c9eb19c0f325f8f7a6eabaa199a63305a68ceb8b
[blender.git] / source / blender / blenkernel / intern / armature.c
1 /*
2  * ***** BEGIN GPL LICENSE BLOCK *****
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17  *
18  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
19  * All rights reserved.
20  *
21  * Contributor(s): Full recode, Ton Roosendaal, Crete 2005
22  *
23  * ***** END GPL LICENSE BLOCK *****
24  */
25
26 /** \file blender/blenkernel/intern/armature.c
27  *  \ingroup bke
28  */
29
30
31 #include <ctype.h>
32 #include <stdlib.h>
33 #include <math.h>
34 #include <string.h>
35 #include <stdio.h>
36 #include <float.h>
37
38 #include "MEM_guardedalloc.h"
39
40 #include "BLI_bpath.h"
41 #include "BLI_math.h"
42 #include "BLI_blenlib.h"
43 #include "BLI_utildefines.h"
44
45 #include "DNA_anim_types.h"
46 #include "DNA_armature_types.h"
47 #include "DNA_constraint_types.h"
48 #include "DNA_mesh_types.h"
49 #include "DNA_lattice_types.h"
50 #include "DNA_meshdata_types.h"
51 #include "DNA_nla_types.h"
52 #include "DNA_scene_types.h"
53 #include "DNA_object_types.h"
54
55 #include "BKE_animsys.h"
56 #include "BKE_armature.h"
57 #include "BKE_action.h"
58 #include "BKE_anim.h"
59 #include "BKE_constraint.h"
60 #include "BKE_curve.h"
61 #include "BKE_depsgraph.h"
62 #include "BKE_DerivedMesh.h"
63 #include "BKE_deform.h"
64 #include "BKE_displist.h"
65 #include "BKE_global.h"
66 #include "BKE_idprop.h"
67 #include "BKE_library.h"
68 #include "BKE_lattice.h"
69 #include "BKE_main.h"
70 #include "BKE_object.h"
71 #include "BKE_scene.h"
72
73 #include "BIK_api.h"
74 #include "BKE_sketch.h"
75
76 /* **************** Generic Functions, data level *************** */
77
78 bArmature *add_armature(const char *name)
79 {
80         bArmature *arm;
81
82         arm = alloc_libblock (&G.main->armature, ID_AR, name);
83         arm->deformflag = ARM_DEF_VGROUP|ARM_DEF_ENVELOPE;
84         arm->flag = ARM_COL_CUSTOM; /* custom bone-group colors */
85         arm->layer = 1;
86         return arm;
87 }
88
89 bArmature *get_armature(Object *ob)
90 {
91         if (ob->type == OB_ARMATURE)
92                 return (bArmature *)ob->data;
93         return NULL;
94 }
95
96 void free_bonelist(ListBase *lb)
97 {
98         Bone *bone;
99
100         for (bone = lb->first; bone; bone = bone->next) {
101                 if (bone->prop) {
102                         IDP_FreeProperty(bone->prop);
103                         MEM_freeN(bone->prop);
104                 }
105                 free_bonelist(&bone->childbase);
106         }
107
108         BLI_freelistN(lb);
109 }
110
111 void free_armature(bArmature *arm)
112 {
113         if (arm) {
114                 free_bonelist(&arm->bonebase);
115
116                 /* free editmode data */
117                 if (arm->edbo) {
118                         BLI_freelistN(arm->edbo);
119
120                         MEM_freeN(arm->edbo);
121                         arm->edbo = NULL;
122                 }
123
124                 /* free sketch */
125                 if (arm->sketch) {
126                         freeSketch(arm->sketch);
127                         arm->sketch = NULL;
128                 }
129
130                 /* free animation data */
131                 if (arm->adt) {
132                         BKE_free_animdata(&arm->id);
133                         arm->adt = NULL;
134                 }
135         }
136 }
137
138 void make_local_armature(bArmature *arm)
139 {
140         Main *bmain = G.main;
141         int is_local = FALSE, is_lib = FALSE;
142         Object *ob;
143
144         if (arm->id.lib == NULL)
145                 return;
146         if (arm->id.us == 1) {
147                 id_clear_lib_data(bmain, &arm->id);
148                 return;
149         }
150
151         for (ob = bmain->object.first; ob && ELEM(0, is_lib, is_local); ob = ob->id.next) {
152                 if (ob->data == arm) {
153                         if (ob->id.lib)
154                                 is_lib = TRUE;
155                         else
156                                 is_local = TRUE;
157                 }
158         }
159
160         if (is_local && is_lib == FALSE) {
161                 id_clear_lib_data(bmain, &arm->id);
162         }
163         else if (is_local && is_lib) {
164                 bArmature *arm_new = copy_armature(arm);
165                 arm_new->id.us = 0;
166
167                 /* Remap paths of new ID using old library as base. */
168                 BKE_id_lib_local_paths(bmain, arm->id.lib, &arm_new->id);
169
170                 for (ob = bmain->object.first; ob; ob = ob->id.next) {
171                         if (ob->data == arm) {
172                                 if (ob->id.lib == NULL) {
173                                         ob->data = arm_new;
174                                         arm_new->id.us++;
175                                         arm->id.us--;
176                                 }
177                         }
178                 }
179         }
180 }
181
182 static void copy_bonechildren(Bone* newBone, Bone* oldBone, Bone* actBone, Bone **newActBone)
183 {
184         Bone *curBone, *newChildBone;
185
186         if (oldBone == actBone)
187                 *newActBone = newBone;
188
189         if (oldBone->prop)
190                 newBone->prop = IDP_CopyProperty(oldBone->prop);
191
192         /* Copy this bone's list */
193         BLI_duplicatelist(&newBone->childbase, &oldBone->childbase);
194
195         /* For each child in the list, update it's children */
196         newChildBone = newBone->childbase.first;
197         for (curBone = oldBone->childbase.first; curBone; curBone = curBone->next) {
198                 newChildBone->parent = newBone;
199                 copy_bonechildren(newChildBone, curBone, actBone, newActBone);
200                 newChildBone = newChildBone->next;
201         }
202 }
203
204 bArmature *copy_armature(bArmature *arm)
205 {
206         bArmature *newArm;
207         Bone *oldBone, *newBone;
208         Bone *newActBone= NULL;
209
210         newArm = copy_libblock(&arm->id);
211         BLI_duplicatelist(&newArm->bonebase, &arm->bonebase);
212
213         /* Duplicate the childrens' lists*/
214         newBone = newArm->bonebase.first;
215         for (oldBone = arm->bonebase.first; oldBone; oldBone = oldBone->next) {
216                 newBone->parent = NULL;
217                 copy_bonechildren(newBone, oldBone, arm->act_bone, &newActBone);
218                 newBone = newBone->next;
219         }
220
221         newArm->act_bone = newActBone;
222
223         newArm->edbo = NULL;
224         newArm->act_edbone = NULL;
225         newArm->sketch = NULL;
226
227         return newArm;
228 }
229
230 static Bone *get_named_bone_bonechildren(Bone *bone, const char *name)
231 {
232         Bone *curBone, *rbone;
233
234         if (!strcmp(bone->name, name))
235                 return bone;
236
237         for (curBone = bone->childbase.first; curBone; curBone = curBone->next) {
238                 rbone = get_named_bone_bonechildren(curBone, name);
239                 if (rbone)
240                         return rbone;
241         }
242
243         return NULL;
244 }
245
246
247 /* Walk the list until the bone is found */
248 Bone *get_named_bone(bArmature *arm, const char *name)
249 {
250         Bone *bone = NULL, *curBone;
251
252         if (!arm)
253                 return NULL;
254
255         for (curBone = arm->bonebase.first; curBone; curBone = curBone->next) {
256                 bone = get_named_bone_bonechildren(curBone, name);
257                 if (bone)
258                         return bone;
259         }
260
261         return bone;
262 }
263
264 /* Finds the best possible extension to the name on a particular axis. (For renaming, check for
265  * unique names afterwards) strip_number: removes number extensions  (TODO: not used)
266  * axis: the axis to name on
267  * head/tail: the head/tail co-ordinate of the bone on the specified axis */
268 int bone_autoside_name(char name[MAXBONENAME], int UNUSED(strip_number), short axis, float head, float tail)
269 {
270         unsigned int len;
271         char basename[MAXBONENAME] = "";
272         char extension[5] = "";
273
274         len = strlen(name);
275         if (len == 0)
276                 return 0;
277         BLI_strncpy(basename, name, sizeof(basename));
278
279         /* Figure out extension to append:
280          *      - The extension to append is based upon the axis that we are working on.
281          *      - If head happens to be on 0, then we must consider the tail position as well to decide
282          *        which side the bone is on
283          *              -> If tail is 0, then it's bone is considered to be on axis, so no extension should be added
284          *              -> Otherwise, extension is added from perspective of object based on which side tail goes to
285          *      - If head is non-zero, extension is added from perspective of object based on side head is on
286          */
287         if (axis == 2) {
288                 /* z-axis - vertical (top/bottom) */
289                 if (IS_EQ(head, 0)) {
290                         if (tail < 0)
291                                 strcpy(extension, "Bot");
292                         else if (tail > 0)
293                                 strcpy(extension, "Top");
294                 }
295                 else {
296                         if (head < 0)
297                                 strcpy(extension, "Bot");
298                         else
299                                 strcpy(extension, "Top");
300                 }
301         }
302         else if (axis == 1) {
303                 /* y-axis - depth (front/back) */
304                 if (IS_EQ(head, 0)) {
305                         if (tail < 0)
306                                 strcpy(extension, "Fr");
307                         else if (tail > 0)
308                                 strcpy(extension, "Bk");
309                 }
310                 else {
311                         if (head < 0)
312                                 strcpy(extension, "Fr");
313                         else
314                                 strcpy(extension, "Bk");
315                 }
316         }
317         else {
318                 /* x-axis - horizontal (left/right) */
319                 if (IS_EQ(head, 0)) {
320                         if (tail < 0)
321                                 strcpy(extension, "R");
322                         else if (tail > 0)
323                                 strcpy(extension, "L");
324                 }
325                 else {
326                         if (head < 0)
327                                 strcpy(extension, "R");
328                         /* XXX Shouldn't this be simple else, as for z and y axes? */
329                         else if (head > 0)
330                                 strcpy(extension, "L");
331                 }
332         }
333
334         /* Simple name truncation
335          *      - truncate if there is an extension and it wouldn't be able to fit
336          *      - otherwise, just append to end
337          */
338         if (extension[0]) {
339                 int change = 1;
340
341                 while (change) { /* remove extensions */
342                         change = 0;
343                         if (len > 2 && basename[len-2] == '.') {
344                                 if (basename[len-1] == 'L' || basename[len-1] == 'R') { /* L R */
345                                         basename[len-2] = '\0';
346                                         len -= 2;
347                                         change = 1;
348                                 }
349                         }
350                         else if (len > 3 && basename[len-3] == '.') {
351                                 if ((basename[len-2] == 'F' && basename[len-1] == 'r') || /* Fr */
352                                    (basename[len-2] == 'B' && basename[len-1] == 'k'))   /* Bk */
353                                 {
354                                         basename[len-3] = '\0';
355                                         len -= 3;
356                                         change = 1;
357                                 }
358                         }
359                         else if (len > 4 && basename[len-4] == '.') {
360                                 if ((basename[len-3] == 'T' && basename[len-2] == 'o' && basename[len-1] == 'p') || /* Top */
361                                    (basename[len-3] == 'B' && basename[len-2] == 'o' && basename[len-1] == 't'))   /* Bot */
362                                 {
363                                         basename[len-4] = '\0';
364                                         len -= 4;
365                                         change = 1;
366                                 }
367                         }
368                 }
369
370                 if ((MAXBONENAME - len) < strlen(extension) + 1) { /* add 1 for the '.' */
371                         strncpy(name, basename, len-strlen(extension));
372                 }
373
374                 BLI_snprintf(name, MAXBONENAME, "%s.%s", basename, extension);
375
376                 return 1;
377         }
378
379         else
380                 return 0;
381 }
382
383 /* ************* B-Bone support ******************* */
384
385 #define MAX_BBONE_SUBDIV        32
386
387 /* data has MAX_BBONE_SUBDIV+1 interpolated points, will become desired amount with equal distances */
388 static void equalize_bezier(float *data, int desired)
389 {
390         float *fp, totdist, ddist, dist, fac1, fac2;
391         float pdist[MAX_BBONE_SUBDIV+1];
392         float temp[MAX_BBONE_SUBDIV+1][4];
393         int a, nr;
394
395         pdist[0] = 0.0f;
396         for (a = 0, fp = data; a < MAX_BBONE_SUBDIV; a++, fp += 4) {
397                 copy_qt_qt(temp[a], fp);
398                 pdist[a+1] = pdist[a] + len_v3v3(fp, fp+4);
399         }
400         /* do last point */
401         copy_qt_qt(temp[a], fp);
402         totdist = pdist[a];
403
404         /* go over distances and calculate new points */
405         ddist = totdist/((float)desired);
406         nr = 1;
407         for (a = 1, fp = data+4; a < desired; a++, fp += 4) {
408                 dist = ((float)a)*ddist;
409
410                 /* we're looking for location (distance) 'dist' in the array */
411                 while ((dist >= pdist[nr]) && nr < MAX_BBONE_SUBDIV)
412                         nr++;
413
414                 fac1 = pdist[nr] - pdist[nr-1];
415                 fac2 = pdist[nr] - dist;
416                 fac1 = fac2 / fac1;
417                 fac2 = 1.0f - fac1;
418
419                 fp[0] = fac1*temp[nr-1][0] + fac2*temp[nr][0];
420                 fp[1] = fac1*temp[nr-1][1] + fac2*temp[nr][1];
421                 fp[2] = fac1*temp[nr-1][2] + fac2*temp[nr][2];
422                 fp[3] = fac1*temp[nr-1][3] + fac2*temp[nr][3];
423         }
424         /* set last point, needed for orientation calculus */
425         copy_qt_qt(fp, temp[MAX_BBONE_SUBDIV]);
426 }
427
428 /* returns pointer to static array, filled with desired amount of bone->segments elements */
429 /* this calculation is done  within unit bone space */
430 Mat4 *b_bone_spline_setup(bPoseChannel *pchan, int rest)
431 {
432         static Mat4 bbone_array[MAX_BBONE_SUBDIV];
433         static Mat4 bbone_rest_array[MAX_BBONE_SUBDIV];
434         Mat4 *result_array = (rest) ? bbone_rest_array : bbone_array;
435         bPoseChannel *next, *prev;
436         Bone *bone = pchan->bone;
437         float h1[3], h2[3], scale[3], length, hlength1, hlength2, roll1 = 0.0f, roll2;
438         float mat3[3][3], imat[4][4], posemat[4][4], scalemat[4][4], iscalemat[4][4];
439         float data[MAX_BBONE_SUBDIV+1][4], *fp;
440         int a, doscale = 0;
441
442         length = bone->length;
443
444         if (!rest) {
445                 /* check if we need to take non-uniform bone scaling into account */
446                 scale[0] = len_v3(pchan->pose_mat[0]);
447                 scale[1] = len_v3(pchan->pose_mat[1]);
448                 scale[2] = len_v3(pchan->pose_mat[2]);
449
450                 if (fabsf(scale[0] - scale[1]) > 1e-6f || fabsf(scale[1] - scale[2]) > 1e-6f) {
451                         unit_m4(scalemat);
452                         scalemat[0][0] = scale[0];
453                         scalemat[1][1] = scale[1];
454                         scalemat[2][2] = scale[2];
455                         invert_m4_m4(iscalemat, scalemat);
456
457                         length *= scale[1];
458                         doscale = 1;
459                 }
460         }
461
462         hlength1 = bone->ease1*length*0.390464f; /* 0.5*sqrt(2)*kappa, the handle length for near-perfect circles */
463         hlength2 = bone->ease2*length*0.390464f;
464
465         /* evaluate next and prev bones */
466         if (bone->flag & BONE_CONNECTED)
467                 prev = pchan->parent;
468         else
469                 prev = NULL;
470
471         next = pchan->child;
472
473         /* find the handle points, since this is inside bone space, the
474          * first point = (0,0,0)
475          * last point =  (0, length, 0) */
476         if (rest) {
477                 invert_m4_m4(imat, pchan->bone->arm_mat);
478         }
479         else if (doscale) {
480                 copy_m4_m4(posemat, pchan->pose_mat);
481                 normalize_m4(posemat);
482                 invert_m4_m4(imat, posemat);
483         }
484         else
485                 invert_m4_m4(imat, pchan->pose_mat);
486
487         if (prev) {
488                 float difmat[4][4], result[3][3], imat3[3][3];
489
490                 /* transform previous point inside this bone space */
491                 if (rest)
492                         copy_v3_v3(h1, prev->bone->arm_head);
493                 else
494                         copy_v3_v3(h1, prev->pose_head);
495                 mul_m4_v3(imat, h1);
496
497                 if (prev->bone->segments>1) {
498                         /* if previous bone is B-bone too, use average handle direction */
499                         h1[1] -= length;
500                         roll1 = 0.0f;
501                 }
502
503                 normalize_v3(h1);
504                 mul_v3_fl(h1, -hlength1);
505
506                 if (prev->bone->segments == 1) {
507                         /* find the previous roll to interpolate */
508                         if (rest)
509                                 mult_m4_m4m4(difmat, imat, prev->bone->arm_mat);
510                         else
511                                 mult_m4_m4m4(difmat, imat, prev->pose_mat);
512                         copy_m3_m4(result, difmat); /* the desired rotation at beginning of next bone */
513
514                         vec_roll_to_mat3(h1, 0.0f, mat3); /* the result of vec_roll without roll */
515
516                         invert_m3_m3(imat3, mat3);
517                         mul_m3_m3m3(mat3, result, imat3); /* the matrix transforming vec_roll to desired roll */
518
519                         roll1 = (float)atan2(mat3[2][0], mat3[2][2]);
520                 }
521         }
522         else {
523                 h1[0] = 0.0f; h1[1] = hlength1; h1[2] = 0.0f;
524                 roll1 = 0.0f;
525         }
526         if (next) {
527                 float difmat[4][4], result[3][3], imat3[3][3];
528
529                 /* transform next point inside this bone space */
530                 if (rest)
531                         copy_v3_v3(h2, next->bone->arm_tail);
532                 else
533                         copy_v3_v3(h2, next->pose_tail);
534                 mul_m4_v3(imat, h2);
535
536                 /* if next bone is B-bone too, use average handle direction */
537                 if (next->bone->segments>1)
538                         ;
539                 else
540                         h2[1]-= length;
541                 normalize_v3(h2);
542
543                 /* find the next roll to interpolate as well */
544                 if (rest)
545                         mult_m4_m4m4(difmat, imat, next->bone->arm_mat);
546                 else
547                         mult_m4_m4m4(difmat, imat, next->pose_mat);
548                 copy_m3_m4(result, difmat); /* the desired rotation at beginning of next bone */
549
550                 vec_roll_to_mat3(h2, 0.0f, mat3); /* the result of vec_roll without roll */
551
552                 invert_m3_m3(imat3, mat3);
553                 mul_m3_m3m3(mat3, imat3, result); /* the matrix transforming vec_roll to desired roll */
554
555                 roll2 = (float)atan2(mat3[2][0], mat3[2][2]);
556
557                 /* and only now negate handle */
558                 mul_v3_fl(h2, -hlength2);
559         }
560         else {
561                 h2[0] = 0.0f; h2[1] = -hlength2; h2[2] = 0.0f;
562                 roll2 = 0.0;
563         }
564
565         /* make curve */
566         if (bone->segments > MAX_BBONE_SUBDIV)
567                 bone->segments = MAX_BBONE_SUBDIV;
568
569         forward_diff_bezier(0.0,   h1[0],                           h2[0],                           0.0,    data[0],
570                             MAX_BBONE_SUBDIV, 4*sizeof(float));
571         forward_diff_bezier(0.0,   h1[1],                           length + h2[1],                  length, data[0]+1,
572                             MAX_BBONE_SUBDIV, 4*sizeof(float));
573         forward_diff_bezier(0.0,   h1[2],                           h2[2],                           0.0,    data[0]+2,
574                             MAX_BBONE_SUBDIV, 4*sizeof(float));
575         forward_diff_bezier(roll1, roll1 + 0.390464f*(roll2-roll1), roll2 - 0.390464f*(roll2-roll1), roll2,  data[0]+3,
576                             MAX_BBONE_SUBDIV, 4*sizeof(float));
577
578         equalize_bezier(data[0], bone->segments); /* note: does stride 4! */
579
580         /* make transformation matrices for the segments for drawing */
581         for (a = 0, fp = data[0]; a < bone->segments; a++, fp += 4) {
582                 sub_v3_v3v3(h1, fp+4, fp);
583                 vec_roll_to_mat3(h1, fp[3], mat3); /* fp[3] is roll */
584
585                 copy_m4_m3(result_array[a].mat, mat3);
586                 copy_v3_v3(result_array[a].mat[3], fp);
587
588                 if (doscale) {
589                         /* correct for scaling when this matrix is used in scaled space */
590                         mul_serie_m4(result_array[a].mat, iscalemat, result_array[a].mat, scalemat, NULL, NULL, NULL, NULL, NULL);
591                 }
592         }
593
594         return result_array;
595 }
596
597 /* ************ Armature Deform ******************* */
598
599 typedef struct bPoseChanDeform {
600         Mat4     *b_bone_mats;
601         DualQuat *dual_quat;
602         DualQuat *b_bone_dual_quats;
603 } bPoseChanDeform;
604
605 static void pchan_b_bone_defmats(bPoseChannel *pchan, bPoseChanDeform *pdef_info, int use_quaternion)
606 {
607         Bone *bone = pchan->bone;
608         Mat4 *b_bone = b_bone_spline_setup(pchan, 0);
609         Mat4 *b_bone_rest = b_bone_spline_setup(pchan, 1);
610         Mat4 *b_bone_mats;
611         DualQuat *b_bone_dual_quats = NULL;
612         float tmat[4][4] = MAT4_UNITY;
613         int a;
614
615         /* allocate b_bone matrices and dual quats */
616         b_bone_mats = MEM_mallocN((1+bone->segments)*sizeof(Mat4), "BBone defmats");
617         pdef_info->b_bone_mats = b_bone_mats;
618
619         if (use_quaternion) {
620                 b_bone_dual_quats = MEM_mallocN((bone->segments)*sizeof(DualQuat), "BBone dqs");
621                 pdef_info->b_bone_dual_quats = b_bone_dual_quats;
622         }
623
624         /* first matrix is the inverse arm_mat, to bring points in local bone space
625          * for finding out which segment it belongs to */
626         invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat);
627
628         /* then we make the b_bone_mats:
629          * - first transform to local bone space
630          * - translate over the curve to the bbone mat space
631          * - transform with b_bone matrix
632          * - transform back into global space */
633
634         for (a = 0; a < bone->segments; a++) {
635                 invert_m4_m4(tmat, b_bone_rest[a].mat);
636
637                 mul_serie_m4(b_bone_mats[a+1].mat, pchan->chan_mat, bone->arm_mat, b_bone[a].mat, tmat, b_bone_mats[0].mat,
638                              NULL, NULL, NULL);
639
640                 if (use_quaternion)
641                         mat4_to_dquat(&b_bone_dual_quats[a], bone->arm_mat, b_bone_mats[a+1].mat);
642         }
643 }
644
645 static void b_bone_deform(bPoseChanDeform *pdef_info, Bone *bone, float *co, DualQuat *dq, float defmat[][3])
646 {
647         Mat4 *b_bone = pdef_info->b_bone_mats;
648         float (*mat)[4] = b_bone[0].mat;
649         float segment, y;
650         int a;
651
652         /* need to transform co back to bonespace, only need y */
653         y = mat[0][1]*co[0] + mat[1][1]*co[1] + mat[2][1]*co[2] + mat[3][1];
654
655         /* now calculate which of the b_bones are deforming this */
656         segment = bone->length/((float)bone->segments);
657         a = (int)(y/segment);
658
659         /* note; by clamping it extends deform at endpoints, goes best with
660          * straight joints in restpos. */
661         CLAMP(a, 0, bone->segments-1);
662
663         if (dq) {
664                 copy_dq_dq(dq, &(pdef_info->b_bone_dual_quats)[a]);
665         }
666         else {
667                 mul_m4_v3(b_bone[a+1].mat, co);
668
669                 if (defmat)
670                         copy_m3_m4(defmat, b_bone[a+1].mat);
671         }
672 }
673
674 /* using vec with dist to bone b1 - b2 */
675 float distfactor_to_bone(const float vec[3], const float b1[3], const float b2[3], float rad1, float rad2, float rdist)
676 {
677         float dist = 0.0f;
678         float bdelta[3];
679         float pdelta[3];
680         float hsqr, a, l, rad;
681
682         sub_v3_v3v3(bdelta, b2, b1);
683         l = normalize_v3(bdelta);
684
685         sub_v3_v3v3(pdelta, vec, b1);
686
687         a = dot_v3v3(bdelta, pdelta);
688         hsqr = dot_v3v3(pdelta, pdelta);
689
690         if (a < 0.0f) {
691                 /* If we're past the end of the bone, do a spherical field attenuation thing */
692                 dist = len_squared_v3v3(b1, vec);
693                 rad = rad1;
694         }
695         else if (a > l) {
696                 /* If we're past the end of the bone, do a spherical field attenuation thing */
697                 dist = len_squared_v3v3(b2, vec);
698                 rad = rad2;
699         }
700         else {
701                 dist = (hsqr - (a*a));
702
703                 if (l != 0.0f) {
704                         rad = a/l;
705                         rad = rad*rad2 + (1.0f-rad)*rad1;
706                 }
707                 else
708                         rad = rad1;
709         }
710
711         a = rad*rad;
712         if (dist < a)
713                 return 1.0f;
714         else {
715                 l = rad+rdist;
716                 l *= l;
717                 if (rdist == 0.0f || dist >= l)
718                         return 0.0f;
719                 else {
720                         a = sqrtf(dist)-rad;
721                         return 1.0f-( a*a )/( rdist*rdist );
722                 }
723         }
724 }
725
726 static void pchan_deform_mat_add(bPoseChannel *pchan, float weight, float bbonemat[][3], float mat[][3])
727 {
728         float wmat[3][3];
729
730         if (pchan->bone->segments > 1)
731                 copy_m3_m3(wmat, bbonemat);
732         else
733                 copy_m3_m4(wmat, pchan->chan_mat);
734
735         mul_m3_fl(wmat, weight);
736         add_m3_m3m3(mat, mat, wmat);
737 }
738
739 static float dist_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float *vec, DualQuat *dq,
740                               float mat[][3], float *co)
741 {
742         Bone *bone = pchan->bone;
743         float fac, contrib = 0.0;
744         float cop[3], bbonemat[3][3];
745         DualQuat bbonedq;
746
747         if (bone == NULL)
748                 return 0.0f;
749
750         copy_v3_v3(cop, co);
751
752         fac = distfactor_to_bone(cop, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
753
754         if (fac > 0.0f) {
755                 fac *= bone->weight;
756                 contrib = fac;
757                 if (contrib > 0.0f) {
758                         if (vec) {
759                                 if (bone->segments > 1)
760                                         /* applies on cop and bbonemat */
761                                         b_bone_deform(pdef_info, bone, cop, NULL, (mat) ? bbonemat : NULL);
762                                 else
763                                         mul_m4_v3(pchan->chan_mat, cop);
764
765                                 /* Make this a delta from the base position */
766                                 sub_v3_v3(cop, co);
767                                 madd_v3_v3fl(vec, cop, fac);
768
769                                 if (mat)
770                                         pchan_deform_mat_add(pchan, fac, bbonemat, mat);
771                         }
772                         else {
773                                 if (bone->segments > 1) {
774                                         b_bone_deform(pdef_info, bone, cop, &bbonedq, NULL);
775                                         add_weighted_dq_dq(dq, &bbonedq, fac);
776                                 }
777                                 else
778                                         add_weighted_dq_dq(dq, pdef_info->dual_quat, fac);
779                         }
780                 }
781         }
782
783         return contrib;
784 }
785
786 static void pchan_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float weight, float *vec, DualQuat *dq,
787                               float mat[][3], float *co, float *contrib)
788 {
789         float cop[3], bbonemat[3][3];
790         DualQuat bbonedq;
791
792         if (!weight)
793                 return;
794
795         copy_v3_v3(cop, co);
796
797         if (vec) {
798                 if (pchan->bone->segments>1)
799                         /* applies on cop and bbonemat */
800                         b_bone_deform(pdef_info, pchan->bone, cop, NULL, (mat) ? bbonemat : NULL);
801                 else
802                         mul_m4_v3(pchan->chan_mat, cop);
803
804                 vec[0] += (cop[0]-co[0])*weight;
805                 vec[1] += (cop[1]-co[1])*weight;
806                 vec[2] += (cop[2]-co[2])*weight;
807
808                 if (mat)
809                         pchan_deform_mat_add(pchan, weight, bbonemat, mat);
810         }
811         else {
812                 if (pchan->bone->segments > 1) {
813                         b_bone_deform(pdef_info, pchan->bone, cop, &bbonedq, NULL);
814                         add_weighted_dq_dq(dq, &bbonedq, weight);
815                 }
816                 else
817                         add_weighted_dq_dq(dq, pdef_info->dual_quat, weight);
818         }
819
820         (*contrib) += weight;
821 }
822
823 void armature_deform_verts(Object *armOb, Object *target, DerivedMesh *dm, float (*vertexCos)[3],
824                            float (*defMats)[3][3], int numVerts, int deformflag,
825                            float (*prevCos)[3], const char *defgrp_name)
826 {
827         bPoseChanDeform *pdef_info_array;
828         bPoseChanDeform *pdef_info = NULL;
829         bArmature *arm = armOb->data;
830         bPoseChannel *pchan, **defnrToPC = NULL;
831         int *defnrToPCIndex = NULL;
832         MDeformVert *dverts = NULL;
833         bDeformGroup *dg;
834         DualQuat *dualquats = NULL;
835         float obinv[4][4], premat[4][4], postmat[4][4];
836         const short use_envelope = deformflag & ARM_DEF_ENVELOPE;
837         const short use_quaternion = deformflag & ARM_DEF_QUATERNION;
838         const short invert_vgroup = deformflag & ARM_DEF_INVERT_VGROUP;
839         int defbase_tot = 0;       /* safety for vertexgroup index overflow */
840         int i, target_totvert = 0; /* safety for vertexgroup overflow */
841         int use_dverts = 0;
842         int armature_def_nr;
843         int totchan;
844
845         if (arm->edbo) return;
846
847         invert_m4_m4(obinv, target->obmat);
848         copy_m4_m4(premat, target->obmat);
849         mult_m4_m4m4(postmat, obinv, armOb->obmat);
850         invert_m4_m4(premat, postmat);
851
852         /* bone defmats are already in the channels, chan_mat */
853
854         /* initialize B_bone matrices and dual quaternions */
855         totchan = BLI_countlist(&armOb->pose->chanbase);
856
857         if (use_quaternion) {
858                 dualquats = MEM_callocN(sizeof(DualQuat)*totchan, "dualquats");
859         }
860
861         pdef_info_array = MEM_callocN(sizeof(bPoseChanDeform)*totchan, "bPoseChanDeform");
862
863         totchan = 0;
864         pdef_info = pdef_info_array;
865         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
866                 if (!(pchan->bone->flag & BONE_NO_DEFORM)) {
867                         if (pchan->bone->segments > 1)
868                                 pchan_b_bone_defmats(pchan, pdef_info, use_quaternion);
869
870                         if (use_quaternion) {
871                                 pdef_info->dual_quat = &dualquats[totchan++];
872                                 mat4_to_dquat(pdef_info->dual_quat, pchan->bone->arm_mat, pchan->chan_mat);
873                         }
874                 }
875         }
876
877         /* get the def_nr for the overall armature vertex group if present */
878         armature_def_nr = defgroup_name_index(target, defgrp_name);
879
880         if (ELEM(target->type, OB_MESH, OB_LATTICE)) {
881                 defbase_tot = BLI_countlist(&target->defbase);
882
883                 if (target->type == OB_MESH) {
884                         Mesh *me = target->data;
885                         dverts = me->dvert;
886                         if (dverts)
887                                 target_totvert = me->totvert;
888                 }
889                 else {
890                         Lattice *lt = target->data;
891                         dverts = lt->dvert;
892                         if (dverts)
893                                 target_totvert = lt->pntsu*lt->pntsv*lt->pntsw;
894                 }
895         }
896
897         /* get a vertex-deform-index to posechannel array */
898         if (deformflag & ARM_DEF_VGROUP) {
899                 if (ELEM(target->type, OB_MESH, OB_LATTICE)) {
900                         /* if we have a DerivedMesh, only use dverts if it has them */
901                         if (dm)
902                                 if (dm->getVertData(dm, 0, CD_MDEFORMVERT))
903                                         use_dverts = 1;
904                                 else use_dverts = 0;
905                         else if (dverts) use_dverts = 1;
906
907                         if (use_dverts) {
908                                 defnrToPC = MEM_callocN(sizeof(*defnrToPC) * defbase_tot, "defnrToBone");
909                                 defnrToPCIndex = MEM_callocN(sizeof(*defnrToPCIndex) * defbase_tot, "defnrToIndex");
910                                 for (i = 0, dg = target->defbase.first; dg; i++, dg = dg->next) {
911                                         defnrToPC[i] = get_pose_channel(armOb->pose, dg->name);
912                                         /* exclude non-deforming bones */
913                                         if (defnrToPC[i]) {
914                                                 if (defnrToPC[i]->bone->flag & BONE_NO_DEFORM) {
915                                                         defnrToPC[i] = NULL;
916                                                 }
917                                                 else {
918                                                         defnrToPCIndex[i] = BLI_findindex(&armOb->pose->chanbase, defnrToPC[i]);
919                                                 }
920                                         }
921                                 }
922                         }
923                 }
924         }
925
926         for (i = 0; i < numVerts; i++) {
927                 MDeformVert *dvert;
928                 DualQuat sumdq, *dq = NULL;
929                 float *co, dco[3];
930                 float sumvec[3], summat[3][3];
931                 float *vec = NULL, (*smat)[3] = NULL;
932                 float contrib = 0.0f;
933                 float armature_weight = 1.0f; /* default to 1 if no overall def group */
934                 float prevco_weight = 1.0f;   /* weight for optional cached vertexcos */
935
936                 if (use_quaternion) {
937                         memset(&sumdq, 0, sizeof(DualQuat));
938                         dq = &sumdq;
939                 }
940                 else {
941                         sumvec[0] = sumvec[1] = sumvec[2] = 0.0f;
942                         vec = sumvec;
943
944                         if (defMats) {
945                                 zero_m3(summat);
946                                 smat = summat;
947                         }
948                 }
949
950                 if (use_dverts || armature_def_nr >= 0) {
951                         if (dm)
952                                 dvert = dm->getVertData(dm, i, CD_MDEFORMVERT);
953                         else if (dverts && i < target_totvert)
954                                 dvert = dverts + i;
955                         else
956                                 dvert = NULL;
957                 }
958                 else
959                         dvert = NULL;
960
961                 if (armature_def_nr >= 0 && dvert) {
962                         armature_weight = defvert_find_weight(dvert, armature_def_nr);
963
964                         if (invert_vgroup)
965                                 armature_weight = 1.0f-armature_weight;
966
967                         /* hackish: the blending factor can be used for blending with prevCos too */
968                         if (prevCos) {
969                                 prevco_weight = armature_weight;
970                                 armature_weight = 1.0f;
971                         }
972                 }
973
974                 /* check if there's any  point in calculating for this vert */
975                 if (armature_weight == 0.0f)
976                         continue;
977
978                 /* get the coord we work on */
979                 co = prevCos ? prevCos[i] : vertexCos[i];
980
981                 /* Apply the object's matrix */
982                 mul_m4_v3(premat, co);
983
984                 if (use_dverts && dvert && dvert->totweight) { /* use weight groups ? */
985                         MDeformWeight *dw = dvert->dw;
986                         int deformed = 0;
987                         unsigned int j;
988
989                         for (j = dvert->totweight; j != 0; j--, dw++) {
990                                 const int index = dw->def_nr;
991                                 if (index < defbase_tot && (pchan = defnrToPC[index])) {
992                                         float weight = dw->weight;
993                                         Bone *bone = pchan->bone;
994                                         pdef_info = pdef_info_array + defnrToPCIndex[index];
995
996                                         deformed = 1;
997
998                                         if (bone && bone->flag & BONE_MULT_VG_ENV) {
999                                                 weight *= distfactor_to_bone(co, bone->arm_head, bone->arm_tail,
1000                                                                              bone->rad_head, bone->rad_tail, bone->dist);
1001                                         }
1002                                         pchan_bone_deform(pchan, pdef_info, weight, vec, dq, smat, co, &contrib);
1003                                 }
1004                         }
1005                         /* if there are vertexgroups but not groups with bones
1006                          * (like for softbody groups) */
1007                         if (deformed == 0 && use_envelope) {
1008                                 pdef_info = pdef_info_array;
1009                                 for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1010                                         if (!(pchan->bone->flag & BONE_NO_DEFORM))
1011                                                 contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
1012                                 }
1013                         }
1014                 }
1015                 else if (use_envelope) {
1016                         pdef_info = pdef_info_array;
1017                         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1018                                 if (!(pchan->bone->flag & BONE_NO_DEFORM))
1019                                         contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
1020                         }
1021                 }
1022
1023                 /* actually should be EPSILON? weight values and contrib can be like 10e-39 small */
1024                 if (contrib > 0.0001f) {
1025                         if (use_quaternion) {
1026                                 normalize_dq(dq, contrib);
1027
1028                                 if (armature_weight != 1.0f) {
1029                                         copy_v3_v3(dco, co);
1030                                         mul_v3m3_dq( dco, (defMats) ? summat : NULL,dq);
1031                                         sub_v3_v3(dco, co);
1032                                         mul_v3_fl(dco, armature_weight);
1033                                         add_v3_v3(co, dco);
1034                                 }
1035                                 else
1036                                         mul_v3m3_dq( co, (defMats) ? summat : NULL,dq);
1037
1038                                 smat = summat;
1039                         }
1040                         else {
1041                                 mul_v3_fl(vec, armature_weight/contrib);
1042                                 add_v3_v3v3(co, vec, co);
1043                         }
1044
1045                         if (defMats) {
1046                                 float pre[3][3], post[3][3], tmpmat[3][3];
1047
1048                                 copy_m3_m4(pre, premat);
1049                                 copy_m3_m4(post, postmat);
1050                                 copy_m3_m3(tmpmat, defMats[i]);
1051
1052                                 if (!use_quaternion) /* quaternion already is scale corrected */
1053                                         mul_m3_fl(smat, armature_weight/contrib);
1054
1055                                 mul_serie_m3(defMats[i], tmpmat, pre, smat, post, NULL, NULL, NULL, NULL);
1056                         }
1057                 }
1058
1059                 /* always, check above code */
1060                 mul_m4_v3(postmat, co);
1061
1062                 /* interpolate with previous modifier position using weight group */
1063                 if (prevCos) {
1064                         float mw = 1.0f - prevco_weight;
1065                         vertexCos[i][0] = prevco_weight*vertexCos[i][0] + mw*co[0];
1066                         vertexCos[i][1] = prevco_weight*vertexCos[i][1] + mw*co[1];
1067                         vertexCos[i][2] = prevco_weight*vertexCos[i][2] + mw*co[2];
1068                 }
1069         }
1070
1071         if (dualquats)
1072                 MEM_freeN(dualquats);
1073         if (defnrToPC)
1074                 MEM_freeN(defnrToPC);
1075         if (defnrToPCIndex)
1076                 MEM_freeN(defnrToPCIndex);
1077
1078         /* free B_bone matrices */
1079         pdef_info = pdef_info_array;
1080         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1081                 if (pdef_info->b_bone_mats)
1082                         MEM_freeN(pdef_info->b_bone_mats);
1083                 if (pdef_info->b_bone_dual_quats)
1084                         MEM_freeN(pdef_info->b_bone_dual_quats);
1085         }
1086
1087         MEM_freeN(pdef_info_array);
1088 }
1089
1090 /* ************ END Armature Deform ******************* */
1091
1092 void get_objectspace_bone_matrix(struct Bone* bone, float M_accumulatedMatrix[][4], int UNUSED(root),
1093                                  int UNUSED(posed))
1094 {
1095         copy_m4_m4(M_accumulatedMatrix, bone->arm_mat);
1096 }
1097
1098 /* **************** Space to Space API ****************** */
1099
1100 /* Convert World-Space Matrix to Pose-Space Matrix */
1101 void armature_mat_world_to_pose(Object *ob, float inmat[][4], float outmat[][4])
1102 {
1103         float obmat[4][4];
1104
1105         /* prevent crashes */
1106         if (ob == NULL)
1107                 return;
1108
1109         /* get inverse of (armature) object's matrix  */
1110         invert_m4_m4(obmat, ob->obmat);
1111
1112         /* multiply given matrix by object's-inverse to find pose-space matrix */
1113         mult_m4_m4m4(outmat, inmat, obmat);
1114 }
1115
1116 /* Convert Wolrd-Space Location to Pose-Space Location
1117  * NOTE: this cannot be used to convert to pose-space location of the supplied
1118  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1119 void armature_loc_world_to_pose(Object *ob, float *inloc, float *outloc)
1120 {
1121         float xLocMat[4][4] = MAT4_UNITY;
1122         float nLocMat[4][4];
1123
1124         /* build matrix for location */
1125         copy_v3_v3(xLocMat[3], inloc);
1126
1127         /* get bone-space cursor matrix and extract location */
1128         armature_mat_world_to_pose(ob, xLocMat, nLocMat);
1129         copy_v3_v3(outloc, nLocMat[3]);
1130 }
1131
1132 /* Simple helper, computes the offset bone matrix.
1133  *     offs_bone = yoffs(b-1) + root(b) + bonemat(b).
1134  * Not exported, as it is only used in this file currently... */
1135 static void get_offset_bone_mat(Bone *bone, float offs_bone[][4])
1136 {
1137         if (!bone->parent)
1138                 return;
1139
1140         /* Bone transform itself. */
1141         copy_m4_m3(offs_bone, bone->bone_mat);
1142
1143         /* The bone's root offset (is in the parent's coordinate system). */
1144         copy_v3_v3(offs_bone[3], bone->head);
1145
1146         /* Get the length translation of parent (length along y axis). */
1147         offs_bone[3][1] += bone->parent->length;
1148 }
1149
1150 /* Construct the matrices (rot/scale and loc) to apply the PoseChannels into the armature (object) space.
1151  * I.e. (roughly) the "pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)" in the
1152  *     pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
1153  * ...function.
1154  *
1155  * This allows to get the transformations of a bone in its object space, *before* constraints (and IK)
1156  * get applied (used by pose evaluation code).
1157  * And reverse: to find pchan transformations needed to place a bone at a given loc/rot/scale
1158  * in object space (used by interactive transform, and snapping code).
1159  *
1160  * Note that, with the HINGE/NO_SCALE/NO_LOCAL_LOCATION options, the location matrix
1161  * will differ from the rotation/scale matrix...
1162  *
1163  * NOTE: This cannot be used to convert to pose-space transforms of the supplied
1164  *       pose-channel into its local space (i.e. 'visual'-keyframing).
1165  *       (note: I don't understand that, so I keep it :p --mont29).
1166  */
1167 void pchan_to_pose_mat(bPoseChannel *pchan, float rotscale_mat[][4], float loc_mat[][4])
1168 {
1169         Bone *bone, *parbone;
1170         bPoseChannel *parchan;
1171
1172         /* set up variables for quicker access below */
1173         bone = pchan->bone;
1174         parbone = bone->parent;
1175         parchan = pchan->parent;
1176
1177         if (parchan) {
1178                 float offs_bone[4][4];
1179                 /* yoffs(b-1) + root(b) + bonemat(b). */
1180                 get_offset_bone_mat(bone, offs_bone);
1181
1182                 /* Compose the rotscale matrix for this bone. */
1183                 if ((bone->flag & BONE_HINGE) && (bone->flag & BONE_NO_SCALE)) {
1184                         /* Parent rest rotation and scale. */
1185                         mult_m4_m4m4(rotscale_mat, parbone->arm_mat, offs_bone);
1186                 }
1187                 else if (bone->flag & BONE_HINGE) {
1188                         /* Parent rest rotation and pose scale. */
1189                         float tmat[4][4], tscale[3];
1190
1191                         /* Extract the scale of the parent pose matrix. */
1192                         mat4_to_size(tscale, parchan->pose_mat);
1193                         size_to_mat4(tmat, tscale);
1194
1195                         /* Applies the parent pose scale to the rest matrix. */
1196                         mult_m4_m4m4(tmat, tmat, parbone->arm_mat);
1197
1198                         mult_m4_m4m4(rotscale_mat, tmat, offs_bone);
1199                 }
1200                 else if (bone->flag & BONE_NO_SCALE) {
1201                         /* Parent pose rotation and rest scale (i.e. no scaling). */
1202                         float tmat[4][4];
1203                         copy_m4_m4(tmat, parchan->pose_mat);
1204                         normalize_m4(tmat);
1205                         mult_m4_m4m4(rotscale_mat, tmat, offs_bone);
1206                 }
1207                 else
1208                         mult_m4_m4m4(rotscale_mat, parchan->pose_mat, offs_bone);
1209
1210 # if 1
1211                 /* Compose the loc matrix for this bone. */
1212                 /* NOTE: That version deos not modify bone's loc when HINGE/NO_SCALE options are set. */
1213
1214                 /* In this case, use the object's space *orientation*. */
1215                 if (bone->flag & BONE_NO_LOCAL_LOCATION) {
1216                         /* XXX I'm sure that code can be simplified! */
1217                         float bone_loc[4][4], bone_rotscale[3][3], tmat4[4][4], tmat3[3][3];
1218                         unit_m4(bone_loc);
1219                         unit_m4(loc_mat);
1220                         unit_m4(tmat4);
1221
1222                         mul_v3_m4v3(bone_loc[3], parchan->pose_mat, offs_bone[3]);
1223
1224                         unit_m3(bone_rotscale);
1225                         copy_m3_m4(tmat3, parchan->pose_mat);
1226                         mul_m3_m3m3(bone_rotscale, tmat3, bone_rotscale);
1227
1228                         copy_m4_m3(tmat4, bone_rotscale);
1229                         mult_m4_m4m4(loc_mat, bone_loc, tmat4);
1230                 }
1231                 /* Those flags do not affect position, use plain parent transform space! */
1232                 else if (bone->flag & (BONE_HINGE|BONE_NO_SCALE)) {
1233                         mult_m4_m4m4(loc_mat, parchan->pose_mat, offs_bone);
1234                 }
1235                 /* Else (i.e. default, usual case), just use the same matrix for rotation/scaling, and location. */
1236                 else
1237                         copy_m4_m4(loc_mat, rotscale_mat);
1238 # endif
1239 # if 0
1240                 /* Compose the loc matrix for this bone. */
1241                 /* NOTE: That version modifies bone's loc when HINGE/NO_SCALE options are set. */
1242
1243                 /* In these cases we need to compute location separately */
1244                 if (bone->flag & (BONE_HINGE|BONE_NO_SCALE|BONE_NO_LOCAL_LOCATION)) {
1245                         float bone_loc[4][4], bone_rotscale[3][3], tmat4[4][4], tmat3[3][3];
1246                         unit_m4(bone_loc);
1247                         unit_m4(loc_mat);
1248                         unit_m4(tmat4);
1249
1250                         mul_v3_m4v3(bone_loc[3], parchan->pose_mat, offs_bone[3]);
1251
1252                         /* "No local location" is not transformed by bone matrix. */
1253                         /* This only affects orientations (rotations), as scale is always 1.0 here. */
1254                         if (bone->flag & BONE_NO_LOCAL_LOCATION)
1255                                 unit_m3(bone_rotscale);
1256                         else
1257                                 /* We could also use bone->bone_mat directly, here... */
1258                                 copy_m3_m4(bone_rotscale, offs_bone);
1259
1260                         if (bone->flag & BONE_HINGE) {
1261                                 copy_m3_m4(tmat3, parbone->arm_mat);
1262                                 /* for hinge-only, we use armature *rotation*, but pose mat *scale*! */
1263                                 if (!(bone->flag & BONE_NO_SCALE)) {
1264                                         float size[3], tsmat[3][3];
1265                                         mat4_to_size(size, parchan->pose_mat);
1266                                         size_to_mat3(tsmat, size);
1267                                         mul_m3_m3m3(tmat3, tsmat, tmat3);
1268                                 }
1269                                 mul_m3_m3m3(bone_rotscale, tmat3, bone_rotscale);
1270                         }
1271                         else if (bone->flag & BONE_NO_SCALE) {
1272                                 /* For no-scale only, normalized parent pose mat is enough! */
1273                                 copy_m3_m4(tmat3, parchan->pose_mat);
1274                                 normalize_m3(tmat3);
1275                                 mul_m3_m3m3(bone_rotscale, tmat3, bone_rotscale);
1276                         }
1277                         /* NO_LOCAL_LOCATION only. */
1278                         else {
1279                                 copy_m3_m4(tmat3, parchan->pose_mat);
1280                                 mul_m3_m3m3(bone_rotscale, tmat3, bone_rotscale);
1281                         }
1282
1283                         copy_m4_m3(tmat4, bone_rotscale);
1284                         mult_m4_m4m4(loc_mat, bone_loc, tmat4);
1285                 }
1286                 /* Else, just use the same matrix for rotation/scaling, and location. */
1287                 else
1288                         copy_m4_m4(loc_mat, rotscale_mat);
1289 # endif
1290         }
1291         /* Root bones. */
1292         else {
1293                 /* Rotation/scaling. */
1294                 copy_m4_m4(rotscale_mat, pchan->bone->arm_mat);
1295                 /* Translation. */
1296                 if (pchan->bone->flag & BONE_NO_LOCAL_LOCATION) {
1297                         /* Translation of arm_mat, without the rotation. */
1298                         unit_m4(loc_mat);
1299                         copy_v3_v3(loc_mat[3], pchan->bone->arm_mat[3]);
1300                 }
1301                 else
1302                         copy_m4_m4(loc_mat, rotscale_mat);
1303         }
1304 }
1305
1306 /* Convert Pose-Space Matrix to Bone-Space Matrix.
1307  * NOTE: this cannot be used to convert to pose-space transforms of the supplied
1308  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1309 void armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[][4], float outmat[][4])
1310 {
1311         float rotscale_mat[4][4], loc_mat[4][4], inmat_[4][4];
1312
1313         /* Security, this allows to call with inmat == outmat! */
1314         copy_m4_m4(inmat_, inmat);
1315
1316         pchan_to_pose_mat(pchan, rotscale_mat, loc_mat);
1317         invert_m4(rotscale_mat);
1318         invert_m4(loc_mat);
1319
1320         mult_m4_m4m4(outmat, rotscale_mat, inmat_);
1321         mul_v3_m4v3(outmat[3], loc_mat, inmat_[3]);
1322 }
1323
1324 /* Convert Bone-Space Matrix to Pose-Space Matrix. */
1325 void armature_mat_bone_to_pose(bPoseChannel *pchan, float inmat[][4], float outmat[][4])
1326 {
1327         float rotscale_mat[4][4], loc_mat[4][4], inmat_[4][4];
1328
1329         /* Security, this allows to call with inmat == outmat! */
1330         copy_m4_m4(inmat_, inmat);
1331
1332         pchan_to_pose_mat(pchan, rotscale_mat, loc_mat);
1333
1334         mult_m4_m4m4(outmat, rotscale_mat, inmat_);
1335         mul_v3_m4v3(outmat[3], loc_mat, inmat_[3]);
1336 }
1337
1338 /* Convert Pose-Space Location to Bone-Space Location
1339  * NOTE: this cannot be used to convert to pose-space location of the supplied
1340  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1341 void armature_loc_pose_to_bone(bPoseChannel *pchan, float *inloc, float *outloc)
1342 {
1343         float xLocMat[4][4] = MAT4_UNITY;
1344         float nLocMat[4][4];
1345
1346         /* build matrix for location */
1347         copy_v3_v3(xLocMat[3], inloc);
1348
1349         /* get bone-space cursor matrix and extract location */
1350         armature_mat_pose_to_bone(pchan, xLocMat, nLocMat);
1351         copy_v3_v3(outloc, nLocMat[3]);
1352 }
1353
1354 void armature_mat_pose_to_bone_ex(Object *ob, bPoseChannel *pchan, float inmat[][4], float outmat[][4])
1355 {
1356         bPoseChannel work_pchan = *pchan;
1357
1358         /* recalculate pose matrix with only parent transformations,
1359          * bone loc/sca/rot is ignored, scene and frame are not used. */
1360         where_is_pose_bone(NULL, ob, &work_pchan, 0.0f, FALSE);
1361
1362         /* find the matrix, need to remove the bone transforms first so this is
1363          * calculated as a matrix to set rather then a difference ontop of whats
1364          * already there. */
1365         unit_m4(outmat);
1366         pchan_apply_mat4(&work_pchan, outmat, FALSE);
1367
1368         armature_mat_pose_to_bone(&work_pchan, inmat, outmat);
1369 }
1370
1371 /* same as object_mat3_to_rot() */
1372 void pchan_mat3_to_rot(bPoseChannel *pchan, float mat[][3], short use_compat)
1373 {
1374         switch(pchan->rotmode) {
1375                 case ROT_MODE_QUAT:
1376                         mat3_to_quat(pchan->quat, mat);
1377                         break;
1378                 case ROT_MODE_AXISANGLE:
1379                         mat3_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat);
1380                         break;
1381                 default: /* euler */
1382                         if (use_compat)
1383                                 mat3_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat);
1384                         else
1385                                 mat3_to_eulO(pchan->eul, pchan->rotmode, mat);
1386         }
1387 }
1388
1389 /* Apply a 4x4 matrix to the pose bone,
1390  * similar to object_apply_mat4() */
1391 void pchan_apply_mat4(bPoseChannel *pchan, float mat[][4], short use_compat)
1392 {
1393         float rot[3][3];
1394         mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat);
1395         pchan_mat3_to_rot(pchan, rot, use_compat);
1396 }
1397
1398 /* Remove rest-position effects from pose-transform for obtaining
1399  * 'visual' transformation of pose-channel.
1400  * (used by the Visual-Keyframing stuff) */
1401 void armature_mat_pose_to_delta(float delta_mat[][4], float pose_mat[][4], float arm_mat[][4])
1402 {
1403         float imat[4][4];
1404
1405         invert_m4_m4(imat, arm_mat);
1406         mult_m4_m4m4(delta_mat, imat, pose_mat);
1407 }
1408
1409 /* **************** Rotation Mode Conversions ****************************** */
1410 /* Used for Objects and Pose Channels, since both can have multiple rotation representations */
1411
1412 /* Called from RNA when rotation mode changes
1413  * - the result should be that the rotations given in the provided pointers have had conversions
1414  *   applied (as appropriate), such that the rotation of the element hasn't 'visually' changed  */
1415 void BKE_rotMode_change_values (float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode)
1416 {
1417         /* check if any change - if so, need to convert data */
1418         if (newMode > 0) { /* to euler */
1419                 if (oldMode == ROT_MODE_AXISANGLE) {
1420                         /* axis-angle to euler */
1421                         axis_angle_to_eulO( eul, newMode,axis, *angle);
1422                 }
1423                 else if (oldMode == ROT_MODE_QUAT) {
1424                         /* quat to euler */
1425                         normalize_qt(quat);
1426                         quat_to_eulO(eul, newMode,quat);
1427                 }
1428                 /* else { no conversion needed } */
1429         }
1430         else if (newMode == ROT_MODE_QUAT) { /* to quat */
1431                 if (oldMode == ROT_MODE_AXISANGLE) {
1432                         /* axis angle to quat */
1433                         axis_angle_to_quat(quat, axis, *angle);
1434                 }
1435                 else if (oldMode > 0) {
1436                         /* euler to quat */
1437                         eulO_to_quat(quat, eul, oldMode);
1438                 }
1439                 /* else { no conversion needed } */
1440         }
1441         else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */
1442                 if (oldMode > 0) {
1443                         /* euler to axis angle */
1444                         eulO_to_axis_angle(axis, angle, eul, oldMode);
1445                 }
1446                 else if (oldMode == ROT_MODE_QUAT) {
1447                         /* quat to axis angle */
1448                         normalize_qt(quat);
1449                         quat_to_axis_angle(axis, angle, quat);
1450                 }
1451
1452                 /* when converting to axis-angle, we need a special exception for the case when there is no axis */
1453                 if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
1454                         /* for now, rotate around y-axis then (so that it simply becomes the roll) */
1455                         axis[1] = 1.0f;
1456                 }
1457         }
1458 }
1459
1460 /* **************** The new & simple (but OK!) armature evaluation ********* */
1461
1462 /* ****************** And how it works! ****************************************
1463  *
1464  * This is the bone transformation trick; they're hierarchical so each bone(b)
1465  * is in the coord system of bone(b-1):
1466  *
1467  * arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)
1468  *
1469  * -> yoffs is just the y axis translation in parent's coord system
1470  * -> d_root is the translation of the bone root, also in parent's coord system
1471  *
1472  * pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
1473  *
1474  * we then - in init deform - store the deform in chan_mat, such that:
1475  *
1476  * pose_mat(b)= arm_mat(b) * chan_mat(b)
1477  *
1478  * *************************************************************************** */
1479 /* Computes vector and roll based on a rotation.
1480  * "mat" must contain only a rotation, and no scaling. */
1481 void mat3_to_vec_roll(float mat[][3], float *vec, float *roll)
1482 {
1483         if (vec)
1484                 copy_v3_v3(vec, mat[1]);
1485
1486         if (roll) {
1487                 float vecmat[3][3], vecmatinv[3][3], rollmat[3][3];
1488
1489                 vec_roll_to_mat3(mat[1], 0.0f, vecmat);
1490                 invert_m3_m3(vecmatinv, vecmat);
1491                 mul_m3_m3m3(rollmat, vecmatinv, mat);
1492
1493                 *roll = (float)atan2(rollmat[2][0], rollmat[2][2]);
1494         }
1495 }
1496
1497 /* Calculates the rest matrix of a bone based
1498  * On its vector and a roll around that vector */
1499 void vec_roll_to_mat3(float *vec, float roll, float mat[][3])
1500 {
1501         float nor[3], axis[3], target[3] = {0, 1, 0};
1502         float theta;
1503         float rMatrix[3][3], bMatrix[3][3];
1504
1505         normalize_v3_v3(nor, vec);
1506
1507         /* Find Axis & Amount for bone matrix */
1508         cross_v3_v3v3(axis, target, nor);
1509
1510         /* was 0.0000000000001, caused bug [#23954], smaller values give unstable
1511          * roll when toggling editmode.
1512          *
1513          * was 0.00001, causes bug [#27675], with 0.00000495,
1514          * so a value inbetween these is needed.
1515          */
1516         if (dot_v3v3(axis,axis) > 0.000001f) {
1517                 /* if nor is *not* a multiple of target ... */
1518                 normalize_v3(axis);
1519
1520                 theta = angle_normalized_v3v3(target, nor);
1521
1522                 /* Make Bone matrix*/
1523                 vec_rot_to_mat3(bMatrix, axis, theta);
1524         }
1525         else {
1526                 /* if nor is a multiple of target ... */
1527                 float updown;
1528
1529                 /* point same direction, or opposite? */
1530                 updown = (dot_v3v3(target,nor) > 0) ? 1.0f : -1.0f;
1531
1532                 /* I think this should work... */
1533                 bMatrix[0][0] = updown; bMatrix[0][1] = 0.0;    bMatrix[0][2] = 0.0;
1534                 bMatrix[1][0] = 0.0;    bMatrix[1][1] = updown; bMatrix[1][2] = 0.0;
1535                 bMatrix[2][0] = 0.0;    bMatrix[2][1] = 0.0;    bMatrix[2][2] = 1.0;
1536         }
1537
1538         /* Make Roll matrix */
1539         vec_rot_to_mat3(rMatrix, nor, roll);
1540
1541         /* Combine and output result */
1542         mul_m3_m3m3(mat, rMatrix, bMatrix);
1543 }
1544
1545
1546 /* recursive part, calculates restposition of entire tree of children */
1547 /* used by exiting editmode too */
1548 void where_is_armature_bone(Bone *bone, Bone *prevbone)
1549 {
1550         float vec[3];
1551
1552         /* Bone Space */
1553         sub_v3_v3v3(vec, bone->tail, bone->head);
1554         vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);
1555
1556         bone->length = len_v3v3(bone->head, bone->tail);
1557
1558         /* this is called on old file reading too... */
1559         if (bone->xwidth == 0.0f) {
1560                 bone->xwidth = 0.1f;
1561                 bone->zwidth = 0.1f;
1562                 bone->segments = 1;
1563         }
1564
1565         if (prevbone) {
1566                 float offs_bone[4][4];
1567                 /* yoffs(b-1) + root(b) + bonemat(b) */
1568                 get_offset_bone_mat(bone, offs_bone);
1569
1570                 /* Compose the matrix for this bone  */
1571                 mult_m4_m4m4(bone->arm_mat, prevbone->arm_mat, offs_bone);
1572         }
1573         else {
1574                 copy_m4_m3(bone->arm_mat, bone->bone_mat);
1575                 copy_v3_v3(bone->arm_mat[3], bone->head);
1576         }
1577
1578         /* and the kiddies */
1579         prevbone = bone;
1580         for (bone = bone->childbase.first; bone; bone = bone->next) {
1581                 where_is_armature_bone(bone, prevbone);
1582         }
1583 }
1584
1585 /* updates vectors and matrices on rest-position level, only needed
1586    after editing armature itself, now only on reading file */
1587 void where_is_armature(bArmature *arm)
1588 {
1589         Bone *bone;
1590
1591         /* hierarchical from root to children */
1592         for (bone = arm->bonebase.first; bone; bone = bone->next) {
1593                 where_is_armature_bone(bone, NULL);
1594         }
1595 }
1596
1597 /* if bone layer is protected, copy the data from from->pose
1598  * when used with linked libraries this copies from the linked pose into the local pose */
1599 static void pose_proxy_synchronize(Object *ob, Object *from, int layer_protected)
1600 {
1601         bPose *pose = ob->pose, *frompose = from->pose;
1602         bPoseChannel *pchan, *pchanp, pchanw;
1603         bConstraint *con;
1604         int error = 0;
1605
1606         if (frompose == NULL)
1607                 return;
1608
1609         /* in some cases when rigs change, we cant synchronize
1610          * to avoid crashing check for possible errors here */
1611         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1612                 if (pchan->bone->layer & layer_protected) {
1613                         if (get_pose_channel(frompose, pchan->name) == NULL) {
1614                                 printf("failed to sync proxy armature because '%s' is missing pose channel '%s'\n",
1615                                        from->id.name, pchan->name);
1616                                 error = 1;
1617                         }
1618                 }
1619         }
1620
1621         if (error)
1622                 return;
1623
1624         /* clear all transformation values from library */
1625         rest_pose(frompose);
1626
1627         /* copy over all of the proxy's bone groups */
1628                 /* TODO for later
1629                  * - implement 'local' bone groups as for constraints
1630                  * Note: this isn't trivial, as bones reference groups by index not by pointer,
1631                  *       so syncing things correctly needs careful attention */
1632         BLI_freelistN(&pose->agroups);
1633         BLI_duplicatelist(&pose->agroups, &frompose->agroups);
1634         pose->active_group = frompose->active_group;
1635
1636         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1637                 pchanp = get_pose_channel(frompose, pchan->name);
1638
1639                 if (pchan->bone->layer & layer_protected) {
1640                         ListBase proxylocal_constraints = {NULL, NULL};
1641
1642                         /* copy posechannel to temp, but restore important pointers */
1643                         pchanw = *pchanp;
1644                         pchanw.prev = pchan->prev;
1645                         pchanw.next = pchan->next;
1646                         pchanw.parent = pchan->parent;
1647                         pchanw.child = pchan->child;
1648
1649                         /* this is freed so copy a copy, else undo crashes */
1650                         if (pchanw.prop) {
1651                                 pchanw.prop = IDP_CopyProperty(pchanw.prop);
1652
1653                                 /* use the values from the the existing props */
1654                                 if (pchan->prop) {
1655                                         IDP_SyncGroupValues(pchanw.prop, pchan->prop);
1656                                 }
1657                         }
1658
1659                         /* constraints - proxy constraints are flushed... local ones are added after
1660                          *     1. extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints
1661                          *     2. copy proxy-pchan's constraints on-to new
1662                          *     3. add extracted local constraints back on top
1663                          *
1664                          * Note for copy_constraints: when copying constraints, disable 'do_extern' otherwise
1665                          *                            we get the libs direct linked in this blend. */
1666                         extract_proxylocal_constraints(&proxylocal_constraints, &pchan->constraints);
1667                         copy_constraints(&pchanw.constraints, &pchanp->constraints, FALSE);
1668                         BLI_movelisttolist(&pchanw.constraints, &proxylocal_constraints);
1669
1670                         /* constraints - set target ob pointer to own object */
1671                         for (con = pchanw.constraints.first; con; con = con->next) {
1672                                 bConstraintTypeInfo *cti = constraint_get_typeinfo(con);
1673                                 ListBase targets = {NULL, NULL};
1674                                 bConstraintTarget *ct;
1675
1676                                 if (cti && cti->get_constraint_targets) {
1677                                         cti->get_constraint_targets(con, &targets);
1678
1679                                         for (ct = targets.first; ct; ct = ct->next) {
1680                                                 if (ct->tar == from)
1681                                                         ct->tar = ob;
1682                                         }
1683
1684                                         if (cti->flush_constraint_targets)
1685                                                 cti->flush_constraint_targets(con, &targets, 0);
1686                                 }
1687                         }
1688
1689                         /* free stuff from current channel */
1690                         free_pose_channel(pchan);
1691
1692                         /* the final copy */
1693                         *pchan = pchanw;
1694                 }
1695                 else {
1696                         /* always copy custom shape */
1697                         pchan->custom = pchanp->custom;
1698                         pchan->custom_tx = pchanp->custom_tx;
1699
1700                         /* ID-Property Syncing */
1701                         {
1702                                 IDProperty *prop_orig = pchan->prop;
1703                                 if (pchanp->prop) {
1704                                         pchan->prop = IDP_CopyProperty(pchanp->prop);
1705                                         if (prop_orig) {
1706                                                 /* copy existing values across when types match */
1707                                                 IDP_SyncGroupValues(pchan->prop, prop_orig);
1708                                         }
1709                                 }
1710                                 else {
1711                                         pchan->prop = NULL;
1712                                 }
1713                                 if (prop_orig) {
1714                                         IDP_FreeProperty(prop_orig);
1715                                         MEM_freeN(prop_orig);
1716                                 }
1717                         }
1718                 }
1719         }
1720 }
1721
1722 static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
1723 {
1724         bPoseChannel *pchan = verify_pose_channel(pose, bone->name); /* verify checks and/or adds */
1725
1726         pchan->bone = bone;
1727         pchan->parent = parchan;
1728
1729         counter++;
1730
1731         for (bone = bone->childbase.first; bone; bone = bone->next) {
1732                 counter = rebuild_pose_bone(pose, bone, pchan, counter);
1733                 /* for quick detecting of next bone in chain, only b-bone uses it now */
1734                 if (bone->flag & BONE_CONNECTED)
1735                         pchan->child = get_pose_channel(pose, bone->name);
1736         }
1737
1738         return counter;
1739 }
1740
1741 /* only after leave editmode, duplicating, validating older files, library syncing */
1742 /* NOTE: pose->flag is set for it */
1743 void armature_rebuild_pose(Object *ob, bArmature *arm)
1744 {
1745         Bone *bone;
1746         bPose *pose;
1747         bPoseChannel *pchan, *next;
1748         int counter = 0;
1749
1750         /* only done here */
1751         if (ob->pose == NULL) {
1752                 /* create new pose */
1753                 ob->pose = MEM_callocN(sizeof(bPose), "new pose");
1754
1755                 /* set default settings for animviz */
1756                 animviz_settings_init(&ob->pose->avs);
1757         }
1758         pose = ob->pose;
1759
1760         /* clear */
1761         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1762                 pchan->bone = NULL;
1763                 pchan->child = NULL;
1764         }
1765
1766         /* first step, check if all channels are there */
1767         for (bone = arm->bonebase.first; bone; bone = bone->next) {
1768                 counter = rebuild_pose_bone(pose, bone, NULL, counter);
1769         }
1770
1771         /* and a check for garbage */
1772         for (pchan = pose->chanbase.first; pchan; pchan = next) {
1773                 next = pchan->next;
1774                 if (pchan->bone == NULL) {
1775                         free_pose_channel(pchan);
1776                         free_pose_channels_hash(pose);
1777                         BLI_freelinkN(&pose->chanbase, pchan);
1778                 }
1779         }
1780         /* printf("rebuild pose %s, %d bones\n", ob->id.name, counter); */
1781
1782         /* synchronize protected layers with proxy */
1783         if (ob->proxy) {
1784                 object_copy_proxy_drivers(ob, ob->proxy);
1785                 pose_proxy_synchronize(ob, ob->proxy, arm->layer_protected);
1786         }
1787
1788         update_pose_constraint_flags(ob->pose); /* for IK detection for example */
1789
1790         /* the sorting */
1791         if (counter>1)
1792                 DAG_pose_sort(ob);
1793
1794         ob->pose->flag &= ~POSE_RECALC;
1795         ob->pose->flag |= POSE_WAS_REBUILT;
1796
1797         make_pose_channels_hash(ob->pose);
1798 }
1799
1800
1801 /* ********************** SPLINE IK SOLVER ******************* */
1802
1803 /* Temporary evaluation tree data used for Spline IK */
1804 typedef struct tSplineIK_Tree {
1805         struct tSplineIK_Tree *next, *prev;
1806
1807         int type;                    /* type of IK that this serves (CONSTRAINT_TYPE_KINEMATIC or ..._SPLINEIK) */
1808
1809         short free_points;           /* free the point positions array */
1810         short chainlen;              /* number of bones in the chain */
1811
1812         float *points;               /* parametric positions for the joints along the curve */
1813         bPoseChannel **chain;        /* chain of bones to affect using Spline IK (ordered from the tip) */
1814
1815         bPoseChannel *root;          /* bone that is the root node of the chain */
1816
1817         bConstraint *con;            /* constraint for this chain */
1818         bSplineIKConstraint *ikData; /* constraint settings for this chain */
1819 } tSplineIK_Tree;
1820
1821 /* ----------- */
1822
1823 /* Tag the bones in the chain formed by the given bone for IK */
1824 static void splineik_init_tree_from_pchan(Scene *scene, Object *UNUSED(ob), bPoseChannel *pchan_tip)
1825 {
1826         bPoseChannel *pchan, *pchanRoot = NULL;
1827         bPoseChannel *pchanChain[255];
1828         bConstraint *con = NULL;
1829         bSplineIKConstraint *ikData = NULL;
1830         float boneLengths[255], *jointPoints;
1831         float totLength = 0.0f;
1832         short free_joints = 0;
1833         int segcount = 0;
1834
1835         /* find the SplineIK constraint */
1836         for (con = pchan_tip->constraints.first; con; con = con->next) {
1837                 if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
1838                         ikData = con->data;
1839
1840                         /* target can only be curve */
1841                         if ((ikData->tar == NULL) || (ikData->tar->type != OB_CURVE))
1842                                 continue;
1843                         /* skip if disabled */
1844                         if ((con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE|CONSTRAINT_OFF)))
1845                                 continue;
1846
1847                         /* otherwise, constraint is ok... */
1848                         break;
1849                 }
1850         }
1851         if (con == NULL)
1852                 return;
1853
1854         /* make sure that the constraint targets are ok
1855          *     - this is a workaround for a depsgraph bug...
1856          */
1857         if (ikData->tar) {
1858                 Curve *cu = ikData->tar->data;
1859
1860                 /* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
1861                  *       currently for paths to work it needs to go through the bevlist/displist system (ton)
1862                  */
1863
1864                 /* only happens on reload file, but violates depsgraph still... fix! */
1865                 if ((cu->path == NULL) || (cu->path->data == NULL))
1866                         makeDispListCurveTypes(scene, ikData->tar, 0);
1867         }
1868
1869         /* find the root bone and the chain of bones from the root to the tip
1870          * NOTE: this assumes that the bones are connected, but that may not be true... */
1871         for (pchan = pchan_tip; pchan && (segcount < ikData->chainlen); pchan = pchan->parent, segcount++) {
1872                 /* store this segment in the chain */
1873                 pchanChain[segcount] = pchan;
1874
1875                 /* if performing rebinding, calculate the length of the bone */
1876                 boneLengths[segcount] = pchan->bone->length;
1877                 totLength += boneLengths[segcount];
1878         }
1879
1880         if (segcount == 0)
1881                 return;
1882         else
1883                 pchanRoot = pchanChain[segcount-1];
1884
1885         /* perform binding step if required */
1886         if ((ikData->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
1887                 float segmentLen = (1.0f / (float)segcount);
1888                 int i;
1889
1890                 /* setup new empty array for the points list */
1891                 if (ikData->points)
1892                         MEM_freeN(ikData->points);
1893                 ikData->numpoints = ikData->chainlen+1;
1894                 ikData->points = MEM_callocN(sizeof(float)*ikData->numpoints, "Spline IK Binding");
1895
1896                 /* bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint) */
1897                 ikData->points[0] = 1.0f;
1898
1899                 /* perform binding of the joints to parametric positions along the curve based
1900                  * proportion of the total length that each bone occupies
1901                  */
1902                 for (i = 0; i < segcount; i++) {
1903                         /* 'head' joints, travelling towards the root of the chain
1904                          *  - 2 methods; the one chosen depends on whether we've got usable lengths
1905                          */
1906                         if ((ikData->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totLength == 0.0f)) {
1907                                 /* 1) equi-spaced joints */
1908                                 ikData->points[i+1] = ikData->points[i] - segmentLen;
1909                         }
1910                         else {
1911                                 /* 2) to find this point on the curve, we take a step from the previous joint
1912                                  *    a distance given by the proportion that this bone takes
1913                                  */
1914                                 ikData->points[i+1] = ikData->points[i] - (boneLengths[i] / totLength);
1915                         }
1916                 }
1917
1918                 /* spline has now been bound */
1919                 ikData->flag |= CONSTRAINT_SPLINEIK_BOUND;
1920         }
1921
1922         /* apply corrections for sensitivity to scaling on a copy of the bind points,
1923          * since it's easier to determine the positions of all the joints beforehand this way
1924          */
1925         if ((ikData->flag & CONSTRAINT_SPLINEIK_SCALE_LIMITED) && (totLength != 0.0f)) {
1926                 Curve *cu = (Curve *)ikData->tar->data;
1927                 float splineLen, maxScale;
1928                 int i;
1929
1930                 /* make a copy of the points array, that we'll store in the tree
1931                  *     - although we could just multiply the points on the fly, this approach means that
1932                  *       we can introduce per-segment stretchiness later if it is necessary
1933                  */
1934                 jointPoints = MEM_dupallocN(ikData->points);
1935                 free_joints = 1;
1936
1937                 /* get the current length of the curve */
1938                 /* NOTE: this is assumed to be correct even after the curve was resized */
1939                 splineLen = cu->path->totdist;
1940
1941                 /* calculate the scale factor to multiply all the path values by so that the
1942                  * bone chain retains its current length, such that
1943                  *     maxScale * splineLen = totLength
1944                  */
1945                 maxScale = totLength / splineLen;
1946
1947                 /* apply scaling correction to all of the temporary points */
1948                 /* TODO: this is really not adequate enough on really short chains */
1949                 for (i = 0; i < segcount; i++)
1950                         jointPoints[i] *= maxScale;
1951         }
1952         else {
1953                 /* just use the existing points array */
1954                 jointPoints = ikData->points;
1955                 free_joints = 0;
1956         }
1957
1958         /* make a new Spline-IK chain, and store it in the IK chains */
1959         /* TODO: we should check if there is already an IK chain on this, since that would take presidence... */
1960         {
1961                 /* make new tree */
1962                 tSplineIK_Tree *tree = MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree");
1963                 tree->type = CONSTRAINT_TYPE_SPLINEIK;
1964
1965                 tree->chainlen = segcount;
1966
1967                 /* copy over the array of links to bones in the chain (from tip to root) */
1968                 tree->chain = MEM_callocN(sizeof(bPoseChannel*)*segcount, "SplineIK Chain");
1969                 memcpy(tree->chain, pchanChain, sizeof(bPoseChannel*)*segcount);
1970
1971                 /* store reference to joint position array */
1972                 tree->points = jointPoints;
1973                 tree->free_points = free_joints;
1974
1975                 /* store references to different parts of the chain */
1976                 tree->root = pchanRoot;
1977                 tree->con = con;
1978                 tree->ikData = ikData;
1979
1980                 /* AND! link the tree to the root */
1981                 BLI_addtail(&pchanRoot->siktree, tree);
1982         }
1983
1984         /* mark root channel having an IK tree */
1985         pchanRoot->flag |= POSE_IKSPLINE;
1986 }
1987
1988 /* Tag which bones are members of Spline IK chains */
1989 static void splineik_init_tree(Scene *scene, Object *ob, float UNUSED(ctime))
1990 {
1991         bPoseChannel *pchan;
1992
1993         /* find the tips of Spline IK chains, which are simply the bones which have been tagged as such */
1994         for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
1995                 if (pchan->constflag & PCHAN_HAS_SPLINEIK)
1996                         splineik_init_tree_from_pchan(scene, ob, pchan);
1997         }
1998 }
1999
2000 /* ----------- */
2001
2002 /* Evaluate spline IK for a given bone */
2003 static void splineik_evaluate_bone(tSplineIK_Tree *tree, Scene *scene, Object *ob, bPoseChannel *pchan,
2004                                    int index, float ctime)
2005 {
2006         bSplineIKConstraint *ikData = tree->ikData;
2007         float poseHead[3], poseTail[3], poseMat[4][4];
2008         float splineVec[3], scaleFac, radius =1.0f;
2009
2010         /* firstly, calculate the bone matrix the standard way, since this is needed for roll control */
2011         where_is_pose_bone(scene, ob, pchan, ctime, 1);
2012
2013         copy_v3_v3(poseHead, pchan->pose_head);
2014         copy_v3_v3(poseTail, pchan->pose_tail);
2015
2016         /* step 1: determine the positions for the endpoints of the bone */
2017         {
2018                 float vec[4], dir[3], rad;
2019                 float tailBlendFac = 1.0f;
2020
2021                 /* determine if the bone should still be affected by SplineIK */
2022                 if (tree->points[index+1] >= 1.0f) {
2023                         /* spline doesn't affect the bone anymore, so done... */
2024                         pchan->flag |= POSE_DONE;
2025                         return;
2026                 }
2027                 else if ((tree->points[index] >= 1.0f) && (tree->points[index+1] < 1.0f)) {
2028                         /* blending factor depends on the amount of the bone still left on the chain */
2029                         tailBlendFac = (1.0f - tree->points[index+1]) / (tree->points[index] - tree->points[index+1]);
2030                 }
2031
2032                 /* tail endpoint */
2033                 if (where_on_path(ikData->tar, tree->points[index], vec, dir, NULL, &rad, NULL)) {
2034                         /* apply curve's object-mode transforms to the position
2035                          * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
2036                          */
2037                         if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
2038                                 mul_m4_v3(ikData->tar->obmat, vec);
2039
2040                         /* convert the position to pose-space, then store it */
2041                         mul_m4_v3(ob->imat, vec);
2042                         interp_v3_v3v3(poseTail, pchan->pose_tail, vec, tailBlendFac);
2043
2044                         /* set the new radius */
2045                         radius = rad;
2046                 }
2047
2048                 /* head endpoint */
2049                 if (where_on_path(ikData->tar, tree->points[index+1], vec, dir, NULL, &rad, NULL)) {
2050                         /* apply curve's object-mode transforms to the position
2051                          * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
2052                          */
2053                         if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
2054                                 mul_m4_v3(ikData->tar->obmat, vec);
2055
2056                         /* store the position, and convert it to pose space */
2057                         mul_m4_v3(ob->imat, vec);
2058                         copy_v3_v3(poseHead, vec);
2059
2060                         /* set the new radius (it should be the average value) */
2061                         radius = (radius+rad) / 2;
2062                 }
2063         }
2064
2065         /* step 2: determine the implied transform from these endpoints
2066          *     - splineVec: the vector direction that the spline applies on the bone
2067          *     - scaleFac: the factor that the bone length is scaled by to get the desired amount
2068          */
2069         sub_v3_v3v3(splineVec, poseTail, poseHead);
2070         scaleFac = len_v3(splineVec) / pchan->bone->length;
2071
2072         /* step 3: compute the shortest rotation needed to map from the bone rotation to the current axis
2073          *      - this uses the same method as is used for the Damped Track Constraint (see the code there for details)
2074          */
2075         {
2076                 float dmat[3][3], rmat[3][3], tmat[3][3];
2077                 float raxis[3], rangle;
2078
2079                 /* compute the raw rotation matrix from the bone's current matrix by extracting only the
2080                  * orientation-relevant axes, and normalising them
2081                  */
2082                 copy_v3_v3(rmat[0], pchan->pose_mat[0]);
2083                 copy_v3_v3(rmat[1], pchan->pose_mat[1]);
2084                 copy_v3_v3(rmat[2], pchan->pose_mat[2]);
2085                 normalize_m3(rmat);
2086
2087                 /* also, normalise the orientation imposed by the bone, now that we've extracted the scale factor */
2088                 normalize_v3(splineVec);
2089
2090                 /* calculate smallest axis-angle rotation necessary for getting from the
2091                  * current orientation of the bone, to the spline-imposed direction
2092                  */
2093                 cross_v3_v3v3(raxis, rmat[1], splineVec);
2094
2095                 rangle = dot_v3v3(rmat[1], splineVec);
2096                 rangle = acos(MAX2(-1.0f, MIN2(1.0f, rangle)));
2097
2098                 /* multiply the magnitude of the angle by the influence of the constraint to
2099                  * control the influence of the SplineIK effect
2100                  */
2101                 rangle *= tree->con->enforce;
2102
2103                 /* construct rotation matrix from the axis-angle rotation found above
2104                  *      - this call takes care to make sure that the axis provided is a unit vector first
2105                  */
2106                 axis_angle_to_mat3(dmat, raxis, rangle);
2107
2108                 /* combine these rotations so that the y-axis of the bone is now aligned as the spline dictates,
2109                  * while still maintaining roll control from the existing bone animation
2110                  */
2111                 mul_m3_m3m3(tmat, dmat, rmat); /* m1, m3, m2 */
2112                 normalize_m3(tmat); /* attempt to reduce shearing, though I doubt this'll really help too much now... */
2113                 copy_m4_m3(poseMat, tmat);
2114         }
2115
2116         /* step 4: set the scaling factors for the axes */
2117         {
2118                 /* only multiply the y-axis by the scaling factor to get nice volume-preservation */
2119                 mul_v3_fl(poseMat[1], scaleFac);
2120
2121                 /* set the scaling factors of the x and z axes from... */
2122                 switch (ikData->xzScaleMode) {
2123                         case CONSTRAINT_SPLINEIK_XZS_ORIGINAL:
2124                         {
2125                                 /* original scales get used */
2126                                 float scale;
2127
2128                                 /* x-axis scale */
2129                                 scale = len_v3(pchan->pose_mat[0]);
2130                                 mul_v3_fl(poseMat[0], scale);
2131                                 /* z-axis scale */
2132                                 scale = len_v3(pchan->pose_mat[2]);
2133                                 mul_v3_fl(poseMat[2], scale);
2134                         }
2135                                 break;
2136                         case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC:
2137                         {
2138                                 /* 'volume preservation' */
2139                                 float scale;
2140
2141                                 /* calculate volume preservation factor which is
2142                                  * basically the inverse of the y-scaling factor
2143                                  */
2144                                 if (fabsf(scaleFac) != 0.0f) {
2145                                         scale = 1.0f / fabsf(scaleFac);
2146
2147                                         /* we need to clamp this within sensible values */
2148                                         /* NOTE: these should be fine for now, but should get sanitised in future */
2149                                         CLAMP(scale, 0.0001f, 100000.0f);
2150                                 }
2151                                 else
2152                                         scale = 1.0f;
2153
2154                                 /* apply the scaling */
2155                                 mul_v3_fl(poseMat[0], scale);
2156                                 mul_v3_fl(poseMat[2], scale);
2157                         }
2158                                 break;
2159                 }
2160
2161                 /* finally, multiply the x and z scaling by the radius of the curve too,
2162                  * to allow automatic scales to get tweaked still
2163                  */
2164                 if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
2165                         mul_v3_fl(poseMat[0], radius);
2166                         mul_v3_fl(poseMat[2], radius);
2167                 }
2168         }
2169
2170         /* step 5: set the location of the bone in the matrix */
2171         if (ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
2172                 /* when the 'no-root' option is affected, the chain can retain
2173                  * the shape but be moved elsewhere
2174                  */
2175                 copy_v3_v3(poseHead, pchan->pose_head);
2176         }
2177         else if (tree->con->enforce < 1.0f) {
2178                 /* when the influence is too low
2179                  *      - blend the positions for the 'root' bone
2180                  *      - stick to the parent for any other
2181                  */
2182                 if (pchan->parent) {
2183                         copy_v3_v3(poseHead, pchan->pose_head);
2184                 }
2185                 else {
2186                         /* FIXME: this introduces popping artifacts when we reach 0.0 */
2187                         interp_v3_v3v3(poseHead, pchan->pose_head, poseHead, tree->con->enforce);
2188                 }
2189         }
2190         copy_v3_v3(poseMat[3], poseHead);
2191
2192         /* finally, store the new transform */
2193         copy_m4_m4(pchan->pose_mat, poseMat);
2194         copy_v3_v3(pchan->pose_head, poseHead);
2195
2196         /* recalculate tail, as it's now outdated after the head gets adjusted above! */
2197         where_is_pose_bone_tail(pchan);
2198
2199         /* done! */
2200         pchan->flag |= POSE_DONE;
2201 }
2202
2203 /* Evaluate the chain starting from the nominated bone */
2204 static void splineik_execute_tree(Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
2205 {
2206         tSplineIK_Tree *tree;
2207
2208         /* for each pose-tree, execute it if it is spline, otherwise just free it */
2209         while ((tree = pchan_root->siktree.first) != NULL) {
2210                 int i;
2211
2212                 /* walk over each bone in the chain, calculating the effects of spline IK
2213                  *     - the chain is traversed in the opposite order to storage order (i.e. parent to children)
2214                  *       so that dependencies are correct
2215                  */
2216                 for (i = tree->chainlen-1; i >= 0; i--) {
2217                         bPoseChannel *pchan = tree->chain[i];
2218                         splineik_evaluate_bone(tree, scene, ob, pchan, i, ctime);
2219                 }
2220
2221                 /* free the tree info specific to SplineIK trees now */
2222                 if (tree->chain)
2223                         MEM_freeN(tree->chain);
2224                 if (tree->free_points)
2225                         MEM_freeN(tree->points);
2226
2227                 /* free this tree */
2228                 BLI_freelinkN(&pchan_root->siktree, tree);
2229         }
2230 }
2231
2232 /* ********************** THE POSE SOLVER ******************* */
2233
2234 /* loc/rot/size to given mat4 */
2235 void pchan_to_mat4(bPoseChannel *pchan, float chan_mat[4][4])
2236 {
2237         float smat[3][3];
2238         float rmat[3][3];
2239         float tmat[3][3];
2240
2241         /* get scaling matrix */
2242         size_to_mat3(smat, pchan->size);
2243
2244         /* rotations may either be quats, eulers (with various rotation orders), or axis-angle */
2245         if (pchan->rotmode > 0) {
2246                 /* euler rotations (will cause gimble lock, but this can be alleviated a bit with rotation orders) */
2247                 eulO_to_mat3(rmat, pchan->eul, pchan->rotmode);
2248         }
2249         else if (pchan->rotmode == ROT_MODE_AXISANGLE) {
2250                 /* axis-angle - not really that great for 3D-changing orientations */
2251                 axis_angle_to_mat3(rmat, pchan->rotAxis, pchan->rotAngle);
2252         }
2253         else {
2254                 /* quats are normalised before use to eliminate scaling issues */
2255                 float quat[4];
2256
2257                 /* NOTE: we now don't normalise the stored values anymore, since this was kindof evil in some cases
2258                  * but if this proves to be too problematic, switch back to the old system of operating directly on
2259                  * the stored copy
2260                  */
2261                 normalize_qt_qt(quat, pchan->quat);
2262                 quat_to_mat3(rmat, quat);
2263         }
2264
2265         /* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */
2266         mul_m3_m3m3(tmat, rmat, smat);
2267         copy_m4_m3(chan_mat, tmat);
2268
2269         /* prevent action channels breaking chains */
2270         /* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
2271         if ((pchan->bone == NULL) || !(pchan->bone->flag & BONE_CONNECTED)) {
2272                 copy_v3_v3(chan_mat[3], pchan->loc);
2273         }
2274 }
2275
2276 /* loc/rot/size to mat4 */
2277 /* used in constraint.c too */
2278 void pchan_calc_mat(bPoseChannel *pchan)
2279 {
2280         /* this is just a wrapper around the copy of this function which calculates the matrix
2281          * and stores the result in any given channel
2282          */
2283         pchan_to_mat4(pchan, pchan->chan_mat);
2284 }
2285
2286 #if 0 /* XXX OLD ANIMSYS, NLASTRIPS ARE NO LONGER USED */
2287
2288 /* NLA strip modifiers */
2289 static void do_strip_modifiers(Scene *scene, Object *armob, Bone *bone, bPoseChannel *pchan)
2290 {
2291         bActionModifier *amod;
2292         bActionStrip *strip, *strip2;
2293         float scene_cfra= (float)scene->r.cfra;
2294         int do_modif;
2295
2296         for (strip=armob->nlastrips.first; strip; strip=strip->next) {
2297                 do_modif=0;
2298
2299                 if (scene_cfra>=strip->start && scene_cfra<=strip->end)
2300                         do_modif=1;
2301
2302                 if ((scene_cfra > strip->end) && (strip->flag & ACTSTRIP_HOLDLASTFRAME)) {
2303                         do_modif=1;
2304
2305                         /* if there are any other strips active, ignore modifiers for this strip -
2306                          * 'hold' option should only hold action modifiers if there are
2307                          * no other active strips */
2308                         for (strip2=strip->next; strip2; strip2=strip2->next) {
2309                                 if (strip2 == strip) continue;
2310
2311                                 if (scene_cfra>=strip2->start && scene_cfra<=strip2->end) {
2312                                         if (!(strip2->flag & ACTSTRIP_MUTE))
2313                                                 do_modif=0;
2314                                 }
2315                         }
2316
2317                         /* if there are any later, activated, strips with 'hold' set, they take precedence,
2318                          * so ignore modifiers for this strip */
2319                         for (strip2=strip->next; strip2; strip2=strip2->next) {
2320                                 if (scene_cfra < strip2->start) continue;
2321                                 if ((strip2->flag & ACTSTRIP_HOLDLASTFRAME) && !(strip2->flag & ACTSTRIP_MUTE)) {
2322                                         do_modif=0;
2323                                 }
2324                         }
2325                 }
2326
2327                 if (do_modif) {
2328                         /* temporal solution to prevent 2 strips accumulating */
2329                         if (scene_cfra==strip->end && strip->next && strip->next->start==scene_cfra)
2330                                 continue;
2331
2332                         for (amod= strip->modifiers.first; amod; amod= amod->next) {
2333                                 switch (amod->type) {
2334                                 case ACTSTRIP_MOD_DEFORM:
2335                                 {
2336                                         /* validate first */
2337                                         if (amod->ob && amod->ob->type==OB_CURVE && amod->channel[0]) {
2338
2339                                                 if ( strcmp(pchan->name, amod->channel)==0 ) {
2340                                                         float mat4[4][4], mat3[3][3];
2341
2342                                                         curve_deform_vector(scene, amod->ob, armob, bone->arm_mat[3], pchan->pose_mat[3], mat3, amod->no_rot_axis);
2343                                                         copy_m4_m4(mat4, pchan->pose_mat);
2344                                                         mul_m4_m3m4(pchan->pose_mat, mat3, mat4);
2345
2346                                                 }
2347                                         }
2348                                 }
2349                                         break;
2350                                 case ACTSTRIP_MOD_NOISE:
2351                                 {
2352                                         if ( strcmp(pchan->name, amod->channel)==0 ) {
2353                                                 float nor[3], loc[3], ofs;
2354                                                 float eul[3], size[3], eulo[3], sizeo[3];
2355
2356                                                 /* calculate turbulance */
2357                                                 ofs = amod->turbul / 200.0f;
2358
2359                                                 /* make a copy of starting conditions */
2360                                                 copy_v3_v3(loc, pchan->pose_mat[3]);
2361                                                 mat4_to_eul( eul,pchan->pose_mat);
2362                                                 mat4_to_size( size,pchan->pose_mat);
2363                                                 copy_v3_v3(eulo, eul);
2364                                                 copy_v3_v3(sizeo, size);
2365
2366                                                 /* apply noise to each set of channels */
2367                                                 if (amod->channels & 4) {
2368                                                         /* for scaling */
2369                                                         nor[0] = BLI_gNoise(amod->noisesize, size[0]+ofs, size[1], size[2], 0, 0) - ofs;
2370                                                         nor[1] = BLI_gNoise(amod->noisesize, size[0], size[1]+ofs, size[2], 0, 0) - ofs;
2371                                                         nor[2] = BLI_gNoise(amod->noisesize, size[0], size[1], size[2]+ofs, 0, 0) - ofs;
2372                                                         add_v3_v3(size, nor);
2373
2374                                                         if (sizeo[0] != 0)
2375                                                                 mul_v3_fl(pchan->pose_mat[0], size[0] / sizeo[0]);
2376                                                         if (sizeo[1] != 0)
2377                                                                 mul_v3_fl(pchan->pose_mat[1], size[1] / sizeo[1]);
2378                                                         if (sizeo[2] != 0)
2379                                                                 mul_v3_fl(pchan->pose_mat[2], size[2] / sizeo[2]);
2380                                                 }
2381                                                 if (amod->channels & 2) {
2382                                                         /* for rotation */
2383                                                         nor[0] = BLI_gNoise(amod->noisesize, eul[0]+ofs, eul[1], eul[2], 0, 0) - ofs;
2384                                                         nor[1] = BLI_gNoise(amod->noisesize, eul[0], eul[1]+ofs, eul[2], 0, 0) - ofs;
2385                                                         nor[2] = BLI_gNoise(amod->noisesize, eul[0], eul[1], eul[2]+ofs, 0, 0) - ofs;
2386
2387                                                         compatible_eul(nor, eulo);
2388                                                         add_v3_v3(eul, nor);
2389                                                         compatible_eul(eul, eulo);
2390
2391                                                         loc_eul_size_to_mat4(pchan->pose_mat, loc, eul, size);
2392                                                 }
2393                                                 if (amod->channels & 1) {
2394                                                         /* for location */
2395                                                         nor[0] = BLI_gNoise(amod->noisesize, loc[0]+ofs, loc[1], loc[2], 0, 0) - ofs;
2396                                                         nor[1] = BLI_gNoise(amod->noisesize, loc[0], loc[1]+ofs, loc[2], 0, 0) - ofs;
2397                                                         nor[2] = BLI_gNoise(amod->noisesize, loc[0], loc[1], loc[2]+ofs, 0, 0) - ofs;
2398
2399                                                         add_v3_v3v3(pchan->pose_mat[3], loc, nor);
2400                                                 }
2401                                         }
2402                                 }
2403                                         break;
2404                                 }
2405                         }
2406                 }
2407         }
2408 }
2409
2410 #endif
2411
2412 /* calculate tail of posechannel */
2413 void where_is_pose_bone_tail(bPoseChannel *pchan)
2414 {
2415         float vec[3];
2416
2417         copy_v3_v3(vec, pchan->pose_mat[1]);
2418         mul_v3_fl(vec, pchan->bone->length);
2419         add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec);
2420 }
2421
2422 /* The main armature solver, does all constraints excluding IK */
2423 /* pchan is validated, as having bone and parent pointer
2424  * 'do_extra': when zero skips loc/size/rot, constraints and strip modifiers.
2425  */
2426 void where_is_pose_bone(Scene *scene, Object *ob, bPoseChannel *pchan, float ctime, int do_extra)
2427 {
2428         /* This gives a chan_mat with actions (ipos) results. */
2429         if (do_extra)
2430                 pchan_calc_mat(pchan);
2431         else
2432                 unit_m4(pchan->chan_mat);
2433
2434         /* Construct the posemat based on PoseChannels, that we do before applying constraints. */
2435         /* pose_mat(b) = pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
2436         armature_mat_bone_to_pose(pchan, pchan->chan_mat, pchan->pose_mat);
2437 #if 0 /* XXX Old code, will remove this later. */
2438         {
2439                 float rotscale_mat[4][4], loc_mat[4][4];
2440                 pchan_to_pose_mat(pchan, rotscale_mat, loc_mat);
2441                 /* Rotation and scale. */
2442                 mult_m4_m4m4(pchan->pose_mat, rotscale_mat, pchan->chan_mat);
2443                 /* Location. */
2444                 mul_v3_m4v3(pchan->pose_mat[3], loc_mat, pchan->chan_mat[3]);
2445         }
2446 #endif
2447
2448         /* Only rootbones get the cyclic offset (unless user doesn't want that). */
2449         /* XXX That could be a problem for snapping and other "reverse transform" features... */
2450         if (!pchan->parent) {
2451                 if ((pchan->bone->flag & BONE_NO_CYCLICOFFSET) == 0)
2452                         add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset);
2453         }
2454
2455         if (do_extra) {
2456 #if 0   /* XXX OLD ANIMSYS, NLASTRIPS ARE NO LONGER USED */
2457                 /* do NLA strip modifiers - i.e. curve follow */
2458                 do_strip_modifiers(scene, ob, bone, pchan);
2459 #endif
2460
2461                 /* Do constraints */
2462                 if (pchan->constraints.first) {
2463                         bConstraintOb *cob;
2464                         float vec[3];
2465
2466                         /* make a copy of location of PoseChannel for later */
2467                         copy_v3_v3(vec, pchan->pose_mat[3]);
2468
2469                         /* prepare PoseChannel for Constraint solving
2470                          * - makes a copy of matrix, and creates temporary struct to use
2471                          */
2472                         cob = constraints_make_evalob(scene, ob, pchan, CONSTRAINT_OBTYPE_BONE);
2473
2474                         /* Solve PoseChannel's Constraints */
2475                         solve_constraints(&pchan->constraints, cob, ctime);     /* ctime doesnt alter objects */
2476
2477                         /* cleanup after Constraint Solving
2478                          * - applies matrix back to pchan, and frees temporary struct used
2479                          */
2480                         constraints_clear_evalob(cob);
2481
2482                         /* prevent constraints breaking a chain */
2483                         if (pchan->bone->flag & BONE_CONNECTED) {
2484                                 copy_v3_v3(pchan->pose_mat[3], vec);
2485                         }
2486                 }
2487         }
2488
2489         /* calculate head */
2490         copy_v3_v3(pchan->pose_head, pchan->pose_mat[3]);
2491         /* calculate tail */
2492         where_is_pose_bone_tail(pchan);
2493 }
2494
2495 /* This only reads anim data from channels, and writes to channels */
2496 /* This is the only function adding poses */
2497 void where_is_pose (Scene *scene, Object *ob)
2498 {
2499         bArmature *arm;
2500         Bone *bone;
2501         bPoseChannel *pchan;
2502         float imat[4][4];
2503         float ctime;
2504
2505         if (ob->type != OB_ARMATURE)
2506                 return;
2507         arm = ob->data;
2508
2509         if (ELEM(NULL, arm, scene))
2510                 return;
2511         if ((ob->pose == NULL) || (ob->pose->flag & POSE_RECALC))
2512                 armature_rebuild_pose(ob, arm);
2513
2514         ctime = BKE_curframe(scene); /* not accurate... */
2515
2516         /* In editmode or restposition we read the data from the bones */
2517         if (arm->edbo || (arm->flag & ARM_RESTPOS)) {
2518                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2519                         bone = pchan->bone;
2520                         if (bone) {
2521                                 copy_m4_m4(pchan->pose_mat, bone->arm_mat);
2522                                 copy_v3_v3(pchan->pose_head, bone->arm_head);
2523                                 copy_v3_v3(pchan->pose_tail, bone->arm_tail);
2524                         }
2525                 }
2526         }
2527         else {
2528                 invert_m4_m4(ob->imat, ob->obmat); /* imat is needed */
2529
2530                 /* 1. clear flags */
2531                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2532                         pchan->flag &= ~(POSE_DONE|POSE_CHAIN|POSE_IKTREE|POSE_IKSPLINE);
2533                 }
2534
2535                 /* 2a. construct the IK tree (standard IK) */
2536                 BIK_initialize_tree(scene, ob, ctime);
2537
2538                 /* 2b. construct the Spline IK trees
2539                  *  - this is not integrated as an IK plugin, since it should be able
2540                  *        to function in conjunction with standard IK
2541                  */
2542                 splineik_init_tree(scene, ob, ctime);
2543
2544                 /* 3. the main loop, channels are already hierarchical sorted from root to children */
2545                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2546                         /* 4a. if we find an IK root, we handle it separated */
2547                         if (pchan->flag & POSE_IKTREE) {
2548                                 BIK_execute_tree(scene, ob, pchan, ctime);
2549                         }
2550                         /* 4b. if we find a Spline IK root, we handle it separated too */
2551                         else if (pchan->flag & POSE_IKSPLINE) {
2552                                 splineik_execute_tree(scene, ob, pchan, ctime);
2553                         }
2554                         /* 5. otherwise just call the normal solver */
2555                         else if (!(pchan->flag & POSE_DONE)) {
2556                                 where_is_pose_bone(scene, ob, pchan, ctime, 1);
2557                         }
2558                 }
2559                 /* 6. release the IK tree */
2560                 BIK_release_tree(scene, ob, ctime);
2561         }
2562
2563         /* calculating deform matrices */
2564         for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2565                 if (pchan->bone) {
2566                         invert_m4_m4(imat, pchan->bone->arm_mat);
2567                         mult_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat);
2568                 }
2569         }
2570 }
2571
2572
2573 /* Returns total selected vgroups,
2574  * wpi.defbase_sel is assumed malloc'd, all values are set */
2575 int get_selected_defgroups(Object *ob, char *dg_selection, int defbase_tot)
2576 {
2577         bDeformGroup *defgroup;
2578         unsigned int i;
2579         Object *armob = object_pose_armature_get(ob);
2580         int dg_flags_sel_tot = 0;
2581
2582         if (armob) {
2583                 bPose *pose = armob->pose;
2584                 for (i = 0, defgroup = ob->defbase.first; i < defbase_tot && defgroup; defgroup = defgroup->next, i++) {
2585                         bPoseChannel *pchan = get_pose_channel(pose, defgroup->name);
2586                         if (pchan && (pchan->bone->flag & BONE_SELECTED)) {
2587                                 dg_selection[i] = TRUE;
2588                                 dg_flags_sel_tot++;
2589                         }
2590                         else {
2591                                 dg_selection[i] = FALSE;
2592                         }
2593                 }
2594         }
2595         else {
2596                 memset(dg_selection, FALSE, sizeof(char) * defbase_tot);
2597         }
2598
2599         return dg_flags_sel_tot;
2600 }