Merged changes in the trunk up to revision 51853.
[blender.git] / source / blender / render / intern / source / convertblender.c
1 /*
2  * ***** BEGIN GPL LICENSE BLOCK *****
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17  *
18  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
19  * All rights reserved.
20  *
21  * Contributors: 2004/2005/2006 Blender Foundation, full recode
22  *
23  * ***** END GPL LICENSE BLOCK *****
24  */
25
26 /** \file blender/render/intern/source/convertblender.c
27  *  \ingroup render
28  */
29
30 #include <math.h>
31 #include <stdlib.h>
32 #include <stdio.h>
33 #include <string.h>
34 #include <limits.h>
35
36 #include "MEM_guardedalloc.h"
37
38 #include "BLI_math.h"
39 #include "BLI_blenlib.h"
40 #include "BLI_utildefines.h"
41 #include "BLI_rand.h"
42 #include "BLI_memarena.h"
43 #include "BLI_ghash.h"
44 #include "BLI_linklist.h"
45 #include "BLI_edgehash.h"
46
47 #include "DNA_armature_types.h"
48 #include "DNA_camera_types.h"
49 #include "DNA_material_types.h"
50 #include "DNA_curve_types.h"
51 #include "DNA_effect_types.h"
52 #include "DNA_group_types.h"
53 #include "DNA_lamp_types.h"
54 #include "DNA_image_types.h"
55 #include "DNA_lattice_types.h"
56 #include "DNA_mesh_types.h"
57 #include "DNA_meshdata_types.h"
58 #include "DNA_meta_types.h"
59 #include "DNA_modifier_types.h"
60 #include "DNA_node_types.h"
61 #include "DNA_object_types.h"
62 #include "DNA_object_force.h"
63 #include "DNA_object_fluidsim.h"
64 #include "DNA_particle_types.h"
65 #include "DNA_scene_types.h"
66 #include "DNA_texture_types.h"
67 #include "DNA_view3d_types.h"
68
69 #include "BKE_anim.h"
70 #include "BKE_armature.h"
71 #include "BKE_action.h"
72 #include "BKE_curve.h"
73 #include "BKE_customdata.h"
74 #include "BKE_colortools.h"
75 #include "BKE_constraint.h"
76 #include "BKE_displist.h"
77 #include "BKE_deform.h"
78 #include "BKE_DerivedMesh.h"
79 #include "BKE_effect.h"
80 #include "BKE_global.h"
81 #include "BKE_group.h"
82 #include "BKE_key.h"
83 #include "BKE_ipo.h"
84 #include "BKE_image.h"
85 #include "BKE_lattice.h"
86 #include "BKE_library.h"
87 #include "BKE_material.h"
88 #include "BKE_main.h"
89 #include "BKE_mball.h"
90 #include "BKE_mesh.h"
91 #include "BKE_modifier.h"
92 #include "BKE_node.h"
93 #include "BKE_object.h"
94 #include "BKE_particle.h"
95 #include "BKE_scene.h"
96 #include "BKE_subsurf.h"
97 #include "BKE_texture.h"
98
99 #include "BKE_world.h"
100
101 #include "PIL_time.h"
102 #include "IMB_imbuf_types.h"
103
104 #include "envmap.h"
105 #include "occlusion.h"
106 #include "pointdensity.h"
107 #include "voxeldata.h"
108 #include "render_types.h"
109 #include "rendercore.h"
110 #include "renderdatabase.h"
111 #include "renderpipeline.h"
112 #include "shadbuf.h"
113 #include "shading.h"
114 #include "strand.h"
115 #include "texture.h"
116 #include "volume_precache.h"
117 #include "sss.h"
118 #include "strand.h"
119 #include "zbuf.h"
120 #include "sunsky.h"
121
122 #include "RE_render_ext.h"
123
124 /* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
125 /* or for checking vertex normal flips */
126 #define FLT_EPSILON10 1.19209290e-06F
127
128 /* ------------------------------------------------------------------------- */
129
130 /* Stuff for stars. This sits here because it uses gl-things. Part of
131  * this code may move down to the converter.  */
132 /* ------------------------------------------------------------------------- */
133 /* this is a bad beast, since it is misused by the 3d view drawing as well. */
134
135 static HaloRen *initstar(Render *re, ObjectRen *obr, const float vec[3], float hasize)
136 {
137         HaloRen *har;
138         float hoco[4];
139         
140         projectverto(vec, re->winmat, hoco);
141         
142         har= RE_findOrAddHalo(obr, obr->tothalo++);
143         
144         /* projectvert is done in function zbufvlaggen again, because of parts */
145         copy_v3_v3(har->co, vec);
146         har->hasize= hasize;
147         
148         har->zd= 0.0;
149         
150         return har;
151 }
152
153 /* there must be a 'fixed' amount of stars generated between
154  *         near and far
155  * all stars must by preference lie on the far and solely
156  *        differ in clarity/color
157  */
158
159 void RE_make_stars(Render *re, Scene *scenev3d, void (*initfunc)(void),
160                    void (*vertexfunc)(float*),  void (*termfunc)(void))
161 {
162         extern unsigned char hash[512];
163         ObjectRen *obr= NULL;
164         World *wrld= NULL;
165         HaloRen *har;
166         Scene *scene;
167         Object *camera;
168         Camera *cam;
169         double dblrand, hlfrand;
170         float vec[4], fx, fy, fz;
171         float fac, starmindist, clipend;
172         float mat[4][4], stargrid, maxrand, maxjit, force, alpha;
173         int x, y, z, sx, sy, sz, ex, ey, ez, done = FALSE;
174         unsigned int totstar= 0;
175         
176         if (initfunc) {
177                 scene= scenev3d;
178                 wrld= scene->world;
179         }
180         else {
181                 scene= re->scene;
182                 wrld= &(re->wrld);
183         }
184
185         stargrid = wrld->stardist;                      /* distance between stars */
186         maxrand = 2.0;                                          /* amount a star can be shifted (in grid units) */
187         maxjit = (wrld->starcolnoise);          /* amount a color is being shifted */
188         
189         /* size of stars */
190         force = ( wrld->starsize );
191         
192         /* minimal free space (starting at camera) */
193         starmindist= wrld->starmindist;
194         
195         if (stargrid <= 0.10f) return;
196         
197         if (re) re->flag |= R_HALO;
198         else stargrid *= 1.0f;                          /* then it draws fewer */
199         
200         if (re) invert_m4_m4(mat, re->viewmat);
201         else unit_m4(mat);
202         
203         /* BOUNDING BOX CALCULATION
204          * bbox goes from z = loc_near_var | loc_far_var,
205          * x = -z | +z,
206          * y = -z | +z
207          */
208
209         camera= re ? RE_GetCamera(re) : scene->camera;
210
211         if (camera==NULL || camera->type != OB_CAMERA)
212                 return;
213
214         cam = camera->data;
215         clipend = cam->clipend;
216         
217         /* convert to grid coordinates */
218         
219         sx = ((mat[3][0] - clipend) / stargrid) - maxrand;
220         sy = ((mat[3][1] - clipend) / stargrid) - maxrand;
221         sz = ((mat[3][2] - clipend) / stargrid) - maxrand;
222         
223         ex = ((mat[3][0] + clipend) / stargrid) + maxrand;
224         ey = ((mat[3][1] + clipend) / stargrid) + maxrand;
225         ez = ((mat[3][2] + clipend) / stargrid) + maxrand;
226         
227         dblrand = maxrand * stargrid;
228         hlfrand = 2.0 * dblrand;
229         
230         if (initfunc) {
231                 initfunc();
232         }
233
234         if (re) /* add render object for stars */
235                 obr= RE_addRenderObject(re, NULL, NULL, 0, 0, 0);
236         
237         for (x = sx, fx = sx * stargrid; x <= ex; x++, fx += stargrid) {
238                 for (y = sy, fy = sy * stargrid; y <= ey; y++, fy += stargrid) {
239                         for (z = sz, fz = sz * stargrid; z <= ez; z++, fz += stargrid) {
240
241                                 BLI_srand((hash[z & 0xff] << 24) + (hash[y & 0xff] << 16) + (hash[x & 0xff] << 8));
242                                 vec[0] = fx + (hlfrand * BLI_drand()) - dblrand;
243                                 vec[1] = fy + (hlfrand * BLI_drand()) - dblrand;
244                                 vec[2] = fz + (hlfrand * BLI_drand()) - dblrand;
245                                 vec[3] = 1.0;
246                                 
247                                 if (vertexfunc) {
248                                         if (done & 1) vertexfunc(vec);
249                                         done++;
250                                 }
251                                 else {
252                                         if (re)
253                                                 mul_m4_v3(re->viewmat, vec);
254                                         
255                                         /* in vec are global coordinates
256                                          * calculate distance to camera
257                                          * and using that, define the alpha
258                                          */
259                                         alpha = len_v3(vec);
260
261                                         if (alpha >= clipend) alpha = 0.0;
262                                         else if (alpha <= starmindist) alpha = 0.0;
263                                         else if (alpha <= 2.0f * starmindist) {
264                                                 alpha = (alpha - starmindist) / starmindist;
265                                         }
266                                         else {
267                                                 alpha -= 2.0f * starmindist;
268                                                 alpha /= (clipend - 2.0f * starmindist);
269                                                 alpha = 1.0f - alpha;
270                                         }
271                                         
272                                         
273                                         if (alpha != 0.0f) {
274                                                 fac = force * BLI_drand();
275                                                 
276                                                 har = initstar(re, obr, vec, fac);
277                                                 
278                                                 if (har) {
279                                                         har->alfa = sqrt(sqrt(alpha));
280                                                         har->add= 255;
281                                                         har->r = har->g = har->b = 1.0;
282                                                         if (maxjit) {
283                                                                 har->r += ((maxjit * BLI_drand()) ) - maxjit;
284                                                                 har->g += ((maxjit * BLI_drand()) ) - maxjit;
285                                                                 har->b += ((maxjit * BLI_drand()) ) - maxjit;
286                                                         }
287                                                         har->hard = 32;
288                                                         har->lay= -1;
289                                                         har->type |= HA_ONLYSKY;
290                                                         done++;
291                                                 }
292                                         }
293                                 }
294
295                                 /* break out of the loop if generating stars takes too long */
296                                 if (re && !(totstar % 1000000)) {
297                                         if (re->test_break(re->tbh)) {
298                                                 x= ex + 1;
299                                                 y= ey + 1;
300                                                 z= ez + 1;
301                                         }
302                                 }
303                                 
304                                 totstar++;
305                         }
306                         /* do not call blender_test_break() here, since it is used in UI as well, confusing the callback system */
307                         /* main cause is G.is_break of course, a global again... (ton) */
308                 }
309         }
310         if (termfunc) termfunc();
311
312         if (obr)
313                 re->tothalo += obr->tothalo;
314 }
315
316
317 /* ------------------------------------------------------------------------- */
318 /* tool functions/defines for ad hoc simplification and possible future 
319  * cleanup      */
320 /* ------------------------------------------------------------------------- */
321
322 #define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
323 /*
324  *
325  * NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
326  *
327  * ^   ()----p4----p3----()
328  * |   |     |     |     |
329  * u   |     |  F1 |  F2 |
330  *     |     |     |     |
331  *     ()----p1----p2----()
332  *            v ->
333  */
334
335 /* ------------------------------------------------------------------------- */
336
337 static void split_v_renderfaces(ObjectRen *obr, int startvlak, int UNUSED(startvert), int UNUSED(usize), int vsize, int uIndex, int UNUSED(cyclu), int cyclv)
338 {
339         int vLen = vsize-1+(!!cyclv);
340         int v;
341
342         for (v=0; v<vLen; v++) {
343                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v);
344                 VertRen *vert = RE_vertren_copy(obr, vlr->v2);
345
346                 if (cyclv) {
347                         vlr->v2 = vert;
348
349                         if (v==vLen-1) {
350                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + 0);
351                                 vlr->v1 = vert;
352                         }
353                         else {
354                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
355                                 vlr->v1 = vert;
356                         }
357                 }
358                 else {
359                         vlr->v2 = vert;
360
361                         if (v<vLen-1) {
362                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
363                                 vlr->v1 = vert;
364                         }
365
366                         if (v==0) {
367                                 vlr->v1 = RE_vertren_copy(obr, vlr->v1);
368                         }
369                 }
370         }
371 }
372
373 /* ------------------------------------------------------------------------- */
374 /* Stress, tangents and normals                                              */
375 /* ------------------------------------------------------------------------- */
376
377 static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
378 {
379         float len= len_v3v3(v1->co, v2->co)/len_v3v3(v1->orco, v2->orco);
380         float *acc;
381         
382         acc= accum + 2*v1->index;
383         acc[0]+= len;
384         acc[1]+= 1.0f;
385         
386         acc= accum + 2*v2->index;
387         acc[0]+= len;
388         acc[1]+= 1.0f;
389 }
390
391 static void calc_edge_stress(Render *UNUSED(re), ObjectRen *obr, Mesh *me)
392 {
393         float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
394         int a;
395         
396         if (obr->totvert==0) return;
397         
398         BKE_mesh_texspace_get(me, loc, NULL, size);
399         
400         accum= MEM_callocN(2*sizeof(float)*obr->totvert, "temp accum for stress");
401         
402         /* de-normalize orco */
403         for (a=0; a<obr->totvert; a++) {
404                 VertRen *ver= RE_findOrAddVert(obr, a);
405                 if (ver->orco) {
406                         ver->orco[0]= ver->orco[0]*size[0] +loc[0];
407                         ver->orco[1]= ver->orco[1]*size[1] +loc[1];
408                         ver->orco[2]= ver->orco[2]*size[2] +loc[2];
409                 }
410         }
411         
412         /* add stress values */
413         accumoffs= accum;       /* so we can use vertex index */
414         for (a=0; a<obr->totvlak; a++) {
415                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
416
417                 if (vlr->v1->orco && vlr->v4) {
418                         calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
419                         calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
420                         calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
421                         if (vlr->v4) {
422                                 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
423                                 calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
424                                 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
425                         }
426                 }
427         }
428         
429         for (a=0; a<obr->totvert; a++) {
430                 VertRen *ver= RE_findOrAddVert(obr, a);
431                 if (ver->orco) {
432                         /* find stress value */
433                         acc= accumoffs + 2*ver->index;
434                         if (acc[1]!=0.0f)
435                                 acc[0]/= acc[1];
436                         stress= RE_vertren_get_stress(obr, ver, 1);
437                         *stress= *acc;
438                         
439                         /* restore orcos */
440                         ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
441                         ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
442                         ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
443                 }
444         }
445         
446         MEM_freeN(accum);
447 }
448
449 /* gets tangent from tface or orco */
450 static void calc_tangent_vector(ObjectRen *obr, VlakRen *vlr, int do_tangent)
451 {
452         MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
453         VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
454         float tang[3], *tav;
455         float *uv1, *uv2, *uv3, *uv4;
456         float uv[4][2];
457         
458         if (tface) {
459                 uv1= tface->uv[0];
460                 uv2= tface->uv[1];
461                 uv3= tface->uv[2];
462                 uv4= tface->uv[3];
463         }
464         else if (v1->orco) {
465                 uv1= uv[0]; uv2= uv[1]; uv3= uv[2]; uv4= uv[3];
466                 map_to_sphere(&uv[0][0], &uv[0][1], v1->orco[0], v1->orco[1], v1->orco[2]);
467                 map_to_sphere(&uv[1][0], &uv[1][1], v2->orco[0], v2->orco[1], v2->orco[2]);
468                 map_to_sphere(&uv[2][0], &uv[2][1], v3->orco[0], v3->orco[1], v3->orco[2]);
469                 if (v4)
470                         map_to_sphere(&uv[3][0], &uv[3][1], v4->orco[0], v4->orco[1], v4->orco[2]);
471         }
472         else return;
473
474         tangent_from_uv(uv1, uv2, uv3, v1->co, v2->co, v3->co, vlr->n, tang);
475         
476         if (do_tangent) {
477                 tav= RE_vertren_get_tangent(obr, v1, 1);
478                 add_v3_v3(tav, tang);
479                 tav= RE_vertren_get_tangent(obr, v2, 1);
480                 add_v3_v3(tav, tang);
481                 tav= RE_vertren_get_tangent(obr, v3, 1);
482                 add_v3_v3(tav, tang);
483         }
484         
485         if (v4) {
486                 tangent_from_uv(uv1, uv3, uv4, v1->co, v3->co, v4->co, vlr->n, tang);
487                 
488                 if (do_tangent) {
489                         tav= RE_vertren_get_tangent(obr, v1, 1);
490                         add_v3_v3(tav, tang);
491                         tav= RE_vertren_get_tangent(obr, v3, 1);
492                         add_v3_v3(tav, tang);
493                         tav= RE_vertren_get_tangent(obr, v4, 1);
494                         add_v3_v3(tav, tang);
495                 }
496         }
497 }
498
499
500
501 /****************************************************************
502  ************ tangent space generation interface ****************
503  ****************************************************************/
504
505 typedef struct {
506         ObjectRen *obr;
507
508 } SRenderMeshToTangent;
509
510 /* interface */
511 #include "mikktspace.h"
512
513 static int GetNumFaces(const SMikkTSpaceContext * pContext)
514 {
515         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
516         return pMesh->obr->totvlak;
517 }
518
519 static int GetNumVertsOfFace(const SMikkTSpaceContext * pContext, const int face_num)
520 {
521         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
522         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
523         return vlr->v4!=NULL ? 4 : 3;
524 }
525
526 static void GetPosition(const SMikkTSpaceContext * pContext, float fPos[], const int face_num, const int vert_index)
527 {
528         //assert(vert_index>=0 && vert_index<4);
529         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
530         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
531         const float *co= (&vlr->v1)[vert_index]->co;
532         copy_v3_v3(fPos, co);
533 }
534
535 static void GetTextureCoordinate(const SMikkTSpaceContext * pContext, float fUV[], const int face_num, const int vert_index)
536 {
537         //assert(vert_index>=0 && vert_index<4);
538         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
539         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
540         MTFace *tface= RE_vlakren_get_tface(pMesh->obr, vlr, pMesh->obr->actmtface, NULL, 0);
541         const float *coord;
542         
543         if (tface != NULL) {
544                 coord= tface->uv[vert_index];
545                 fUV[0]= coord[0]; fUV[1]= coord[1];
546         }
547         else if ((coord= (&vlr->v1)[vert_index]->orco)) {
548                 map_to_sphere(&fUV[0], &fUV[1], coord[0], coord[1], coord[2]);
549         }
550         else { /* else we get un-initialized value, 0.0 ok default? */
551                 fUV[0]= fUV[1]= 0.0f;
552         }
553 }
554
555 static void GetNormal(const SMikkTSpaceContext * pContext, float fNorm[], const int face_num, const int vert_index)
556 {
557         //assert(vert_index>=0 && vert_index<4);
558         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
559         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
560
561         if (vlr->flag & ME_SMOOTH) {
562                 const float *n = (&vlr->v1)[vert_index]->n;
563                 copy_v3_v3(fNorm, n);
564         }
565         else {
566                 negate_v3_v3(fNorm, vlr->n);
567         }
568 }
569 static void SetTSpace(const SMikkTSpaceContext * pContext, const float fvTangent[], const float fSign, const int face_num, const int iVert)
570 {
571         //assert(vert_index>=0 && vert_index<4);
572         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
573         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
574         float * ftang= RE_vlakren_get_nmap_tangent(pMesh->obr, vlr, 1);
575         if (ftang!=NULL) {
576                 copy_v3_v3(&ftang[iVert*4+0], fvTangent);
577                 ftang[iVert*4+3]=fSign;
578         }
579 }
580
581 static void calc_vertexnormals(Render *UNUSED(re), ObjectRen *obr, int do_tangent, int do_nmap_tangent)
582 {
583         int a;
584
585                 /* clear all vertex normals */
586         for (a=0; a<obr->totvert; a++) {
587                 VertRen *ver= RE_findOrAddVert(obr, a);
588                 ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
589         }
590
591                 /* calculate cos of angles and point-masses, use as weight factor to
592                  * add face normal to vertex */
593         for (a=0; a<obr->totvlak; a++) {
594                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
595                 if (vlr->flag & ME_SMOOTH) {
596                         float *n4= (vlr->v4)? vlr->v4->n: NULL;
597                         float *c4= (vlr->v4)? vlr->v4->co: NULL;
598
599                         accumulate_vertex_normals(vlr->v1->n, vlr->v2->n, vlr->v3->n, n4,
600                                 vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co, c4);
601                 }
602                 if (do_tangent) {
603                         /* tangents still need to be calculated for flat faces too */
604                         /* weighting removed, they are not vertexnormals */
605                         calc_tangent_vector(obr, vlr, do_tangent);
606                 }
607         }
608
609                 /* do solid faces */
610         for (a=0; a<obr->totvlak; a++) {
611                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
612
613                 if ((vlr->flag & ME_SMOOTH)==0) {
614                         if (is_zero_v3(vlr->v1->n)) copy_v3_v3(vlr->v1->n, vlr->n);
615                         if (is_zero_v3(vlr->v2->n)) copy_v3_v3(vlr->v2->n, vlr->n);
616                         if (is_zero_v3(vlr->v3->n)) copy_v3_v3(vlr->v3->n, vlr->n);
617                         if (vlr->v4 && is_zero_v3(vlr->v4->n)) copy_v3_v3(vlr->v4->n, vlr->n);
618                 }
619         }
620         
621         /* normalize vertex normals */
622         for (a=0; a<obr->totvert; a++) {
623                 VertRen *ver= RE_findOrAddVert(obr, a);
624                 normalize_v3(ver->n);
625                 if (do_tangent) {
626                         float *tav= RE_vertren_get_tangent(obr, ver, 0);
627                         if (tav) {
628                                 /* orthonorm. */
629                                 const float tdn = dot_v3v3(tav, ver->n);
630                                 tav[0] -= ver->n[0]*tdn;
631                                 tav[1] -= ver->n[1]*tdn;
632                                 tav[2] -= ver->n[2]*tdn;
633                                 normalize_v3(tav);
634                         }
635                 }
636         }
637
638         /* normal mapping tangent with mikktspace */
639         if (do_nmap_tangent != FALSE) {
640                 SRenderMeshToTangent mesh2tangent;
641                 SMikkTSpaceContext sContext;
642                 SMikkTSpaceInterface sInterface;
643                 memset(&mesh2tangent, 0, sizeof(SRenderMeshToTangent));
644                 memset(&sContext, 0, sizeof(SMikkTSpaceContext));
645                 memset(&sInterface, 0, sizeof(SMikkTSpaceInterface));
646
647                 mesh2tangent.obr = obr;
648
649                 sContext.m_pUserData = &mesh2tangent;
650                 sContext.m_pInterface = &sInterface;
651                 sInterface.m_getNumFaces = GetNumFaces;
652                 sInterface.m_getNumVerticesOfFace = GetNumVertsOfFace;
653                 sInterface.m_getPosition = GetPosition;
654                 sInterface.m_getTexCoord = GetTextureCoordinate;
655                 sInterface.m_getNormal = GetNormal;
656                 sInterface.m_setTSpaceBasic = SetTSpace;
657
658                 genTangSpaceDefault(&sContext);
659         }
660 }
661
662 /* ------------------------------------------------------------------------- */
663 /* Autosmoothing:                                                            */
664 /* ------------------------------------------------------------------------- */
665
666 typedef struct ASvert {
667         int totface;
668         ListBase faces;
669 } ASvert;
670
671 typedef struct ASface {
672         struct ASface *next, *prev;
673         VlakRen *vlr[4];
674         VertRen *nver[4];
675 } ASface;
676
677 static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
678 {
679         ASface *asf;
680         int a;
681         
682         if (v1 == NULL) return;
683         
684         if (asv->faces.first==NULL) {
685                 asf= MEM_callocN(sizeof(ASface), "asface");
686                 BLI_addtail(&asv->faces, asf);
687         }
688         
689         asf= asv->faces.last;
690         for (a=0; a<4; a++) {
691                 if (asf->vlr[a]==NULL) {
692                         asf->vlr[a]= vlr;
693                         asv->totface++;
694                         break;
695                 }
696         }
697         
698         /* new face struct */
699         if (a==4) {
700                 asf= MEM_callocN(sizeof(ASface), "asface");
701                 BLI_addtail(&asv->faces, asf);
702                 asf->vlr[0]= vlr;
703                 asv->totface++;
704         }
705 }
706
707 static int as_testvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
708 {
709         /* return 1: vertex needs a copy */
710         ASface *asf;
711         float inp;
712         int a;
713         
714         if (vlr==0) return 0;
715         
716         asf= asv->faces.first;
717         while (asf) {
718                 for (a=0; a<4; a++) {
719                         if (asf->vlr[a] && asf->vlr[a]!=vlr) {
720                                 inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
721                                 if (inp < thresh) return 1;
722                         }
723                 }
724                 asf= asf->next;
725         }
726         
727         return 0;
728 }
729
730 static VertRen *as_findvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
731 {
732         /* return when new vertex already was made */
733         ASface *asf;
734         float inp;
735         int a;
736         
737         asf= asv->faces.first;
738         while (asf) {
739                 for (a=0; a<4; a++) {
740                         if (asf->vlr[a] && asf->vlr[a]!=vlr) {
741                                 /* this face already made a copy for this vertex! */
742                                 if (asf->nver[a]) {
743                                         inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
744                                         if (inp >= thresh) {
745                                                 return asf->nver[a];
746                                         }
747                                 }
748                         }
749                 }
750                 asf= asf->next;
751         }
752         
753         return NULL;
754 }
755
756 /* note; autosmooth happens in object space still, after applying autosmooth we rotate */
757 /* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
758 static void autosmooth(Render *UNUSED(re), ObjectRen *obr, float mat[][4], int degr)
759 {
760         ASvert *asv, *asverts;
761         ASface *asf;
762         VertRen *ver, *v1;
763         VlakRen *vlr;
764         float thresh;
765         int a, b, totvert;
766         
767         if (obr->totvert==0) return;
768         asverts= MEM_callocN(sizeof(ASvert)*obr->totvert, "all smooth verts");
769         
770         thresh= cosf(DEG2RADF((0.5f + (float)degr)));
771         
772         /* step zero: give faces normals of original mesh, if this is provided */
773         
774         
775         /* step one: construct listbase of all vertices and pointers to faces */
776         for (a=0; a<obr->totvlak; a++) {
777                 vlr= RE_findOrAddVlak(obr, a);
778                 /* skip wire faces */
779                 if (vlr->v2 != vlr->v3) {
780                         as_addvert(asverts+vlr->v1->index, vlr->v1, vlr);
781                         as_addvert(asverts+vlr->v2->index, vlr->v2, vlr);
782                         as_addvert(asverts+vlr->v3->index, vlr->v3, vlr);
783                         if (vlr->v4)
784                                 as_addvert(asverts+vlr->v4->index, vlr->v4, vlr);
785                 }
786         }
787         
788         totvert= obr->totvert;
789         /* we now test all vertices, when faces have a normal too much different: they get a new vertex */
790         for (a=0, asv=asverts; a<totvert; a++, asv++) {
791                 if (asv && asv->totface>1) {
792                         ver= RE_findOrAddVert(obr, a);
793
794                         asf= asv->faces.first;
795                         while (asf) {
796                                 for (b=0; b<4; b++) {
797                                 
798                                         /* is there a reason to make a new vertex? */
799                                         vlr= asf->vlr[b];
800                                         if ( as_testvertex(vlr, ver, asv, thresh) ) {
801                                                 
802                                                 /* already made a new vertex within threshold? */
803                                                 v1= as_findvertex(vlr, ver, asv, thresh);
804                                                 if (v1==NULL) {
805                                                         /* make a new vertex */
806                                                         v1= RE_vertren_copy(obr, ver);
807                                                 }
808                                                 asf->nver[b]= v1;
809                                                 if (vlr->v1==ver) vlr->v1= v1;
810                                                 if (vlr->v2==ver) vlr->v2= v1;
811                                                 if (vlr->v3==ver) vlr->v3= v1;
812                                                 if (vlr->v4==ver) vlr->v4= v1;
813                                         }
814                                 }
815                                 asf= asf->next;
816                         }
817                 }
818         }
819         
820         /* free */
821         for (a=0; a<totvert; a++) {
822                 BLI_freelistN(&asverts[a].faces);
823         }
824         MEM_freeN(asverts);
825         
826         /* rotate vertices and calculate normal of faces */
827         for (a=0; a<obr->totvert; a++) {
828                 ver= RE_findOrAddVert(obr, a);
829                 mul_m4_v3(mat, ver->co);
830         }
831         for (a=0; a<obr->totvlak; a++) {
832                 vlr= RE_findOrAddVlak(obr, a);
833                 
834                 /* skip wire faces */
835                 if (vlr->v2 != vlr->v3) {
836                         if (vlr->v4)
837                                 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
838                         else 
839                                 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
840                 }
841         }
842 }
843
844 /* ------------------------------------------------------------------------- */
845 /* Orco hash and Materials                                                   */
846 /* ------------------------------------------------------------------------- */
847
848 static float *get_object_orco(Render *re, Object *ob)
849 {
850         float *orco;
851
852         if (!re->orco_hash)
853                 re->orco_hash = BLI_ghash_ptr_new("get_object_orco gh");
854
855         orco = BLI_ghash_lookup(re->orco_hash, ob);
856
857         if (!orco) {
858                 if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
859                         orco = BKE_curve_make_orco(re->scene, ob);
860                 }
861                 else if (ob->type==OB_SURF) {
862                         orco = BKE_curve_surf_make_orco(ob);
863                 }
864
865                 if (orco)
866                         BLI_ghash_insert(re->orco_hash, ob, orco);
867         }
868
869         return orco;
870 }
871
872 static void set_object_orco(Render *re, void *ob, float *orco)
873 {
874         if (!re->orco_hash)
875                 re->orco_hash = BLI_ghash_ptr_new("set_object_orco gh");
876         
877         BLI_ghash_insert(re->orco_hash, ob, orco);
878 }
879
880 static void free_mesh_orco_hash(Render *re) 
881 {
882         if (re->orco_hash) {
883                 BLI_ghash_free(re->orco_hash, NULL, (GHashValFreeFP)MEM_freeN);
884                 re->orco_hash = NULL;
885         }
886 }
887
888 static void check_material_mapto(Material *ma)
889 {
890         int a;
891         ma->mapto_textured = 0;
892         
893         /* cache which inputs are actually textured.
894          * this can avoid a bit of time spent iterating through all the texture slots, map inputs and map tos
895          * every time a property which may or may not be textured is accessed */
896         
897         for (a=0; a<MAX_MTEX; a++) {
898                 if (ma->mtex[a] && ma->mtex[a]->tex) {
899                         /* currently used only in volume render, so we'll check for those flags */
900                         if (ma->mtex[a]->mapto & MAP_DENSITY) ma->mapto_textured |= MAP_DENSITY;
901                         if (ma->mtex[a]->mapto & MAP_EMISSION) ma->mapto_textured |= MAP_EMISSION;
902                         if (ma->mtex[a]->mapto & MAP_EMISSION_COL) ma->mapto_textured |= MAP_EMISSION_COL;
903                         if (ma->mtex[a]->mapto & MAP_SCATTERING) ma->mapto_textured |= MAP_SCATTERING;
904                         if (ma->mtex[a]->mapto & MAP_TRANSMISSION_COL) ma->mapto_textured |= MAP_TRANSMISSION_COL;
905                         if (ma->mtex[a]->mapto & MAP_REFLECTION) ma->mapto_textured |= MAP_REFLECTION;
906                         if (ma->mtex[a]->mapto & MAP_REFLECTION_COL) ma->mapto_textured |= MAP_REFLECTION_COL;
907                 }
908         }
909 }
910 static void flag_render_node_material(Render *re, bNodeTree *ntree)
911 {
912         bNode *node;
913
914         for (node=ntree->nodes.first; node; node= node->next) {
915                 if (node->id) {
916                         if (GS(node->id->name)==ID_MA) {
917                                 Material *ma= (Material *)node->id;
918
919                                 if ((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
920                                         re->flag |= R_ZTRA;
921
922                                 ma->flag |= MA_IS_USED;
923                         }
924                         else if (node->type==NODE_GROUP)
925                                 flag_render_node_material(re, (bNodeTree *)node->id);
926                 }
927         }
928 }
929
930 static Material *give_render_material(Render *re, Object *ob, short nr)
931 {
932         extern Material defmaterial;    /* material.c */
933         Material *ma;
934         
935         ma= give_current_material(ob, nr);
936         if (ma==NULL)
937                 ma= &defmaterial;
938         
939         if (re->r.mode & R_SPEED) ma->texco |= NEED_UV;
940         
941         if (ma->material_type == MA_TYPE_VOLUME) {
942                 ma->mode |= MA_TRANSP;
943                 ma->mode &= ~MA_SHADBUF;
944         }
945         if ((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
946                 re->flag |= R_ZTRA;
947         
948         /* for light groups and SSS */
949         ma->flag |= MA_IS_USED;
950
951         if (ma->nodetree && ma->use_nodes)
952                 flag_render_node_material(re, ma->nodetree);
953         
954         check_material_mapto(ma);
955         
956         return ma;
957 }
958
959 /* ------------------------------------------------------------------------- */
960 /* Particles                                                                 */
961 /* ------------------------------------------------------------------------- */
962 typedef struct ParticleStrandData {
963         struct MCol *mcol;
964         float *orco, *uvco, *surfnor;
965         float time, adapt_angle, adapt_pix, size;
966         int totuv, totcol;
967         int first, line, adapt, override_uv;
968 }
969 ParticleStrandData;
970 /* future thread problem... */
971 static void static_particle_strand(Render *re, ObjectRen *obr, Material *ma, ParticleStrandData *sd, const float vec[3], const float vec1[3])
972 {
973         static VertRen *v1= NULL, *v2= NULL;
974         VlakRen *vlr= NULL;
975         float nor[3], cross[3], crosslen, w, dx, dy, width;
976         static float anor[3], avec[3];
977         int flag, i;
978         static int second=0;
979         
980         sub_v3_v3v3(nor, vec, vec1);
981         normalize_v3(nor);  /* nor needed as tangent */
982         cross_v3_v3v3(cross, vec, nor);
983
984         /* turn cross in pixelsize */
985         w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
986         dx= re->winx*cross[0]*re->winmat[0][0];
987         dy= re->winy*cross[1]*re->winmat[1][1];
988         w= sqrt(dx*dx + dy*dy)/w;
989         
990         if (w!=0.0f) {
991                 float fac;
992                 if (ma->strand_ease!=0.0f) {
993                         if (ma->strand_ease<0.0f)
994                                 fac= pow(sd->time, 1.0f+ma->strand_ease);
995                         else
996                                 fac= pow(sd->time, 1.0f/(1.0f-ma->strand_ease));
997                 }
998                 else fac= sd->time;
999
1000                 width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
1001
1002                 /* use actual Blender units for strand width and fall back to minimum width */
1003                 if (ma->mode & MA_STR_B_UNITS) {
1004                         crosslen= len_v3(cross);
1005                         w= 2.0f*crosslen*ma->strand_min/w;
1006
1007                         if (width < w)
1008                                 width= w;
1009
1010                         /*cross is the radius of the strand so we want it to be half of full width */
1011                         mul_v3_fl(cross, 0.5f/crosslen);
1012                 }
1013                 else
1014                         width/=w;
1015
1016                 mul_v3_fl(cross, width);
1017         }
1018         
1019         if (ma->mode & MA_TANGENT_STR)
1020                 flag= R_SMOOTH|R_TANGENT;
1021         else
1022                 flag= R_SMOOTH;
1023         
1024         /* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
1025         if (ma->strand_sta==1.0f)
1026                 flag |= R_STRAND;
1027         
1028         /* single face line */
1029         if (sd->line) {
1030                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1031                 vlr->flag= flag;
1032                 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1033                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1034                 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1035                 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1036                 
1037                 copy_v3_v3(vlr->v1->co, vec);
1038                 add_v3_v3(vlr->v1->co, cross);
1039                 copy_v3_v3(vlr->v1->n, nor);
1040                 vlr->v1->orco= sd->orco;
1041                 vlr->v1->accum = -1.0f;  /* accum abuse for strand texco */
1042                 
1043                 copy_v3_v3(vlr->v2->co, vec);
1044                 sub_v3_v3v3(vlr->v2->co, vlr->v2->co, cross);
1045                 copy_v3_v3(vlr->v2->n, nor);
1046                 vlr->v2->orco= sd->orco;
1047                 vlr->v2->accum= vlr->v1->accum;
1048
1049                 copy_v3_v3(vlr->v4->co, vec1);
1050                 add_v3_v3(vlr->v4->co, cross);
1051                 copy_v3_v3(vlr->v4->n, nor);
1052                 vlr->v4->orco= sd->orco;
1053                 vlr->v4->accum = 1.0f;  /* accum abuse for strand texco */
1054
1055                 copy_v3_v3(vlr->v3->co, vec1);
1056                 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1057                 copy_v3_v3(vlr->v3->n, nor);
1058                 vlr->v3->orco= sd->orco;
1059                 vlr->v3->accum= vlr->v4->accum;
1060
1061                 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1062                 
1063                 vlr->mat= ma;
1064                 vlr->ec= ME_V2V3;
1065
1066                 if (sd->surfnor) {
1067                         float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1068                         copy_v3_v3(snor, sd->surfnor);
1069                 }
1070
1071                 if (sd->uvco) {
1072                         for (i=0; i<sd->totuv; i++) {
1073                                 MTFace *mtf;
1074                                 mtf=RE_vlakren_get_tface(obr, vlr, i, NULL, 1);
1075                                 mtf->uv[0][0]=mtf->uv[1][0]=
1076                                 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1077                                 mtf->uv[0][1]=mtf->uv[1][1]=
1078                                 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1079                         }
1080                         if (sd->override_uv>=0) {
1081                                 MTFace *mtf;
1082                                 mtf=RE_vlakren_get_tface(obr, vlr, sd->override_uv, NULL, 0);
1083                                 
1084                                 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1085                                 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1086
1087                                 mtf->uv[0][1]=mtf->uv[1][1]=0.0f;
1088                                 mtf->uv[2][1]=mtf->uv[3][1]=1.0f;
1089                         }
1090                 }
1091                 if (sd->mcol) {
1092                         for (i=0; i<sd->totcol; i++) {
1093                                 MCol *mc;
1094                                 mc=RE_vlakren_get_mcol(obr, vlr, i, NULL, 1);
1095                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1096                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1097                         }
1098                 }
1099         }
1100         /* first two vertices of a strand */
1101         else if (sd->first) {
1102                 if (sd->adapt) {
1103                         copy_v3_v3(anor, nor);
1104                         copy_v3_v3(avec, vec);
1105                         second=1;
1106                 }
1107
1108                 v1= RE_findOrAddVert(obr, obr->totvert++);
1109                 v2= RE_findOrAddVert(obr, obr->totvert++);
1110                 
1111                 copy_v3_v3(v1->co, vec);
1112                 add_v3_v3(v1->co, cross);
1113                 copy_v3_v3(v1->n, nor);
1114                 v1->orco= sd->orco;
1115                 v1->accum = -1.0f;  /* accum abuse for strand texco */
1116                 
1117                 copy_v3_v3(v2->co, vec);
1118                 sub_v3_v3v3(v2->co, v2->co, cross);
1119                 copy_v3_v3(v2->n, nor);
1120                 v2->orco= sd->orco;
1121                 v2->accum= v1->accum;
1122         }
1123         /* more vertices & faces to strand */
1124         else {
1125                 if (sd->adapt==0 || second) {
1126                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1127                         vlr->flag= flag;
1128                         vlr->v1= v1;
1129                         vlr->v2= v2;
1130                         vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1131                         vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1132
1133                         v1= vlr->v4; /* cycle */
1134                         v2= vlr->v3; /* cycle */
1135
1136
1137                         if (sd->adapt) {
1138                                 second=0;
1139                                 copy_v3_v3(anor, nor);
1140                                 copy_v3_v3(avec, vec);
1141                         }
1142
1143                 }
1144                 else if (sd->adapt) {
1145                         float dvec[3], pvec[3];
1146                         sub_v3_v3v3(dvec, avec, vec);
1147                         project_v3_v3v3(pvec, dvec, vec);
1148                         sub_v3_v3v3(dvec, dvec, pvec);
1149
1150                         w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1151                         dx= re->winx*dvec[0]*re->winmat[0][0]/w;
1152                         dy= re->winy*dvec[1]*re->winmat[1][1]/w;
1153                         w= sqrt(dx*dx + dy*dy);
1154                         if (dot_v3v3(anor, nor)<sd->adapt_angle && w>sd->adapt_pix) {
1155                                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1156                                 vlr->flag= flag;
1157                                 vlr->v1= v1;
1158                                 vlr->v2= v2;
1159                                 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1160                                 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1161
1162                                 v1= vlr->v4; /* cycle */
1163                                 v2= vlr->v3; /* cycle */
1164
1165                                 copy_v3_v3(anor, nor);
1166                                 copy_v3_v3(avec, vec);
1167                         }
1168                         else {
1169                                 vlr= RE_findOrAddVlak(obr, obr->totvlak-1);
1170                         }
1171                 }
1172         
1173                 copy_v3_v3(vlr->v4->co, vec);
1174                 add_v3_v3(vlr->v4->co, cross);
1175                 copy_v3_v3(vlr->v4->n, nor);
1176                 vlr->v4->orco= sd->orco;
1177                 vlr->v4->accum= -1.0f + 2.0f * sd->time;  /* accum abuse for strand texco */
1178
1179                 copy_v3_v3(vlr->v3->co, vec);
1180                 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1181                 copy_v3_v3(vlr->v3->n, nor);
1182                 vlr->v3->orco= sd->orco;
1183                 vlr->v3->accum= vlr->v4->accum;
1184                 
1185                 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1186                 
1187                 vlr->mat= ma;
1188                 vlr->ec= ME_V2V3;
1189
1190                 if (sd->surfnor) {
1191                         float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1192                         copy_v3_v3(snor, sd->surfnor);
1193                 }
1194
1195                 if (sd->uvco) {
1196                         for (i=0; i<sd->totuv; i++) {
1197                                 MTFace *mtf;
1198                                 mtf=RE_vlakren_get_tface(obr, vlr, i, NULL, 1);
1199                                 mtf->uv[0][0]=mtf->uv[1][0]=
1200                                 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1201                                 mtf->uv[0][1]=mtf->uv[1][1]=
1202                                 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1203                         }
1204                         if (sd->override_uv>=0) {
1205                                 MTFace *mtf;
1206                                 mtf=RE_vlakren_get_tface(obr, vlr, sd->override_uv, NULL, 0);
1207                                 
1208                                 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1209                                 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1210
1211                                 mtf->uv[0][1]=mtf->uv[1][1]=(vlr->v1->accum+1.0f)/2.0f;
1212                                 mtf->uv[2][1]=mtf->uv[3][1]=(vlr->v3->accum+1.0f)/2.0f;
1213                         }
1214                 }
1215                 if (sd->mcol) {
1216                         for (i=0; i<sd->totcol; i++) {
1217                                 MCol *mc;
1218                                 mc=RE_vlakren_get_mcol(obr, vlr, i, NULL, 1);
1219                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1220                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1221                         }
1222                 }
1223         }
1224 }
1225
1226 static void static_particle_wire(ObjectRen *obr, Material *ma, const float vec[3], const float vec1[3], int first, int line)
1227 {
1228         VlakRen *vlr;
1229         static VertRen *v1;
1230
1231         if (line) {
1232                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1233                 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1234                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1235                 vlr->v3= vlr->v2;
1236                 vlr->v4= NULL;
1237                 
1238                 copy_v3_v3(vlr->v1->co, vec);
1239                 copy_v3_v3(vlr->v2->co, vec1);
1240                 
1241                 sub_v3_v3v3(vlr->n, vec, vec1);
1242                 normalize_v3(vlr->n);
1243                 copy_v3_v3(vlr->v1->n, vlr->n);
1244                 copy_v3_v3(vlr->v2->n, vlr->n);
1245                 
1246                 vlr->mat= ma;
1247                 vlr->ec= ME_V1V2;
1248
1249         }
1250         else if (first) {
1251                 v1= RE_findOrAddVert(obr, obr->totvert++);
1252                 copy_v3_v3(v1->co, vec);
1253         }
1254         else {
1255                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1256                 vlr->v1= v1;
1257                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1258                 vlr->v3= vlr->v2;
1259                 vlr->v4= NULL;
1260                 
1261                 v1= vlr->v2; /* cycle */
1262                 copy_v3_v3(v1->co, vec);
1263                 
1264                 sub_v3_v3v3(vlr->n, vec, vec1);
1265                 normalize_v3(vlr->n);
1266                 copy_v3_v3(v1->n, vlr->n);
1267                 
1268                 vlr->mat= ma;
1269                 vlr->ec= ME_V1V2;
1270         }
1271
1272 }
1273
1274 static void particle_curve(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd,
1275                            const float loc[3], const float loc1[3], int seed, float *pa_co)
1276 {
1277         HaloRen *har=0;
1278
1279         if (ma->material_type == MA_TYPE_WIRE)
1280                 static_particle_wire(obr, ma, loc, loc1, sd->first, sd->line);
1281         else if (ma->material_type == MA_TYPE_HALO) {
1282                 har= RE_inithalo_particle(re, obr, dm, ma, loc, loc1, sd->orco, sd->uvco, sd->size, 1.0, seed, pa_co);
1283                 if (har) har->lay= obr->ob->lay;
1284         }
1285         else
1286                 static_particle_strand(re, obr, ma, sd, loc, loc1);
1287 }
1288 static void particle_billboard(Render *re, ObjectRen *obr, Material *ma, ParticleBillboardData *bb)
1289 {
1290         VlakRen *vlr;
1291         MTFace *mtf;
1292         float xvec[3], yvec[3], zvec[3], bb_center[3];
1293         /* Number of tiles */
1294         int totsplit = bb->uv_split * bb->uv_split;
1295         int tile, x, y;
1296         /* Tile offsets */
1297         float uvx = 0.0f, uvy = 0.0f, uvdx = 1.0f, uvdy = 1.0f, time = 0.0f;
1298
1299         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1300         vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1301         vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1302         vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1303         vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1304
1305         psys_make_billboard(bb, xvec, yvec, zvec, bb_center);
1306
1307         add_v3_v3v3(vlr->v1->co, bb_center, xvec);
1308         add_v3_v3(vlr->v1->co, yvec);
1309         mul_m4_v3(re->viewmat, vlr->v1->co);
1310
1311         sub_v3_v3v3(vlr->v2->co, bb_center, xvec);
1312         add_v3_v3(vlr->v2->co, yvec);
1313         mul_m4_v3(re->viewmat, vlr->v2->co);
1314
1315         sub_v3_v3v3(vlr->v3->co, bb_center, xvec);
1316         sub_v3_v3v3(vlr->v3->co, vlr->v3->co, yvec);
1317         mul_m4_v3(re->viewmat, vlr->v3->co);
1318
1319         add_v3_v3v3(vlr->v4->co, bb_center, xvec);
1320         sub_v3_v3(vlr->v4->co, yvec);
1321         mul_m4_v3(re->viewmat, vlr->v4->co);
1322
1323         normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1324         copy_v3_v3(vlr->v1->n, vlr->n);
1325         copy_v3_v3(vlr->v2->n, vlr->n);
1326         copy_v3_v3(vlr->v3->n, vlr->n);
1327         copy_v3_v3(vlr->v4->n, vlr->n);
1328         
1329         vlr->mat= ma;
1330         vlr->ec= ME_V2V3;
1331
1332         if (bb->uv_split > 1) {
1333                 uvdx = uvdy = 1.0f / (float)bb->uv_split;
1334
1335                 if (ELEM(bb->anim, PART_BB_ANIM_AGE, PART_BB_ANIM_FRAME)) {
1336                         if (bb->anim == PART_BB_ANIM_FRAME)
1337                                 time = ((int)(bb->time * bb->lifetime) % totsplit)/(float)totsplit;
1338                         else
1339                                 time = bb->time;
1340                 }
1341                 else if (bb->anim == PART_BB_ANIM_ANGLE) {
1342                         if (bb->align == PART_BB_VIEW) {
1343                                 time = (float)fmod((bb->tilt + 1.0f) / 2.0f, 1.0);
1344                         }
1345                         else {
1346                                 float axis1[3] = {0.0f, 0.0f, 0.0f};
1347                                 float axis2[3] = {0.0f, 0.0f, 0.0f};
1348
1349                                 axis1[(bb->align + 1) % 3] = 1.0f;
1350                                 axis2[(bb->align + 2) % 3] = 1.0f;
1351
1352                                 if (bb->lock == 0) {
1353                                         zvec[bb->align] = 0.0f;
1354                                         normalize_v3(zvec);
1355                                 }
1356                                 
1357                                 time = saacos(dot_v3v3(zvec, axis1)) / (float)M_PI;
1358                                 
1359                                 if (dot_v3v3(zvec, axis2) < 0.0f)
1360                                         time = 1.0f - time / 2.0f;
1361                                 else
1362                                         time /= 2.0f;
1363                         }
1364                 }
1365
1366                 if (bb->split_offset == PART_BB_OFF_LINEAR)
1367                         time = (float)fmod(time + (float)bb->num / (float)totsplit, 1.0f);
1368                 else if (bb->split_offset==PART_BB_OFF_RANDOM)
1369                         time = (float)fmod(time + bb->random, 1.0f);
1370
1371                 /* Find the coordinates in tile space (integer), then convert to UV
1372                  * space (float). Note that Y is flipped. */
1373                 tile = (int)((time + FLT_EPSILON10) * totsplit);
1374                 x = tile % bb->uv_split;
1375                 y = tile / bb->uv_split;
1376                 y = (bb->uv_split - 1) - y;
1377                 uvx = uvdx * x;
1378                 uvy = uvdy * y;
1379         }
1380
1381         /* normal UVs */
1382         if (bb->uv[0] >= 0) {
1383                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[0], NULL, 1);
1384                 mtf->uv[0][0] = 1.0f;
1385                 mtf->uv[0][1] = 1.0f;
1386                 mtf->uv[1][0] = 0.0f;
1387                 mtf->uv[1][1] = 1.0f;
1388                 mtf->uv[2][0] = 0.0f;
1389                 mtf->uv[2][1] = 0.0f;
1390                 mtf->uv[3][0] = 1.0f;
1391                 mtf->uv[3][1] = 0.0f;
1392         }
1393
1394         /* time-index UVs */
1395         if (bb->uv[1] >= 0) {
1396                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[1], NULL, 1);
1397                 mtf->uv[0][0] = mtf->uv[1][0] = mtf->uv[2][0] = mtf->uv[3][0] = bb->time;
1398                 mtf->uv[0][1] = mtf->uv[1][1] = mtf->uv[2][1] = mtf->uv[3][1] = (float)bb->num/(float)bb->totnum;
1399         }
1400
1401         /* split UVs */
1402         if (bb->uv_split > 1 && bb->uv[2] >= 0) {
1403                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[2], NULL, 1);
1404                 mtf->uv[0][0] = uvx + uvdx;
1405                 mtf->uv[0][1] = uvy + uvdy;
1406                 mtf->uv[1][0] = uvx;
1407                 mtf->uv[1][1] = uvy + uvdy;
1408                 mtf->uv[2][0] = uvx;
1409                 mtf->uv[2][1] = uvy;
1410                 mtf->uv[3][0] = uvx + uvdx;
1411                 mtf->uv[3][1] = uvy;
1412         }
1413 }
1414 static void particle_normal_ren(short ren_as, ParticleSettings *part, Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, ParticleBillboardData *bb, ParticleKey *state, int seed, float hasize, float *pa_co)
1415 {
1416         float loc[3], loc0[3], loc1[3], vel[3];
1417         
1418         copy_v3_v3(loc, state->co);
1419
1420         if (ren_as != PART_DRAW_BB)
1421                 mul_m4_v3(re->viewmat, loc);
1422
1423         switch (ren_as) {
1424                 case PART_DRAW_LINE:
1425                         sd->line = 1;
1426                         sd->time = 0.0f;
1427                         sd->size = hasize;
1428
1429                         copy_v3_v3(vel, state->vel);
1430                         mul_mat3_m4_v3(re->viewmat, vel);
1431                         normalize_v3(vel);
1432
1433                         if (part->draw & PART_DRAW_VEL_LENGTH)
1434                                 mul_v3_fl(vel, len_v3(state->vel));
1435
1436                         madd_v3_v3v3fl(loc0, loc, vel, -part->draw_line[0]);
1437                         madd_v3_v3v3fl(loc1, loc, vel, part->draw_line[1]);
1438
1439                         particle_curve(re, obr, dm, ma, sd, loc0, loc1, seed, pa_co);
1440
1441                         break;
1442
1443                 case PART_DRAW_BB:
1444
1445                         copy_v3_v3(bb->vec, loc);
1446                         copy_v3_v3(bb->vel, state->vel);
1447
1448                         particle_billboard(re, obr, ma, bb);
1449
1450                         break;
1451
1452                 default:
1453                 {
1454                         HaloRen *har=0;
1455
1456                         har = RE_inithalo_particle(re, obr, dm, ma, loc, NULL, sd->orco, sd->uvco, hasize, 0.0, seed, pa_co);
1457                         
1458                         if (har) har->lay= obr->ob->lay;
1459
1460                         break;
1461                 }
1462         }
1463 }
1464 static void get_particle_uvco_mcol(short from, DerivedMesh *dm, float *fuv, int num, ParticleStrandData *sd)
1465 {
1466         int i;
1467
1468         /* get uvco */
1469         if (sd->uvco && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
1470                 for (i=0; i<sd->totuv; i++) {
1471                         if (num != DMCACHE_NOTFOUND) {
1472                                 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1473                                 MTFace *mtface = (MTFace*)CustomData_get_layer_n(&dm->faceData, CD_MTFACE, i);
1474                                 mtface += num;
1475                                 
1476                                 psys_interpolate_uvs(mtface, mface->v4, fuv, sd->uvco + 2 * i);
1477                         }
1478                         else {
1479                                 sd->uvco[2*i] = 0.0f;
1480                                 sd->uvco[2*i + 1] = 0.0f;
1481                         }
1482                 }
1483         }
1484
1485         /* get mcol */
1486         if (sd->mcol && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
1487                 for (i=0; i<sd->totcol; i++) {
1488                         if (num != DMCACHE_NOTFOUND) {
1489                                 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1490                                 MCol *mc = (MCol*)CustomData_get_layer_n(&dm->faceData, CD_MCOL, i);
1491                                 mc += num * 4;
1492
1493                                 psys_interpolate_mcol(mc, mface->v4, fuv, sd->mcol + i);
1494                         }
1495                         else
1496                                 memset(&sd->mcol[i], 0, sizeof(MCol));
1497                 }
1498         }
1499 }
1500 static int render_new_particle_system(Render *re, ObjectRen *obr, ParticleSystem *psys, int timeoffset)
1501 {
1502         Object *ob= obr->ob;
1503 //      Object *tob=0;
1504         Material *ma=0;
1505         ParticleSystemModifierData *psmd;
1506         ParticleSystem *tpsys=0;
1507         ParticleSettings *part, *tpart=0;
1508         ParticleData *pars, *pa=0, *tpa=0;
1509         ParticleKey *states=0;
1510         ParticleKey state;
1511         ParticleCacheKey *cache=0;
1512         ParticleBillboardData bb;
1513         ParticleSimulationData sim = {0};
1514         ParticleStrandData sd;
1515         StrandBuffer *strandbuf=0;
1516         StrandVert *svert=0;
1517         StrandBound *sbound= 0;
1518         StrandRen *strand=0;
1519         RNG *rng= 0;
1520         float loc[3], loc1[3], loc0[3], mat[4][4], nmat[3][3], co[3], nor[3], duplimat[4][4];
1521         float strandlen=0.0f, curlen=0.0f;
1522         float hasize, pa_size, r_tilt, r_length;
1523         float pa_time, pa_birthtime, pa_dietime;
1524         float random, simplify[2], pa_co[3];
1525         const float cfra= BKE_scene_frame_get(re->scene);
1526         int i, a, k, max_k=0, totpart, do_simplify = FALSE, do_surfacecache = FALSE, use_duplimat = FALSE;
1527         int totchild=0;
1528         int seed, path_nbr=0, orco1=0, num;
1529         int totface;
1530         char **uv_name=0;
1531
1532         const int *index_mf_to_mpoly = NULL;
1533         const int *index_mp_to_orig = NULL;
1534
1535 /* 1. check that everything is ok & updated */
1536         if (psys==NULL)
1537                 return 0;
1538
1539         part=psys->part;
1540         pars=psys->particles;
1541
1542         if (part==NULL || pars==NULL || !psys_check_enabled(ob, psys))
1543                 return 0;
1544         
1545         if (part->ren_as==PART_DRAW_OB || part->ren_as==PART_DRAW_GR || part->ren_as==PART_DRAW_NOT)
1546                 return 1;
1547
1548 /* 2. start initializing things */
1549
1550         /* last possibility to bail out! */
1551         psmd = psys_get_modifier(ob, psys);
1552         if (!(psmd->modifier.mode & eModifierMode_Render))
1553                 return 0;
1554
1555         sim.scene= re->scene;
1556         sim.ob= ob;
1557         sim.psys= psys;
1558         sim.psmd= psmd;
1559
1560         if (part->phystype==PART_PHYS_KEYED)
1561                 psys_count_keyed_targets(&sim);
1562
1563         totchild=psys->totchild;
1564
1565         /* can happen for disconnected/global hair */
1566         if (part->type==PART_HAIR && !psys->childcache)
1567                 totchild= 0;
1568
1569         if (G.is_rendering == FALSE) {  /* preview render */
1570                 totchild = (int)((float)totchild * (float)part->disp / 100.0f);
1571         }
1572
1573         psys->flag |= PSYS_DRAWING;
1574
1575         rng= BLI_rng_new(psys->seed);
1576
1577         totpart=psys->totpart;
1578
1579         memset(&sd, 0, sizeof(ParticleStrandData));
1580         sd.override_uv = -1;
1581
1582 /* 2.1 setup material stff */
1583         ma= give_render_material(re, ob, part->omat);
1584         
1585 #if 0  /* XXX old animation system */
1586         if (ma->ipo) {
1587                 calc_ipo(ma->ipo, cfra);
1588                 execute_ipo((ID *)ma, ma->ipo);
1589         }
1590 #endif  /* XXX old animation system */
1591
1592         hasize = ma->hasize;
1593         seed = ma->seed1;
1594
1595         re->flag |= R_HALO;
1596
1597         RE_set_customdata_names(obr, &psmd->dm->faceData);
1598         sd.totuv = CustomData_number_of_layers(&psmd->dm->faceData, CD_MTFACE);
1599         sd.totcol = CustomData_number_of_layers(&psmd->dm->faceData, CD_MCOL);
1600
1601         if (ma->texco & TEXCO_UV && sd.totuv) {
1602                 sd.uvco = MEM_callocN(sd.totuv * 2 * sizeof(float), "particle_uvs");
1603
1604                 if (ma->strand_uvname[0]) {
1605                         sd.override_uv = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, ma->strand_uvname);
1606                         sd.override_uv -= CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1607                 }
1608         }
1609         else
1610                 sd.uvco = NULL;
1611
1612         if (sd.totcol)
1613                 sd.mcol = MEM_callocN(sd.totcol * sizeof(MCol), "particle_mcols");
1614
1615 /* 2.2 setup billboards */
1616         if (part->ren_as == PART_DRAW_BB) {
1617                 int first_uv = CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1618
1619                 bb.uv[0] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[0]);
1620                 if (bb.uv[0] < 0)
1621                         bb.uv[0] = CustomData_get_active_layer_index(&psmd->dm->faceData, CD_MTFACE);
1622
1623                 bb.uv[1] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[1]);
1624
1625                 bb.uv[2] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[2]);
1626
1627                 if (first_uv >= 0) {
1628                         bb.uv[0] -= first_uv;
1629                         bb.uv[1] -= first_uv;
1630                         bb.uv[2] -= first_uv;
1631                 }
1632
1633                 bb.align = part->bb_align;
1634                 bb.anim = part->bb_anim;
1635                 bb.lock = part->draw & PART_DRAW_BB_LOCK;
1636                 bb.ob = (part->bb_ob ? part->bb_ob : RE_GetCamera(re));
1637                 bb.split_offset = part->bb_split_offset;
1638                 bb.totnum = totpart+totchild;
1639                 bb.uv_split = part->bb_uv_split;
1640         }
1641         
1642 /* 2.5 setup matrices */
1643         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
1644         invert_m4_m4(ob->imat, mat);    /* need to be that way, for imat texture */
1645         copy_m3_m4(nmat, ob->imat);
1646         transpose_m3(nmat);
1647
1648         if (psys->flag & PSYS_USE_IMAT) {
1649                 /* psys->imat is the original emitter's inverse matrix, ob->obmat is the duplicated object's matrix */
1650                 mult_m4_m4m4(duplimat, ob->obmat, psys->imat);
1651                 use_duplimat = TRUE;
1652         }
1653
1654 /* 2.6 setup strand rendering */
1655         if (part->ren_as == PART_DRAW_PATH && psys->pathcache) {
1656                 path_nbr=(int)pow(2.0, (double) part->ren_step);
1657
1658                 if (path_nbr) {
1659                         if (!ELEM(ma->material_type, MA_TYPE_HALO, MA_TYPE_WIRE)) {
1660                                 sd.orco = MEM_mallocN(3*sizeof(float)*(totpart+totchild), "particle orcos");
1661                                 set_object_orco(re, psys, sd.orco);
1662                         }
1663                 }
1664
1665                 if (part->draw & PART_DRAW_REN_ADAPT) {
1666                         sd.adapt = 1;
1667                         sd.adapt_pix = (float)part->adapt_pix;
1668                         sd.adapt_angle = cosf(DEG2RADF((float)part->adapt_angle));
1669                 }
1670
1671                 if (part->draw & PART_DRAW_REN_STRAND) {
1672                         strandbuf= RE_addStrandBuffer(obr, (totpart+totchild)*(path_nbr+1));
1673                         strandbuf->ma= ma;
1674                         strandbuf->lay= ob->lay;
1675                         copy_m4_m4(strandbuf->winmat, re->winmat);
1676                         strandbuf->winx= re->winx;
1677                         strandbuf->winy= re->winy;
1678                         strandbuf->maxdepth= 2;
1679                         strandbuf->adaptcos= cosf(DEG2RADF((float)part->adapt_angle));
1680                         strandbuf->overrideuv= sd.override_uv;
1681                         strandbuf->minwidth= ma->strand_min;
1682
1683                         if (ma->strand_widthfade == 0.0f)
1684                                 strandbuf->widthfade= -1.0f;
1685                         else if (ma->strand_widthfade >= 1.0f)
1686                                 strandbuf->widthfade= 2.0f - ma->strand_widthfade;
1687                         else
1688                                 strandbuf->widthfade= 1.0f/MAX2(ma->strand_widthfade, 1e-5f);
1689
1690                         if (part->flag & PART_HAIR_BSPLINE)
1691                                 strandbuf->flag |= R_STRAND_BSPLINE;
1692                         if (ma->mode & MA_STR_B_UNITS)
1693                                 strandbuf->flag |= R_STRAND_B_UNITS;
1694
1695                         svert= strandbuf->vert;
1696
1697                         if (re->r.mode & R_SPEED)
1698                                 do_surfacecache = TRUE;
1699                         else if ((re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT)) && (re->wrld.ao_gather_method == WO_AOGATHER_APPROX))
1700                                 if (ma->amb != 0.0f)
1701                                         do_surfacecache = TRUE;
1702
1703                         totface= psmd->dm->getNumTessFaces(psmd->dm);
1704                         index_mf_to_mpoly = psmd->dm->getTessFaceDataArray(psmd->dm, CD_ORIGINDEX);
1705                         index_mp_to_orig = psmd->dm->getPolyDataArray(psmd->dm, CD_ORIGINDEX);
1706                         if ((index_mf_to_mpoly && index_mp_to_orig) == FALSE) {
1707                                 index_mf_to_mpoly = index_mp_to_orig = NULL;
1708                         }
1709                         for (a=0; a<totface; a++)
1710                                 strandbuf->totbound = max_ii(strandbuf->totbound, (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a): a);
1711
1712                         strandbuf->totbound++;
1713                         strandbuf->bound= MEM_callocN(sizeof(StrandBound)*strandbuf->totbound, "StrandBound");
1714                         sbound= strandbuf->bound;
1715                         sbound->start= sbound->end= 0;
1716                 }
1717         }
1718
1719         if (sd.orco == 0) {
1720                 sd.orco = MEM_mallocN(3 * sizeof(float), "particle orco");
1721                 orco1 = 1;
1722         }
1723
1724         if (path_nbr == 0)
1725                 psys->lattice = psys_get_lattice(&sim);
1726
1727 /* 3. start creating renderable things */
1728         for (a=0, pa=pars; a<totpart+totchild; a++, pa++, seed++) {
1729                 random = BLI_rng_get_float(rng);
1730                 /* setup per particle individual stuff */
1731                 if (a<totpart) {
1732                         if (pa->flag & PARS_UNEXIST) continue;
1733
1734                         pa_time=(cfra-pa->time)/pa->lifetime;
1735                         pa_birthtime = pa->time;
1736                         pa_dietime = pa->dietime;
1737
1738                         hasize = ma->hasize;
1739
1740                         /* XXX 'tpsys' is alwyas NULL, this code won't run! */
1741                         /* get orco */
1742                         if (tpsys && part->phystype == PART_PHYS_NO) {
1743                                 tpa = tpsys->particles + pa->num;
1744                                 psys_particle_on_emitter(psmd, tpart->from, tpa->num, pa->num_dmcache, tpa->fuv, tpa->foffset, co, nor, 0, 0, sd.orco, 0);
1745                         }
1746                         else
1747                                 psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, co, nor, 0, 0, sd.orco, 0);
1748
1749                         /* get uvco & mcol */
1750                         num= pa->num_dmcache;
1751
1752                         if (num == DMCACHE_NOTFOUND)
1753                                 if (pa->num < psmd->dm->getNumTessFaces(psmd->dm))
1754                                         num= pa->num;
1755
1756                         get_particle_uvco_mcol(part->from, psmd->dm, pa->fuv, num, &sd);
1757
1758                         pa_size = pa->size;
1759
1760                         r_tilt = 2.0f*(PSYS_FRAND(a) - 0.5f);
1761                         r_length = PSYS_FRAND(a+1);
1762
1763                         if (path_nbr) {
1764                                 cache = psys->pathcache[a];
1765                                 max_k = (int)cache->steps;
1766                         }
1767
1768                         if (totchild && (part->draw&PART_DRAW_PARENT)==0) continue;
1769                 }
1770                 else {
1771                         ChildParticle *cpa= psys->child+a-totpart;
1772
1773                         if (path_nbr) {
1774                                 cache = psys->childcache[a-totpart];
1775
1776                                 if (cache->steps < 0)
1777                                         continue;
1778
1779                                 max_k = (int)cache->steps;
1780                         }
1781                         
1782                         pa_time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
1783                         pa_size = psys_get_child_size(psys, cpa, cfra, &pa_time);
1784
1785                         r_tilt = 2.0f*(PSYS_FRAND(a + 21) - 0.5f);
1786                         r_length = PSYS_FRAND(a + 22);
1787
1788                         num = cpa->num;
1789
1790                         /* get orco */
1791                         if (part->childtype == PART_CHILD_FACES) {
1792                                 psys_particle_on_emitter(psmd,
1793                                         PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD,
1794                                         cpa->fuv, cpa->foffset, co, nor, 0, 0, sd.orco, 0);
1795                         }
1796                         else {
1797                                 ParticleData *par = psys->particles + cpa->parent;
1798                                 psys_particle_on_emitter(psmd, part->from,
1799                                         par->num, DMCACHE_ISCHILD, par->fuv,
1800                                         par->foffset, co, nor, 0, 0, sd.orco, 0);
1801                         }
1802
1803                         /* get uvco & mcol */
1804                         if (part->childtype==PART_CHILD_FACES) {
1805                                 get_particle_uvco_mcol(PART_FROM_FACE, psmd->dm, cpa->fuv, cpa->num, &sd);
1806                         }
1807                         else {
1808                                 ParticleData *parent = psys->particles + cpa->parent;
1809                                 num = parent->num_dmcache;
1810
1811                                 if (num == DMCACHE_NOTFOUND)
1812                                         if (parent->num < psmd->dm->getNumTessFaces(psmd->dm))
1813                                                 num = parent->num;
1814
1815                                 get_particle_uvco_mcol(part->from, psmd->dm, parent->fuv, num, &sd);
1816                         }
1817
1818                         do_simplify = psys_render_simplify_params(psys, cpa, simplify);
1819
1820                         if (strandbuf) {
1821                                 int orignum = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, cpa->num) : cpa->num;
1822
1823                                 if (orignum > sbound - strandbuf->bound) {
1824                                         sbound= strandbuf->bound + orignum;
1825                                         sbound->start= sbound->end= obr->totstrand;
1826                                 }
1827                         }
1828                 }
1829
1830                 /* TEXCO_PARTICLE */
1831                 pa_co[0] = pa_time;
1832                 pa_co[1] = 0.f;
1833                 pa_co[2] = 0.f;
1834
1835                 /* surface normal shading setup */
1836                 if (ma->mode_l & MA_STR_SURFDIFF) {
1837                         mul_m3_v3(nmat, nor);
1838                         sd.surfnor= nor;
1839                 }
1840                 else
1841                         sd.surfnor= NULL;
1842
1843                 /* strand render setup */
1844                 if (strandbuf) {
1845                         strand= RE_findOrAddStrand(obr, obr->totstrand++);
1846                         strand->buffer= strandbuf;
1847                         strand->vert= svert;
1848                         copy_v3_v3(strand->orco, sd.orco);
1849
1850                         if (do_simplify) {
1851                                 float *ssimplify= RE_strandren_get_simplify(obr, strand, 1);
1852                                 ssimplify[0]= simplify[0];
1853                                 ssimplify[1]= simplify[1];
1854                         }
1855
1856                         if (sd.surfnor) {
1857                                 float *snor= RE_strandren_get_surfnor(obr, strand, 1);
1858                                 copy_v3_v3(snor, sd.surfnor);
1859                         }
1860
1861                         if (do_surfacecache && num >= 0) {
1862                                 int *facenum= RE_strandren_get_face(obr, strand, 1);
1863                                 *facenum= num;
1864                         }
1865
1866                         if (sd.uvco) {
1867                                 for (i=0; i<sd.totuv; i++) {
1868                                         if (i != sd.override_uv) {
1869                                                 float *uv= RE_strandren_get_uv(obr, strand, i, NULL, 1);
1870
1871                                                 uv[0]= sd.uvco[2*i];
1872                                                 uv[1]= sd.uvco[2*i+1];
1873                                         }
1874                                 }
1875                         }
1876                         if (sd.mcol) {
1877                                 for (i=0; i<sd.totcol; i++) {
1878                                         MCol *mc= RE_strandren_get_mcol(obr, strand, i, NULL, 1);
1879                                         *mc = sd.mcol[i];
1880                                 }
1881                         }
1882
1883                         sbound->end++;
1884                 }
1885
1886                 /* strandco computation setup */
1887                 if (path_nbr) {
1888                         strandlen= 0.0f;
1889                         curlen= 0.0f;
1890                         for (k=1; k<=path_nbr; k++)
1891                                 if (k<=max_k)
1892                                         strandlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1893                 }
1894
1895                 if (path_nbr) {
1896                         /* render strands */
1897                         for (k=0; k<=path_nbr; k++) {
1898                                 float time;
1899
1900                                 if (k<=max_k) {
1901                                         copy_v3_v3(state.co, (cache+k)->co);
1902                                         copy_v3_v3(state.vel, (cache+k)->vel);
1903                                 }
1904                                 else
1905                                         continue;
1906
1907                                 if (k > 0)
1908                                         curlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1909                                 time= curlen/strandlen;
1910
1911                                 copy_v3_v3(loc, state.co);
1912                                 mul_m4_v3(re->viewmat, loc);
1913
1914                                 if (strandbuf) {
1915                                         copy_v3_v3(svert->co, loc);
1916                                         svert->strandco= -1.0f + 2.0f*time;
1917                                         svert++;
1918                                         strand->totvert++;
1919                                 }
1920                                 else {
1921                                         sd.size = hasize;
1922
1923                                         if (k==1) {
1924                                                 sd.first = 1;
1925                                                 sd.time = 0.0f;
1926                                                 sub_v3_v3v3(loc0, loc1, loc);
1927                                                 add_v3_v3v3(loc0, loc1, loc0);
1928
1929                                                 particle_curve(re, obr, psmd->dm, ma, &sd, loc1, loc0, seed, pa_co);
1930                                         }
1931
1932                                         sd.first = 0;
1933                                         sd.time = time;
1934
1935                                         if (k)
1936                                                 particle_curve(re, obr, psmd->dm, ma, &sd, loc, loc1, seed, pa_co);
1937
1938                                         copy_v3_v3(loc1, loc);
1939                                 }
1940                         }
1941
1942                 }
1943                 else {
1944                         /* render normal particles */
1945                         if (part->trail_count > 1) {
1946                                 float length = part->path_end * (1.0f - part->randlength * r_length);
1947                                 int trail_count = part->trail_count * (1.0f - part->randlength * r_length);
1948                                 float ct = (part->draw & PART_ABS_PATH_TIME) ? cfra : pa_time;
1949                                 float dt = length / (trail_count ? (float)trail_count : 1.0f);
1950
1951                                 /* make sure we have pointcache in memory before getting particle on path */
1952                                 psys_make_temp_pointcache(ob, psys);
1953
1954                                 for (i=0; i < trail_count; i++, ct -= dt) {
1955                                         if (part->draw & PART_ABS_PATH_TIME) {
1956                                                 if (ct < pa_birthtime || ct > pa_dietime)
1957                                                         continue;
1958                                         }
1959                                         else if (ct < 0.0f || ct > 1.0f)
1960                                                 continue;
1961
1962                                         state.time = (part->draw & PART_ABS_PATH_TIME) ? -ct : ct;
1963                                         psys_get_particle_on_path(&sim, a, &state, 1);
1964
1965                                         if (psys->parent)
1966                                                 mul_m4_v3(psys->parent->obmat, state.co);
1967
1968                                         if (use_duplimat)
1969                                                 mul_m4_v4(duplimat, state.co);
1970
1971                                         if (part->ren_as == PART_DRAW_BB) {
1972                                                 bb.random = random;
1973                                                 bb.offset[0] = part->bb_offset[0];
1974                                                 bb.offset[1] = part->bb_offset[1];
1975                                                 bb.size[0] = part->bb_size[0] * pa_size;
1976                                                 if (part->bb_align==PART_BB_VEL) {
1977                                                         float pa_vel = len_v3(state.vel);
1978                                                         float head = part->bb_vel_head*pa_vel;
1979                                                         float tail = part->bb_vel_tail*pa_vel;
1980                                                         bb.size[1] = part->bb_size[1]*pa_size + head + tail;
1981                                                         /* use offset to adjust the particle center. this is relative to size, so need to divide! */
1982                                                         if (bb.size[1] > 0.0f)
1983                                                                 bb.offset[1] += (head-tail) / bb.size[1];
1984                                                 }
1985                                                 else
1986                                                         bb.size[1] = part->bb_size[1] * pa_size;
1987                                                 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
1988                                                 bb.time = ct;
1989                                                 bb.num = a;
1990                                         }
1991
1992                                         pa_co[0] = (part->draw & PART_ABS_PATH_TIME) ? (ct-pa_birthtime)/(pa_dietime-pa_birthtime) : ct;
1993                                         pa_co[1] = (float)i/(float)(trail_count-1);
1994
1995                                         particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
1996                                 }
1997                         }
1998                         else {
1999                                 state.time=cfra;
2000                                 if (psys_get_particle_state(&sim, a, &state, 0)==0)
2001                                         continue;
2002
2003                                 if (psys->parent)
2004                                         mul_m4_v3(psys->parent->obmat, state.co);
2005
2006                                 if (use_duplimat)
2007                                         mul_m4_v3(duplimat, state.co);
2008
2009                                 if (part->ren_as == PART_DRAW_BB) {
2010                                         bb.random = random;
2011                                         bb.offset[0] = part->bb_offset[0];
2012                                         bb.offset[1] = part->bb_offset[1];
2013                                         bb.size[0] = part->bb_size[0] * pa_size;
2014                                         if (part->bb_align==PART_BB_VEL) {
2015                                                 float pa_vel = len_v3(state.vel);
2016                                                 float head = part->bb_vel_head*pa_vel;
2017                                                 float tail = part->bb_vel_tail*pa_vel;
2018                                                 bb.size[1] = part->bb_size[1]*pa_size + head + tail;
2019                                                 /* use offset to adjust the particle center. this is relative to size, so need to divide! */
2020                                                 if (bb.size[1] > 0.0f)
2021                                                         bb.offset[1] += (head-tail) / bb.size[1];
2022                                         }
2023                                         else
2024                                                 bb.size[1] = part->bb_size[1] * pa_size;
2025                                         bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2026                                         bb.time = pa_time;
2027                                         bb.num = a;
2028                                         bb.lifetime = pa_dietime-pa_birthtime;
2029                                 }
2030
2031                                 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2032                         }
2033                 }
2034
2035                 if (orco1==0)
2036                         sd.orco+=3;
2037
2038                 if (re->test_break(re->tbh))
2039                         break;
2040         }
2041
2042         if (do_surfacecache)
2043                 strandbuf->surface= cache_strand_surface(re, obr, psmd->dm, mat, timeoffset);
2044
2045 /* 4. clean up */
2046 #if 0  /* XXX old animation system */
2047         if (ma) do_mat_ipo(re->scene, ma);
2048 #endif  /* XXX old animation system */
2049
2050         if (orco1)
2051                 MEM_freeN(sd.orco);
2052
2053         if (sd.uvco)
2054                 MEM_freeN(sd.uvco);
2055         
2056         if (sd.mcol)
2057                 MEM_freeN(sd.mcol);
2058
2059         if (uv_name)
2060                 MEM_freeN(uv_name);
2061
2062         if (states)
2063                 MEM_freeN(states);
2064         
2065         BLI_rng_free(rng);
2066
2067         psys->flag &= ~PSYS_DRAWING;
2068
2069         if (psys->lattice) {
2070                 end_latt_deform(psys->lattice);
2071                 psys->lattice= NULL;
2072         }
2073
2074         if (path_nbr && (ma->mode_l & MA_TANGENT_STR)==0)
2075                 calc_vertexnormals(re, obr, 0, 0);
2076
2077         return 1;
2078 }
2079
2080 /* ------------------------------------------------------------------------- */
2081 /* Halo's                                                                                                                                */
2082 /* ------------------------------------------------------------------------- */
2083
2084 static void make_render_halos(Render *re, ObjectRen *obr, Mesh *UNUSED(me), int totvert, MVert *mvert, Material *ma, float *orco)
2085 {
2086         Object *ob= obr->ob;
2087         HaloRen *har;
2088         float xn, yn, zn, nor[3], view[3];
2089         float vec[3], hasize, mat[4][4], imat[3][3];
2090         int a, ok, seed= ma->seed1;
2091
2092         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2093         copy_m3_m4(imat, ob->imat);
2094
2095         re->flag |= R_HALO;
2096
2097         for (a=0; a<totvert; a++, mvert++) {
2098                 ok= 1;
2099
2100                 if (ok) {
2101                         hasize= ma->hasize;
2102
2103                         copy_v3_v3(vec, mvert->co);
2104                         mul_m4_v3(mat, vec);
2105
2106                         if (ma->mode & MA_HALOPUNO) {
2107                                 xn= mvert->no[0];
2108                                 yn= mvert->no[1];
2109                                 zn= mvert->no[2];
2110
2111                                 /* transpose ! */
2112                                 nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2113                                 nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2114                                 nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2115                                 normalize_v3(nor);
2116
2117                                 copy_v3_v3(view, vec);
2118                                 normalize_v3(view);
2119
2120                                 zn = dot_v3v3(nor, view);
2121                                 if (zn>=0.0f) hasize= 0.0f;
2122                                 else hasize*= zn*zn*zn*zn;
2123                         }
2124
2125                         if (orco) har= RE_inithalo(re, obr, ma, vec, NULL, orco, hasize, 0.0, seed);
2126                         else har= RE_inithalo(re, obr, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
2127                         if (har) har->lay= ob->lay;
2128                 }
2129                 if (orco) orco+= 3;
2130                 seed++;
2131         }
2132 }
2133
2134 static int verghalo(const void *a1, const void *a2)
2135 {
2136         const HaloRen *har1= *(const HaloRen**)a1;
2137         const HaloRen *har2= *(const HaloRen**)a2;
2138         
2139         if (har1->zs < har2->zs) return 1;
2140         else if (har1->zs > har2->zs) return -1;
2141         return 0;
2142 }
2143
2144 static void sort_halos(Render *re, int totsort)
2145 {
2146         ObjectRen *obr;
2147         HaloRen *har= NULL, **haso;
2148         int a;
2149
2150         if (re->tothalo==0) return;
2151
2152         re->sortedhalos= MEM_callocN(sizeof(HaloRen*)*re->tothalo, "sorthalos");
2153         haso= re->sortedhalos;
2154
2155         for (obr=re->objecttable.first; obr; obr=obr->next) {
2156                 for (a=0; a<obr->tothalo; a++) {
2157                         if ((a & 255)==0) har= obr->bloha[a>>8];
2158                         else har++;
2159
2160                         *(haso++)= har;
2161                 }
2162         }
2163
2164         qsort(re->sortedhalos, totsort, sizeof(HaloRen*), verghalo);
2165 }
2166
2167 /* ------------------------------------------------------------------------- */
2168 /* Displacement Mapping                                                                                                          */
2169 /* ------------------------------------------------------------------------- */
2170
2171 static short test_for_displace(Render *re, Object *ob)
2172 {
2173         /* return 1 when this object uses displacement textures. */
2174         Material *ma;
2175         int i;
2176         
2177         for (i=1; i<=ob->totcol; i++) {
2178                 ma=give_render_material(re, ob, i);
2179                 /* ma->mapto is ORed total of all mapto channels */
2180                 if (ma && (ma->mapto & MAP_DISPLACE)) return 1;
2181         }
2182         return 0;
2183 }
2184
2185 static void displace_render_vert(Render *re, ObjectRen *obr, ShadeInput *shi, VertRen *vr, int vindex, float *scale, float mat[][4], float imat[][3])
2186 {
2187         MTFace *tface;
2188         short texco= shi->mat->texco;
2189         float sample=0, displace[3];
2190         char *name;
2191         int i;
2192
2193         /* shi->co is current render coord, just make sure at least some vector is here */
2194         copy_v3_v3(shi->co, vr->co);
2195         /* vertex normal is used for textures type 'col' and 'var' */
2196         copy_v3_v3(shi->vn, vr->n);
2197
2198         if (mat)
2199                 mul_m4_v3(mat, shi->co);
2200
2201         if (imat) {
2202                 shi->vn[0] = dot_v3v3(imat[0], vr->n);
2203                 shi->vn[1] = dot_v3v3(imat[1], vr->n);
2204                 shi->vn[2] = dot_v3v3(imat[2], vr->n);
2205         }
2206
2207         if (texco & TEXCO_UV) {
2208                 shi->totuv= 0;
2209                 shi->actuv= obr->actmtface;
2210
2211                 for (i=0; (tface=RE_vlakren_get_tface(obr, shi->vlr, i, &name, 0)); i++) {
2212                         ShadeInputUV *suv= &shi->uv[i];
2213
2214                         /* shi.uv needs scale correction from tface uv */
2215                         suv->uv[0]= 2*tface->uv[vindex][0]-1.0f;
2216                         suv->uv[1]= 2*tface->uv[vindex][1]-1.0f;
2217                         suv->uv[2]= 0.0f;
2218                         suv->name= name;
2219                         shi->totuv++;
2220                 }
2221         }
2222
2223         /* set all rendercoords, 'texco' is an ORed value for all textures needed */
2224         if ((texco & TEXCO_ORCO) && (vr->orco)) {
2225                 copy_v3_v3(shi->lo, vr->orco);
2226         }
2227         if (texco & TEXCO_GLOB) {
2228                 copy_v3_v3(shi->gl, shi->co);
2229                 mul_m4_v3(re->viewinv, shi->gl);
2230         }
2231         if (texco & TEXCO_NORM) {
2232                 copy_v3_v3(shi->orn, shi->vn);
2233         }
2234         if (texco & TEXCO_REFL) {
2235                 /* not (yet?) */
2236         }
2237         if (texco & TEXCO_STRESS) {
2238                 float *s= RE_vertren_get_stress(obr, vr, 0);
2239
2240                 if (s) {
2241                         shi->stress= *s;
2242                         if (shi->stress<1.0f) shi->stress-= 1.0f;
2243                         else shi->stress= (shi->stress-1.0f)/shi->stress;
2244                 }
2245                 else
2246                         shi->stress= 0.0f;
2247         }
2248
2249         shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
2250         
2251         do_material_tex(shi, re);
2252         
2253         //printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2], 
2254         //vr->co[0], vr->co[1], vr->co[2]);
2255
2256         displace[0]= shi->displace[0] * scale[0];
2257         displace[1]= shi->displace[1] * scale[1];
2258         displace[2]= shi->displace[2] * scale[2];
2259         
2260         if (mat)
2261                 mul_m3_v3(imat, displace);
2262
2263         /* 0.5 could become button once?  */
2264         vr->co[0] += displace[0]; 
2265         vr->co[1] += displace[1];
2266         vr->co[2] += displace[2];
2267         
2268         //printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]); 
2269         
2270         /* we just don't do this vertex again, bad luck for other face using same vertex with
2271          * different material... */
2272         vr->flag |= 1;
2273         
2274         /* Pass sample back so displace_face can decide which way to split the quad */
2275         sample  = shi->displace[0]*shi->displace[0];
2276         sample += shi->displace[1]*shi->displace[1];
2277         sample += shi->displace[2]*shi->displace[2];
2278         
2279         vr->accum=sample; 
2280         /* Should be sqrt(sample), but I'm only looking for "bigger".  Save the cycles. */
2281         return;
2282 }
2283
2284 static void displace_render_face(Render *re, ObjectRen *obr, VlakRen *vlr, float *scale, float mat[][4], float imat[][3])
2285 {
2286         ShadeInput shi;
2287
2288         /* Warning, This is not that nice, and possibly a bit slow,
2289          * however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
2290         memset(&shi, 0, sizeof(ShadeInput)); 
2291         /* end warning! - Campbell */
2292         
2293         /* set up shadeinput struct for multitex() */
2294         
2295         /* memset above means we don't need this */
2296         /*shi.osatex= 0;*/              /* signal not to use dx[] and dy[] texture AA vectors */
2297
2298         shi.obr= obr;
2299         shi.vlr= vlr;           /* current render face */
2300         shi.mat= vlr->mat;              /* current input material */
2301         shi.thread= 0;
2302         
2303         /* TODO, assign these, displacement with new bumpmap is skipped without - campbell */
2304 #if 0
2305         /* order is not known ? */
2306         shi.v1= vlr->v1;
2307         shi.v2= vlr->v2;
2308         shi.v3= vlr->v3;
2309 #endif
2310
2311         /* Displace the verts, flag is set when done */
2312         if (!vlr->v1->flag)
2313                 displace_render_vert(re, obr, &shi, vlr->v1, 0,  scale, mat, imat);
2314         
2315         if (!vlr->v2->flag)
2316                 displace_render_vert(re, obr, &shi, vlr->v2, 1, scale, mat, imat);
2317
2318         if (!vlr->v3->flag)
2319                 displace_render_vert(re, obr, &shi, vlr->v3, 2, scale, mat, imat);
2320
2321         if (vlr->v4) {
2322                 if (!vlr->v4->flag)
2323                         displace_render_vert(re, obr, &shi, vlr->v4, 3, scale, mat, imat);
2324
2325                 /*      closest in displace value.  This will help smooth edges.   */ 
2326                 if (fabsf(vlr->v1->accum - vlr->v3->accum) > fabsf(vlr->v2->accum - vlr->v4->accum)) vlr->flag |=  R_DIVIDE_24;
2327                 else                                                                                 vlr->flag &= ~R_DIVIDE_24;
2328         }
2329         
2330         /* Recalculate the face normal  - if flipped before, flip now */
2331         if (vlr->v4) {
2332                 normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2333         }
2334         else {
2335                 normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2336         }
2337 }
2338
2339 static void do_displacement(Render *re, ObjectRen *obr, float mat[][4], float imat[][3])
2340 {
2341         VertRen *vr;
2342         VlakRen *vlr;
2343 //      float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
2344         float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
2345         int i; //, texflag=0;
2346         Object *obt;
2347                 
2348         /* Object Size with parenting */
2349         obt=obr->ob;
2350         while (obt) {
2351                 mul_v3_v3v3(temp, obt->size, obt->dscale);
2352                 scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
2353                 obt=obt->parent;
2354         }
2355         
2356         /* Clear all flags */
2357         for (i=0; i<obr->totvert; i++) {
2358                 vr= RE_findOrAddVert(obr, i);
2359                 vr->flag= 0;
2360         }
2361
2362         for (i=0; i<obr->totvlak; i++) {
2363                 vlr=RE_findOrAddVlak(obr, i);
2364                 displace_render_face(re, obr, vlr, scale, mat, imat);
2365         }
2366         
2367         /* Recalc vertex normals */
2368         calc_vertexnormals(re, obr, 0, 0);
2369 }
2370
2371 /* ------------------------------------------------------------------------- */
2372 /* Metaball                                                                                                                              */
2373 /* ------------------------------------------------------------------------- */
2374
2375 static void init_render_mball(Render *re, ObjectRen *obr)
2376 {
2377         Object *ob= obr->ob;
2378         DispList *dl;
2379         VertRen *ver;
2380         VlakRen *vlr, *vlr1;
2381         Material *ma;
2382         float *data, *nors, *orco=NULL, mat[4][4], imat[3][3], xn, yn, zn;
2383         int a, need_orco, vlakindex, *index, negative_scale;
2384         ListBase dispbase= {NULL, NULL};
2385
2386         if (ob!=BKE_mball_basis_find(re->scene, ob))
2387                 return;
2388
2389         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2390         invert_m4_m4(ob->imat, mat);
2391         copy_m3_m4(imat, ob->imat);
2392         negative_scale = is_negative_m4(mat);
2393
2394         ma= give_render_material(re, ob, 1);
2395
2396         need_orco= 0;
2397         if (ma->texco & TEXCO_ORCO) {
2398                 need_orco= 1;
2399         }
2400
2401         BKE_displist_make_mball_forRender(re->scene, ob, &dispbase);
2402         dl= dispbase.first;
2403         if (dl==0) return;
2404
2405         data= dl->verts;
2406         nors= dl->nors;
2407         if (need_orco) {
2408                 orco= get_object_orco(re, ob);
2409
2410                 if (!orco) {
2411                         /* orco hasn't been found in cache - create new one and add to cache */
2412                         orco= BKE_mball_make_orco(ob, &dispbase);
2413                         set_object_orco(re, ob, orco);
2414                 }
2415         }
2416
2417         for (a=0; a<dl->nr; a++, data+=3, nors+=3) {
2418
2419                 ver= RE_findOrAddVert(obr, obr->totvert++);
2420                 copy_v3_v3(ver->co, data);
2421                 mul_m4_v3(mat, ver->co);
2422
2423                 /* render normals are inverted */
2424                 xn= -nors[0];
2425                 yn= -nors[1];
2426                 zn= -nors[2];
2427
2428                 /* transpose ! */
2429                 ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2430                 ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2431                 ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2432                 normalize_v3(ver->n);
2433                 //if (ob->transflag & OB_NEG_SCALE) negate_v3(ver->n);
2434                 
2435                 if (need_orco) {
2436                         ver->orco= orco;
2437                         orco+=3;
2438                 }
2439         }
2440
2441         index= dl->index;
2442         for (a=0; a<dl->parts; a++, index+=4) {
2443
2444                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2445                 vlr->v1= RE_findOrAddVert(obr, index[0]);
2446                 vlr->v2= RE_findOrAddVert(obr, index[1]);
2447                 vlr->v3= RE_findOrAddVert(obr, index[2]);
2448                 vlr->v4= 0;
2449
2450                 if (negative_scale)
2451                         normal_tri_v3(vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co);
2452                 else
2453                         normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2454
2455                 vlr->mat= ma;
2456                 vlr->flag= ME_SMOOTH;
2457                 vlr->ec= 0;
2458
2459                 /* mball -too bad- always has triangles, because quads can be non-planar */
2460                 if (index[3] && index[3]!=index[2]) {
2461                         vlr1= RE_findOrAddVlak(obr, obr->totvlak++);
2462                         vlakindex= vlr1->index;
2463                         *vlr1= *vlr;
2464                         vlr1->index= vlakindex;
2465                         vlr1->v2= vlr1->v3;
2466                         vlr1->v3= RE_findOrAddVert(obr, index[3]);
2467                         if (negative_scale)
2468                                 normal_tri_v3(vlr1->n, vlr1->v1->co, vlr1->v2->co, vlr1->v3->co);
2469                         else
2470                                 normal_tri_v3(vlr1->n, vlr1->v3->co, vlr1->v2->co, vlr1->v1->co);
2471                 }
2472         }
2473
2474         /* enforce display lists remade */
2475         BKE_displist_free(&dispbase);
2476 }
2477
2478 /* ------------------------------------------------------------------------- */
2479 /* Surfaces and Curves                                                                                                           */
2480 /* ------------------------------------------------------------------------- */
2481
2482 /* returns amount of vertices added for orco */
2483 static int dl_surf_to_renderdata(ObjectRen *obr, DispList *dl, Material **matar, float *orco, float mat[4][4])
2484 {
2485         VertRen *v1, *v2, *v3, *v4, *ver;
2486         VlakRen *vlr, *vlr1, *vlr2, *vlr3;
2487         float *data, n1[3];
2488         int u, v, orcoret= 0;
2489         int p1, p2, p3, p4, a;
2490         int sizeu, nsizeu, sizev, nsizev;
2491         int startvert, startvlak;
2492         
2493         startvert= obr->totvert;
2494         nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr; 
2495         
2496         data= dl->verts;
2497         for (u = 0; u < sizeu; u++) {
2498                 v1 = RE_findOrAddVert(obr, obr->totvert++); /* save this for possible V wrapping */
2499                 copy_v3_v3(v1->co, data); data += 3;
2500                 if (orco) {
2501                         v1->orco= orco; orco+= 3; orcoret++;
2502                 }
2503                 mul_m4_v3(mat, v1->co);
2504                 
2505                 for (v = 1; v < sizev; v++) {
2506                         ver= RE_findOrAddVert(obr, obr->totvert++);
2507                         copy_v3_v3(ver->co, data); data += 3;
2508                         if (orco) {
2509                                 ver->orco= orco; orco+= 3; orcoret++;
2510                         }
2511                         mul_m4_v3(mat, ver->co);
2512                 }
2513                 /* if V-cyclic, add extra vertices at end of the row */
2514                 if (dl->flag & DL_CYCL_U) {
2515                         ver= RE_findOrAddVert(obr, obr->totvert++);
2516                         copy_v3_v3(ver->co, v1->co);
2517                         if (orco) {
2518                                 ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
2519                         }
2520                 }
2521         }
2522         
2523         /* Done before next loop to get corner vert */
2524         if (dl->flag & DL_CYCL_U) nsizev++;
2525         if (dl->flag & DL_CYCL_V) nsizeu++;
2526         
2527         /* if U cyclic, add extra row at end of column */
2528         if (dl->flag & DL_CYCL_V) {
2529                 for (v = 0; v < nsizev; v++) {
2530                         v1= RE_findOrAddVert(obr, startvert + v);
2531                         ver= RE_findOrAddVert(obr, obr->totvert++);
2532                         copy_v3_v3(ver->co, v1->co);
2533                         if (orco) {
2534                                 ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
2535                         }
2536                 }
2537         }
2538         
2539         sizeu = nsizeu;
2540         sizev = nsizev;
2541         
2542         startvlak= obr->totvlak;
2543         
2544         for (u = 0; u < sizeu - 1; u++) {
2545                 p1 = startvert + u * sizev; /* walk through face list */
2546                 p2 = p1 + 1;
2547                 p3 = p2 + sizev;
2548                 p4 = p3 - 1;
2549                 
2550                 for (v = 0; v < sizev - 1; v++) {
2551                         v1= RE_findOrAddVert(obr, p1);
2552                         v2= RE_findOrAddVert(obr, p2);
2553                         v3= RE_findOrAddVert(obr, p3);
2554                         v4= RE_findOrAddVert(obr, p4);
2555                         
2556                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2557                         vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
2558                         
2559                         normal_quad_v3(n1, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2560                         
2561                         copy_v3_v3(vlr->n, n1);
2562                         
2563                         vlr->mat= matar[ dl->col];
2564                         vlr->ec= ME_V1V2+ME_V2V3;
2565                         vlr->flag= dl->rt;
2566                         
2567                         add_v3_v3(v1->n, n1);
2568                         add_v3_v3(v2->n, n1);
2569                         add_v3_v3(v3->n, n1);
2570                         add_v3_v3(v4->n, n1);
2571                         
2572                         p1++; p2++; p3++; p4++;
2573                 }
2574         }
2575         /* fix normals for U resp. V cyclic faces */
2576         sizeu--; sizev--;  /* dec size for face array */
2577         if (dl->flag & DL_CYCL_V) {
2578                 
2579                 for (v = 0; v < sizev; v++) {
2580                         /* optimize! :*/
2581                         vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, v));
2582                         vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, v));
2583                         add_v3_v3(vlr1->v1->n, vlr->n);
2584                         add_v3_v3(vlr1->v2->n, vlr->n);
2585                         add_v3_v3(vlr->v3->n, vlr1->n);
2586                         add_v3_v3(vlr->v4->n, vlr1->n);
2587                 }
2588         }
2589         if (dl->flag & DL_CYCL_U) {
2590                 
2591                 for (u = 0; u < sizeu; u++) {
2592                         /* optimize! :*/
2593                         vlr= RE_findOrAddVlak(obr, UVTOINDEX(u, 0));
2594                         vlr1= RE_findOrAddVlak(obr, UVTOINDEX(u, sizev-1));
2595                         add_v3_v3(vlr1->v2->n, vlr->n);
2596                         add_v3_v3(vlr1->v3->n, vlr->n);
2597                         add_v3_v3(vlr->v1->n, vlr1->n);
2598                         add_v3_v3(vlr->v4->n, vlr1->n);
2599                 }
2600         }
2601
2602         /* last vertex is an extra case: 
2603          *
2604          *     ^     ()----()----()----()
2605          *     |     |     |     ||     |
2606          *     u     |     |(0,n)||(0,0)|
2607          *     |     |     ||     |
2608          *     ()====()====[]====()
2609          *     |     |     ||     |
2610          *     |     |(m,n)||(m,0)|
2611          *     |     |     ||     |
2612          *     ()----()----()----()
2613          *     v ->
2614          *  
2615          *  vertex [] is no longer shared, therefore distribute
2616          *  normals of the surrounding faces to all of the duplicates of []
2617          */
2618
2619         if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U)) {
2620                 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m, n) */
2621                 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, 0));  /* (0, 0) */
2622                 add_v3_v3v3(n1, vlr->n, vlr1->n);
2623                 vlr2= RE_findOrAddVlak(obr, UVTOINDEX(0, sizev-1)); /* (0, n) */
2624                 add_v3_v3(n1, vlr2->n);
2625                 vlr3= RE_findOrAddVlak(obr, UVTOINDEX(sizeu-1, 0)); /* (m, 0) */
2626                 add_v3_v3(n1, vlr3->n);
2627                 copy_v3_v3(vlr->v3->n, n1);
2628                 copy_v3_v3(vlr1->v1->n, n1);
2629                 copy_v3_v3(vlr2->v2->n, n1);
2630                 copy_v3_v3(vlr3->v4->n, n1);
2631         }
2632         for (a = startvert; a < obr->totvert; a++) {
2633                 ver= RE_findOrAddVert(obr, a);
2634                 normalize_v3(ver->n);
2635         }
2636         
2637         
2638         return orcoret;
2639 }
2640
2641 static void init_render_dm(DerivedMesh *dm, Render *re, ObjectRen *obr,
2642         int timeoffset, float *orco, float mat[4][4])
2643 {
2644         Object *ob= obr->ob;
2645         int a, end, totvert, vertofs;
2646         short mat_iter;
2647         VertRen *ver;
2648         VlakRen *vlr;
2649         MVert *mvert = NULL;
2650         MFace *mface;
2651         Material *ma;
2652         /* Curve *cu= ELEM(ob->type, OB_FONT, OB_CURVE) ? ob->data : NULL; */
2653
2654         mvert= dm->getVertArray(dm);
2655         totvert= dm->getNumVerts(dm);
2656
2657         for (a=0; a<totvert; a++, mvert++) {
2658                 ver= RE_findOrAddVert(obr, obr->totvert++);
2659                 copy_v3_v3(ver->co, mvert->co);
2660                 mul_m4_v3(mat, ver->co);
2661
2662                 if (orco) {
2663                         ver->orco= orco;
2664                         orco+=3;
2665                 }
2666         }
2667
2668         if (!timeoffset) {
2669                 /* store customdata names, because DerivedMesh is freed */
2670                 RE_set_customdata_names(obr, &dm->faceData);
2671
2672                 /* still to do for keys: the correct local texture coordinate */
2673
2674                 /* faces in order of color blocks */
2675                 vertofs= obr->totvert - totvert;
2676                 for (mat_iter= 0; (mat_iter < ob->totcol || (mat_iter==0 && ob->totcol==0)); mat_iter++) {
2677
2678                         ma= give_render_material(re, ob, mat_iter+1);
2679                         end= dm->getNumTessFaces(dm);
2680                         mface= dm->getTessFaceArray(dm);
2681
2682                         for (a=0; a<end; a++, mface++) {
2683                                 int v1, v2, v3, v4, flag;
2684
2685                                 if (mface->mat_nr == mat_iter) {
2686                                         float len;
2687
2688                                         v1= mface->v1;
2689                                         v2= mface->v2;
2690                                         v3= mface->v3;
2691                                         v4= mface->v4;
2692                                         flag= mface->flag & (ME_SMOOTH | ME_FREESTYLE_FACE);
2693
2694                                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2695                                         vlr->v1= RE_findOrAddVert(obr, vertofs+v1);
2696                                         vlr->v2= RE_findOrAddVert(obr, vertofs+v2);
2697                                         vlr->v3= RE_findOrAddVert(obr, vertofs+v3);
2698                                         if (v4) vlr->v4= RE_findOrAddVert(obr, vertofs+v4);
2699                                         else vlr->v4= 0;
2700
2701                                         /* render normals are inverted in render */
2702                                         if (vlr->v4)
2703                                                 len= normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2704                                         else
2705                                                 len= normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2706
2707                                         vlr->mat= ma;
2708                                         vlr->flag= flag;
2709                                         vlr->ec= 0; /* mesh edges rendered separately */
2710
2711                                         if (len==0) obr->totvlak--;
2712                                         else {
2713                                                 CustomDataLayer *layer;
2714                                                 MTFace *mtface, *mtf;
2715                                                 MCol *mcol, *mc;
2716                                                 int index, mtfn= 0, mcn= 0;
2717                                                 char *name;
2718
2719                                                 for (index=0; index<dm->faceData.totlayer; index++) {
2720                                                         layer= &dm->faceData.layers[index];
2721                                                         name= layer->name;
2722
2723                                                         if (layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
2724                                                                 mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
2725                                                                 mtface= (MTFace*)layer->data;
2726                                                                 *mtf= mtface[a];
2727                                                         }
2728                                                         else if (layer->type == CD_MCOL && mcn < MAX_MCOL) {
2729                                                                 mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
2730                                                                 mcol= (MCol*)layer->data;
2731                                                                 memcpy(mc, &mcol[a*4], sizeof(MCol)*4);
2732                                                         }
2733                                                 }
2734                                         }
2735                                 }
2736                         }
2737                 }
2738
2739                 /* Normals */
2740                 calc_vertexnormals(re, obr, 0, 0);
2741         }
2742
2743 }
2744
2745 static void init_render_surf(Render *re, ObjectRen *obr, int timeoffset)
2746 {
2747         Object *ob= obr->ob;
2748         Nurb *nu=0;
2749         Curve *cu;
2750         ListBase displist= {NULL, NULL};
2751         DispList *dl;
2752         Material **matar;
2753         float *orco=NULL, mat[4][4];
2754         int a, totmat, need_orco=0;
2755         DerivedMesh *dm= NULL;
2756
2757         cu= ob->data;
2758         nu= cu->nurb.first;
2759         if (nu==0) return;
2760
2761         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2762         invert_m4_m4(ob->imat, mat);
2763
2764         /* material array */
2765         totmat= ob->totcol+1;
2766         matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2767
2768         for (a=0; a<totmat; a++) {
2769                 matar[a]= give_render_material(re, ob, a+1);
2770
2771                 if (matar[a] && matar[a]->texco & TEXCO_ORCO)
2772                         need_orco= 1;
2773         }
2774
2775         if (ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
2776
2777         BKE_displist_make_surf(re->scene, ob, &displist, &dm, 1, 0);
2778
2779         if (dm) {
2780                 if (need_orco) {
2781                         orco= BKE_displist_make_orco(re->scene, ob, dm, 1);
2782                         if (orco) {
2783                                 set_object_orco(re, ob, orco);
2784                         }
2785                 }
2786
2787                 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2788                 dm->release(dm);
2789         }
2790         else {
2791                 if (need_orco) {
2792                         orco= get_object_orco(re, ob);
2793                 }
2794
2795                 /* walk along displaylist and create rendervertices/-faces */
2796                 for (dl=displist.first; dl; dl=dl->next) {
2797                         /* watch out: u ^= y, v ^= x !! */
2798                         if (dl->type==DL_SURF)
2799                                 orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
2800                 }
2801         }
2802
2803         BKE_displist_free(&displist);
2804
2805         MEM_freeN(matar);
2806 }
2807
2808 static void init_render_curve(Render *re, ObjectRen *obr, int timeoffset)
2809 {
2810         Object *ob= obr->ob;
2811         Curve *cu;
2812         VertRen *ver;
2813         VlakRen *vlr;
2814         DispList *dl;
2815         DerivedMesh *dm = NULL;
2816         ListBase disp={NULL, NULL};
2817         Material **matar;
2818         float *data, *fp, *orco=NULL;
2819         float n[3], mat[4][4];
2820         int nr, startvert, a, b;
2821         int need_orco=0, totmat;
2822
2823         cu= ob->data;
2824         if (ob->type==OB_FONT && cu->str==NULL) return;
2825         else if (ob->type==OB_CURVE && cu->nurb.first==NULL) return;
2826
2827         BKE_displist_make_curveTypes_forRender(re->scene, ob, &disp, &dm, 0);
2828         dl= disp.first;
2829         if (dl==NULL) return;
2830         
2831         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2832         invert_m4_m4(ob->imat, mat);
2833
2834         /* material array */
2835         totmat= ob->totcol+1;
2836         matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2837
2838         for (a=0; a<totmat; a++) {
2839                 matar[a]= give_render_material(re, ob, a+1);
2840
2841                 if (matar[a] && matar[a]->texco & TEXCO_ORCO)
2842                         need_orco= 1;
2843         }
2844
2845         if (dm) {
2846                 if (need_orco) {
2847                         orco= BKE_displist_make_orco(re->scene, ob, dm, 1);
2848                         if (orco) {
2849                                 set_object_orco(re, ob, orco);
2850                         }
2851                 }
2852
2853                 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2854                 dm->release(dm);
2855         }
2856         else {
2857                 if (need_orco) {
2858                   orco= get_object_orco(re, ob);
2859                 }
2860
2861                 while (dl) {
2862                         if (dl->col > ob->totcol) {
2863                                 /* pass */
2864                         }
2865                         else if (dl->type==DL_INDEX3) {
2866                                 int *index;
2867
2868                                 startvert= obr->totvert;
2869                                 data= dl->verts;
2870
2871                                 for (a=0; a<dl->nr; a++, data+=3) {
2872                                         ver= RE_findOrAddVert(obr, obr->totvert++);
2873                                         copy_v3_v3(ver->co, data);
2874
2875                                         mul_m4_v3(mat, ver->co);
2876
2877                                         if (orco) {
2878                                                 ver->orco = orco;
2879                                                 orco += 3;
2880                                         }
2881                                 }
2882
2883                                 if (timeoffset==0) {
2884                                         float tmp[3];
2885                                         const int startvlak= obr->totvlak;
2886
2887                                         zero_v3(n);
2888                                         index= dl->index;
2889                                         for (a=0; a<dl->parts; a++, index+=3) {
2890                                                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2891                                                 vlr->v1= RE_findOrAddVert(obr, startvert+index[0]);
2892                                                 vlr->v2= RE_findOrAddVert(obr, startvert+index[1]);
2893                                                 vlr->v3= RE_findOrAddVert(obr, startvert+index[2]);
2894                                                 vlr->v4= NULL;
2895                                                 if (area_tri_v3(vlr->v3->co, vlr->v2->co, vlr->v1->co)>FLT_EPSILON10) {
2896                                                         normal_tri_v3(tmp, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2897                                                         add_v3_v3(n, tmp);
2898                                                 }
2899
2900                                                 vlr->mat= matar[ dl->col ];
2901                                                 vlr->flag= 0;
2902                                                 vlr->ec= 0;
2903                                         }
2904
2905                                         normalize_v3(n);
2906
2907                                         /* vertex normals */
2908                                         for (a= startvlak; a<obr->totvlak; a++) {
2909                                                 vlr= RE_findOrAddVlak(obr, a);
2910
2911                                                 copy_v3_v3(vlr->n, n);
2912                                                 add_v3_v3(vlr->v1->n, vlr->n);
2913                                                 add_v3_v3(vlr->v3->n, vlr->n);
2914                                                 add_v3_v3(vlr->v2->n, vlr->n);
2915                                         }
2916                                         for (a=startvert; a<obr->totvert; a++) {
2917                                                 ver= RE_findOrAddVert(obr, a);
2918                                                 normalize_v3(ver->n);
2919                                         }
2920                                 }
2921                         }
2922                         else if (dl->type==DL_SURF) {
2923
2924                                 /* cyclic U means an extruded full circular curve, we skip bevel splitting then */