULL;
487 }
488
489 static Image *project_paint_face_clone_image(const ProjPaintState *ps, int tri_index)
490 {
491         const MPoly *mp = ps_tri_index_to_mpoly(ps, tri_index);
492         Material *ma = ps->dm->mat[mp->mat_nr];
493         TexPaintSlot *slot = ma ? ma->texpaintslot + ma->paint_clone_slot : NULL;
494         return slot ? slot->ima : ps->clone_ima;
495 }
496
497 /* fast projection bucket array lookup, use the safe version for bound checking  */
498 static int project_bucket_offset(const ProjPaintState *ps, const float projCoSS[2])
499 {
500         /* If we were not dealing with screenspace 2D coords we could simple do...
501          * ps->bucketRect[x + (y*ps->buckets_y)] */
502
503         /* please explain?
504          * projCoSS[0] - ps->screenMin[0]   : zero origin
505          * ... / ps->screen_width           : range from 0.0 to 1.0
506          * ... * ps->buckets_x              : use as a bucket index
507          *
508          * Second multiplication does similar but for vertical offset
509          */
510         return ( (int)(((projCoSS[0] - ps->screenMin[0]) / ps->screen_width)  * ps->buckets_x)) +
511                (((int)(((projCoSS[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y)) * ps->buckets_x);
512 }
513
514 static int project_bucket_offset_safe(const ProjPaintState *ps, const float projCoSS[2])
515 {
516         int bucket_index = project_bucket_offset(ps, projCoSS);
517
518         if (bucket_index < 0 || bucket_index >= ps->buckets_x * ps->buckets_y) {
519                 return -1;
520         }
521         else {
522                 return bucket_index;
523         }
524 }
525
526 static float VecZDepthOrtho(
527         const float pt[2],
528         const float v1[3], const float v2[3], const float v3[3],
529         float w[3])
530 {
531         barycentric_weights_v2(v1, v2, v3, pt, w);
532         return (v1[2] * w[0]) + (v2[2] * w[1]) + (v3[2] * w[2]);
533 }
534
535 static float VecZDepthPersp(
536         const float pt[2],
537         const float v1[4], const float v2[4], const float v3[4],
538         float w[3])
539 {
540         float wtot_inv, wtot;
541         float w_tmp[3];
542
543         barycentric_weights_v2_persp(v1, v2, v3, pt, w);
544         /* for the depth we need the weights to match what
545          * barycentric_weights_v2 would return, in this case its easiest just to
546          * undo the 4th axis division and make it unit-sum
547          *
548          * don't call barycentric_weights_v2() because our callers expect 'w'
549          * to be weighted from the perspective */
550         w_tmp[0] = w[0] * v1[3];
551         w_tmp[1] = w[1] * v2[3];
552         w_tmp[2] = w[2] * v3[3];
553
554         wtot = w_tmp[0] + w_tmp[1] + w_tmp[2];
555
556         if (wtot != 0.0f) {
557                 wtot_inv = 1.0f / wtot;
558
559                 w_tmp[0] = w_tmp[0] * wtot_inv;
560                 w_tmp[1] = w_tmp[1] * wtot_inv;
561                 w_tmp[2] = w_tmp[2] * wtot_inv;
562         }
563         else /* dummy values for zero area face */
564                 w_tmp[0] = w_tmp[1] = w_tmp[2] = 1.0f / 3.0f;
565         /* done mimicing barycentric_weights_v2() */
566
567         return (v1[2] * w_tmp[0]) + (v2[2] * w_tmp[1]) + (v3[2] * w_tmp[2]);
568 }
569
570
571 /* Return the top-most face index that the screen space coord 'pt' touches (or -1) */
572 static int project_paint_PickFace(
573         const ProjPaintState *ps, const float pt[2],
574         float w[3])
575 {
576         LinkNode *node;
577         float w_tmp[3];
578         int bucket_index;
579         int best_tri_index = -1;
580         float z_depth_best = FLT_MAX, z_depth;
581
582         bucket_index = project_bucket_offset_safe(ps, pt);
583         if (bucket_index == -1)
584                 return -1;
585
586
587
588         /* we could return 0 for 1 face buckets, as long as this function assumes
589          * that the point its testing is only every originated from an existing face */
590
591         for (node = ps->bucketFaces[bucket_index]; node; node = node->next) {
592                 const int tri_index = GET_INT_FROM_POINTER(node->link);
593                 const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
594                 const float *vtri_ss[3] = {
595                     ps->screenCoords[ps->dm_mloop[lt->tri[0]].v],
596                     ps->screenCoords[ps->dm_mloop[lt->tri[1]].v],
597                     ps->screenCoords[ps->dm_mloop[lt->tri[2]].v],
598                 };
599
600
601                 if (isect_point_tri_v2(pt, UNPACK3(vtri_ss))) {
602                         if (ps->is_ortho) {
603                                 z_depth = VecZDepthOrtho(pt, UNPACK3(vtri_ss), w_tmp);
604                         }
605                         else {
606                                 z_depth = VecZDepthPersp(pt, UNPACK3(vtri_ss), w_tmp);
607                         }
608
609                         if (z_depth < z_depth_best) {
610                                 best_tri_index = tri_index;
611                                 z_depth_best = z_depth;
612                                 copy_v3_v3(w, w_tmp);
613                         }
614                 }
615         }
616
617         return best_tri_index; /* will be -1 or a valid face */
618 }
619
620 /* Converts a uv coord into a pixel location wrapping if the uv is outside 0-1 range */
621 static void uvco_to_wrapped_pxco(const float uv[2], int ibuf_x, int ibuf_y, float *x, float *y)
622 {
623         /* use */
624         *x = fmodf(uv[0], 1.0f);
625         *y = fmodf(uv[1], 1.0f);
626
627         if (*x < 0.0f) *x += 1.0f;
628         if (*y < 0.0f) *y += 1.0f;
629
630         *x = *x * ibuf_x - 0.5f;
631         *y = *y * ibuf_y - 0.5f;
632 }
633
634 /* Set the top-most face color that the screen space coord 'pt' touches (or return 0 if none touch) */
635 static bool project_paint_PickColor(
636         const ProjPaintState *ps, const float pt[2],
637         float *rgba_fp, unsigned char *rgba, const bool interp)
638 {
639         const MLoopTri *lt;
640         const float *lt_tri_uv[3];
641         float w[3], uv[2];
642         int tri_index;
643         Image *ima;
644         ImBuf *ibuf;
645         int xi, yi;
646
647         tri_index = project_paint_PickFace(ps, pt, w);
648
649         if (tri_index == -1)
650                 return 0;
651
652         lt = &ps->dm_mlooptri[tri_index];
653         PS_LOOPTRI_ASSIGN_UV_3(lt_tri_uv, ps->dm_mloopuv, lt);
654
655         interp_v2_v2v2v2(uv, UNPACK3(lt_tri_uv), w);
656
657         ima = project_paint_face_paint_image(ps, tri_index);
658         ibuf = BKE_image_get_first_ibuf(ima); /* we must have got the imbuf before getting here */
659         if (!ibuf) return 0;
660
661         if (interp) {
662                 float x, y;
663                 uvco_to_wrapped_pxco(uv, ibuf->x, ibuf->y, &x, &y);
664
665                 if (ibuf->rect_float) {
666                         if (rgba_fp) {
667                                 bilinear_interpolation_color_wrap(ibuf, NULL, rgba_fp, x, y);
668                         }
669                         else {
670                                 float rgba_tmp_f[4];
671                                 bilinear_interpolation_color_wrap(ibuf, NULL, rgba_tmp_f, x, y);
672                                 premul_float_to_straight_uchar(rgba, rgba_tmp_f);
673                         }
674                 }
675                 else {
676                         if (rgba) {
677                                 bilinear_interpolation_color_wrap(ibuf, rgba, NULL, x, y);
678                         }
679                         else {
680                                 unsigned char rgba_tmp[4];
681                                 bilinear_interpolation_color_wrap(ibuf, rgba_tmp, NULL, x, y);
682                                 straight_uchar_to_premul_float(rgba_fp, rgba_tmp);
683                         }
684                 }
685         }
686         else {
687                 //xi = (int)((uv[0]*ibuf->x) + 0.5f);
688                 //yi = (int)((uv[1]*ibuf->y) + 0.5f);
689                 //if (xi < 0 || xi >= ibuf->x  ||  yi < 0 || yi >= ibuf->y) return 0;
690
691                 /* wrap */
692                 xi = mod_i((int)(uv[0] * ibuf->x), ibuf->x);
693                 yi = mod_i((int)(uv[1] * ibuf->y), ibuf->y);
694
695                 if (rgba) {
696                         if (ibuf->rect_float) {
697                                 const float *rgba_tmp_fp = ibuf->rect_float + (xi + yi * ibuf->x * 4);
698                                 premul_float_to_straight_uchar(rgba, rgba_tmp_fp);
699                         }
700                         else {
701                                 *((unsigned int *)rgba) = *(unsigned int *)(((char *)ibuf->rect) + ((xi + yi * ibuf->x) * 4));
702                         }
703                 }
704
705                 if (rgba_fp) {
706                         if (ibuf->rect_float) {
707                                 copy_v4_v4(rgba_fp, (ibuf->rect_float + ((xi + yi * ibuf->x) * 4)));
708                         }
709                         else {
710                                 unsigned char *tmp_ch = ((unsigned char *)ibuf->rect) + ((xi + yi * ibuf->x) * 4);
711                                 straight_uchar_to_premul_float(rgba_fp, tmp_ch);
712                         }
713                 }
714         }
715         BKE_image_release_ibuf(ima, ibuf, NULL);
716         return 1;
717 }
718
719 /**
720  * Check if 'pt' is infront of the 3 verts on the Z axis (used for screenspace occlusion test)
721  * \return
722  * -  `0`:   no occlusion
723  * - `-1`: no occlusion but 2D intersection is true
724  * -  `1`: occluded
725  * -  `2`: occluded with `w[3]` weights set (need to know in some cases)
726  */
727 static int project_paint_occlude_ptv(
728         const float pt[3],
729         const float v1[4], const float v2[4], const float v3[4],
730         float w[3], const bool is_ortho)
731 {
732         /* if all are behind us, return false */
733         if (v1[2] > pt[2] && v2[2] > pt[2] && v3[2] > pt[2])
734                 return 0;
735
736         /* do a 2D point in try intersection */
737         if (!isect_point_tri_v2(pt, v1, v2, v3))
738                 return 0;  /* we know there is  */
739
740
741         /* From here on we know there IS an intersection */
742         /* if ALL of the verts are infront of us then we know it intersects ? */
743         if (v1[2] < pt[2] && v2[2] < pt[2] && v3[2] < pt[2]) {
744                 return 1;
745         }
746         else {
747                 /* we intersect? - find the exact depth at the point of intersection */
748                 /* Is this point is occluded by another face? */
749                 if (is_ortho) {
750                         if (VecZDepthOrtho(pt, v1, v2, v3, w) < pt[2]) return 2;
751                 }
752                 else {
753                         if (VecZDepthPersp(pt, v1, v2, v3, w) < pt[2]) return 2;
754                 }
755         }
756         return -1;
757 }
758
759
760 static int project_paint_occlude_ptv_clip(
761         const float pt[3],
762         const float v1[4], const float v2[4], const float v3[4],
763         const float v1_3d[3], const float v2_3d[3], const float v3_3d[3],
764         float w[3], const bool is_ortho, RegionView3D *rv3d)
765 {
766         float wco[3];
767         int ret = project_paint_occlude_ptv(pt, v1, v2, v3, w, is_ortho);
768
769         if (ret <= 0)
770                 return ret;
771
772         if (ret == 1) { /* weights not calculated */
773                 if (is_ortho) {
774                         barycentric_weights_v2(v1, v2, v3, pt, w);
775                 }
776                 else {
777                         barycentric_weights_v2_persp(v1, v2, v3, pt, w);
778                 }
779         }
780
781         /* Test if we're in the clipped area, */
782         interp_v3_v3v3v3(wco, v1_3d, v2_3d, v3_3d, w);
783
784         if (!ED_view3d_clipping_test(rv3d, wco, true)) {
785                 return 1;
786         }
787
788         return -1;
789 }
790
791
792 /* Check if a screenspace location is occluded by any other faces
793  * check, pixelScreenCo must be in screenspace, its Z-Depth only needs to be used for comparison
794  * and doesn't need to be correct in relation to X and Y coords (this is the case in perspective view) */
795 static bool project_bucket_point_occluded(
796         const ProjPaintState *ps, LinkNode *bucketFace,
797         const int orig_face, const float pixelScreenCo[4])
798 {
799         int isect_ret;
800         const bool do_clip = ps->rv3d ? (ps->rv3d->rflag & RV3D_CLIPPING) != 0 : 0;
801
802         /* we could return 0 for 1 face buckets, as long as this function assumes
803          * that the point its testing is only every originated from an existing face */
804
805         for (; bucketFace; bucketFace = bucketFace->next) {
806                 const int tri_index = GET_INT_FROM_POINTER(bucketFace->link);
807
808                 if (orig_face != tri_index) {
809                         const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
810                         const float *vtri_ss[3] = {
811                             ps->screenCoords[ps->dm_mloop[lt->tri[0]].v],
812                             ps->screenCoords[ps->dm_mloop[lt->tri[1]].v],
813                             ps->screenCoords[ps->dm_mloop[lt->tri[2]].v],
814                         };
815                         float w[3];
816
817                         if (do_clip) {
818                                 const float *vtri_co[3] = {
819                                     ps->dm_mvert[ps->dm_mloop[lt->tri[0]].v].co,
820                                     ps->dm_mvert[ps->dm_mloop[lt->tri[1]].v].co,
821                                     ps->dm_mvert[ps->dm_mloop[lt->tri[2]].v].co,
822                                 };
823                                 isect_ret = project_paint_occlude_ptv_clip(
824                                         pixelScreenCo, UNPACK3(vtri_ss), UNPACK3(vtri_co),
825                                         w, ps->is_ortho, ps->rv3d);
826                         }
827                         else {
828                                 isect_ret = project_paint_occlude_ptv(
829                                         pixelScreenCo, UNPACK3(vtri_ss),
830                                         w, ps->is_ortho);
831                         }
832
833                         if (isect_ret >= 1) {
834                                 /* TODO - we may want to cache the first hit,
835                                  * it is not possible to swap the face order in the list anymore */
836                                 return true;
837                         }
838                 }
839         }
840         return false;
841 }
842
843 /* basic line intersection, could move to math_geom.c, 2 points with a horiz line
844  * 1 for an intersection, 2 if the first point is aligned, 3 if the second point is aligned */
845 #define ISECT_TRUE 1
846 #define ISECT_TRUE_P1 2
847 #define ISECT_TRUE_P2 3
848 static int line_isect_y(const float p1[2], const float p2[2], const float y_level, float *x_isect)
849 {
850         float y_diff;
851
852         if (y_level == p1[1]) { /* are we touching the first point? - no interpolation needed */
853                 *x_isect = p1[0];
854                 return ISECT_TRUE_P1;
855         }
856         if (y_level == p2[1]) { /* are we touching the second point? - no interpolation needed */
857                 *x_isect = p2[0];
858                 return ISECT_TRUE_P2;
859         }
860
861         y_diff = fabsf(p1[1] - p2[1]); /* yuck, horizontal line, we cant do much here */
862
863         if (y_diff < 0.000001f) {
864                 *x_isect = (p1[0] + p2[0]) * 0.5f;
865                 return ISECT_TRUE;
866         }
867
868         if (p1[1] > y_level && p2[1] < y_level) {
869                 *x_isect = (p2[0] * (p1[1] - y_level) + p1[0] * (y_level - p2[1])) / y_diff;  /* (p1[1] - p2[1]); */
870                 return ISECT_TRUE;
871         }
872         else if (p1[1] < y_level && p2[1] > y_level) {
873                 *x_isect = (p2[0] * (y_level - p1[1]) + p1[0] * (p2[1] - y_level)) / y_diff;  /* (p2[1] - p1[1]); */
874                 return ISECT_TRUE;
875         }
876         else {
877                 return 0;
878         }
879 }
880
881 static int line_isect_x(const float p1[2], const float p2[2], const float x_level, float *y_isect)
882 {
883         float x_diff;
884
885         if (x_level == p1[0]) { /* are we touching the first point? - no interpolation needed */
886                 *y_isect = p1[1];
887                 return ISECT_TRUE_P1;
888         }
889         if (x_level == p2[0]) { /* are we touching the second point? - no interpolation needed */
890                 *y_isect = p2[1];
891                 return ISECT_TRUE_P2;
892         }
893
894         x_diff = fabsf(p1[0] - p2[0]); /* yuck, horizontal line, we cant do much here */
895
896         if (x_diff < 0.000001f) { /* yuck, vertical line, we cant do much here */
897                 *y_isect = (p1[0] + p2[0]) * 0.5f;
898                 return ISECT_TRUE;
899         }
900
901         if (p1[0] > x_level && p2[0] < x_level) {
902                 *y_isect = (p2[1] * (p1[0] - x_level) + p1[1] * (x_level - p2[0])) / x_diff;  /* (p1[0] - p2[0]); */
903                 return ISECT_TRUE;
904         }
905         else if (p1[0] < x_level && p2[0] > x_level) {
906                 *y_isect = (p2[1] * (x_level - p1[0]) + p1[1] * (p2[0] - x_level)) / x_diff;  /* (p2[0] - p1[0]); */
907                 return ISECT_TRUE;
908         }
909         else {
910                 return 0;
911         }
912 }
913
914 /* simple func use for comparing UV locations to check if there are seams.
915  * Its possible this gives incorrect results, when the UVs for 1 face go into the next
916  * tile, but do not do this for the adjacent face, it could return a false positive.
917  * This is so unlikely that Id not worry about it. */
918 #ifndef PROJ_DEBUG_NOSEAMBLEED
919 static bool cmp_uv(const float vec2a[2], const float vec2b[2])
920 {
921         /* if the UV's are not between 0.0 and 1.0 */
922         float xa = fmodf(vec2a[0], 1.0f);
923         float ya = fmodf(vec2a[1], 1.0f);
924
925         float xb = fmodf(vec2b[0], 1.0f);
926         float yb = fmodf(vec2b[1], 1.0f);
927
928         if (xa < 0.0f) xa += 1.0f;
929         if (ya < 0.0f) ya += 1.0f;
930
931         if (xb < 0.0f) xb += 1.0f;
932         if (yb < 0.0f) yb += 1.0f;
933
934         return ((fabsf(xa - xb) < PROJ_GEOM_TOLERANCE) && (fabsf(ya - yb) < PROJ_GEOM_TOLERANCE)) ? 1 : 0;
935 }
936 #endif
937
938 /* set min_px and max_px to the image space bounds of the UV coords
939  * return zero if there is no area in the returned rectangle */
940 #ifndef PROJ_DEBUG_NOSEAMBLEED
941 static bool pixel_bounds_uv(
942         const float uv_quad[4][2],
943         rcti *bounds_px,
944         const int ibuf_x, const int ibuf_y
945         )
946 {
947         float min_uv[2], max_uv[2]; /* UV bounds */
948
949         INIT_MINMAX2(min_uv, max_uv);
950
951         minmax_v2v2_v2(min_uv, max_uv, uv_quad[0]);
952         minmax_v2v2_v2(min_uv, max_uv, uv_quad[1]);
953         minmax_v2v2_v2(min_uv, max_uv, uv_quad[2]);
954         minmax_v2v2_v2(min_uv, max_uv, uv_quad[3]);
955
956         bounds_px->xmin = (int)(ibuf_x * min_uv[0]);
957         bounds_px->ymin = (int)(ibuf_y * min_uv[1]);
958
959         bounds_px->xmax = (int)(ibuf_x * max_uv[0]) + 1;
960         bounds_px->ymax = (int)(ibuf_y * max_uv[1]) + 1;
961
962         /*printf("%d %d %d %d\n", min_px[0], min_px[1], max_px[0], max_px[1]);*/
963
964         /* face uses no UV area when quantized to pixels? */
965         return (bounds_px->xmin == bounds_px->xmax || bounds_px->ymin == bounds_px->ymax) ? 0 : 1;
966 }
967 #endif
968
969 static bool pixel_bounds_array(float (*uv)[2], rcti *bounds_px, const int ibuf_x, const int ibuf_y, int tot)
970 {
971         float min_uv[2], max_uv[2]; /* UV bounds */
972
973         if (tot == 0) {
974                 return 0;
975         }
976
977         INIT_MINMAX2(min_uv, max_uv);
978
979         while (tot--) {
980                 minmax_v2v2_v2(min_uv, max_uv, (*uv));
981                 uv++;
982         }
983
984         bounds_px->xmin = (int)(ibuf_x * min_uv[0]);
985         bounds_px->ymin = (int)(ibuf_y * min_uv[1]);
986
987         bounds_px->xmax = (int)(ibuf_x * max_uv[0]) + 1;
988         bounds_px->ymax = (int)(ibuf_y * max_uv[1]) + 1;
989
990         /*printf("%d %d %d %d\n", min_px[0], min_px[1], max_px[0], max_px[1]);*/
991
992         /* face uses no UV area when quantized to pixels? */
993         return (bounds_px->xmin == bounds_px->xmax || bounds_px->ymin == bounds_px->ymax) ? 0 : 1;
994 }
995
996 #ifndef PROJ_DEBUG_NOSEAMBLEED
997
998 static void project_face_winding_init(const ProjPaintState *ps, const int tri_index)
999 {
1000         /* detect the winding of faces in uv space */
1001         const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
1002         const float *lt_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, lt) };
1003         float winding = cross_tri_v2(lt_tri_uv[0], lt_tri_uv[1], lt_tri_uv[2]);
1004
1005         if (winding > 0)
1006                 ps->faceWindingFlags[tri_index] |= PROJ_FACE_WINDING_CW;
1007
1008         ps->faceWindingFlags[tri_index] |= PROJ_FACE_WINDING_INIT;
1009 }
1010
1011 /* This function returns 1 if this face has a seam along the 2 face-vert indices
1012  * 'orig_i1_fidx' and 'orig_i2_fidx' */
1013 static bool check_seam(
1014         const ProjPaintState *ps,
1015         const int orig_face, const int orig_i1_fidx, const int orig_i2_fidx,
1016         int *other_face, int *orig_fidx)
1017 {
1018         const MLoopTri *orig_lt = &ps->dm_mlooptri[orig_face];
1019         const float *orig_lt_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, orig_lt) };
1020         /* vert indices from face vert order indices */
1021         const unsigned int i1 = ps->dm_mloop[orig_lt->tri[orig_i1_fidx]].v;
1022         const unsigned int i2 = ps->dm_mloop[orig_lt->tri[orig_i2_fidx]].v;
1023         LinkNode *node;
1024         int i1_fidx = -1, i2_fidx = -1; /* index in face */
1025
1026         for (node = ps->vertFaces[i1]; node; node = node->next) {
1027                 const int tri_index = GET_INT_FROM_POINTER(node->link);
1028
1029                 if (tri_index != orig_face) {
1030                         const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
1031                         const int lt_vtri[3] = { PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) };
1032                         /* could check if the 2 faces images match here,
1033                          * but then there wouldn't be a way to return the opposite face's info */
1034
1035
1036                         /* We need to know the order of the verts in the adjacent face
1037                          * set the i1_fidx and i2_fidx to (0,1,2,3) */
1038                         i1_fidx = BKE_MESH_TESSTRI_VINDEX_ORDER(lt_vtri, i1);
1039                         i2_fidx = BKE_MESH_TESSTRI_VINDEX_ORDER(lt_vtri, i2);
1040
1041                         /* Only need to check if 'i2_fidx' is valid because we know i1_fidx is the same vert on both faces */
1042                         if (i2_fidx != -1) {
1043                                 const float *lt_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, lt) };
1044                                 Image *tpage = project_paint_face_paint_image(ps, tri_index);
1045                                 Image *orig_tpage = project_paint_face_paint_image(ps, orig_face);
1046
1047                                 BLI_assert(i1_fidx != -1);
1048
1049                                 /* This IS an adjacent face!, now lets check if the UVs are ok */
1050
1051                                 /* set up the other face */
1052                                 *other_face = tri_index;
1053                                 
1054                                 /* we check if difference is 1 here, else we might have a case of edge 2-0 for a tri */
1055                                 *orig_fidx = (i1_fidx < i2_fidx && (i2_fidx - i1_fidx == 1)) ? i1_fidx : i2_fidx;
1056
1057                                 /* initialize face winding if needed */
1058                                 if ((ps->faceWindingFlags[tri_index] & PROJ_FACE_WINDING_INIT) == 0)
1059                                         project_face_winding_init(ps, tri_index);
1060
1061                                 /* first test if they have the same image */
1062                                 if ((orig_tpage == tpage) &&
1063                                     cmp_uv(orig_lt_tri_uv[orig_i1_fidx], lt_tri_uv[i1_fidx]) &&
1064                                     cmp_uv(orig_lt_tri_uv[orig_i2_fidx], lt_tri_uv[i2_fidx]))
1065                                 {
1066                                         /* if faces don't have the same winding in uv space,
1067                                          * they are on the same side so edge is boundary */
1068                                         if ((ps->faceWindingFlags[tri_index] & PROJ_FACE_WINDING_CW) !=
1069                                             (ps->faceWindingFlags[orig_face] & PROJ_FACE_WINDING_CW))
1070                                         {
1071                                                 return 1;
1072                                         }
1073
1074                                         // printf("SEAM (NONE)\n");
1075                                         return 0;
1076
1077                                 }
1078                                 else {
1079                                         // printf("SEAM (UV GAP)\n");
1080                                         return 1;
1081                                 }
1082                         }
1083                 }
1084         }
1085         // printf("SEAM (NO FACE)\n");
1086         *other_face = -1;
1087         return 1;
1088 }
1089
1090 #define SMALL_NUMBER  1.e-6f
1091 BLI_INLINE float shell_v2v2_normal_dir_to_dist(float n[2], float d[2])
1092 {
1093         const float angle_cos = (normalize_v2(n) < SMALL_NUMBER) ? fabsf(dot_v2v2(d, n)) : 0.0f;
1094         return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
1095 }
1096 #undef SMALL_NUMBER
1097
1098 /* Calculate outset UV's, this is not the same as simply scaling the UVs,
1099  * since the outset coords are a margin that keep an even distance from the original UV's,
1100  * note that the image aspect is taken into account */
1101 static void uv_image_outset(
1102         float (*orig_uv)[2], float (*outset_uv)[2], const float scaler,
1103         const int ibuf_x, const int ibuf_y, const bool cw)
1104 {
1105         /* disallow shell-thickness to outset extreme values,
1106          * otherwise near zero area UV's may extend thousands of pixels. */
1107         const float scale_clamp = 5.0f;
1108
1109         float a1, a2, a3;
1110         float puv[3][2]; /* pixelspace uv's */
1111         float no1[2], no2[2], no3[2]; /* normals */
1112         float dir1[2], dir2[2], dir3[2];
1113         float ibuf_inv[2];
1114
1115         ibuf_inv[0] = 1.0f / (float)ibuf_x;
1116         ibuf_inv[1] = 1.0f / (float)ibuf_y;
1117
1118         /* make UV's in pixel space so we can */
1119         puv[0][0] = orig_uv[0][0] * ibuf_x;
1120         puv[0][1] = orig_uv[0][1] * ibuf_y;
1121
1122         puv[1][0] = orig_uv[1][0] * ibuf_x;
1123         puv[1][1] = orig_uv[1][1] * ibuf_y;
1124
1125         puv[2][0] = orig_uv[2][0] * ibuf_x;
1126         puv[2][1] = orig_uv[2][1] * ibuf_y;
1127
1128         /* face edge directions */
1129         sub_v2_v2v2(dir1, puv[1], puv[0]);
1130         sub_v2_v2v2(dir2, puv[2], puv[1]);
1131         sub_v2_v2v2(dir3, puv[0], puv[2]);
1132         normalize_v2(dir1);
1133         normalize_v2(dir2);
1134         normalize_v2(dir3);
1135
1136         /* here we just use the orthonormality property (a1, a2) dot (a2, -a1) = 0
1137          * to get normals from the edge directions based on the winding */
1138         if (cw) {
1139                 no1[0] = -dir3[1] - dir1[1];
1140                 no1[1] =  dir3[0] + dir1[0];
1141                 no2[0] = -dir1[1] - dir2[1];
1142                 no2[1] =  dir1[0] + dir2[0];
1143                 no3[0] = -dir2[1] - dir3[1];
1144                 no3[1] =  dir2[0] + dir3[0];
1145         }
1146         else {
1147                 no1[0] =  dir3[1] + dir1[1];
1148                 no1[1] = -dir3[0] - dir1[0];
1149                 no2[0] =  dir1[1] + dir2[1];
1150                 no2[1] = -dir1[0] - dir2[0];
1151                 no3[0] =  dir2[1] + dir3[1];
1152                 no3[1] = -dir2[0] - dir3[0];
1153         }
1154
1155         a1 = shell_v2v2_normal_dir_to_dist(no1, dir3);
1156         a2 = shell_v2v2_normal_dir_to_dist(no2, dir1);
1157         a3 = shell_v2v2_normal_dir_to_dist(no3, dir2);
1158
1159         CLAMP_MAX(a1, scale_clamp);
1160         CLAMP_MAX(a2, scale_clamp);
1161         CLAMP_MAX(a3, scale_clamp);
1162
1163         mul_v2_fl(no1, a1 * scaler);
1164         mul_v2_fl(no2, a2 * scaler);
1165         mul_v2_fl(no3, a3 * scaler);
1166         add_v2_v2v2(outset_uv[0], puv[0], no1);
1167         add_v2_v2v2(outset_uv[1], puv[1], no2);
1168         add_v2_v2v2(outset_uv[2], puv[2], no3);
1169
1170         mul_v2_v2(outset_uv[0], ibuf_inv);
1171         mul_v2_v2(outset_uv[1], ibuf_inv);
1172         mul_v2_v2(outset_uv[2], ibuf_inv);
1173 }
1174
1175 /*
1176  * Be tricky with flags, first 4 bits are PROJ_FACE_SEAM1 to 4, last 4 bits are PROJ_FACE_NOSEAM1 to 4
1177  * 1<<i - where i is (0-3)
1178  *
1179  * If we're multithreadng, make sure threads are locked when this is called
1180  */
1181 static void project_face_seams_init(const ProjPaintState *ps, const int tri_index)
1182 {
1183         int other_face, other_fidx; /* vars for the other face, we also set its flag */
1184         int fidx1 = 2;
1185         int fidx2 = 0; /* next fidx in the face (0,1,2,3) -> (1,2,3,0) or (0,1,2) -> (1,2,0) for a tri */
1186
1187         /* initialize face winding if needed */
1188         if ((ps->faceWindingFlags[tri_index] & PROJ_FACE_WINDING_INIT) == 0)
1189                 project_face_winding_init(ps, tri_index);
1190
1191         do {
1192                 if ((ps->faceSeamFlags[tri_index] & (1 << fidx1 | 16 << fidx1)) == 0) {
1193                         if (check_seam(ps, tri_index, fidx1, fidx2, &other_face, &other_fidx)) {
1194                                 ps->faceSeamFlags[tri_index] |= 1 << fidx1;
1195                                 if (other_face != -1)
1196                                         ps->faceSeamFlags[other_face] |= 1 << other_fidx;
1197                         }
1198                         else {
1199                                 ps->faceSeamFlags[tri_index] |= 16 << fidx1;
1200                                 if (other_face != -1)
1201                                         ps->faceSeamFlags[other_face] |= 16 << other_fidx;  /* second 4 bits for disabled */
1202                         }
1203                 }
1204
1205                 fidx2 = fidx1;
1206         } while (fidx1--);
1207 }
1208 #endif // PROJ_DEBUG_NOSEAMBLEED
1209
1210
1211 /* Converts a UV location to a 3D screenspace location
1212  * Takes a 'uv' and 3 UV coords, and sets the values of pixelScreenCo
1213  *
1214  * This is used for finding a pixels location in screenspace for painting */
1215 static void screen_px_from_ortho(
1216         const float uv[2],
1217         const float v1co[3], const float v2co[3], const float v3co[3],  /* Screenspace coords */
1218         const float uv1co[2], const float uv2co[2], const float uv3co[2],
1219         float pixelScreenCo[4],
1220         float w[3])
1221 {
1222         barycentric_weights_v2(uv1co, uv2co, uv3co, uv, w);
1223         interp_v3_v3v3v3(pixelScreenCo, v1co, v2co, v3co, w);
1224 }
1225
1226 /* same as screen_px_from_ortho except we
1227  * do perspective correction on the pixel coordinate */
1228 static void screen_px_from_persp(
1229         const float uv[2],
1230         const float v1co[4], const float v2co[4], const float v3co[4],  /* screenspace coords */
1231         const float uv1co[2], const float uv2co[2], const float uv3co[2],
1232         float pixelScreenCo[4],
1233         float w[3])
1234 {
1235         float w_int[3];
1236         float wtot_inv, wtot;
1237         barycentric_weights_v2(uv1co, uv2co, uv3co, uv, w);
1238
1239         /* re-weight from the 4th coord of each screen vert */
1240         w_int[0] = w[0] * v1co[3];
1241         w_int[1] = w[1] * v2co[3];
1242         w_int[2] = w[2] * v3co[3];
1243
1244         wtot = w_int[0] + w_int[1] + w_int[2];
1245
1246         if (wtot > 0.0f) {
1247                 wtot_inv = 1.0f / wtot;
1248                 w_int[0] *= wtot_inv;
1249                 w_int[1] *= wtot_inv;
1250                 w_int[2] *= wtot_inv;
1251         }
1252         else {
1253                 w[0] = w[1] = w[2] =
1254                 w_int[0] = w_int[1] = w_int[2] = 1.0f / 3.0f;  /* dummy values for zero area face */
1255         }
1256         /* done re-weighting */
1257
1258         /* do interpolation based on projected weight */
1259         interp_v3_v3v3v3(pixelScreenCo, v1co, v2co, v3co, w_int);
1260 }
1261
1262
1263 /**
1264  * Set a direction vector based on a screen location.
1265  * (use for perspective view, else we can simply use `ps->viewDir`)
1266  *
1267  * Similar functionality to #ED_view3d_win_to_vector
1268  *
1269  * \param r_dir: Resulting direction (length is undefined).
1270  */
1271 static void screen_px_to_vector_persp(
1272         int winx, int winy, const float projmat_inv[4][4], const float view_pos[3],
1273         const float co_px[2],
1274         float r_dir[3])
1275 {
1276         r_dir[0] = 2.0f * (co_px[0] / winx) - 1.0f;
1277         r_dir[1] = 2.0f * (co_px[1] / winy) - 1.0f;
1278         r_dir[2] = -0.5f;
1279         mul_project_m4_v3((float(*)[4])projmat_inv, r_dir);
1280         sub_v3_v3(r_dir, view_pos);
1281 }
1282
1283 /**
1284  * Special function to return the factor to a point along a line in pixel space.
1285  *
1286  * This is needed since we can't use #line_point_factor_v2 for perspective screen-space coords.
1287  *
1288  * \param p: 2D screen-space location.
1289  * \param v1, v2: 3D object-space locations.
1290  */
1291 static float screen_px_line_point_factor_v2_persp(
1292         const ProjPaintState *ps,
1293         const float p[2],
1294         const float v1[3], const float v2[3])
1295 {
1296         const float zero[3] = {0};
1297         float v1_proj[3], v2_proj[3];
1298         float dir[3];
1299
1300         screen_px_to_vector_persp(ps->winx, ps->winy, ps->projectMatInv, ps->viewPos, p, dir);
1301
1302         sub_v3_v3v3(v1_proj, v1, ps->viewPos);
1303         sub_v3_v3v3(v2_proj, v2, ps->viewPos);
1304
1305         project_plane_v3_v3v3(v1_proj, v1_proj, dir);
1306         project_plane_v3_v3v3(v2_proj, v2_proj, dir);
1307
1308         return line_point_factor_v2(zero, v1_proj, v2_proj);
1309 }
1310
1311
1312 static void project_face_pixel(
1313         const float *lt_tri_uv[3], ImBuf *ibuf_other, const float w[3],
1314         unsigned char rgba_ub[4], float rgba_f[4])
1315 {
1316         float uv_other[2], x, y;
1317
1318         interp_v2_v2v2v2(uv_other, UNPACK3(lt_tri_uv), w);
1319
1320         /* use */
1321         uvco_to_wrapped_pxco(uv_other, ibuf_other->x, ibuf_other->y, &x, &y);
1322
1323         if (ibuf_other->rect_float) { /* from float to float */
1324                 bilinear_interpolation_color_wrap(ibuf_other, NULL, rgba_f, x, y);
1325         }
1326         else { /* from char to float */
1327                 bilinear_interpolation_color_wrap(ibuf_other, rgba_ub, NULL, x, y);
1328         }
1329
1330 }
1331
1332 /* run this outside project_paint_uvpixel_init since pixels with mask 0 don't need init */
1333 static float project_paint_uvpixel_mask(
1334         const ProjPaintState *ps,
1335         const int tri_index,
1336         const float w[3])
1337 {
1338         float mask;
1339
1340         /* Image Mask */
1341         if (ps->do_layer_stencil) {
1342                 /* another UV maps image is masking this one's */
1343                 ImBuf *ibuf_other;
1344                 Image *other_tpage = ps->stencil_ima;
1345
1346                 if (other_tpage && (ibuf_other = BKE_image_acquire_ibuf(other_tpage, NULL, NULL))) {
1347                         const MLoopTri *lt_other = &ps->dm_mlooptri[tri_index];
1348                         const float *lt_other_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, lt_other) };
1349
1350                         /* BKE_image_acquire_ibuf - TODO - this may be slow */
1351                         unsigned char rgba_ub[4];
1352                         float rgba_f[4];
1353
1354                         project_face_pixel(lt_other_tri_uv, ibuf_other, w, rgba_ub, rgba_f);
1355
1356                         if (ibuf_other->rect_float) { /* from float to float */
1357                                 mask = ((rgba_f[0] + rgba_f[1] + rgba_f[2]) * (1.0f / 3.0f)) * rgba_f[3];
1358                         }
1359                         else { /* from char to float */
1360                                 mask = ((rgba_ub[0] + rgba_ub[1] + rgba_ub[2]) * (1.0f / (255.0f * 3.0f))) * (rgba_ub[3] * (1.0f / 255.0f));
1361                         }
1362
1363                         BKE_image_release_ibuf(other_tpage, ibuf_other, NULL);
1364
1365                         if (!ps->do_layer_stencil_inv) /* matching the gimps layer mask black/white rules, white==full opacity */
1366                                 mask = (1.0f - mask);
1367
1368                         if (mask == 0.0f) {
1369                                 return 0.0f;
1370                         }
1371                 }
1372                 else {
1373                         return 0.0f;
1374                 }
1375         }
1376         else {
1377                 mask = 1.0f;
1378         }
1379
1380         if (ps->do_mask_cavity) {
1381                 const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
1382                 const int lt_vtri[3] = { PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) };
1383                 float ca1, ca2, ca3, ca_mask;
1384                 ca1 = ps->cavities[lt_vtri[0]];
1385                 ca2 = ps->cavities[lt_vtri[1]];
1386                 ca3 = ps->cavities[lt_vtri[2]];
1387
1388                 ca_mask = w[0] * ca1 + w[1] * ca2 + w[2] * ca3;
1389                 ca_mask = curvemapping_evaluateF(ps->cavity_curve, 0, ca_mask);
1390                 CLAMP(ca_mask, 0.0f, 1.0f);
1391                 mask *= ca_mask;
1392         }
1393
1394         /* calculate mask */
1395         if (ps->do_mask_normal) {
1396                 const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
1397                 const int lt_vtri[3] = { PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) };
1398                 const MPoly *mp = &ps->dm_mpoly[lt->poly];
1399                 float no[3], angle_cos;
1400
1401                 if (mp->flag & ME_SMOOTH) {
1402                         const short *no1, *no2, *no3;
1403                         no1 = ps->dm_mvert[lt_vtri[0]].no;
1404                         no2 = ps->dm_mvert[lt_vtri[1]].no;
1405                         no3 = ps->dm_mvert[lt_vtri[2]].no;
1406
1407                         no[0] = w[0] * no1[0] + w[1] * no2[0] + w[2] * no3[0];
1408                         no[1] = w[0] * no1[1] + w[1] * no2[1] + w[2] * no3[1];
1409                         no[2] = w[0] * no1[2] + w[1] * no2[2] + w[2] * no3[2];
1410                         normalize_v3(no);
1411                 }
1412                 else {
1413                         /* incase the */
1414 #if 1
1415                         /* normalizing per pixel isn't optimal, we could cache or check ps->*/
1416                         normal_tri_v3(no,
1417                                       ps->dm_mvert[lt_vtri[0]].co,
1418                                       ps->dm_mvert[lt_vtri[1]].co,
1419                                       ps->dm_mvert[lt_vtri[2]].co);
1420 #else
1421                         /* don't use because some modifiers dont have normal data (subsurf for eg) */
1422                         copy_v3_v3(no, (float *)ps->dm->getTessFaceData(ps->dm, tri_index, CD_NORMAL));
1423 #endif
1424                 }
1425
1426                 if (UNLIKELY(ps->is_flip_object)) {
1427                         negate_v3(no);
1428                 }
1429
1430                 /* now we can use the normal as a mask */
1431                 if (ps->is_ortho) {
1432                         angle_cos = dot_v3v3(ps->viewDir, no);
1433                 }
1434                 else {
1435                         /* Annoying but for the perspective view we need to get the pixels location in 3D space :/ */
1436                         float viewDirPersp[3];
1437                         const float *co1, *co2, *co3;
1438                         co1 = ps->dm_mvert[lt_vtri[0]].co;
1439                         co2 = ps->dm_mvert[lt_vtri[1]].co;
1440                         co3 = ps->dm_mvert[lt_vtri[2]].co;
1441
1442                         /* Get the direction from the viewPoint to the pixel and normalize */
1443                         viewDirPersp[0] = (ps->viewPos[0] - (w[0] * co1[0] + w[1] * co2[0] + w[2] * co3[0]));
1444                         viewDirPersp[1] = (ps->viewPos[1] - (w[0] * co1[1] + w[1] * co2[1] + w[2] * co3[1]));
1445                         viewDirPersp[2] = (ps->viewPos[2] - (w[0] * co1[2] + w[1] * co2[2] + w[2] * co3[2]));
1446                         normalize_v3(viewDirPersp);
1447                         if (UNLIKELY(ps->is_flip_object)) {
1448                                 negate_v3(viewDirPersp);
1449                         }
1450
1451                         angle_cos = dot_v3v3(viewDirPersp, no);
1452                 }
1453
1454                 if (angle_cos <= ps->normal_angle__cos) {
1455                         return 0.0f; /* outsize the normal limit*/
1456                 }
1457                 else if (angle_cos < ps->normal_angle_inner__cos) {
1458                         mask *= (ps->normal_angle - acosf(angle_cos)) / ps->normal_angle_range;
1459                 } /* otherwise no mask normal is needed, were within the limit */
1460         }
1461
1462         /* This only works when the opacity dosnt change while painting, stylus pressure messes with this
1463          * so don't use it. */
1464         // if (ps->is_airbrush == 0) mask *= BKE_brush_alpha_get(ps->brush);
1465
1466         return mask;
1467 }
1468
1469 static int project_paint_pixel_sizeof(const short tool)
1470 {
1471         if ((tool == PAINT_TOOL_CLONE) || (tool == PAINT_TOOL_SMEAR)) {
1472                 return sizeof(ProjPixelClone);
1473         }
1474         else {
1475                 return sizeof(ProjPixel);
1476         }
1477 }
1478
1479 static int project_paint_undo_subtiles(const TileInfo *tinf, int tx, int ty)
1480 {
1481         ProjPaintImage *pjIma = tinf->pjima;
1482         int tile_index = tx + ty * tinf->tile_width;
1483         bool generate_tile = false;
1484
1485         /* double check lock to avoid locking */
1486         if (UNLIKELY(!pjIma->undoRect[tile_index])) {
1487                 if (tinf->lock)
1488                         BLI_spin_lock(tinf->lock);
1489                 if (LIKELY(!pjIma->undoRect[tile_index])) {
1490                         pjIma->undoRect[tile_index] = TILE_PENDING;
1491                         generate_tile = true;
1492                 }
1493                 if (tinf->lock)
1494                         BLI_spin_unlock(tinf->lock);
1495         }
1496
1497
1498         if (generate_tile) {
1499                 volatile void *undorect;
1500                 if (tinf->masked) {
1501                         undorect = image_undo_push_tile(
1502                                 pjIma->ima, pjIma->ibuf, tinf->tmpibuf,
1503                                 tx, ty, &pjIma->maskRect[tile_index], &pjIma->valid[tile_index], true, false);
1504                 }
1505                 else {
1506                         undorect = image_undo_push_tile(
1507                                 pjIma->ima, pjIma->ibuf, tinf->tmpibuf,
1508                                 tx, ty, NULL, &pjIma->valid[tile_index], true, false);
1509                 }
1510
1511                 pjIma->ibuf->userflags |= IB_BITMAPDIRTY;
1512                 /* tile ready, publish */
1513                 if (tinf->lock)
1514                         BLI_spin_lock(tinf->lock);
1515                 pjIma->undoRect[tile_index] = undorect;
1516                 if (tinf->lock)
1517                         BLI_spin_unlock(tinf->lock);
1518
1519         }
1520
1521         return tile_index;
1522 }
1523
1524 /* run this function when we know a bucket's, face's pixel can be initialized,
1525  * return the ProjPixel which is added to 'ps->bucketRect[bucket_index]' */
1526 static ProjPixel *project_paint_uvpixel_init(
1527         const ProjPaintState *ps,
1528         MemArena *arena,
1529         const TileInfo *tinf,
1530         int x_px, int y_px,
1531         const float mask,
1532         const int tri_index,
1533         const float pixelScreenCo[4],
1534         const float world_spaceCo[3],
1535         const float w[3])
1536 {
1537         ProjPixel *projPixel;
1538         int x_tile, y_tile;
1539         int x_round, y_round;
1540         int tile_offset;
1541         /* volatile is important here to ensure pending check is not optimized away by compiler*/
1542         volatile int tile_index;
1543
1544         ProjPaintImage *projima = tinf->pjima;
1545         ImBuf *ibuf = projima->ibuf;
1546         /* wrap pixel location */
1547
1548         x_px = mod_i(x_px, ibuf->x);
1549         y_px = mod_i(y_px, ibuf->y);
1550
1551         BLI_assert(ps->pixel_sizeof == project_paint_pixel_sizeof(ps->tool));
1552         projPixel = BLI_memarena_alloc(arena, ps->pixel_sizeof);
1553
1554         /* calculate the undo tile offset of the pixel, used to store the original
1555          * pixel color and accumulated mask if any */
1556         x_tile =  x_px >> IMAPAINT_TILE_BITS;
1557         y_tile =  y_px >> IMAPAINT_TILE_BITS;
1558
1559         x_round = x_tile * IMAPAINT_TILE_SIZE;
1560         y_round = y_tile * IMAPAINT_TILE_SIZE;
1561         //memset(projPixel, 0, size);
1562
1563         tile_offset = (x_px - x_round) + (y_px - y_round) * IMAPAINT_TILE_SIZE;
1564         tile_index = project_paint_undo_subtiles(tinf, x_tile, y_tile);
1565
1566         /* other thread may be initializing the tile so wait here */
1567         while (projima->undoRect[tile_index] == TILE_PENDING)
1568                 ;
1569
1570         BLI_assert(tile_index < (IMAPAINT_TILE_NUMBER(ibuf->x) * IMAPAINT_TILE_NUMBER(ibuf->y)));
1571         BLI_assert(tile_offset < (IMAPAINT_TILE_SIZE * IMAPAINT_TILE_SIZE));
1572
1573         projPixel->valid = projima->valid[tile_index];
1574
1575         if (ibuf->rect_float) {
1576                 projPixel->pixel.f_pt = ibuf->rect_float + ((x_px + y_px * ibuf->x) * 4);
1577                 projPixel->origColor.f_pt = (float *)projima->undoRect[tile_index] + 4 * tile_offset;
1578                 zero_v4(projPixel->newColor.f);
1579         }
1580         else {
1581                 projPixel->pixel.ch_pt = (unsigned char *)(ibuf->rect + (x_px + y_px * ibuf->x));
1582                 projPixel->origColor.uint_pt = (unsigned int *)projima->undoRect[tile_index] + tile_offset;
1583                 projPixel->newColor.uint = 0;
1584         }
1585
1586         /* screenspace unclamped, we could keep its z and w values but don't need them at the moment */
1587         if (ps->brush->mtex.brush_map_mode == MTEX_MAP_MODE_3D) {
1588                 copy_v3_v3(projPixel->worldCoSS, world_spaceCo);
1589         }
1590
1591         copy_v2_v2(projPixel->projCoSS, pixelScreenCo);
1592
1593         projPixel->x_px = x_px;
1594         projPixel->y_px = y_px;
1595
1596         projPixel->mask = (unsigned short)(mask * 65535);
1597         if (ps->do_masking)
1598                 projPixel->mask_accum = projima->maskRect[tile_index] + tile_offset;
1599         else
1600                 projPixel->mask_accum = NULL;
1601
1602         /* which bounding box cell are we in?, needed for undo */
1603         projPixel->bb_cell_index = ((int)(((float)x_px / (float)ibuf->x) * PROJ_BOUNDBOX_DIV)) +
1604                                    ((int)(((float)y_px / (float)ibuf->y) * PROJ_BOUNDBOX_DIV)) * PROJ_BOUNDBOX_DIV;
1605
1606         /* done with view3d_project_float inline */
1607         if (ps->tool == PAINT_TOOL_CLONE) {
1608                 if (ps->dm_mloopuv_clone) {
1609                         ImBuf *ibuf_other;
1610                         Image *other_tpage = project_paint_face_clone_image(ps, tri_index);
1611
1612                         if (other_tpage && (ibuf_other = BKE_image_acquire_ibuf(other_tpage, NULL, NULL))) {
1613                                 const MLoopTri *lt_other = &ps->dm_mlooptri[tri_index];
1614                                 const float *lt_other_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv_clone, lt_other) };
1615
1616                                 /* BKE_image_acquire_ibuf - TODO - this may be slow */
1617
1618                                 if (ibuf->rect_float) {
1619                                         if (ibuf_other->rect_float) { /* from float to float */
1620                                                 project_face_pixel(lt_other_tri_uv, ibuf_other, w, NULL, ((ProjPixelClone *)projPixel)->clonepx.f);
1621                                         }
1622                                         else { /* from char to float */
1623                                                 unsigned char rgba_ub[4];
1624                                                 float rgba[4];
1625                                                 project_face_pixel(lt_other_tri_uv, ibuf_other, w, rgba_ub, NULL);
1626                                                 srgb_to_linearrgb_uchar4(rgba, rgba_ub);
1627                                                 straight_to_premul_v4_v4(((ProjPixelClone *)projPixel)->clonepx.f, rgba);
1628                                         }
1629                                 }
1630                                 else {
1631                                         if (ibuf_other->rect_float) { /* float to char */
1632                                                 float rgba[4];
1633                                                 project_face_pixel(lt_other_tri_uv, ibuf_other, w, NULL, rgba);
1634                                                 premul_to_straight_v4(rgba);
1635                                                 linearrgb_to_srgb_uchar3(((ProjPixelClone *)projPixel)->clonepx.ch, rgba);
1636                                                 ((ProjPixelClone *)projPixel)->clonepx.ch[3] =  rgba[3] * 255;
1637                                         }
1638                                         else { /* char to char */
1639                                                 project_face_pixel(lt_other_tri_uv, ibuf_other, w, ((ProjPixelClone *)projPixel)->clonepx.ch, NULL);
1640                                         }
1641                                 }
1642
1643                                 BKE_image_release_ibuf(other_tpage, ibuf_other, NULL);
1644                         }
1645                         else {
1646                                 if (ibuf->rect_float) {
1647                                         ((ProjPixelClone *)projPixel)->clonepx.f[3] = 0;
1648                                 }
1649                                 else {
1650                                         ((ProjPixelClone *)projPixel)->clonepx.ch[3] = 0;
1651                                 }
1652                         }
1653
1654                 }
1655                 else {
1656                         float co[2];
1657                         sub_v2_v2v2(co, projPixel->projCoSS, ps->cloneOffset);
1658
1659                         /* no need to initialize the bucket, we're only checking buckets faces and for this
1660                          * the faces are already initialized in project_paint_delayed_face_init(...) */
1661                         if (ibuf->rect_float) {
1662                                 if (!project_paint_PickColor(ps, co, ((ProjPixelClone *)projPixel)->clonepx.f, NULL, 1)) {
1663                                         ((ProjPixelClone *)projPixel)->clonepx.f[3] = 0; /* zero alpha - ignore */
1664                                 }
1665                         }
1666                         else {
1667                                 if (!project_paint_PickColor(ps, co, NULL, ((ProjPixelClone *)projPixel)->clonepx.ch, 1)) {
1668                                         ((ProjPixelClone *)projPixel)->clonepx.ch[3] = 0; /* zero alpha - ignore */
1669                                 }
1670                         }
1671                 }
1672         }
1673
1674 #ifdef PROJ_DEBUG_PAINT
1675         if (ibuf->rect_float) projPixel->pixel.f_pt[0] = 0;
1676         else                  projPixel->pixel.ch_pt[0] = 0;
1677 #endif
1678         /* pointer arithmetics */
1679         projPixel->image_index = projima - ps->projImages;
1680
1681         return projPixel;
1682 }
1683
1684 static bool line_clip_rect2f(
1685         const rctf *cliprect,
1686         const rctf *rect,
1687         const float l1[2], const float l2[2],
1688         float l1_clip[2], float l2_clip[2])
1689 {
1690         /* first account for horizontal, then vertical lines */
1691         /* horiz */
1692         if (fabsf(l1[1] - l2[1]) < PROJ_PIXEL_TOLERANCE) {
1693                 /* is the line out of range on its Y axis? */
1694                 if (l1[1] < rect->ymin || l1[1] > rect->ymax) {
1695                         return 0;
1696                 }
1697                 /* line is out of range on its X axis */
1698                 if ((l1[0] < rect->xmin && l2[0] < rect->xmin) || (l1[0] > rect->xmax && l2[0] > rect->xmax)) {
1699                         return 0;
1700                 }
1701
1702
1703                 if (fabsf(l1[0] - l2[0]) < PROJ_PIXEL_TOLERANCE) { /* this is a single point  (or close to)*/
1704                         if (BLI_rctf_isect_pt_v(rect, l1)) {
1705                                 copy_v2_v2(l1_clip, l1);
1706                                 copy_v2_v2(l2_clip, l2);
1707                                 return 1;
1708                         }
1709                         else {
1710                                 return 0;
1711                         }
1712                 }
1713
1714                 copy_v2_v2(l1_clip, l1);
1715                 copy_v2_v2(l2_clip, l2);
1716                 CLAMP(l1_clip[0], rect->xmin, rect->xmax);
1717                 CLAMP(l2_clip[0], rect->xmin, rect->xmax);
1718                 return 1;
1719         }
1720         else if (fabsf(l1[0] - l2[0]) < PROJ_PIXEL_TOLERANCE) {
1721                 /* is the line out of range on its X axis? */
1722                 if (l1[0] < rect->xmin || l1[0] > rect->xmax) {
1723                         return 0;
1724                 }
1725
1726                 /* line is out of range on its Y axis */
1727                 if ((l1[1] < rect->ymin && l2[1] < rect->ymin) || (l1[1] > rect->ymax && l2[1] > rect->ymax)) {
1728                         return 0;
1729                 }
1730
1731                 if (fabsf(l1[1] - l2[1]) < PROJ_PIXEL_TOLERANCE) { /* this is a single point  (or close to)*/
1732                         if (BLI_rctf_isect_pt_v(rect, l1)) {
1733                                 copy_v2_v2(l1_clip, l1);
1734                                 copy_v2_v2(l2_clip, l2);
1735                                 return 1;
1736                         }
1737                         else {
1738                                 return 0;
1739                         }
1740                 }
1741
1742                 copy_v2_v2(l1_clip, l1);
1743                 copy_v2_v2(l2_clip, l2);
1744                 CLAMP(l1_clip[1], rect->ymin, rect->ymax);
1745                 CLAMP(l2_clip[1], rect->ymin, rect->ymax);
1746                 return 1;
1747         }
1748         else {
1749                 float isect;
1750                 short ok1 = 0;
1751                 short ok2 = 0;
1752
1753                 /* Done with vertical lines */
1754
1755                 /* are either of the points inside the rectangle ? */
1756                 if (BLI_rctf_isect_pt_v(rect, l1)) {
1757                         copy_v2_v2(l1_clip, l1);
1758                         ok1 = 1;
1759                 }
1760
1761                 if (BLI_rctf_isect_pt_v(rect, l2)) {
1762                         copy_v2_v2(l2_clip, l2);
1763                         ok2 = 1;
1764                 }
1765
1766                 /* line inside rect */
1767                 if (ok1 && ok2) return 1;
1768
1769                 /* top/bottom */
1770                 if (line_isect_y(l1, l2, rect->ymin, &isect) && (isect >= cliprect->xmin) && (isect <= cliprect->xmax)) {
1771                         if (l1[1] < l2[1]) { /* line 1 is outside */
1772                                 l1_clip[0] = isect;
1773                                 l1_clip[1] = rect->ymin;
1774                                 ok1 = 1;
1775                         }
1776                         else {
1777                                 l2_clip[0] = isect;
1778                                 l2_clip[1] = rect->ymin;
1779                                 ok2 = 2;
1780                         }
1781                 }
1782
1783                 if (ok1 && ok2) return 1;
1784
1785                 if (line_isect_y(l1, l2, rect->ymax, &isect) && (isect >= cliprect->xmin) && (isect <= cliprect->xmax)) {
1786                         if (l1[1] > l2[1]) { /* line 1 is outside */
1787                                 l1_clip[0] = isect;
1788                                 l1_clip[1] = rect->ymax;
1789                                 ok1 = 1;
1790                         }
1791                         else {
1792                                 l2_clip[0] = isect;
1793                                 l2_clip[1] = rect->ymax;
1794                                 ok2 = 2;
1795                         }
1796                 }
1797
1798                 if (ok1 && ok2) return 1;
1799
1800                 /* left/right */
1801                 if (line_isect_x(l1, l2, rect->xmin, &isect) && (isect >= cliprect->ymin) && (isect <= cliprect->ymax)) {
1802                         if (l1[0] < l2[0]) { /* line 1 is outside */
1803                                 l1_clip[0] = rect->xmin;
1804                                 l1_clip[1] = isect;
1805                                 ok1 = 1;
1806                         }
1807                         else {
1808                                 l2_clip[0] = rect->xmin;
1809                                 l2_clip[1] = isect;
1810                                 ok2 = 2;
1811                         }
1812                 }
1813
1814                 if (ok1 && ok2) return 1;
1815
1816                 if (line_isect_x(l1, l2, rect->xmax, &isect) && (isect >= cliprect->ymin) && (isect <= cliprect->ymax)) {
1817                         if (l1[0] > l2[0]) { /* line 1 is outside */
1818                                 l1_clip[0] = rect->xmax;
1819                                 l1_clip[1] = isect;
1820                                 ok1 = 1;
1821                         }
1822                         else {
1823                                 l2_clip[0] = rect->xmax;
1824                                 l2_clip[1] = isect;
1825                                 ok2 = 2;
1826                         }
1827                 }
1828
1829                 if (ok1 && ok2) {
1830                         return 1;
1831                 }
1832                 else {
1833                         return 0;
1834                 }
1835         }
1836 }
1837
1838
1839
1840 /**
1841  * Scale the tri about its center
1842  * scaling by #PROJ_FACE_SCALE_SEAM (0.99x) is used for getting fake UV pixel coords that are on the
1843  * edge of the face but slightly inside it occlusion tests don't return hits on adjacent faces
1844  */
1845 #ifndef PROJ_DEBUG_NOSEAMBLEED
1846
1847 static void scale_tri(float insetCos[3][3], const float *origCos[4], const float inset)
1848 {
1849         float cent[3];
1850         cent[0] = (origCos[0][0] + origCos[1][0] + origCos[2][0]) * (1.0f / 3.0f);
1851         cent[1] = (origCos[0][1] + origCos[1][1] + origCos[2][1]) * (1.0f / 3.0f);
1852         cent[2] = (origCos[0][2] + origCos[1][2] + origCos[2][2]) * (1.0f / 3.0f);
1853
1854         sub_v3_v3v3(insetCos[0], origCos[0], cent);
1855         sub_v3_v3v3(insetCos[1], origCos[1], cent);
1856         sub_v3_v3v3(insetCos[2], origCos[2], cent);
1857
1858         mul_v3_fl(insetCos[0], inset);
1859         mul_v3_fl(insetCos[1], inset);
1860         mul_v3_fl(insetCos[2], inset);
1861
1862         add_v3_v3(insetCos[0], cent);
1863         add_v3_v3(insetCos[1], cent);
1864         add_v3_v3(insetCos[2], cent);
1865 }
1866 #endif //PROJ_DEBUG_NOSEAMBLEED
1867
1868 static float len_squared_v2v2_alt(const float v1[2], const float v2_1, const float v2_2)
1869 {
1870         float x, y;
1871
1872         x = v1[0] - v2_1;
1873         y = v1[1] - v2_2;
1874         return x * x + y * y;
1875 }
1876
1877 /* note, use a squared value so we can use len_squared_v2v2
1878  * be sure that you have done a bounds check first or this may fail */
1879 /* only give bucket_bounds as an arg because we need it elsewhere */
1880 static bool project_bucket_isect_circle(const float cent[2], const float radius_squared, const rctf *bucket_bounds)
1881 {
1882
1883         /* Would normally to a simple intersection test, however we know the bounds of these 2 already intersect
1884          * so we only need to test if the center is inside the vertical or horizontal bounds on either axis,
1885          * this is even less work then an intersection test
1886          */
1887 #if 0
1888         if (BLI_rctf_isect_pt_v(bucket_bounds, cent))
1889                 return 1;
1890 #endif
1891
1892         if ((bucket_bounds->xmin <= cent[0] && bucket_bounds->xmax >= cent[0]) ||
1893             (bucket_bounds->ymin <= cent[1] && bucket_bounds->ymax >= cent[1]))
1894         {
1895                 return 1;
1896         }
1897
1898         /* out of bounds left */
1899         if (cent[0] < bucket_bounds->xmin) {
1900                 /* lower left out of radius test */
1901                 if (cent[1] < bucket_bounds->ymin) {
1902                         return (len_squared_v2v2_alt(cent, bucket_bounds->xmin, bucket_bounds->ymin) < radius_squared) ? 1 : 0;
1903                 }
1904                 /* top left test */
1905                 else if (cent[1] > bucket_bounds->ymax) {
1906                         return (len_squared_v2v2_alt(cent, bucket_bounds->xmin, bucket_bounds->ymax) < radius_squared) ? 1 : 0;
1907                 }
1908         }
1909         else if (cent[0] > bucket_bounds->xmax) {
1910                 /* lower right out of radius test */
1911                 if (cent[1] < bucket_bounds->ymin) {
1912                         return (len_squared_v2v2_alt(cent, bucket_bounds->xmax, bucket_bounds->ymin) < radius_squared) ? 1 : 0;
1913                 }
1914                 /* top right test */
1915                 else if (cent[1] > bucket_bounds->ymax) {
1916                         return (len_squared_v2v2_alt(cent, bucket_bounds->xmax, bucket_bounds->ymax) < radius_squared) ? 1 : 0;
1917                 }
1918         }
1919
1920         return 0;
1921 }
1922
1923
1924
1925 /* Note for rect_to_uvspace_ortho() and rect_to_uvspace_persp()
1926  * in ortho view this function gives good results when bucket_bounds are outside the triangle
1927  * however in some cases, perspective view will mess up with faces that have minimal screenspace area
1928  * (viewed from the side)
1929  *
1930  * for this reason its not reliable in this case so we'll use the Simple Barycentric'
1931  * funcs that only account for points inside the triangle.
1932  * however switching back to this for ortho is always an option */
1933
1934 static void rect_to_uvspace_ortho(
1935         const rctf *bucket_bounds,
1936         const float *v1coSS, const float *v2coSS, const float *v3coSS,
1937         const float *uv1co, const float *uv2co, const float *uv3co,
1938         float bucket_bounds_uv[4][2],
1939         const int flip)
1940 {
1941         float uv[2];
1942         float w[3];
1943
1944         /* get the UV space bounding box */
1945         uv[0] = bucket_bounds->xmax;
1946         uv[1] = bucket_bounds->ymin;
1947         barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1948         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 3 : 0], uv1co, uv2co, uv3co, w);
1949
1950         //uv[0] = bucket_bounds->xmax; // set above
1951         uv[1] = bucket_bounds->ymax;
1952         barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1953         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 2 : 1], uv1co, uv2co, uv3co, w);
1954
1955         uv[0] = bucket_bounds->xmin;
1956         //uv[1] = bucket_bounds->ymax; // set above
1957         barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1958         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 1 : 2], uv1co, uv2co, uv3co, w);
1959
1960         //uv[0] = bucket_bounds->xmin; // set above
1961         uv[1] = bucket_bounds->ymin;
1962         barycentric_weights_v2(v1coSS, v2coSS, v3coSS, uv, w);
1963         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 0 : 3], uv1co, uv2co, uv3co, w);
1964 }
1965
1966 /* same as above but use barycentric_weights_v2_persp */
1967 static void rect_to_uvspace_persp(
1968         const rctf *bucket_bounds,
1969         const float *v1coSS, const float *v2coSS, const float *v3coSS,
1970         const float *uv1co, const float *uv2co, const float *uv3co,
1971         float bucket_bounds_uv[4][2],
1972         const int flip
1973         )
1974 {
1975         float uv[2];
1976         float w[3];
1977
1978         /* get the UV space bounding box */
1979         uv[0] = bucket_bounds->xmax;
1980         uv[1] = bucket_bounds->ymin;
1981         barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1982         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 3 : 0], uv1co, uv2co, uv3co, w);
1983
1984         //uv[0] = bucket_bounds->xmax; // set above
1985         uv[1] = bucket_bounds->ymax;
1986         barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1987         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 2 : 1], uv1co, uv2co, uv3co, w);
1988
1989         uv[0] = bucket_bounds->xmin;
1990         //uv[1] = bucket_bounds->ymax; // set above
1991         barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1992         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 1 : 2], uv1co, uv2co, uv3co, w);
1993
1994         //uv[0] = bucket_bounds->xmin; // set above
1995         uv[1] = bucket_bounds->ymin;
1996         barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, uv, w);
1997         interp_v2_v2v2v2(bucket_bounds_uv[flip ? 0 : 3], uv1co, uv2co, uv3co, w);
1998 }
1999
2000 /* This works as we need it to but we can save a few steps and not use it */
2001
2002 #if 0
2003 static float angle_2d_clockwise(const float p1[2], const float p2[2], const float p3[2])
2004 {
2005         float v1[2], v2[2];
2006
2007         v1[0] = p1[0] - p2[0];    v1[1] = p1[1] - p2[1];
2008         v2[0] = p3[0] - p2[0];    v2[1] = p3[1] - p2[1];
2009
2010         return -atan2f(v1[0] * v2[1] - v1[1] * v2[0], v1[0] * v2[0] + v1[1] * v2[1]);
2011 }
2012 #endif
2013
2014 #define ISECT_1 (1)
2015 #define ISECT_2 (1 << 1)
2016 #define ISECT_3 (1 << 2)
2017 #define ISECT_4 (1 << 3)
2018 #define ISECT_ALL3 ((1 << 3) - 1)
2019 #define ISECT_ALL4 ((1 << 4) - 1)
2020
2021 /* limit must be a fraction over 1.0f */
2022 static bool IsectPT2Df_limit(
2023         const float pt[2],
2024         const float v1[2], const float v2[2], const float v3[2],
2025         const float limit)
2026 {
2027         return ((area_tri_v2(pt, v1, v2) +
2028                  area_tri_v2(pt, v2, v3) +
2029                  area_tri_v2(pt, v3, v1)) / (area_tri_v2(v1, v2, v3))) < limit;
2030 }
2031
2032 /* Clip the face by a bucket and set the uv-space bucket_bounds_uv
2033  * so we have the clipped UV's to do pixel intersection tests with
2034  * */
2035 static int float_z_sort_flip(const void *p1, const void *p2)
2036 {
2037         return (((float *)p1)[2] < ((float *)p2)[2] ? 1 : -1);
2038 }
2039
2040 static int float_z_sort(const void *p1, const void *p2)
2041 {
2042         return (((float *)p1)[2] < ((float *)p2)[2] ? -1 : 1);
2043 }
2044
2045 /* assumes one point is within the rectangle */
2046 static bool line_rect_clip(
2047         const rctf *rect,
2048         const float l1[4], const float l2[4],
2049         const float uv1[2], const float uv2[2],
2050         float uv[2], bool is_ortho)
2051 {
2052         float min = FLT_MAX, tmp;
2053         float xlen = l2[0] - l1[0];
2054         float ylen = l2[1] - l1[1];
2055
2056         /* 0.1 might seem too much, but remember, this is pixels! */
2057         if (xlen > 0.1f) {
2058                 if ((l1[0] - rect->xmin) * (l2[0] - rect->xmin) <= 0) {
2059                         tmp = rect->xmin;
2060                         min = min_ff((tmp - l1[0]) / xlen, min);
2061                 }
2062                 else if ((l1[0] - rect->xmax) * (l2[0] - rect->xmax) < 0) {
2063                         tmp = rect->xmax;
2064                         min = min_ff((tmp - l1[0]) / xlen, min);
2065                 }
2066         }
2067
2068         if (ylen > 0.1f) {
2069                 if ((l1[1] - rect->ymin) * (l2[1] - rect->ymin) <= 0) {
2070                         tmp = rect->ymin;
2071                         min = min_ff((tmp - l1[1]) / ylen, min);
2072                 }
2073                 else if ((l1[1] - rect->ymax) * (l2[1] - rect->ymax) < 0) {
2074                         tmp = rect->ymax;
2075                         min = min_ff((tmp - l1[1]) / ylen, min);
2076                 }
2077         }
2078
2079         if (min == FLT_MAX)
2080                 return false;
2081
2082         tmp = (is_ortho) ? 1.0f : (l1[3] + min * (l2[3] - l1[3]));
2083
2084         uv[0] = (uv1[0] + min / tmp * (uv2[0] - uv1[0]));
2085         uv[1] = (uv1[1] + min / tmp * (uv2[1] - uv1[1]));
2086
2087         return true;
2088 }
2089
2090
2091 static void project_bucket_clip_face(
2092         const bool is_ortho, const bool is_flip_object,
2093         const rctf *cliprect,
2094         const rctf *bucket_bounds,
2095         const float *v1coSS, const float *v2coSS, const float *v3coSS,
2096         const float *uv1co, const float *uv2co, const float *uv3co,
2097         float bucket_bounds_uv[8][2],
2098         int *tot, bool cull)
2099 {
2100         int inside_bucket_flag = 0;
2101         int inside_face_flag = 0;
2102         int flip;
2103         bool collinear = false;
2104         
2105         float bucket_bounds_ss[4][2];
2106
2107         /* detect pathological case where face the three vertices are almost collinear in screen space.
2108          * mostly those will be culled but when flood filling or with smooth shading it's a possibility */
2109         if (min_fff(dist_squared_to_line_v2(v1coSS, v2coSS, v3coSS),
2110                     dist_squared_to_line_v2(v2coSS, v3coSS, v1coSS),
2111                     dist_squared_to_line_v2(v3coSS, v1coSS, v2coSS)) < PROJ_PIXEL_TOLERANCE)
2112         {
2113                 collinear = true;
2114         }
2115         
2116         /* get the UV space bounding box */
2117         inside_bucket_flag |= BLI_rctf_isect_pt_v(bucket_bounds, v1coSS);
2118         inside_bucket_flag |= BLI_rctf_isect_pt_v(bucket_bounds, v2coSS) << 1;
2119         inside_bucket_flag |= BLI_rctf_isect_pt_v(bucket_bounds, v3coSS) << 2;
2120         
2121         if (inside_bucket_flag == ISECT_ALL3) {
2122                 /* is_flip_object is used here because we use the face winding */
2123                 flip = (((line_point_side_v2(v1coSS, v2coSS, v3coSS) > 0.0f) != is_flip_object) !=
2124                         (line_point_side_v2(uv1co, uv2co, uv3co) > 0.0f));
2125
2126                 /* all screenspace points are inside the bucket bounding box,
2127                  * this means we don't need to clip and can simply return the UVs */
2128                 if (flip) { /* facing the back? */
2129                         copy_v2_v2(bucket_bounds_uv[0], uv3co);
2130                         copy_v2_v2(bucket_bounds_uv[1], uv2co);
2131                         copy_v2_v2(bucket_bounds_uv[2], uv1co);
2132                 }
2133                 else {
2134                         copy_v2_v2(bucket_bounds_uv[0], uv1co);
2135                         copy_v2_v2(bucket_bounds_uv[1], uv2co);
2136                         copy_v2_v2(bucket_bounds_uv[2], uv3co);
2137                 }               
2138                 
2139                 *tot = 3;
2140                 return;
2141         }
2142         /* handle pathological case here, no need for further intersections below since tringle area is almost zero */
2143         if (collinear) {
2144                 int flag;
2145                 
2146                 (*tot) = 0;
2147
2148                 if (cull)
2149                         return;
2150                 
2151                 if (inside_bucket_flag & ISECT_1) { copy_v2_v2(bucket_bounds_uv[*tot], uv1co); (*tot)++; }
2152
2153                 flag = inside_bucket_flag & (ISECT_1 | ISECT_2);
2154                 if (flag && flag != (ISECT_1 | ISECT_2)) {
2155                         if (line_rect_clip(bucket_bounds, v1coSS, v2coSS, uv1co, uv2co, bucket_bounds_uv[*tot], is_ortho))
2156                                 (*tot)++;
2157                 }
2158                 
2159                 if (inside_bucket_flag & ISECT_2) { copy_v2_v2(bucket_bounds_uv[*tot], uv2co); (*tot)++; }
2160                 
2161                 flag = inside_bucket_flag & (ISECT_2 | ISECT_3);
2162                 if (flag && flag != (ISECT_2 | ISECT_3)) {
2163                         if (line_rect_clip(bucket_bounds, v2coSS, v3coSS, uv2co, uv3co, bucket_bounds_uv[*tot], is_ortho))
2164                                 (*tot)++;
2165                 }
2166
2167                 if (inside_bucket_flag & ISECT_3) { copy_v2_v2(bucket_bounds_uv[*tot], uv3co); (*tot)++; }
2168
2169                 flag = inside_bucket_flag & (ISECT_3 | ISECT_1);
2170                 if (flag && flag != (ISECT_3 | ISECT_1)) {
2171                         if (line_rect_clip(bucket_bounds, v3coSS, v1coSS, uv3co, uv1co, bucket_bounds_uv[*tot], is_ortho))
2172                                 (*tot)++;
2173                 }
2174                 
2175                 if ((*tot) < 3) {
2176                         /* no intersections to speak of, but more probable is that all face is just outside the
2177                          * rectangle and culled due to float precision issues. Since above tests have failed,
2178                          * just dump triangle as is for painting */
2179                         *tot = 0;
2180                         copy_v2_v2(bucket_bounds_uv[*tot], uv1co); (*tot)++;
2181                         copy_v2_v2(bucket_bounds_uv[*tot], uv2co); (*tot)++;
2182                         copy_v2_v2(bucket_bounds_uv[*tot], uv3co); (*tot)++;
2183                         return;
2184                 }
2185
2186                 return;
2187         }
2188
2189         /* get the UV space bounding box */
2190         /* use IsectPT2Df_limit here so we catch points are are touching the tri edge (or a small fraction over) */
2191         bucket_bounds_ss[0][0] = bucket_bounds->xmax;
2192         bucket_bounds_ss[0][1] = bucket_bounds->ymin;
2193         inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[0], v1coSS, v2coSS, v3coSS, 1 + PROJ_GEOM_TOLERANCE) ? ISECT_1 : 0);
2194
2195         bucket_bounds_ss[1][0] = bucket_bounds->xmax;
2196         bucket_bounds_ss[1][1] = bucket_bounds->ymax;
2197         inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[1], v1coSS, v2coSS, v3coSS, 1 + PROJ_GEOM_TOLERANCE) ? ISECT_2 : 0);
2198
2199         bucket_bounds_ss[2][0] = bucket_bounds->xmin;
2200         bucket_bounds_ss[2][1] = bucket_bounds->ymax;
2201         inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[2], v1coSS, v2coSS, v3coSS, 1 + PROJ_GEOM_TOLERANCE) ? ISECT_3 : 0);
2202
2203         bucket_bounds_ss[3][0] = bucket_bounds->xmin;
2204         bucket_bounds_ss[3][1] = bucket_bounds->ymin;
2205         inside_face_flag |= (IsectPT2Df_limit(bucket_bounds_ss[3], v1coSS, v2coSS, v3coSS, 1 + PROJ_GEOM_TOLERANCE) ? ISECT_4 : 0);
2206
2207         flip = ((line_point_side_v2(v1coSS, v2coSS, v3coSS) > 0.0f) !=
2208                 (line_point_side_v2(uv1co, uv2co, uv3co) > 0.0f));
2209
2210         if (inside_face_flag == ISECT_ALL4) {
2211                 /* bucket is totally inside the screenspace face, we can safely use weights */
2212
2213                 if (is_ortho) {
2214                         rect_to_uvspace_ortho(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, bucket_bounds_uv, flip);
2215                 }
2216                 else {
2217                         rect_to_uvspace_persp(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, bucket_bounds_uv, flip);
2218                 }
2219
2220                 *tot = 4;
2221                 return;
2222         }
2223         else {
2224                 /* The Complicated Case!
2225                  *
2226                  * The 2 cases above are where the face is inside the bucket or the bucket is inside the face.
2227                  *
2228                  * we need to make a convex polyline from the intersection between the screenspace face
2229                  * and the bucket bounds.
2230                  *
2231                  * There are a number of ways this could be done, currently it just collects all intersecting verts,
2232                  * and line intersections,  then sorts them clockwise, this is a lot easier then evaluating the geometry to
2233                  * do a correct clipping on both shapes. */
2234
2235
2236                 /* add a bunch of points, we know must make up the convex hull which is the clipped rect and triangle */
2237
2238
2239
2240                 /* Maximum possible 6 intersections when using a rectangle and triangle */
2241                 float isectVCosSS[8][3]; /* The 3rd float is used to store angle for qsort(), NOT as a Z location */
2242                 float v1_clipSS[2], v2_clipSS[2];
2243                 float w[3];
2244
2245                 /* calc center */
2246                 float cent[2] = {0.0f, 0.0f};
2247                 /*float up[2] = {0.0f, 1.0f};*/
2248                 int i;
2249                 bool doubles;
2250
2251                 (*tot) = 0;
2252
2253                 if (inside_face_flag & ISECT_1) { copy_v2_v2(isectVCosSS[*tot], bucket_bounds_ss[0]); (*tot)++; }
2254                 if (inside_face_flag & ISECT_2) { copy_v2_v2(isectVCosSS[*tot], bucket_bounds_ss[1]); (*tot)++; }
2255                 if (inside_face_flag & ISECT_3) { copy_v2_v2(isectVCosSS[*tot], bucket_bounds_ss[2]); (*tot)++; }
2256                 if (inside_face_flag & ISECT_4) { copy_v2_v2(isectVCosSS[*tot], bucket_bounds_ss[3]); (*tot)++; }
2257
2258                 if (inside_bucket_flag & ISECT_1) { copy_v2_v2(isectVCosSS[*tot], v1coSS); (*tot)++; }
2259                 if (inside_bucket_flag & ISECT_2) { copy_v2_v2(isectVCosSS[*tot], v2coSS); (*tot)++; }
2260                 if (inside_bucket_flag & ISECT_3) { copy_v2_v2(isectVCosSS[*tot], v3coSS); (*tot)++; }
2261
2262                 if ((inside_bucket_flag & (ISECT_1 | ISECT_2)) != (ISECT_1 | ISECT_2)) {
2263                         if (line_clip_rect2f(cliprect, bucket_bounds, v1coSS, v2coSS, v1_clipSS, v2_clipSS)) {
2264                                 if ((inside_bucket_flag & ISECT_1) == 0) { copy_v2_v2(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2265                                 if ((inside_bucket_flag & ISECT_2) == 0) { copy_v2_v2(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2266                         }
2267                 }
2268
2269                 if ((inside_bucket_flag & (ISECT_2 | ISECT_3)) != (ISECT_2 | ISECT_3)) {
2270                         if (line_clip_rect2f(cliprect, bucket_bounds, v2coSS, v3coSS, v1_clipSS, v2_clipSS)) {
2271                                 if ((inside_bucket_flag & ISECT_2) == 0) { copy_v2_v2(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2272                                 if ((inside_bucket_flag & ISECT_3) == 0) { copy_v2_v2(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2273                         }
2274                 }
2275
2276                 if ((inside_bucket_flag & (ISECT_3 | ISECT_1)) != (ISECT_3 | ISECT_1)) {
2277                         if (line_clip_rect2f(cliprect, bucket_bounds, v3coSS, v1coSS, v1_clipSS, v2_clipSS)) {
2278                                 if ((inside_bucket_flag & ISECT_3) == 0) { copy_v2_v2(isectVCosSS[*tot], v1_clipSS); (*tot)++; }
2279                                 if ((inside_bucket_flag & ISECT_1) == 0) { copy_v2_v2(isectVCosSS[*tot], v2_clipSS); (*tot)++; }
2280                         }
2281                 }
2282
2283
2284                 if ((*tot) < 3) { /* no intersections to speak of */
2285                         *tot = 0;
2286                         return;
2287                 }
2288
2289                 /* now we have all points we need, collect their angles and sort them clockwise */
2290
2291                 for (i = 0; i < (*tot); i++) {
2292                         cent[0] += isectVCosSS[i][0];
2293                         cent[1] += isectVCosSS[i][1];
2294                 }
2295                 cent[0] = cent[0] / (float)(*tot);
2296                 cent[1] = cent[1] / (float)(*tot);
2297
2298
2299
2300                 /* Collect angles for every point around the center point */
2301
2302
2303 #if 0   /* uses a few more cycles then the above loop */
2304                 for (i = 0; i < (*tot); i++) {
2305                         isectVCosSS[i][2] = angle_2d_clockwise(up, cent, isectVCosSS[i]);
2306                 }
2307 #endif
2308
2309                 v1_clipSS[0] = cent[0]; /* Abuse this var for the loop below */
2310                 v1_clipSS[1] = cent[1] + 1.0f;
2311
2312                 for (i = 0; i < (*tot); i++) {
2313                         v2_clipSS[0] = isectVCosSS[i][0] - cent[0];
2314                         v2_clipSS[1] = isectVCosSS[i][1] - cent[1];
2315                         isectVCosSS[i][2] = atan2f(v1_clipSS[0] * v2_clipSS[1] - v1_clipSS[1] * v2_clipSS[0],
2316                                                    v1_clipSS[0] * v2_clipSS[0] + v1_clipSS[1] * v2_clipSS[1]);
2317                 }
2318
2319                 if (flip) qsort(isectVCosSS, *tot, sizeof(float) * 3, float_z_sort_flip);
2320                 else      qsort(isectVCosSS, *tot, sizeof(float) * 3, float_z_sort);
2321
2322                 doubles = true;
2323                 while (doubles == true) {
2324                         doubles = false;
2325
2326                         for (i = 0; i < (*tot); i++) {
2327                                 if (fabsf(isectVCosSS[(i + 1) % *tot][0] - isectVCosSS[i][0]) < PROJ_PIXEL_TOLERANCE &&
2328                                     fabsf(isectVCosSS[(i + 1) % *tot][1] - isectVCosSS[i][1]) < PROJ_PIXEL_TOLERANCE)
2329                                 {
2330                                         int j;
2331                                         for (j = i; j < (*tot) - 1; j++) {
2332                                                 isectVCosSS[j][0] = isectVCosSS[j + 1][0];
2333                                                 isectVCosSS[j][1] = isectVCosSS[j + 1][1];
2334                                         }
2335                                         doubles = true; /* keep looking for more doubles */
2336                                         (*tot)--;
2337                                 }
2338                         }
2339                         
2340                         /* its possible there is only a few left after remove doubles */
2341                         if ((*tot) < 3) {
2342                                 // printf("removed too many doubles B\n");
2343                                 *tot = 0;
2344                                 return;
2345                         }
2346                 }
2347
2348                 if (is_ortho) {
2349                         for (i = 0; i < (*tot); i++) {
2350                                 barycentric_weights_v2(v1coSS, v2coSS, v3coSS, isectVCosSS[i], w);
2351                                 interp_v2_v2v2v2(bucket_bounds_uv[i], uv1co, uv2co, uv3co, w);
2352                         }
2353                 }
2354                 else {
2355                         for (i = 0; i < (*tot); i++) {
2356                                 barycentric_weights_v2_persp(v1coSS, v2coSS, v3coSS, isectVCosSS[i], w);
2357                                 interp_v2_v2v2v2(bucket_bounds_uv[i], uv1co, uv2co, uv3co, w);
2358                         }
2359                 }
2360         }
2361
2362 #ifdef PROJ_DEBUG_PRINT_CLIP
2363         /* include this at the bottom of the above function to debug the output */
2364
2365         {
2366                 /* If there are ever any problems, */
2367                 float test_uv[4][2];
2368                 int i;
2369                 if (is_ortho) rect_to_uvspace_ortho(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, test_uv, flip);
2370                 else          rect_to_uvspace_persp(bucket_bounds, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, test_uv, flip);
2371                 printf("(  [(%f,%f), (%f,%f), (%f,%f), (%f,%f)], ",
2372                        test_uv[0][0], test_uv[0][1],   test_uv[1][0], test_uv[1][1],
2373                        test_uv[2][0], test_uv[2][1],    test_uv[3][0], test_uv[3][1]);
2374
2375                 printf("  [(%f,%f), (%f,%f), (%f,%f)], ", uv1co[0], uv1co[1],   uv2co[0], uv2co[1],    uv3co[0], uv3co[1]);
2376
2377                 printf("[");
2378                 for (i = 0; i < (*tot); i++) {
2379                         printf("(%f, %f),", bucket_bounds_uv[i][0], bucket_bounds_uv[i][1]);
2380                 }
2381                 printf("]),\\\n");
2382         }
2383 #endif
2384 }
2385
2386 /*
2387  * # This script creates faces in a blender scene from printed data above.
2388  *
2389  * project_ls = [
2390  * ...(output from above block)...
2391  * ]
2392  *
2393  * from Blender import Scene, Mesh, Window, sys, Mathutils
2394  *
2395  * import bpy
2396  *
2397  * V = Mathutils.Vector
2398  *
2399  * def main():
2400  *     sce = bpy.data.scenes.active
2401  *
2402  *     for item in project_ls:
2403  *         bb = item[0]
2404  *         uv = item[1]
2405  *         poly = item[2]
2406  *
2407  *         me = bpy.data.meshes.new()
2408  *         ob = sce.objects.new(me)
2409  *
2410  *         me.verts.extend([V(bb[0]).xyz, V(bb[1]).xyz, V(bb[2]).xyz, V(bb[3]).xyz])
2411  *         me.faces.extend([(0,1,2,3),])
2412  *         me.verts.extend([V(uv[0]).xyz, V(uv[1]).xyz, V(uv[2]).xyz])
2413  *         me.faces.extend([(4,5,6),])
2414  *
2415  *         vs = [V(p).xyz for p in poly]
2416  *         print len(vs)
2417  *         l = len(me.verts)
2418  *         me.verts.extend(vs)
2419  *
2420  *         i = l
2421  *         while i < len(me.verts):
2422  *             ii = i + 1
2423  *             if ii == len(me.verts):
2424  *                 ii = l
2425  *             me.edges.extend([i, ii])
2426  *             i += 1
2427  *
2428  * if __name__ == '__main__':
2429  *     main()
2430  */
2431
2432
2433 #undef ISECT_1
2434 #undef ISECT_2
2435 #undef ISECT_3
2436 #undef ISECT_4
2437 #undef ISECT_ALL3
2438 #undef ISECT_ALL4
2439
2440
2441 /* checks if pt is inside a convex 2D polyline, the polyline must be ordered rotating clockwise
2442  * otherwise it would have to test for mixed (line_point_side_v2 > 0.0f) cases */
2443 static bool IsectPoly2Df(const float pt[2], float uv[][2], const int tot)
2444 {
2445         int i;
2446         if (line_point_side_v2(uv[tot - 1], uv[0], pt) < 0.0f)
2447                 return 0;
2448
2449         for (i = 1; i < tot; i++) {
2450                 if (line_point_side_v2(uv[i - 1], uv[i], pt) < 0.0f)
2451                         return 0;
2452
2453         }
2454
2455         return 1;
2456 }
2457 static bool IsectPoly2Df_twoside(const float pt[2], float uv[][2], const int tot)
2458 {
2459         int i;
2460         bool side = (line_point_side_v2(uv[tot - 1], uv[0], pt) > 0.0f);
2461
2462         for (i = 1; i < tot; i++) {
2463                 if ((line_point_side_v2(uv[i - 1], uv[i], pt) > 0.0f) != side)
2464                         return 0;
2465
2466         }
2467
2468         return 1;
2469 }
2470
2471 /* One of the most important function for projection painting,
2472  * since it selects the pixels to be added into each bucket.
2473  *
2474  * initialize pixels from this face where it intersects with the bucket_index,
2475  * optionally initialize pixels for removing seams */
2476 static void project_paint_face_init(
2477         const ProjPaintState *ps,
2478         const int thread_index, const int bucket_index, const int tri_index, const int image_index,
2479         const rctf *clip_rect, const rctf *bucket_bounds, ImBuf *ibuf, ImBuf **tmpibuf,
2480         const bool clamp_u, const bool clamp_v)
2481 {
2482         /* Projection vars, to get the 3D locations into screen space  */
2483         MemArena *arena = ps->arena_mt[thread_index];
2484         LinkNode **bucketPixelNodes = ps->bucketRect + bucket_index;
2485         LinkNode *bucketFaceNodes = ps->bucketFaces[bucket_index];
2486         bool threaded = (ps->thread_tot > 1);
2487
2488         TileInfo tinf = {
2489                 ps->tile_lock,
2490                 ps->do_masking,
2491                 IMAPAINT_TILE_NUMBER(ibuf->x),
2492                 tmpibuf,
2493                 ps->projImages + image_index
2494         };
2495
2496         const MLoopTri *lt = &ps->dm_mlooptri[tri_index];
2497         const int lt_vtri[3] = { PS_LOOPTRI_AS_VERT_INDEX_3(ps, lt) };
2498         const float *lt_tri_uv[3] = { PS_LOOPTRI_AS_UV_3(ps->dm_mloopuv, lt) };
2499
2500         /* UV/pixel seeking data */
2501         int x; /* Image X-Pixel */
2502         int y; /* Image Y-Pixel */
2503         float mask;
2504         float uv[2]; /* Image floating point UV - same as x, y but from 0.0-1.0 */
2505
2506         const float *v1coSS, *v2coSS, *v3coSS; /* vert co screen-space, these will be assigned to lt_vtri[0-2] */
2507
2508         const float *vCo[3]; /* vertex screenspace coords */
2509
2510         float w[3], wco[3];
2511
2512         float *uv1co, *uv2co, *uv3co; /* for convenience only, these will be assigned to lt_tri_uv[0],1,2 or lt_tri_uv[0],2,3 */
2513         float pixelScreenCo[4];
2514         bool do_3d_mapping = ps->brush->mtex.brush_map_mode == MTEX_MAP_MODE_3D;
2515
2516         rcti bounds_px; /* ispace bounds */
2517         /* vars for getting uvspace bounds */
2518
2519         float lt_uv_pxoffset[3][2]; /* bucket bounds in UV space so we can init pixels only for this face,  */
2520         float xhalfpx, yhalfpx;
2521         const float ibuf_xf = (float)ibuf->x, ibuf_yf = (float)ibuf->y;
2522
2523         int has_x_isect = 0, has_isect = 0; /* for early loop exit */
2524
2525         float uv_clip[8][2];
2526         int uv_clip_tot;
2527         const bool is_ortho = ps->is_ortho;
2528         const bool is_flip_object = ps->is_flip_object;
2529         const bool do_backfacecull = ps->do_backfacecull;
2530         const bool do_clip = ps->rv3d ? ps->rv3d->rflag & RV3D_CLIPPING : 0;
2531
2532         vCo[0] = ps->dm_mvert[lt_vtri[0]].co;
2533         vCo[1] = ps->dm_mvert[lt_vtri[1]].co;
2534         vCo[2] = ps->dm_mvert[lt_vtri[2]].co;
2535
2536
2537         /* Use lt_uv_pxoffset instead of lt_tri_uv so we can offset the UV half a pixel
2538          * this is done so we can avoid offsetting all the pixels by 0.5 which causes
2539          * problems when wrapping negative coords */
2540         xhalfpx = (0.5f + (PROJ_PIXEL_TOLERANCE * (1.0f / 3.0f))) / ibuf_xf;
2541         yhalfpx = (0.5f + (PROJ_PIXEL_TOLERANCE * (1.0f / 4.0f))) / ibuf_yf;
2542
2543         /* Note about (PROJ_GEOM_TOLERANCE/x) above...
2544          * Needed to add this offset since UV coords are often quads aligned to pixels.
2545          * In this case pixels can be exactly between 2 triangles causing nasty
2546          * artifacts.
2547          *
2548          * This workaround can be removed and painting will still work on most cases
2549          * but since the first thing most people try is painting onto a quad- better make it work.
2550          */
2551
2552         lt_uv_pxoffset[0][0] = lt_tri_uv[0][0] - xhalfpx;
2553         lt_uv_pxoffset[0][1] = lt_tri_uv[0][1] - yhalfpx;
2554
2555         lt_uv_pxoffset[1][0] = lt_tri_uv[1][0] - xhalfpx;
2556         lt_uv_pxoffset[1][1] = lt_tri_uv[1][1] - yhalfpx;
2557
2558         lt_uv_pxoffset[2][0] = lt_tri_uv[2][0] - xhalfpx;
2559         lt_uv_pxoffset[2][1] = lt_tri_uv[2][1] - yhalfpx;
2560
2561         {
2562                 uv1co = lt_uv_pxoffset[0]; // was lt_tri_uv[i1];
2563                 uv2co = lt_uv_pxoffset[1]; // was lt_tri_uv[i2];
2564                 uv3co = lt_uv_pxoffset[2]; // was lt_tri_uv[i3];
2565
2566                 v1coSS = ps->screenCoords[lt_vtri[0]];
2567                 v2coSS = ps->screenCoords[lt_vtri[1]];
2568                 v3coSS = ps->screenCoords[lt_vtri[2]];
2569
2570                 /* This funtion gives is a concave polyline in UV space from the clipped tri*/
2571                 project_bucket_clip_face(
2572                         is_ortho, is_flip_object,
2573                         clip_rect, bucket_bounds,
2574                         v1coSS, v2coSS, v3coSS,
2575                         uv1co, uv2co, uv3co,
2576                         uv_clip, &uv_clip_tot,
2577                         do_backfacecull || ps->do_occlude);
2578
2579                 /* sometimes this happens, better just allow for 8 intersectiosn even though there should be max 6 */
2580 #if 0
2581                 if (uv_clip_tot > 6) {
2582                         printf("this should never happen! %d\n", uv_clip_tot);
2583                 }
2584 #endif
2585
2586                 if (pixel_bounds_array(uv_clip, &bounds_px, ibuf->x, ibuf->y, uv_clip_tot)) {
2587
2588                         if (clamp_u) {
2589                                 CLAMP(bounds_px.xmin, 0, ibuf->x);
2590                                 CLAMP(bounds_px.xmax, 0, ibuf->x);
2591                         }
2592
2593                         if (clamp_v) {
2594                                 CLAMP(bounds_px.ymin, 0, ibuf->y);
2595                                 CLAMP(bounds_px.ymax, 0, ibuf->y);
2596                         }
2597
2598 #if 0
2599                         project_paint_undo_tiles_init(&bounds_px, ps->projImages + image_index, tmpibuf,
2600                                                       tile_width, threaded, ps->do_masking);
2601 #endif
2602                         /* clip face and */
2603
2604                         has_isect = 0;
2605                         for (y = bounds_px.ymin; y < bounds_px.ymax; y++) {
2606                                 //uv[1] = (((float)y) + 0.5f) / (float)ibuf->y;
2607                                 uv[1] = (float)y / ibuf_yf; /* use pixel offset UV coords instead */
2608
2609                                 has_x_isect = 0;
2610                                 for (x = bounds_px.xmin; x < bounds_px.xmax; x++) {
2611                                         //uv[0] = (((float)x) + 0.5f) / ibuf->x;
2612                                         uv[0] = (float)x / ibuf_xf; /* use pixel offset UV coords instead */
2613
2614                                         /* Note about IsectPoly2Df_twoside, checking the face or uv flipping doesnt work,
2615                                          * could check the poly direction but better to do this */
2616                                         if ((do_backfacecull == true  && IsectPoly2Df(uv, uv_clip, uv_clip_tot)) ||
2617                                             (do_backfacecull == false && IsectPoly2Df_twoside(uv, uv_clip, uv_clip_tot)))
2618                                         {
2619
2620                                                 has_x_isect = has_isect = 1;
2621
2622                                                 if (is_ortho) screen_px_from_ortho(uv, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, pixelScreenCo, w);
2623                                                 else screen_px_from_persp(uv, v1coSS, v2coSS, v3coSS, uv1co, uv2co, uv3co, pixelScreenCo, w);
2624
2625                                                 /* a pity we need to get the worldspace pixel location here */
2626                                                 if (do_clip || do_3d_mapping) {
2627                                                         interp_v3_v3v3v3(
2628                                                                 wco,
2629                                                                 ps->dm_mvert[lt_vtri[0]].co,
2630                                                                 ps->dm_mvert[lt_vtri[1]].co,
2631                                                                 ps->dm_mvert[lt_vtri[2]].co,
2632                                                                 w);
2633                                                         if (do_clip && ED_view3d_clipping_test(ps->rv3d, wco, true)) {
2634                                                                 continue; /* Watch out that no code below this needs to run */
2635                                                         }
2636                                                 }
2637
2638                                                 /* Is this UV visible from the view? - raytrace */
2639                                                 /* project_paint_PickFace is less complex, use for testing */
2640                                                 //if (project_paint_PickFace(ps, pixelScreenCo, w, &side) == tri_index) {
2641                                                 if ((ps->do_occlude == false) ||
2642                                                     !project_bucket_point_occluded(ps, bucketFaceNodes, tri_index, pixelScreenCo))
2643                                                 {
2644                                                         mask = project_paint_uvpixel_mask(ps, tri_index, w);
2645
2646                                                         if (mask > 0.0f) {
2647                                                                 BLI_linklist_prepend_arena(
2648                                                                         bucketPixelNodes,
2649                                                                         project_paint_uvpixel_init(ps, arena, &tinf, x, y, mask, tri_index,
2650                                                                                                    pixelScreenCo, wco, w),
2651                                                                         arena
2652                                                                         );
2653                                                         }
2654                                                 }
2655
2656                                         }
2657 //#if 0
2658                                         else if (has_x_isect) {
2659                                                 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2660                                                 break;
2661                                         }
2662 //#endif
2663                                 }
2664
2665
2666 #if 0           /* TODO - investigate why this dosnt work sometimes! it should! */
2667                                 /* no intersection for this entire row, after some intersection above means we can quit now */
2668                                 if (has_x_isect == 0 && has_isect) {
2669                                         break;
2670                                 }
2671 #endif
2672                         }
2673                 }
2674         }
2675
2676
2677 #ifndef PROJ_DEBUG_NOSEAMBLEED
2678         if (ps->seam_bleed_px > 0.0f) {
2679                 int face_seam_flag;
2680
2681                 if (threaded)
2682                         BLI_lock_thread(LOCK_CUSTOM1);  /* Other threads could be modifying these vars */
2683
2684                 face_seam_flag = ps->faceSeamFlags[tri_index];
2685
2686                 /* are any of our edges un-initialized? */
2687                 if ((face_seam_flag & (PROJ_FACE_SEAM1 | PROJ_FACE_NOSEAM1)) == 0 ||
2688                     (face_seam_flag & (PROJ_FACE_SEAM2 | PROJ_FACE_NOSEAM2)) == 0 ||
2689                     (face_seam_flag & (PROJ_FACE_SEAM3 | PROJ_FACE_NOSEAM3)) == 0)
2690                 {
2691                         project_face_seams_init(ps, tri_index);
2692                         face_seam_flag = ps->faceSeamFlags[tri_index];
2693                         //printf("seams - %d %d %d %d\n", flag&PROJ_FACE_SEAM1, flag&PROJ_FACE_SEAM2, flag&PROJ_FACE_SEAM3);
2694                 }
2695
2696                 if ((face_seam_flag & (PROJ_FACE_SEAM1 | PROJ_FACE_SEAM2 | PROJ_FACE_SEAM3)) == 0) {
2697
2698                         if (threaded)
2699                                 BLI_unlock_thread(LOCK_CUSTOM1);  /* Other threads could be modifying these vars */
2700
2701                 }
2702                 else {
2703                         /* we have a seam - deal with it! */
2704
2705                         /* Now create new UV's for the seam face */
2706                         float (*outset_uv)[2] = ps->faceSeamUVs[tri_index];
2707                         float insetCos[3][3]; /* inset face coords.  NOTE!!! ScreenSace for ortho, Worldspace in prespective view */
2708
2709                         const float *vCoSS[3]; /* vertex screenspace coords */
2710
2711                         float bucket_clip_edges[2][2]; /* store the screenspace coords of the face, clipped by the bucket's screen aligned rectangle */
2712                         float edge_verts_inset_clip[2][3];
2713                         int fidx1, fidx2; /* face edge pairs - loop throuh these ((0,1), (1,2), (2,3), (3,0)) or ((0,1), (1,2), (2,0)) for a tri */
2714
2715                         float seam_subsection[4][2];
2716                         float fac1, fac2;
2717
2718                         if (outset_uv[0][0] == FLT_MAX) /* first time initialize */
2719                                 uv_image_outset(
2720                                         lt_uv_pxoffset, outset_uv, ps->seam_bleed_px,
2721                                         ibuf->x, ibuf->y, (ps->faceWindingFlags[tri_index] & PROJ_FACE_WINDING_CW) == 0);
2722
2723                         /* ps->faceSeamUVs cant be modified when threading, now this is done we can unlock */
2724                         if (threaded)
2725                                 BLI_unlock_thread(LOCK_CUSTOM1);  /* Other threads could be modifying these vars */
2726
2727                         vCoSS[0] = ps->screenCoords[lt_vtri[0]];
2728                         vCoSS[1] = ps->screenCoords[lt_vtri[1]];
2729                         vCoSS[2] = ps->screenCoords[lt_vtri[2]];
2730
2731                         /* PROJ_FACE_SCALE_SEAM must be slightly less then 1.0f */
2732                         if (is_ortho) {
2733                                 scale_tri(insetCos, vCoSS, PROJ_FACE_SCALE_SEAM);
2734                         }
2735                         else {
2736                                 scale_tri(insetCos, vCo, PROJ_FACE_SCALE_SEAM);
2737                         }
2738
2739                         for (fidx1 = 0; fidx1 < 3; fidx1++) {
2740                                 fidx2 = (fidx1 == 2) ? 0 : fidx1 + 1;  /* next fidx in the face (0,1,2) -> (1,2,0) */
2741
2742                                 if ((face_seam_flag & (1 << fidx1)) && /* 1<<fidx1 -> PROJ_FACE_SEAM# */
2743                                     line_clip_rect2f(clip_rect, bucket_bounds, vCoSS[fidx1], vCoSS[fidx2], bucket_clip_edges[0], bucket_clip_edges[1]))
2744                                 {
2745                                         if (len_squared_v2v2(vCoSS[fidx1], vCoSS[fidx2]) > FLT_EPSILON) { /* avoid div by zero */
2746
2747                                                 if (is_ortho) {
2748                                                         fac1 = line_point_factor_v2(bucket_clip_edges[0], vCoSS[fidx1], vCoSS[fidx2]);
2749                                                         fac2 = line_point_factor_v2(bucket_clip_edges[1], vCoSS[fidx1], vCoSS[fidx2]);
2750                                                 }
2751                                                 else {
2752                                                         fac1 = screen_px_line_point_factor_v2_persp(ps, bucket_clip_edges[0], vCo[fidx1], vCo[fidx2]);
2753                                                         fac2 = screen_px_line_point_factor_v2_persp(ps, bucket_clip_edges[1], vCo[fidx1], vCo[fidx2]);
2754                                                 }
2755
2756                                                 interp_v2_v2v2(seam_subsection[0], lt_uv_pxoffset[fidx1], lt_uv_pxoffset[fidx2], fac1);
2757                                                 interp_v2_v2v2(seam_subsection[1], lt_uv_pxoffset[fidx1], lt_uv_pxoffset[fidx2], fac2);
2758
2759                                                 interp_v2_v2v2(seam_subsection[2], outset_uv[fidx1], outset_uv[fidx2], fac2);
2760                                                 interp_v2_v2v2(seam_subsection[3], outset_uv[fidx1], outset_uv[fidx2], fac1);
2761
2762                                                 /* if the bucket_clip_edges values Z values was kept we could avoid this
2763                                                  * Inset needs to be added so occlusion tests wont hit adjacent faces */
2764                                                 interp_v3_v3v3(edge_verts_inset_clip[0], insetCos[fidx1], insetCos[fidx2], fac1);
2765                                                 interp_v3_v3v3(edge_verts_inset_clip[1], insetCos[fidx1], insetCos[fidx2], fac2);
2766
2767
2768                                                 if (pixel_bounds_uv((const float (*)[2])seam_subsection, &bounds_px, ibuf->x, ibuf->y)) {
2769                                                         /* bounds between the seam rect and the uvspace bucket pixels */
2770
2771                                                         has_isect = 0;
2772                                                         for (y = bounds_px.ymin; y < bounds_px.ymax; y++) {
2773                                                                 // uv[1] = (((float)y) + 0.5f) / (float)ibuf->y;
2774                                                                 uv[1] = (float)y / ibuf_yf; /* use offset uvs instead */
2775
2776                                                                 has_x_isect = 0;
2777                                                                 for (x = bounds_px.xmin; x < bounds_px.xmax; x++) {
2778                                                                         //uv[0] = (((float)x) + 0.5f) / (float)ibuf->x;
2779                                                                         uv[0] = (float)x / ibuf_xf; /* use offset uvs instead */
2780
2781                                                                         /* test we're inside uvspace bucket and triangle bounds */
2782                                                                         if (isect_point_quad_v2(uv, UNPACK4(seam_subsection))) {
2783                                                                                 float fac;
2784
2785                                                                                 /* We need to find the closest point along the face edge,
2786                                                                                  * getting the screen_px_from_*** wont work because our actual location
2787                                                                                  * is not relevant, since we are outside the face, Use VecLerpf to find
2788                                                                                  * our location on the side of the face's UV */
2789 #if 0
2790                                                                                 if (is_ortho) screen_px_from_ortho(ps, uv, v1co, v2co, v3co, uv1co, uv2co, uv3co, pixelScreenCo);
2791                                                                                 else          screen_px_from_persp(ps, uv, v1co, v2co, v3co, uv1co, uv2co, uv3co, pixelScreenCo);
2792 #endif
2793
2794                                                                                 /* Since this is a seam we need to work out where on the line this pixel is */
2795                                                                                 //fac = line_point_factor_v2(uv, uv_seam_quad[0], uv_seam_quad[1]);
2796                                                                                 fac = resolve_quad_u_v2(uv, UNPACK4(seam_subsection));
2797                                                                                 interp_v3_v3v3(pixelScreenCo, edge_verts_inset_clip[0], edge_verts_inset_clip[1], fac);
2798
2799                                                                                 if (!is_ortho) {
2800                                                                                         pixelScreenCo[3] = 1.0f;
2801                                                                                         mul_m4_v4((float(*)[4])ps->projectMat, pixelScreenCo); /* cast because of const */
2802                                                                                         pixelScreenCo[0] = (float)(ps->winx * 0.5f) + (ps->winx * 0.5f) * pixelScreenCo[0] / pixelScreenCo[3];
2803                                                                                         pixelScreenCo[1] = (float)(ps->winy * 0.5f) + (ps->winy * 0.5f) * pixelScreenCo[1] / pixelScreenCo[3];
2804                                                                                         pixelScreenCo[2] = pixelScreenCo[2] / pixelScreenCo[3]; /* Use the depth for bucket point occlusion */
2805                                                                                 }
2806
2807                                                                                 if ((ps->do_occlude == false) ||
2808                                                                                     !project_bucket_point_occluded(ps, bucketFaceNodes, tri_index, pixelScreenCo))
2809                                                                                 {
2810                                                                                         /* Only bother calculating the weights if we intersect */
2811                                                                                         if (ps->do_mask_normal || ps->dm_mloopuv_clone) {
2812                                                                                                 const float uv_fac = fac1 + (fac * (fac2 - fac1));
2813 #if 0
2814                                                                                                 /* get the UV on the line since we want to copy the pixels from there for bleeding */
2815                                                                                                 float uv_close[2];
2816                                                                                                 interp_v2_v2v2(uv_close, lt_uv_pxoffset[fidx1], lt_uv_pxoffset[fidx2], uv_fac);
2817                                                                                                 barycentric_weights_v2(lt_uv_pxoffset[0], lt_uv_pxoffset[1], lt_uv_pxoffset[2], uv_close, w);
2818 #else
2819
2820                                                                                                 /* Cheat, we know where we are along the edge so work out the weights from that */
2821                                                                                                 w[0] = w[1] = w[2] = 0.0;
2822                                                                                                 w[fidx1] = 1.0f - uv_fac;
2823                                                                                                 w[fidx2] = uv_fac;
2824 #endif
2825                                                                                         }
2826
2827                                                                                         /* a pity we need to get the worldspace pixel location here */
2828                                                                                         if (do_clip || do_3d_mapping) {
2829                                                                                                 interp_v3_v3v3v3(wco, vCo[0], vCo[1], vCo[2], w);
2830
2831                                                                                                 if (do_clip && ED_view3d_clipping_test(ps->rv3d, wco, true)) {
2832                                                                                                         continue; /* Watch out that no code below this needs to run */
2833                                                                                                 }
2834                                                                                         }
2835
2836                                                                                         mask = project_paint_uvpixel_mask(ps, tri_index, w);
2837
2838                                                                                         if (mask > 0.0f) {
2839                                                                                                 BLI_linklist_prepend_arena(
2840                                                                                                         bucketPixelNodes,
2841                                                                                                         project_paint_uvpixel_init(ps, arena, &tinf, x, y, mask, tri_index,
2842                                                                                                         pixelScreenCo, wco, w),
2843                                                                                                         arena
2844                                                                                                         );
2845                                                                                         }
2846
2847                                                                                 }
2848                                                                         }
2849                                                                         else if (has_x_isect) {
2850                                                                                 /* assuming the face is not a bow-tie - we know we cant intersect again on the X */
2851                                                                                 break;
2852                                                                         }
2853                                                                 }
2854
2855 #if 0                           /* TODO - investigate why this dosnt work sometimes! it should! */
2856                                                                 /* no intersection for this entire row, after some intersection above means we can quit now */
2857                                                                 if (has_x_isect == 0 && has_isect) {
2858                                                                         break;
2859                                                                 }
2860 #endif
2861                                                         }
2862                                                 }
2863                                         }
2864                                 }
2865                         }
2866                 }
2867         }
2868 #else
2869         UNUSED_VARS(vCo, threaded);
2870 #endif // PROJ_DEBUG_NOSEAMBLEED
2871 }
2872
2873
2874 /* takes floating point screenspace min/max and returns int min/max to be used as indices for ps->bucketRect, ps->bucketFlags */
2875 static void project_paint_bucket_bounds(const ProjPaintState *ps, const float min[2], const float max[2], int bucketMin[2], int bucketMax[2])
2876 {
2877         /* divide by bucketWidth & bucketHeight so the bounds are offset in bucket grid units */
2878         /* XXX: the offset of 0.5 is always truncated to zero and the offset of 1.5f is always truncated to 1, is this really correct?? - jwilkins */
2879         bucketMin[0] = (int)((int)(((float)(min[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x) + 0.5f); /* these offsets of 0.5 and 1.5 seem odd but they are correct */
2880         bucketMin[1] = (int)((int)(((float)(min[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y) + 0.5f);
2881
2882         bucketMax[0] = (int)((int)(((float)(max[0] - ps->screenMin[0]) / ps->screen_width) * ps->buckets_x) + 1.5f);
2883         bucketMax[1] = (int)((int)(((float)(max[1] - ps->screenMin[1]) / ps->screen_height) * ps->buckets_y) + 1.5f);
2884
2885         /* in case the rect is outside the mesh 2d bounds */
2886         CLAMP(bucketMin[0], 0, ps->buckets_x);
2887         CLAMP(bucketMin[1], 0, ps->buckets_y);
2888
2889         CLAMP(bucketMax[0], 0, ps->buckets_x);
2890         CLAMP(bucketMax[1], 0, ps->buckets_y);
2891 }
2892
2893 /* set bucket_bounds to a screen space-aligned floating point bound-box */
2894 static void project_bucket_bounds(const ProjPaintState *ps, const int bucket_x, const int bucket_y, rctf *bucket_bounds)
2895 {
2896         bucket_bounds->xmin = ps->screenMin[0] + ((bucket_x) * (ps->screen_width / ps->buckets_x));     /* left */
2897         bucket_bounds->xmax = ps->screenMin[0] + ((bucket_x + 1) * (ps->screen_width / ps->buckets_x)); /* right */
2898
2899         bucket_bounds->ymin = ps->screenMin[1] + ((bucket_y) * (ps->screen_height / ps->buckets_y));      /* bottom */
2900         bucket_bounds->ymax = ps->screenMin[1] + ((bucket_y + 1) * (ps->screen_height  / ps->buckets_y)); /* top */
2901 }
2902
2903 /* Fill this bucket with pixels from the faces that intersect it.
2904  *
2905  * have bucket_bounds as an argument so we don't need to give bucket_x/y the rect function needs */
2906 static void project_bucket_init(
2907         const ProjPaintState *ps, const int thread_index, const int bucket_index,
2908         const rctf *clip_rect, const rctf *bucket_bounds)
2909 {
2910         LinkNode *node;
2911         int tri_index, image_index = 0;
2912         ImBuf *ibuf = NULL;
2913         Image *tpage_last = NULL, *tpage;
2914         Image *ima = NULL;
2915         ImBuf *tmpibuf = NULL;
2916
2917         if (ps->image_tot == 1) {
2918                 /* Simple loop, no context switching */
2919                 ibuf = ps->projImages[0].ibuf;
2920                 ima = ps->projImages[0].ima;
2921
2922                 for (node = ps->bucketFaces[bucket_index]; node; node = node->next) {
2923                         project_paint_face_init(
2924                                 ps, thread_index, bucket_index, GET_INT_FROM_POINTER(node->link), 0,
2925                                 clip_rect, bucket_bounds, ibuf, &tmpibuf,
2926                                 (ima->tpageflag & IMA_CLAMP_U) != 0, (ima->tpageflag & IMA_CLAMP_V) != 0);
2927                 }
2928         }
2929         else {
2930
2931                 /* More complicated loop, switch between images */
2932                 for (node = ps->bucketFaces[bucket_index]; node; node = node->next) {
2933                         tri_index = GET_INT_FROM_POINTER(node->link);
2934
2935                         /* Image context switching */
2936                         tpage = project_paint_face_paint_image(ps, tri_index);
2937                         if (tpage_last != tpage) {
2938                                 tpage_last = tpage;