3 * ***** BEGIN GPL LICENSE BLOCK *****
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
20 * All rights reserved.
22 * This is a new part of Blender.
24 * Contributor(s): Joseph Gilbert, Campbell Barton
26 * ***** END GPL LICENSE BLOCK *****
29 /** \file blender/python/mathutils/mathutils_geometry.c
30 * \ingroup pymathutils
36 #include "mathutils_geometry.h"
38 /* Used for PolyFill */
39 #ifndef MATH_STANDALONE /* define when building outside blender */
40 # include "MEM_guardedalloc.h"
41 # include "BLI_blenlib.h"
42 # include "BLI_boxpack2d.h"
43 # include "BKE_displist.h"
44 # include "BKE_curve.h"
48 #include "BLI_utildefines.h"
50 #define SWAP_FLOAT(a, b, tmp) tmp=a; a=b; b=tmp
52 /*-------------------------DOC STRINGS ---------------------------*/
53 PyDoc_STRVAR(M_Geometry_doc,
54 "The Blender geometry module"
57 //---------------------------------INTERSECTION FUNCTIONS--------------------
59 PyDoc_STRVAR(M_Geometry_intersect_ray_tri_doc,
60 ".. function:: intersect_ray_tri(v1, v2, v3, ray, orig, clip=True)\n"
62 " Returns the intersection between a ray and a triangle, if possible, returns None otherwise.\n"
65 " :type v1: :class:`mathutils.Vector`\n"
67 " :type v2: :class:`mathutils.Vector`\n"
69 " :type v3: :class:`mathutils.Vector`\n"
70 " :arg ray: Direction of the projection\n"
71 " :type ray: :class:`mathutils.Vector`\n"
72 " :arg orig: Origin\n"
73 " :type orig: :class:`mathutils.Vector`\n"
74 " :arg clip: When False, don't restrict the intersection to the area of the triangle, use the infinite plane defined by the triangle.\n"
75 " :type clip: boolean\n"
76 " :return: The point of intersection or None if no intersection is found\n"
77 " :rtype: :class:`mathutils.Vector` or None\n"
79 static PyObject *M_Geometry_intersect_ray_tri(PyObject *UNUSED(self), PyObject* args)
81 VectorObject *ray, *ray_off, *vec1, *vec2, *vec3;
82 float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
83 float det, inv_det, u, v, t;
86 if (!PyArg_ParseTuple(args,
87 "O!O!O!O!O!|i:intersect_ray_tri",
92 &vector_Type, &ray_off, &clip))
96 if (vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || ray->size != 3 || ray_off->size != 3) {
97 PyErr_SetString(PyExc_ValueError,
98 "only 3D vectors for all parameters");
102 if ( BaseMath_ReadCallback(vec1) == -1 ||
103 BaseMath_ReadCallback(vec2) == -1 ||
104 BaseMath_ReadCallback(vec3) == -1 ||
105 BaseMath_ReadCallback(ray) == -1 ||
106 BaseMath_ReadCallback(ray_off) == -1)
111 copy_v3_v3(v1, vec1->vec);
112 copy_v3_v3(v2, vec2->vec);
113 copy_v3_v3(v3, vec3->vec);
115 copy_v3_v3(dir, ray->vec);
118 copy_v3_v3(orig, ray_off->vec);
120 /* find vectors for two edges sharing v1 */
121 sub_v3_v3v3(e1, v2, v1);
122 sub_v3_v3v3(e2, v3, v1);
124 /* begin calculating determinant - also used to calculated U parameter */
125 cross_v3_v3v3(pvec, dir, e2);
127 /* if determinant is near zero, ray lies in plane of triangle */
128 det= dot_v3v3(e1, pvec);
130 if (det > -0.000001f && det < 0.000001f) {
136 /* calculate distance from v1 to ray origin */
137 sub_v3_v3v3(tvec, orig, v1);
139 /* calculate U parameter and test bounds */
140 u= dot_v3v3(tvec, pvec) * inv_det;
141 if (clip && (u < 0.0f || u > 1.0f)) {
145 /* prepare to test the V parameter */
146 cross_v3_v3v3(qvec, tvec, e1);
148 /* calculate V parameter and test bounds */
149 v= dot_v3v3(dir, qvec) * inv_det;
151 if (clip && (v < 0.0f || u + v > 1.0f)) {
155 /* calculate t, ray intersects triangle */
156 t= dot_v3v3(e2, qvec) * inv_det;
159 add_v3_v3v3(pvec, orig, dir);
161 return Vector_CreatePyObject(pvec, 3, Py_NEW, NULL);
164 /* Line-Line intersection using algorithm from mathworld.wolfram.com */
166 PyDoc_STRVAR(M_Geometry_intersect_line_line_doc,
167 ".. function:: intersect_line_line(v1, v2, v3, v4)\n"
169 " Returns a tuple with the points on each line respectively closest to the other.\n"
171 " :arg v1: First point of the first line\n"
172 " :type v1: :class:`mathutils.Vector`\n"
173 " :arg v2: Second point of the first line\n"
174 " :type v2: :class:`mathutils.Vector`\n"
175 " :arg v3: First point of the second line\n"
176 " :type v3: :class:`mathutils.Vector`\n"
177 " :arg v4: Second point of the second line\n"
178 " :type v4: :class:`mathutils.Vector`\n"
179 " :rtype: tuple of :class:`mathutils.Vector`'s\n"
181 static PyObject *M_Geometry_intersect_line_line(PyObject *UNUSED(self), PyObject *args)
184 VectorObject *vec1, *vec2, *vec3, *vec4;
185 float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3];
187 if (!PyArg_ParseTuple(args, "O!O!O!O!:intersect_line_line",
191 &vector_Type, &vec4))
196 if (vec1->size != vec2->size || vec1->size != vec3->size || vec3->size != vec2->size) {
197 PyErr_SetString(PyExc_ValueError,
198 "vectors must be of the same size");
202 if ( BaseMath_ReadCallback(vec1) == -1 ||
203 BaseMath_ReadCallback(vec2) == -1 ||
204 BaseMath_ReadCallback(vec3) == -1 ||
205 BaseMath_ReadCallback(vec4) == -1)
210 if (vec1->size == 3 || vec1->size == 2) {
213 if (vec1->size == 3) {
214 copy_v3_v3(v1, vec1->vec);
215 copy_v3_v3(v2, vec2->vec);
216 copy_v3_v3(v3, vec3->vec);
217 copy_v3_v3(v4, vec4->vec);
237 result= isect_line_line_v3(v1, v2, v3, v4, i1, i2);
244 tuple= PyTuple_New(2);
245 PyTuple_SET_ITEM(tuple, 0, Vector_CreatePyObject(i1, vec1->size, Py_NEW, NULL));
246 PyTuple_SET_ITEM(tuple, 1, Vector_CreatePyObject(i2, vec1->size, Py_NEW, NULL));
251 PyErr_SetString(PyExc_ValueError,
252 "2D/3D vectors only");
260 //----------------------------geometry.normal() -------------------
261 PyDoc_STRVAR(M_Geometry_normal_doc,
262 ".. function:: normal(v1, v2, v3, v4=None)\n"
264 " Returns the normal of the 3D tri or quad.\n"
267 " :type v1: :class:`mathutils.Vector`\n"
269 " :type v2: :class:`mathutils.Vector`\n"
271 " :type v3: :class:`mathutils.Vector`\n"
272 " :arg v4: Point4 (optional)\n"
273 " :type v4: :class:`mathutils.Vector`\n"
274 " :rtype: :class:`mathutils.Vector`\n"
276 static PyObject *M_Geometry_normal(PyObject *UNUSED(self), PyObject* args)
278 VectorObject *vec1, *vec2, *vec3, *vec4;
281 if (PyTuple_GET_SIZE(args) == 3) {
282 if (!PyArg_ParseTuple(args, "O!O!O!:normal",
285 &vector_Type, &vec3))
290 if (vec1->size != vec2->size || vec1->size != vec3->size) {
291 PyErr_SetString(PyExc_ValueError,
292 "vectors must be of the same size");
295 if (vec1->size < 3) {
296 PyErr_SetString(PyExc_ValueError,
297 "2D vectors unsupported");
301 if ( BaseMath_ReadCallback(vec1) == -1 ||
302 BaseMath_ReadCallback(vec2) == -1 ||
303 BaseMath_ReadCallback(vec3) == -1)
308 normal_tri_v3(n, vec1->vec, vec2->vec, vec3->vec);
311 if (!PyArg_ParseTuple(args, "O!O!O!O!:normal",
315 &vector_Type, &vec4))
319 if (vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) {
320 PyErr_SetString(PyExc_ValueError,
321 "vectors must be of the same size");
324 if (vec1->size < 3) {
325 PyErr_SetString(PyExc_ValueError,
326 "2D vectors unsupported");
330 if ( BaseMath_ReadCallback(vec1) == -1 ||
331 BaseMath_ReadCallback(vec2) == -1 ||
332 BaseMath_ReadCallback(vec3) == -1 ||
333 BaseMath_ReadCallback(vec4) == -1)
338 normal_quad_v3(n, vec1->vec, vec2->vec, vec3->vec, vec4->vec);
341 return Vector_CreatePyObject(n, 3, Py_NEW, NULL);
344 //--------------------------------- AREA FUNCTIONS--------------------
346 PyDoc_STRVAR(M_Geometry_area_tri_doc,
347 ".. function:: area_tri(v1, v2, v3)\n"
349 " Returns the area size of the 2D or 3D triangle defined.\n"
352 " :type v1: :class:`mathutils.Vector`\n"
354 " :type v2: :class:`mathutils.Vector`\n"
356 " :type v3: :class:`mathutils.Vector`\n"
359 static PyObject *M_Geometry_area_tri(PyObject *UNUSED(self), PyObject* args)
361 VectorObject *vec1, *vec2, *vec3;
363 if (!PyArg_ParseTuple(args, "O!O!O!:area_tri",
366 &vector_Type, &vec3))
371 if (vec1->size != vec2->size || vec1->size != vec3->size) {
372 PyErr_SetString(PyExc_ValueError,
373 "vectors must be of the same size");
377 if ( BaseMath_ReadCallback(vec1) == -1 ||
378 BaseMath_ReadCallback(vec2) == -1 ||
379 BaseMath_ReadCallback(vec3) == -1)
384 if (vec1->size == 3) {
385 return PyFloat_FromDouble(area_tri_v3(vec1->vec, vec2->vec, vec3->vec));
387 else if (vec1->size == 2) {
388 return PyFloat_FromDouble(area_tri_v2(vec1->vec, vec2->vec, vec3->vec));
391 PyErr_SetString(PyExc_ValueError,
392 "only 2D,3D vectors are supported");
398 PyDoc_STRVAR(M_Geometry_intersect_line_line_2d_doc,
399 ".. function:: intersect_line_line_2d(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n"
401 " Takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None.\n"
403 " :arg lineA_p1: First point of the first line\n"
404 " :type lineA_p1: :class:`mathutils.Vector`\n"
405 " :arg lineA_p2: Second point of the first line\n"
406 " :type lineA_p2: :class:`mathutils.Vector`\n"
407 " :arg lineB_p1: First point of the second line\n"
408 " :type lineB_p1: :class:`mathutils.Vector`\n"
409 " :arg lineB_p2: Second point of the second line\n"
410 " :type lineB_p2: :class:`mathutils.Vector`\n"
411 " :return: The point of intersection or None when not found\n"
412 " :rtype: :class:`mathutils.Vector` or None\n"
414 static PyObject *M_Geometry_intersect_line_line_2d(PyObject *UNUSED(self), PyObject* args)
416 VectorObject *line_a1, *line_a2, *line_b1, *line_b2;
418 if (!PyArg_ParseTuple(args, "O!O!O!O!:intersect_line_line_2d",
419 &vector_Type, &line_a1,
420 &vector_Type, &line_a2,
421 &vector_Type, &line_b1,
422 &vector_Type, &line_b2))
427 if ( BaseMath_ReadCallback(line_a1) == -1 ||
428 BaseMath_ReadCallback(line_a2) == -1 ||
429 BaseMath_ReadCallback(line_b1) == -1 ||
430 BaseMath_ReadCallback(line_b2) == -1)
435 if (isect_seg_seg_v2_point(line_a1->vec, line_a2->vec, line_b1->vec, line_b2->vec, vi) == 1) {
436 return Vector_CreatePyObject(vi, 2, Py_NEW, NULL);
444 PyDoc_STRVAR(M_Geometry_intersect_line_plane_doc,
445 ".. function:: intersect_line_plane(line_a, line_b, plane_co, plane_no, no_flip=False)\n"
447 " Takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None.\n"
449 " :arg line_a: First point of the first line\n"
450 " :type line_a: :class:`mathutils.Vector`\n"
451 " :arg line_b: Second point of the first line\n"
452 " :type line_b: :class:`mathutils.Vector`\n"
453 " :arg plane_co: A point on the plane\n"
454 " :type plane_co: :class:`mathutils.Vector`\n"
455 " :arg plane_no: The direction the plane is facing\n"
456 " :type plane_no: :class:`mathutils.Vector`\n"
457 " :arg no_flip: Always return an intersection on the directon defined bt line_a -> line_b\n"
458 " :type no_flip: :boolean\n"
459 " :return: The point of intersection or None when not found\n"
460 " :rtype: :class:`mathutils.Vector` or None\n"
462 static PyObject *M_Geometry_intersect_line_plane(PyObject *UNUSED(self), PyObject* args)
464 VectorObject *line_a, *line_b, *plane_co, *plane_no;
467 if (!PyArg_ParseTuple(args, "O!O!O!O!|i:intersect_line_plane",
468 &vector_Type, &line_a,
469 &vector_Type, &line_b,
470 &vector_Type, &plane_co,
471 &vector_Type, &plane_no,
477 if ( BaseMath_ReadCallback(line_a) == -1 ||
478 BaseMath_ReadCallback(line_b) == -1 ||
479 BaseMath_ReadCallback(plane_co) == -1 ||
480 BaseMath_ReadCallback(plane_no) == -1)
485 if (ELEM4(2, line_a->size, line_b->size, plane_co->size, plane_no->size)) {
486 PyErr_SetString(PyExc_ValueError,
487 "geometry.intersect_line_plane(...): "
488 " can't use 2D Vectors");
492 if (isect_line_plane_v3(isect, line_a->vec, line_b->vec, plane_co->vec, plane_no->vec, no_flip) == 1) {
493 return Vector_CreatePyObject(isect, 3, Py_NEW, NULL);
500 PyDoc_STRVAR(M_Geometry_intersect_plane_plane_doc,
501 ".. function:: intersect_plane_plane(plane_a_co, plane_a_no, plane_b_co, plane_b_no)\n"
503 " Return the intersection between two planes\n"
505 " :arg plane_a_co: Point on the first plane\n"
506 " :type plane_a_co: :class:`mathutils.Vector`\n"
507 " :arg plane_a_no: Normal of the first plane\n"
508 " :type plane_a_no: :class:`mathutils.Vector`\n"
509 " :arg plane_b_co: Point on the second plane\n"
510 " :type plane_b_co: :class:`mathutils.Vector`\n"
511 " :arg plane_b_no: Normal of the second plane\n"
512 " :type plane_b_no: :class:`mathutils.Vector`\n"
513 " :return: The line of the intersection represented as a point and a vector\n"
514 " :rtype: tuple pair of :class:`mathutils.Vector`\n"
516 static PyObject *M_Geometry_intersect_plane_plane(PyObject *UNUSED(self), PyObject* args)
519 VectorObject *plane_a_co, *plane_a_no, *plane_b_co, *plane_b_no;
524 if (!PyArg_ParseTuple(args, "O!O!O!O!|i:intersect_plane_plane",
525 &vector_Type, &plane_a_co,
526 &vector_Type, &plane_a_no,
527 &vector_Type, &plane_b_co,
528 &vector_Type, &plane_b_no))
533 if ( BaseMath_ReadCallback(plane_a_co) == -1 ||
534 BaseMath_ReadCallback(plane_a_no) == -1 ||
535 BaseMath_ReadCallback(plane_b_co) == -1 ||
536 BaseMath_ReadCallback(plane_b_no) == -1)
541 if (ELEM4(2, plane_a_co->size, plane_a_no->size, plane_b_co->size, plane_b_no->size)) {
542 PyErr_SetString(PyExc_ValueError,
543 "geometry.intersect_plane_plane(...): "
544 " can't use 2D Vectors");
548 isect_plane_plane_v3(isect_co, isect_no,
549 plane_a_co->vec, plane_a_no->vec,
550 plane_b_co->vec, plane_b_no->vec);
552 normalize_v3(isect_no);
555 PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(isect_co, 3, Py_NEW, NULL));
556 PyTuple_SET_ITEM(ret, 1, Vector_CreatePyObject(isect_no, 3, Py_NEW, NULL));
560 PyDoc_STRVAR(M_Geometry_intersect_line_sphere_doc,
561 ".. function:: intersect_line_sphere(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
563 " Takes a lines (as 2 vectors), a sphere as a point and a radius and\n"
564 " returns the intersection\n"
566 " :arg line_a: First point of the first line\n"
567 " :type line_a: :class:`mathutils.Vector`\n"
568 " :arg line_b: Second point of the first line\n"
569 " :type line_b: :class:`mathutils.Vector`\n"
570 " :arg sphere_co: The center of the sphere\n"
571 " :type sphere_co: :class:`mathutils.Vector`\n"
572 " :arg sphere_radius: Radius of the sphere\n"
573 " :type sphere_radius: sphere_radius\n"
574 " :return: The intersection points as a pair of vectors or None when there is no intersection\n"
575 " :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n"
577 static PyObject *M_Geometry_intersect_line_sphere(PyObject *UNUSED(self), PyObject* args)
579 VectorObject *line_a, *line_b, *sphere_co;
586 if (!PyArg_ParseTuple(args, "O!O!O!f|i:intersect_line_sphere",
587 &vector_Type, &line_a,
588 &vector_Type, &line_b,
589 &vector_Type, &sphere_co,
590 &sphere_radius, &clip))
595 if ( BaseMath_ReadCallback(line_a) == -1 ||
596 BaseMath_ReadCallback(line_b) == -1 ||
597 BaseMath_ReadCallback(sphere_co) == -1)
602 if (ELEM3(2, line_a->size, line_b->size, sphere_co->size)) {
603 PyErr_SetString(PyExc_ValueError,
604 "geometry.intersect_line_sphere(...): "
605 " can't use 2D Vectors");
613 PyObject *ret= PyTuple_New(2);
615 switch(isect_line_sphere_v3(line_a->vec, line_b->vec, sphere_co->vec, sphere_radius, isect_a, isect_b)) {
617 if (!(!clip || (((lambda= line_point_factor_v3(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a= FALSE;
621 if (!(!clip || (((lambda= line_point_factor_v3(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a= FALSE;
622 if (!(!clip || (((lambda= line_point_factor_v3(isect_b, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_b= FALSE;
629 if (use_a) { PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(isect_a, 3, Py_NEW, NULL)); }
630 else { PyTuple_SET_ITEM(ret, 0, Py_None); Py_INCREF(Py_None); }
632 if (use_b) { PyTuple_SET_ITEM(ret, 1, Vector_CreatePyObject(isect_b, 3, Py_NEW, NULL)); }
633 else { PyTuple_SET_ITEM(ret, 1, Py_None); Py_INCREF(Py_None); }
639 /* keep in sync with M_Geometry_intersect_line_sphere */
640 PyDoc_STRVAR(M_Geometry_intersect_line_sphere_2d_doc,
641 ".. function:: intersect_line_sphere_2d(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
643 " Takes a lines (as 2 vectors), a sphere as a point and a radius and\n"
644 " returns the intersection\n"
646 " :arg line_a: First point of the first line\n"
647 " :type line_a: :class:`mathutils.Vector`\n"
648 " :arg line_b: Second point of the first line\n"
649 " :type line_b: :class:`mathutils.Vector`\n"
650 " :arg sphere_co: The center of the sphere\n"
651 " :type sphere_co: :class:`mathutils.Vector`\n"
652 " :arg sphere_radius: Radius of the sphere\n"
653 " :type sphere_radius: sphere_radius\n"
654 " :return: The intersection points as a pair of vectors or None when there is no intersection\n"
655 " :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n"
657 static PyObject *M_Geometry_intersect_line_sphere_2d(PyObject *UNUSED(self), PyObject* args)
659 VectorObject *line_a, *line_b, *sphere_co;
666 if (!PyArg_ParseTuple(args, "O!O!O!f|i:intersect_line_sphere_2d",
667 &vector_Type, &line_a,
668 &vector_Type, &line_b,
669 &vector_Type, &sphere_co,
670 &sphere_radius, &clip))
675 if ( BaseMath_ReadCallback(line_a) == -1 ||
676 BaseMath_ReadCallback(line_b) == -1 ||
677 BaseMath_ReadCallback(sphere_co) == -1)
686 PyObject *ret= PyTuple_New(2);
688 switch(isect_line_sphere_v2(line_a->vec, line_b->vec, sphere_co->vec, sphere_radius, isect_a, isect_b)) {
690 if (!(!clip || (((lambda= line_point_factor_v2(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a= FALSE;
694 if (!(!clip || (((lambda= line_point_factor_v2(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a= FALSE;
695 if (!(!clip || (((lambda= line_point_factor_v2(isect_b, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_b= FALSE;
702 if (use_a) { PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(isect_a, 2, Py_NEW, NULL)); }
703 else { PyTuple_SET_ITEM(ret, 0, Py_None); Py_INCREF(Py_None); }
705 if (use_b) { PyTuple_SET_ITEM(ret, 1, Vector_CreatePyObject(isect_b, 2, Py_NEW, NULL)); }
706 else { PyTuple_SET_ITEM(ret, 1, Py_None); Py_INCREF(Py_None); }
712 PyDoc_STRVAR(M_Geometry_intersect_point_line_doc,
713 ".. function:: intersect_point_line(pt, line_p1, line_p2)\n"
715 " Takes a point and a line and returns a tuple with the closest point on the line and its distance from the first point of the line as a percentage of the length of the line.\n"
718 " :type pt: :class:`mathutils.Vector`\n"
719 " :arg line_p1: First point of the line\n"
720 " :type line_p1: :class:`mathutils.Vector`\n"
721 " :arg line_p1: Second point of the line\n"
722 " :type line_p1: :class:`mathutils.Vector`\n"
723 " :rtype: (:class:`mathutils.Vector`, float)\n"
725 static PyObject *M_Geometry_intersect_point_line(PyObject *UNUSED(self), PyObject* args)
727 VectorObject *pt, *line_1, *line_2;
728 float pt_in[3], pt_out[3], l1[3], l2[3];
732 if (!PyArg_ParseTuple(args, "O!O!O!:intersect_point_line",
734 &vector_Type, &line_1,
735 &vector_Type, &line_2))
740 if ( BaseMath_ReadCallback(pt) == -1 ||
741 BaseMath_ReadCallback(line_1) == -1 ||
742 BaseMath_ReadCallback(line_2) == -1)
747 /* accept 2d verts */
748 if (pt->size==3) { copy_v3_v3(pt_in, pt->vec);}
749 else { pt_in[2]=0.0; copy_v2_v2(pt_in, pt->vec); }
751 if (line_1->size==3) { copy_v3_v3(l1, line_1->vec);}
752 else { l1[2]=0.0; copy_v2_v2(l1, line_1->vec); }
754 if (line_2->size==3) { copy_v3_v3(l2, line_2->vec);}
755 else { l2[2]=0.0; copy_v2_v2(l2, line_2->vec); }
757 /* do the calculation */
758 lambda= closest_to_line_v3(pt_out, pt_in, l1, l2);
761 PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(pt_out, 3, Py_NEW, NULL));
762 PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(lambda));
766 PyDoc_STRVAR(M_Geometry_intersect_point_tri_2d_doc,
767 ".. function:: intersect_point_tri_2d(pt, tri_p1, tri_p2, tri_p3)\n"
769 " Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n"
772 " :type v1: :class:`mathutils.Vector`\n"
773 " :arg tri_p1: First point of the triangle\n"
774 " :type tri_p1: :class:`mathutils.Vector`\n"
775 " :arg tri_p2: Second point of the triangle\n"
776 " :type tri_p2: :class:`mathutils.Vector`\n"
777 " :arg tri_p3: Third point of the triangle\n"
778 " :type tri_p3: :class:`mathutils.Vector`\n"
781 static PyObject *M_Geometry_intersect_point_tri_2d(PyObject *UNUSED(self), PyObject* args)
783 VectorObject *pt_vec, *tri_p1, *tri_p2, *tri_p3;
785 if (!PyArg_ParseTuple(args, "O!O!O!O!:intersect_point_tri_2d",
786 &vector_Type, &pt_vec,
787 &vector_Type, &tri_p1,
788 &vector_Type, &tri_p2,
789 &vector_Type, &tri_p3))
794 if ( BaseMath_ReadCallback(pt_vec) == -1 ||
795 BaseMath_ReadCallback(tri_p1) == -1 ||
796 BaseMath_ReadCallback(tri_p2) == -1 ||
797 BaseMath_ReadCallback(tri_p3) == -1)
802 return PyLong_FromLong(isect_point_tri_v2(pt_vec->vec, tri_p1->vec, tri_p2->vec, tri_p3->vec));
805 PyDoc_STRVAR(M_Geometry_intersect_point_quad_2d_doc,
806 ".. function:: intersect_point_quad_2d(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n"
808 " Takes 5 vectors (using only the x and y coordinates): one is the point and the next 4 define the quad, \n"
809 " only the x and y are used from the vectors. Returns 1 if the point is within the quad, otherwise 0.\n"
812 " :type pt: :class:`mathutils.Vector`\n"
813 " :arg quad_p1: First point of the quad\n"
814 " :type quad_p1: :class:`mathutils.Vector`\n"
815 " :arg quad_p2: Second point of the quad\n"
816 " :type quad_p2: :class:`mathutils.Vector`\n"
817 " :arg quad_p3: Third point of the quad\n"
818 " :type quad_p3: :class:`mathutils.Vector`\n"
819 " :arg quad_p4: Forth point of the quad\n"
820 " :type quad_p4: :class:`mathutils.Vector`\n"
823 static PyObject *M_Geometry_intersect_point_quad_2d(PyObject *UNUSED(self), PyObject* args)
825 VectorObject *pt_vec, *quad_p1, *quad_p2, *quad_p3, *quad_p4;
827 if (!PyArg_ParseTuple(args, "O!O!O!O!O!:intersect_point_quad_2d",
828 &vector_Type, &pt_vec,
829 &vector_Type, &quad_p1,
830 &vector_Type, &quad_p2,
831 &vector_Type, &quad_p3,
832 &vector_Type, &quad_p4))
837 if ( BaseMath_ReadCallback(pt_vec) == -1 ||
838 BaseMath_ReadCallback(quad_p1) == -1 ||
839 BaseMath_ReadCallback(quad_p2) == -1 ||
840 BaseMath_ReadCallback(quad_p3) == -1 ||
841 BaseMath_ReadCallback(quad_p4) == -1)
846 return PyLong_FromLong(isect_point_quad_v2(pt_vec->vec, quad_p1->vec, quad_p2->vec, quad_p3->vec, quad_p4->vec));
849 PyDoc_STRVAR(M_Geometry_distance_point_to_plane_doc,
850 ".. function:: distance_point_to_plane(pt, plane_co, plane_no)\n"
852 " Returns the signed distance between a point and a plane "
853 " (negative when below the normal).\n"
856 " :type pt: :class:`mathutils.Vector`\n"
857 " :arg plane_co: First point of the quad\n"
858 " :type plane_co: :class:`mathutils.Vector`\n"
859 " :arg plane_no: Second point of the quad\n"
860 " :type plane_no: :class:`mathutils.Vector`\n"
863 static PyObject *M_Geometry_distance_point_to_plane(PyObject *UNUSED(self), PyObject* args)
865 VectorObject *pt, *plene_co, *plane_no;
867 if (!PyArg_ParseTuple(args, "O!O!O!:distance_point_to_plane",
869 &vector_Type, &plene_co,
870 &vector_Type, &plane_no))
875 if ( BaseMath_ReadCallback(pt) == -1 ||
876 BaseMath_ReadCallback(plene_co) == -1 ||
877 BaseMath_ReadCallback(plane_no) == -1)
882 return PyFloat_FromDouble(dist_to_plane_v3(pt->vec, plene_co->vec, plane_no->vec));
885 PyDoc_STRVAR(M_Geometry_barycentric_transform_doc,
886 ".. function:: barycentric_transform(point, tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)\n"
888 " Return a transformed point, the transformation is defined by 2 triangles.\n"
890 " :arg point: The point to transform.\n"
891 " :type point: :class:`mathutils.Vector`\n"
892 " :arg tri_a1: source triangle vertex.\n"
893 " :type tri_a1: :class:`mathutils.Vector`\n"
894 " :arg tri_a2: source triangle vertex.\n"
895 " :type tri_a2: :class:`mathutils.Vector`\n"
896 " :arg tri_a3: source triangle vertex.\n"
897 " :type tri_a3: :class:`mathutils.Vector`\n"
898 " :arg tri_a1: target triangle vertex.\n"
899 " :type tri_a1: :class:`mathutils.Vector`\n"
900 " :arg tri_a2: target triangle vertex.\n"
901 " :type tri_a2: :class:`mathutils.Vector`\n"
902 " :arg tri_a3: target triangle vertex.\n"
903 " :type tri_a3: :class:`mathutils.Vector`\n"
904 " :return: The transformed point\n"
905 " :rtype: :class:`mathutils.Vector`'s\n"
907 static PyObject *M_Geometry_barycentric_transform(PyObject *UNUSED(self), PyObject *args)
909 VectorObject *vec_pt;
910 VectorObject *vec_t1_tar, *vec_t2_tar, *vec_t3_tar;
911 VectorObject *vec_t1_src, *vec_t2_src, *vec_t3_src;
914 if (!PyArg_ParseTuple(args, "O!O!O!O!O!O!O!:barycentric_transform",
915 &vector_Type, &vec_pt,
916 &vector_Type, &vec_t1_src,
917 &vector_Type, &vec_t2_src,
918 &vector_Type, &vec_t3_src,
919 &vector_Type, &vec_t1_tar,
920 &vector_Type, &vec_t2_tar,
921 &vector_Type, &vec_t3_tar))
926 if ( vec_pt->size != 3 ||
927 vec_t1_src->size != 3 ||
928 vec_t2_src->size != 3 ||
929 vec_t3_src->size != 3 ||
930 vec_t1_tar->size != 3 ||
931 vec_t2_tar->size != 3 ||
932 vec_t3_tar->size != 3)
934 PyErr_SetString(PyExc_ValueError,
935 "One of more of the vector arguments wasn't a 3D vector");
939 barycentric_transform(vec, vec_pt->vec,
940 vec_t1_tar->vec, vec_t2_tar->vec, vec_t3_tar->vec,
941 vec_t1_src->vec, vec_t2_src->vec, vec_t3_src->vec);
943 return Vector_CreatePyObject(vec, 3, Py_NEW, NULL);
946 #ifndef MATH_STANDALONE
948 PyDoc_STRVAR(M_Geometry_interpolate_bezier_doc,
949 ".. function:: interpolate_bezier(knot1, handle1, handle2, knot2, resolution)\n"
951 " Interpolate a bezier spline segment.\n"
953 " :arg knot1: First bezier spline point.\n"
954 " :type knot1: :class:`mathutils.Vector`\n"
955 " :arg handle1: First bezier spline handle.\n"
956 " :type handle1: :class:`mathutils.Vector`\n"
957 " :arg handle2: Second bezier spline handle.\n"
958 " :type handle2: :class:`mathutils.Vector`\n"
959 " :arg knot2: Second bezier spline point.\n"
960 " :type knot2: :class:`mathutils.Vector`\n"
961 " :arg resolution: Number of points to return.\n"
962 " :type resolution: int\n"
963 " :return: The interpolated points\n"
964 " :rtype: list of :class:`mathutils.Vector`'s\n"
966 static PyObject *M_Geometry_interpolate_bezier(PyObject *UNUSED(self), PyObject* args)
968 VectorObject *vec_k1, *vec_h1, *vec_k2, *vec_h2;
972 float *coord_array, *fp;
975 float k1[4]= {0.0, 0.0, 0.0, 0.0};
976 float h1[4]= {0.0, 0.0, 0.0, 0.0};
977 float k2[4]= {0.0, 0.0, 0.0, 0.0};
978 float h2[4]= {0.0, 0.0, 0.0, 0.0};
981 if (!PyArg_ParseTuple(args, "O!O!O!O!i:interpolate_bezier",
982 &vector_Type, &vec_k1,
983 &vector_Type, &vec_h1,
984 &vector_Type, &vec_h2,
985 &vector_Type, &vec_k2, &resolu))
991 PyErr_SetString(PyExc_ValueError,
992 "resolution must be 2 or over");
996 if ( BaseMath_ReadCallback(vec_k1) == -1 ||
997 BaseMath_ReadCallback(vec_h1) == -1 ||
998 BaseMath_ReadCallback(vec_k2) == -1 ||
999 BaseMath_ReadCallback(vec_h2) == -1)
1004 dims= MAX4(vec_k1->size, vec_h1->size, vec_h2->size, vec_k2->size);
1006 for (i=0; i < vec_k1->size; i++) k1[i]= vec_k1->vec[i];
1007 for (i=0; i < vec_h1->size; i++) h1[i]= vec_h1->vec[i];
1008 for (i=0; i < vec_k2->size; i++) k2[i]= vec_k2->vec[i];
1009 for (i=0; i < vec_h2->size; i++) h2[i]= vec_h2->vec[i];
1011 coord_array= MEM_callocN(dims * (resolu) * sizeof(float), "interpolate_bezier");
1012 for (i=0; i<dims; i++) {
1013 forward_diff_bezier(k1[i], h1[i], h2[i], k2[i], coord_array+i, resolu-1, sizeof(float)*dims);
1016 list= PyList_New(resolu);
1018 for (i=0; i<resolu; i++, fp= fp+dims) {
1019 PyList_SET_ITEM(list, i, Vector_CreatePyObject(fp, dims, Py_NEW, NULL));
1021 MEM_freeN(coord_array);
1026 PyDoc_STRVAR(M_Geometry_tesselate_polygon_doc,
1027 ".. function:: tesselate_polygon(veclist_list)\n"
1029 " Takes a list of polylines (each point a vector) and returns the point indices for a polyline filled with triangles.\n"
1031 " :arg veclist_list: list of polylines\n"
1034 /* PolyFill function, uses Blenders scanfill to fill multiple poly lines */
1035 static PyObject *M_Geometry_tesselate_polygon(PyObject *UNUSED(self), PyObject *polyLineSeq)
1037 PyObject *tri_list; /*return this list of tri's */
1038 PyObject *polyLine, *polyVec;
1039 int i, len_polylines, len_polypoints, ls_error= 0;
1041 /* display listbase */
1042 ListBase dispbase={NULL, NULL};
1044 float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */
1045 int index, *dl_face, totpoints=0;
1047 if (!PySequence_Check(polyLineSeq)) {
1048 PyErr_SetString(PyExc_TypeError,
1049 "expected a sequence of poly lines");
1053 len_polylines= PySequence_Size(polyLineSeq);
1055 for (i= 0; i < len_polylines; ++i) {
1056 polyLine= PySequence_GetItem(polyLineSeq, i);
1057 if (!PySequence_Check(polyLine)) {
1058 freedisplist(&dispbase);
1059 Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
1060 PyErr_SetString(PyExc_TypeError,
1061 "One or more of the polylines is not a sequence of mathutils.Vector's");
1065 len_polypoints= PySequence_Size(polyLine);
1066 if (len_polypoints>0) { /* dont bother adding edges as polylines */
1068 if (EXPP_check_sequence_consistency(polyLine, &vector_Type) != 1) {
1069 freedisplist(&dispbase);
1070 Py_DECREF(polyLine);
1071 PyErr_SetString(PyExc_TypeError,
1072 "A point in one of the polylines is not a mathutils.Vector type");
1076 dl= MEM_callocN(sizeof(DispList), "poly disp");
1077 BLI_addtail(&dispbase, dl);
1078 dl->type= DL_INDEX3;
1079 dl->nr= len_polypoints;
1081 dl->parts= 1; /* no faces, 1 edge loop */
1082 dl->col= 0; /* no material */
1083 dl->verts= fp= MEM_callocN(sizeof(float)*3*len_polypoints, "dl verts");
1084 dl->index= MEM_callocN(sizeof(int)*3*len_polypoints, "dl index");
1086 for (index= 0; index<len_polypoints; ++index, fp+=3) {
1087 polyVec= PySequence_GetItem(polyLine, index);
1088 if (VectorObject_Check(polyVec)) {
1090 if (BaseMath_ReadCallback((VectorObject *)polyVec) == -1)
1093 fp[0]= ((VectorObject *)polyVec)->vec[0];
1094 fp[1]= ((VectorObject *)polyVec)->vec[1];
1095 if (((VectorObject *)polyVec)->size > 2)
1096 fp[2]= ((VectorObject *)polyVec)->vec[2];
1098 fp[2]= 0.0f; /* if its a 2d vector then set the z to be zero */
1108 Py_DECREF(polyLine);
1112 freedisplist(&dispbase); /* possible some dl was allocated */
1113 PyErr_SetString(PyExc_TypeError,
1114 "A point in one of the polylines "
1115 "is not a mathutils.Vector type");
1118 else if (totpoints) {
1119 /* now make the list to return */
1120 filldisplist(&dispbase, &dispbase, 0);
1122 /* The faces are stored in a new DisplayList
1123 thats added to the head of the listbase */
1126 tri_list= PyList_New(dl->parts);
1128 freedisplist(&dispbase);
1129 PyErr_SetString(PyExc_RuntimeError,
1130 "failed to make a new list");
1136 while (index < dl->parts) {
1137 PyList_SET_ITEM(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2]));
1141 freedisplist(&dispbase);
1144 /* no points, do this so scripts dont barf */
1145 freedisplist(&dispbase); /* possible some dl was allocated */
1146 tri_list= PyList_New(0);
1153 static int boxPack_FromPyObject(PyObject *value, boxPack **boxarray)
1156 PyObject *list_item, *item_1, *item_2;
1160 /* Error checking must already be done */
1161 if (!PyList_Check(value)) {
1162 PyErr_SetString(PyExc_TypeError,
1163 "can only back a list of [x, y, w, h]");
1167 len= PyList_GET_SIZE(value);
1169 (*boxarray)= MEM_mallocN(len*sizeof(boxPack), "boxPack box");
1172 for (i= 0; i < len; i++) {
1173 list_item= PyList_GET_ITEM(value, i);
1174 if (!PyList_Check(list_item) || PyList_GET_SIZE(list_item) < 4) {
1175 MEM_freeN(*boxarray);
1176 PyErr_SetString(PyExc_TypeError,
1177 "can only pack a list of [x, y, w, h]");
1183 item_1= PyList_GET_ITEM(list_item, 2);
1184 item_2= PyList_GET_ITEM(list_item, 3);
1186 box->w= (float)PyFloat_AsDouble(item_1);
1187 box->h= (float)PyFloat_AsDouble(item_2);
1190 /* accounts for error case too and overwrites with own error */
1191 if (box->w < 0.0f || box->h < 0.0f) {
1192 MEM_freeN(*boxarray);
1193 PyErr_SetString(PyExc_TypeError,
1194 "error parsing width and height values from list: "
1195 "[x, y, w, h], not numbers or below zero");
1199 /* verts will be added later */
1204 static void boxPack_ToPyObject(PyObject *value, boxPack **boxarray)
1207 PyObject *list_item;
1210 len= PyList_GET_SIZE(value);
1212 for (i= 0; i < len; i++) {
1214 list_item= PyList_GET_ITEM(value, box->index);
1215 PyList_SET_ITEM(list_item, 0, PyFloat_FromDouble(box->x));
1216 PyList_SET_ITEM(list_item, 1, PyFloat_FromDouble(box->y));
1218 MEM_freeN(*boxarray);
1221 PyDoc_STRVAR(M_Geometry_box_pack_2d_doc,
1222 ".. function:: box_pack_2d(boxes)\n"
1224 " Returns the normal of the 3D tri or quad.\n"
1226 " :arg boxes: list of boxes, each box is a list where the first 4 items are [x, y, width, height, ...] other items are ignored.\n"
1227 " :type boxes: list\n"
1228 " :return: the width and height of the packed bounding box\n"
1229 " :rtype: tuple, pair of floats\n"
1231 static PyObject *M_Geometry_box_pack_2d(PyObject *UNUSED(self), PyObject *boxlist)
1233 float tot_width= 0.0f, tot_height= 0.0f;
1238 if (!PyList_Check(boxlist)) {
1239 PyErr_SetString(PyExc_TypeError,
1240 "expected a list of boxes [[x, y, w, h], ... ]");
1244 len= PyList_GET_SIZE(boxlist);
1246 boxPack *boxarray= NULL;
1247 if (boxPack_FromPyObject(boxlist, &boxarray) == -1) {
1248 return NULL; /* exception set */
1251 /* Non Python function */
1252 boxPack2D(boxarray, len, &tot_width, &tot_height);
1254 boxPack_ToPyObject(boxlist, &boxarray);
1257 ret= PyTuple_New(2);
1258 PyTuple_SET_ITEM(ret, 0, PyFloat_FromDouble(tot_width));
1259 PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(tot_width));
1263 #endif /* MATH_STANDALONE */
1266 static PyMethodDef M_Geometry_methods[]= {
1267 {"intersect_ray_tri", (PyCFunction) M_Geometry_intersect_ray_tri, METH_VARARGS, M_Geometry_intersect_ray_tri_doc},
1268 {"intersect_point_line", (PyCFunction) M_Geometry_intersect_point_line, METH_VARARGS, M_Geometry_intersect_point_line_doc},
1269 {"intersect_point_tri_2d", (PyCFunction) M_Geometry_intersect_point_tri_2d, METH_VARARGS, M_Geometry_intersect_point_tri_2d_doc},
1270 {"intersect_point_quad_2d", (PyCFunction) M_Geometry_intersect_point_quad_2d, METH_VARARGS, M_Geometry_intersect_point_quad_2d_doc},
1271 {"intersect_line_line", (PyCFunction) M_Geometry_intersect_line_line, METH_VARARGS, M_Geometry_intersect_line_line_doc},
1272 {"intersect_line_line_2d", (PyCFunction) M_Geometry_intersect_line_line_2d, METH_VARARGS, M_Geometry_intersect_line_line_2d_doc},
1273 {"intersect_line_plane", (PyCFunction) M_Geometry_intersect_line_plane, METH_VARARGS, M_Geometry_intersect_line_plane_doc},
1274 {"intersect_plane_plane", (PyCFunction) M_Geometry_intersect_plane_plane, METH_VARARGS, M_Geometry_intersect_plane_plane_doc},
1275 {"intersect_line_sphere", (PyCFunction) M_Geometry_intersect_line_sphere, METH_VARARGS, M_Geometry_intersect_line_sphere_doc},
1276 {"intersect_line_sphere_2d", (PyCFunction) M_Geometry_intersect_line_sphere_2d, METH_VARARGS, M_Geometry_intersect_line_sphere_2d_doc},
1277 {"distance_point_to_plane", (PyCFunction) M_Geometry_distance_point_to_plane, METH_VARARGS, M_Geometry_distance_point_to_plane_doc},
1278 {"area_tri", (PyCFunction) M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc},
1279 {"normal", (PyCFunction) M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc},
1280 {"barycentric_transform", (PyCFunction) M_Geometry_barycentric_transform, METH_VARARGS, M_Geometry_barycentric_transform_doc},
1281 #ifndef MATH_STANDALONE
1282 {"interpolate_bezier", (PyCFunction) M_Geometry_interpolate_bezier, METH_VARARGS, M_Geometry_interpolate_bezier_doc},
1283 {"tesselate_polygon", (PyCFunction) M_Geometry_tesselate_polygon, METH_O, M_Geometry_tesselate_polygon_doc},
1284 {"box_pack_2d", (PyCFunction) M_Geometry_box_pack_2d, METH_O, M_Geometry_box_pack_2d_doc},
1286 {NULL, NULL, 0, NULL}
1289 static struct PyModuleDef M_Geometry_module_def= {
1290 PyModuleDef_HEAD_INIT,
1291 "mathutils.geometry", /* m_name */
1292 M_Geometry_doc, /* m_doc */
1294 M_Geometry_methods, /* m_methods */
1295 NULL, /* m_reload */
1296 NULL, /* m_traverse */
1301 /*----------------------------MODULE INIT-------------------------*/
1302 PyMODINIT_FUNC PyInit_mathutils_geometry(void)
1304 PyObject *submodule= PyModule_Create(&M_Geometry_module_def);