svn merge ^/trunk/blender -r43693:43733
[blender.git] / source / blender / render / intern / source / convertblender.c
1 /*
2  * ***** BEGIN GPL LICENSE BLOCK *****
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17  *
18  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
19  * All rights reserved.
20  *
21  * Contributors: 2004/2005/2006 Blender Foundation, full recode
22  *
23  * ***** END GPL LICENSE BLOCK *****
24  */
25
26 /** \file blender/render/intern/source/convertblender.c
27  *  \ingroup render
28  */
29
30
31 #include <math.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <string.h>
35 #include <limits.h>
36
37 #include "MEM_guardedalloc.h"
38
39 #include "BLI_math.h"
40 #include "BLI_blenlib.h"
41 #include "BLI_utildefines.h"
42 #include "BLI_rand.h"
43 #include "BLI_memarena.h"
44 #include "BLI_ghash.h"
45
46 #include "DNA_armature_types.h"
47 #include "DNA_camera_types.h"
48 #include "DNA_material_types.h"
49 #include "DNA_curve_types.h"
50 #include "DNA_effect_types.h"
51 #include "DNA_group_types.h"
52 #include "DNA_lamp_types.h"
53 #include "DNA_image_types.h"
54 #include "DNA_lattice_types.h"
55 #include "DNA_mesh_types.h"
56 #include "DNA_meshdata_types.h"
57 #include "DNA_meta_types.h"
58 #include "DNA_modifier_types.h"
59 #include "DNA_node_types.h"
60 #include "DNA_object_types.h"
61 #include "DNA_object_force.h"
62 #include "DNA_object_fluidsim.h"
63 #include "DNA_particle_types.h"
64 #include "DNA_scene_types.h"
65 #include "DNA_texture_types.h"
66 #include "DNA_view3d_types.h"
67
68 #include "BKE_anim.h"
69 #include "BKE_armature.h"
70 #include "BKE_action.h"
71 #include "BKE_curve.h"
72 #include "BKE_customdata.h"
73 #include "BKE_colortools.h"
74 #include "BKE_constraint.h"
75 #include "BKE_displist.h"
76 #include "BKE_deform.h"
77 #include "BKE_DerivedMesh.h"
78 #include "BKE_effect.h"
79 #include "BKE_global.h"
80 #include "BKE_group.h"
81 #include "BKE_key.h"
82 #include "BKE_ipo.h"
83 #include "BKE_image.h"
84 #include "BKE_lattice.h"
85 #include "BKE_library.h"
86 #include "BKE_material.h"
87 #include "BKE_main.h"
88 #include "BKE_mball.h"
89 #include "BKE_mesh.h"
90 #include "BKE_modifier.h"
91 #include "BKE_node.h"
92 #include "BKE_object.h"
93 #include "BKE_particle.h"
94 #include "BKE_scene.h"
95 #include "BKE_subsurf.h"
96 #include "BKE_texture.h"
97
98 #include "BKE_world.h"
99
100 #include "PIL_time.h"
101 #include "IMB_imbuf_types.h"
102
103 #include "envmap.h"
104 #include "occlusion.h"
105 #include "pointdensity.h"
106 #include "voxeldata.h"
107 #include "render_types.h"
108 #include "rendercore.h"
109 #include "renderdatabase.h"
110 #include "renderpipeline.h"
111 #include "shadbuf.h"
112 #include "shading.h"
113 #include "strand.h"
114 #include "texture.h"
115 #include "volume_precache.h"
116 #include "sss.h"
117 #include "strand.h"
118 #include "zbuf.h"
119 #include "sunsky.h"
120
121
122 /* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
123 /* or for checking vertex normal flips */
124 #define FLT_EPSILON10 1.19209290e-06F
125
126 /* ------------------------------------------------------------------------- */
127
128 /* Stuff for stars. This sits here because it uses gl-things. Part of
129 this code may move down to the converter.  */
130 /* ------------------------------------------------------------------------- */
131 /* this is a bad beast, since it is misused by the 3d view drawing as well. */
132
133 static HaloRen *initstar(Render *re, ObjectRen *obr, float *vec, float hasize)
134 {
135         HaloRen *har;
136         float hoco[4];
137         
138         projectverto(vec, re->winmat, hoco);
139         
140         har= RE_findOrAddHalo(obr, obr->tothalo++);
141         
142         /* projectvert is done in function zbufvlaggen again, because of parts */
143         copy_v3_v3(har->co, vec);
144         har->hasize= hasize;
145         
146         har->zd= 0.0;
147         
148         return har;
149 }
150
151 /* there must be a 'fixed' amount of stars generated between
152 *         near and far
153 * all stars must by preference lie on the far and solely
154 *        differ in clarity/color
155 */
156
157 void RE_make_stars(Render *re, Scene *scenev3d, void (*initfunc)(void),
158                                    void (*vertexfunc)(float*),  void (*termfunc)(void))
159 {
160         extern unsigned char hash[512];
161         ObjectRen *obr= NULL;
162         World *wrld= NULL;
163         HaloRen *har;
164         Scene *scene;
165         Object *camera;
166         Camera *cam;
167         double dblrand, hlfrand;
168         float vec[4], fx, fy, fz;
169         float fac, starmindist, clipend;
170         float mat[4][4], stargrid, maxrand, maxjit, force, alpha;
171         int x, y, z, sx, sy, sz, ex, ey, ez, done = 0;
172         unsigned int totstar= 0;
173         
174         if(initfunc) {
175                 scene= scenev3d;
176                 wrld= scene->world;
177         }
178         else {
179                 scene= re->scene;
180                 wrld= &(re->wrld);
181         }
182
183         stargrid = wrld->stardist;                      /* distance between stars */
184         maxrand = 2.0;                                          /* amount a star can be shifted (in grid units) */
185         maxjit = (wrld->starcolnoise);          /* amount a color is being shifted */
186         
187         /* size of stars */
188         force = ( wrld->starsize );
189         
190         /* minimal free space (starting at camera) */
191         starmindist= wrld->starmindist;
192         
193         if (stargrid <= 0.10f) return;
194         
195         if (re) re->flag |= R_HALO;
196         else stargrid *= 1.0f;                          /* then it draws fewer */
197         
198         if(re) invert_m4_m4(mat, re->viewmat);
199         else unit_m4(mat);
200         
201         /* BOUNDING BOX CALCULATION
202                 * bbox goes from z = loc_near_var | loc_far_var,
203                 * x = -z | +z,
204                 * y = -z | +z
205                 */
206
207         camera= re ? RE_GetCamera(re) : scene->camera;
208
209         if(camera==NULL || camera->type != OB_CAMERA)
210                 return;
211
212         cam = camera->data;
213         clipend = cam->clipend;
214         
215         /* convert to grid coordinates */
216         
217         sx = ((mat[3][0] - clipend) / stargrid) - maxrand;
218         sy = ((mat[3][1] - clipend) / stargrid) - maxrand;
219         sz = ((mat[3][2] - clipend) / stargrid) - maxrand;
220         
221         ex = ((mat[3][0] + clipend) / stargrid) + maxrand;
222         ey = ((mat[3][1] + clipend) / stargrid) + maxrand;
223         ez = ((mat[3][2] + clipend) / stargrid) + maxrand;
224         
225         dblrand = maxrand * stargrid;
226         hlfrand = 2.0 * dblrand;
227         
228         if (initfunc) {
229                 initfunc();     
230         }
231
232         if(re) /* add render object for stars */
233                 obr= RE_addRenderObject(re, NULL, NULL, 0, 0, 0);
234         
235         for (x = sx, fx = sx * stargrid; x <= ex; x++, fx += stargrid) {
236                 for (y = sy, fy = sy * stargrid; y <= ey ; y++, fy += stargrid) {
237                         for (z = sz, fz = sz * stargrid; z <= ez; z++, fz += stargrid) {
238
239                                 BLI_srand((hash[z & 0xff] << 24) + (hash[y & 0xff] << 16) + (hash[x & 0xff] << 8));
240                                 vec[0] = fx + (hlfrand * BLI_drand()) - dblrand;
241                                 vec[1] = fy + (hlfrand * BLI_drand()) - dblrand;
242                                 vec[2] = fz + (hlfrand * BLI_drand()) - dblrand;
243                                 vec[3] = 1.0;
244                                 
245                                 if (vertexfunc) {
246                                         if(done & 1) vertexfunc(vec);
247                                         done++;
248                                 }
249                                 else {
250                                         mul_m4_v3(re->viewmat, vec);
251                                         
252                                         /* in vec are global coordinates
253                                         * calculate distance to camera
254                                         * and using that, define the alpha
255                                         */
256                                         
257                                         {
258                                                 float tx, ty, tz;
259                                                 
260                                                 tx = vec[0];
261                                                 ty = vec[1];
262                                                 tz = vec[2];
263                                                 
264                                                 alpha = sqrt(tx * tx + ty * ty + tz * tz);
265                                                 
266                                                 if (alpha >= clipend) alpha = 0.0;
267                                                 else if (alpha <= starmindist) alpha = 0.0;
268                                                 else if (alpha <= 2.0f * starmindist) {
269                                                         alpha = (alpha - starmindist) / starmindist;
270                                                 } else {
271                                                         alpha -= 2.0f * starmindist;
272                                                         alpha /= (clipend - 2.0f * starmindist);
273                                                         alpha = 1.0f - alpha;
274                                                 }
275                                         }
276                                         
277                                         
278                                         if (alpha != 0.0f) {
279                                                 fac = force * BLI_drand();
280                                                 
281                                                 har = initstar(re, obr, vec, fac);
282                                                 
283                                                 if (har) {
284                                                         har->alfa = sqrt(sqrt(alpha));
285                                                         har->add= 255;
286                                                         har->r = har->g = har->b = 1.0;
287                                                         if (maxjit) {
288                                                                 har->r += ((maxjit * BLI_drand()) ) - maxjit;
289                                                                 har->g += ((maxjit * BLI_drand()) ) - maxjit;
290                                                                 har->b += ((maxjit * BLI_drand()) ) - maxjit;
291                                                         }
292                                                         har->hard = 32;
293                                                         har->lay= -1;
294                                                         har->type |= HA_ONLYSKY;
295                                                         done++;
296                                                 }
297                                         }
298                                 }
299
300                                 /* break out of the loop if generating stars takes too long */
301                                 if(re && !(totstar % 1000000)) {
302                                         if(re->test_break(re->tbh)) {
303                                                 x= ex + 1;
304                                                 y= ey + 1;
305                                                 z= ez + 1;
306                                         }
307                                 }
308                                 
309                                 totstar++;
310                         }
311                         /* do not call blender_test_break() here, since it is used in UI as well, confusing the callback system */
312                         /* main cause is G.afbreek of course, a global again... (ton) */
313                 }
314         }
315         if (termfunc) termfunc();
316
317         if(obr)
318                 re->tothalo += obr->tothalo;
319 }
320
321
322 /* ------------------------------------------------------------------------- */
323 /* tool functions/defines for ad hoc simplification and possible future 
324    cleanup      */
325 /* ------------------------------------------------------------------------- */
326
327 #define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
328 /*
329
330 NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
331         
332 ^       ()----p4----p3----()
333 |       |     |     |     |
334 u       |     |  F1 |  F2 |
335         |     |     |     |
336         ()----p1----p2----()
337                    v ->
338 */
339
340 /* ------------------------------------------------------------------------- */
341
342 static void split_v_renderfaces(ObjectRen *obr, int startvlak, int UNUSED(startvert), int UNUSED(usize), int vsize, int uIndex, int UNUSED(cyclu), int cyclv)
343 {
344         int vLen = vsize-1+(!!cyclv);
345         int v;
346
347         for (v=0; v<vLen; v++) {
348                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v);
349                 VertRen *vert = RE_vertren_copy(obr, vlr->v2);
350
351                 if (cyclv) {
352                         vlr->v2 = vert;
353
354                         if (v==vLen-1) {
355                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + 0);
356                                 vlr->v1 = vert;
357                         } else {
358                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
359                                 vlr->v1 = vert;
360                         }
361                 } else {
362                         vlr->v2 = vert;
363
364                         if (v<vLen-1) {
365                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
366                                 vlr->v1 = vert;
367                         }
368
369                         if (v==0) {
370                                 vlr->v1 = RE_vertren_copy(obr, vlr->v1);
371                         } 
372                 }
373         }
374 }
375
376 /* ------------------------------------------------------------------------- */
377 /* Stress, tangents and normals                                              */
378 /* ------------------------------------------------------------------------- */
379
380 static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
381 {
382         float len= len_v3v3(v1->co, v2->co)/len_v3v3(v1->orco, v2->orco);
383         float *acc;
384         
385         acc= accum + 2*v1->index;
386         acc[0]+= len;
387         acc[1]+= 1.0f;
388         
389         acc= accum + 2*v2->index;
390         acc[0]+= len;
391         acc[1]+= 1.0f;
392 }
393
394 static void calc_edge_stress(Render *UNUSED(re), ObjectRen *obr, Mesh *me)
395 {
396         float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
397         int a;
398         
399         if(obr->totvert==0) return;
400         
401         mesh_get_texspace(me, loc, NULL, size);
402         
403         accum= MEM_callocN(2*sizeof(float)*obr->totvert, "temp accum for stress");
404         
405         /* de-normalize orco */
406         for(a=0; a<obr->totvert; a++) {
407                 VertRen *ver= RE_findOrAddVert(obr, a);
408                 if(ver->orco) {
409                         ver->orco[0]= ver->orco[0]*size[0] +loc[0];
410                         ver->orco[1]= ver->orco[1]*size[1] +loc[1];
411                         ver->orco[2]= ver->orco[2]*size[2] +loc[2];
412                 }
413         }
414         
415         /* add stress values */
416         accumoffs= accum;       /* so we can use vertex index */
417         for(a=0; a<obr->totvlak; a++) {
418                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
419
420                 if(vlr->v1->orco && vlr->v4) {
421                         calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
422                         calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
423                         calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
424                         if(vlr->v4) {
425                                 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
426                                 calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
427                                 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
428                         }
429                 }
430         }
431         
432         for(a=0; a<obr->totvert; a++) {
433                 VertRen *ver= RE_findOrAddVert(obr, a);
434                 if(ver->orco) {
435                         /* find stress value */
436                         acc= accumoffs + 2*ver->index;
437                         if(acc[1]!=0.0f)
438                                 acc[0]/= acc[1];
439                         stress= RE_vertren_get_stress(obr, ver, 1);
440                         *stress= *acc;
441                         
442                         /* restore orcos */
443                         ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
444                         ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
445                         ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
446                 }
447         }
448         
449         MEM_freeN(accum);
450 }
451
452 /* gets tangent from tface or orco */
453 static void calc_tangent_vector(ObjectRen *obr, VertexTangent **vtangents, MemArena *arena, VlakRen *vlr, int do_nmap_tangent, int do_tangent)
454 {
455         MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
456         VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
457         float tang[3], *tav;
458         float *uv1, *uv2, *uv3, *uv4;
459         float uv[4][2];
460         
461         if(tface) {
462                 uv1= tface->uv[0];
463                 uv2= tface->uv[1];
464                 uv3= tface->uv[2];
465                 uv4= tface->uv[3];
466         }
467         else if(v1->orco) {
468                 uv1= uv[0]; uv2= uv[1]; uv3= uv[2]; uv4= uv[3];
469                 map_to_sphere( &uv[0][0], &uv[0][1],v1->orco[0], v1->orco[1], v1->orco[2]);
470                 map_to_sphere( &uv[1][0], &uv[1][1],v2->orco[0], v2->orco[1], v2->orco[2]);
471                 map_to_sphere( &uv[2][0], &uv[2][1],v3->orco[0], v3->orco[1], v3->orco[2]);
472                 if(v4)
473                         map_to_sphere( &uv[3][0], &uv[3][1],v4->orco[0], v4->orco[1], v4->orco[2]);
474         }
475         else return;
476
477         tangent_from_uv(uv1, uv2, uv3, v1->co, v2->co, v3->co, vlr->n, tang);
478         
479         if(do_tangent) {
480                 tav= RE_vertren_get_tangent(obr, v1, 1);
481                 add_v3_v3(tav, tang);
482                 tav= RE_vertren_get_tangent(obr, v2, 1);
483                 add_v3_v3(tav, tang);
484                 tav= RE_vertren_get_tangent(obr, v3, 1);
485                 add_v3_v3(tav, tang);
486         }
487         
488         if(do_nmap_tangent) {
489                 sum_or_add_vertex_tangent(arena, &vtangents[v1->index], tang, uv1);
490                 sum_or_add_vertex_tangent(arena, &vtangents[v2->index], tang, uv2);
491                 sum_or_add_vertex_tangent(arena, &vtangents[v3->index], tang, uv3);
492         }
493
494         if(v4) {
495                 tangent_from_uv(uv1, uv3, uv4, v1->co, v3->co, v4->co, vlr->n, tang);
496                 
497                 if(do_tangent) {
498                         tav= RE_vertren_get_tangent(obr, v1, 1);
499                         add_v3_v3(tav, tang);
500                         tav= RE_vertren_get_tangent(obr, v3, 1);
501                         add_v3_v3(tav, tang);
502                         tav= RE_vertren_get_tangent(obr, v4, 1);
503                         add_v3_v3(tav, tang);
504                 }
505
506                 if(do_nmap_tangent) {
507                         sum_or_add_vertex_tangent(arena, &vtangents[v1->index], tang, uv1);
508                         sum_or_add_vertex_tangent(arena, &vtangents[v3->index], tang, uv3);
509                         sum_or_add_vertex_tangent(arena, &vtangents[v4->index], tang, uv4);
510                 }
511         }
512 }
513
514
515
516 /****************************************************************
517 ************ tangent space generation interface *****************
518 ****************************************************************/
519
520 typedef struct
521 {
522         ObjectRen *obr;
523
524 } SRenderMeshToTangent;
525
526 // interface
527 #include "mikktspace.h"
528
529 static int GetNumFaces(const SMikkTSpaceContext * pContext)
530 {
531         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
532         return pMesh->obr->totvlak;
533 }
534
535 static int GetNumVertsOfFace(const SMikkTSpaceContext * pContext, const int face_num)
536 {
537         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
538         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
539         return vlr->v4!=NULL ? 4 : 3;
540 }
541
542 static void GetPosition(const SMikkTSpaceContext * pContext, float fPos[], const int face_num, const int vert_index)
543 {
544         //assert(vert_index>=0 && vert_index<4);
545         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
546         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
547         const float *co= (&vlr->v1)[vert_index]->co;
548         copy_v3_v3(fPos, co);
549 }
550
551 static void GetTextureCoordinate(const SMikkTSpaceContext * pContext, float fUV[], const int face_num, const int vert_index)
552 {
553         //assert(vert_index>=0 && vert_index<4);
554         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
555         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
556         MTFace *tface= RE_vlakren_get_tface(pMesh->obr, vlr, pMesh->obr->actmtface, NULL, 0);
557         const float *coord;
558         
559         if(tface != NULL)       {
560                 coord= tface->uv[vert_index];
561                 fUV[0]= coord[0]; fUV[1]= coord[1];
562         }
563         else if((coord= (&vlr->v1)[vert_index]->orco)) {
564                 map_to_sphere(&fUV[0], &fUV[1], coord[0], coord[1], coord[2]);
565         }
566         else { /* else we get un-initialized value, 0.0 ok default? */
567                 fUV[0]= fUV[1]= 0.0f;
568         }
569 }
570
571 static void GetNormal(const SMikkTSpaceContext * pContext, float fNorm[], const int face_num, const int vert_index)
572 {
573         //assert(vert_index>=0 && vert_index<4);
574         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
575         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
576         const float *n= (&vlr->v1)[vert_index]->n;
577         copy_v3_v3(fNorm, n);
578 }
579 static void SetTSpace(const SMikkTSpaceContext * pContext, const float fvTangent[], const float fSign, const int face_num, const int iVert)
580 {
581         //assert(vert_index>=0 && vert_index<4);
582         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
583         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
584         float * ftang= RE_vlakren_get_nmap_tangent(pMesh->obr, vlr, 1);
585         if(ftang!=NULL) {
586                 copy_v3_v3(&ftang[iVert*4+0], fvTangent);
587                 ftang[iVert*4+3]=fSign;
588         }
589 }
590
591 static void calc_vertexnormals(Render *UNUSED(re), ObjectRen *obr, int do_tangent, int do_nmap_tangent)
592 {
593         MemArena *arena= NULL;
594         VertexTangent **vtangents= NULL;
595         int a;
596
597         if(do_nmap_tangent) {
598                 arena= BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "nmap tangent arena");
599                 BLI_memarena_use_calloc(arena);
600
601                 vtangents= MEM_callocN(sizeof(VertexTangent*)*obr->totvert, "VertexTangent");
602         }
603
604                 /* clear all vertex normals */
605         for(a=0; a<obr->totvert; a++) {
606                 VertRen *ver= RE_findOrAddVert(obr, a);
607                 ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
608         }
609
610                 /* calculate cos of angles and point-masses, use as weight factor to
611                    add face normal to vertex */
612         for(a=0; a<obr->totvlak; a++) {
613                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
614                 if(vlr->flag & ME_SMOOTH) {
615                         float *n4= (vlr->v4)? vlr->v4->n: NULL;
616                         float *c4= (vlr->v4)? vlr->v4->co: NULL;
617
618                         accumulate_vertex_normals(vlr->v1->n, vlr->v2->n, vlr->v3->n, n4,
619                                 vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co, c4);
620                 }
621                 if(do_nmap_tangent || do_tangent) {
622                         /* tangents still need to be calculated for flat faces too */
623                         /* weighting removed, they are not vertexnormals */
624                         calc_tangent_vector(obr, vtangents, arena, vlr, do_nmap_tangent, do_tangent);
625                 }
626         }
627
628                 /* do solid faces */
629         for(a=0; a<obr->totvlak; a++) {
630                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
631
632                 if((vlr->flag & ME_SMOOTH)==0) {
633                         if(is_zero_v3(vlr->v1->n)) copy_v3_v3(vlr->v1->n, vlr->n);
634                         if(is_zero_v3(vlr->v2->n)) copy_v3_v3(vlr->v2->n, vlr->n);
635                         if(is_zero_v3(vlr->v3->n)) copy_v3_v3(vlr->v3->n, vlr->n);
636                         if(vlr->v4 && is_zero_v3(vlr->v4->n)) copy_v3_v3(vlr->v4->n, vlr->n);
637                 }
638
639                 if(do_nmap_tangent) {
640                         VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
641                         MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
642
643                         if(tface) {
644                                 int k=0;
645                                 float *vtang, *ftang= RE_vlakren_get_nmap_tangent(obr, vlr, 1);
646
647                                 vtang= find_vertex_tangent(vtangents[v1->index], tface->uv[0]);
648                                 copy_v3_v3(ftang, vtang);
649                                 normalize_v3(ftang);
650                                 vtang= find_vertex_tangent(vtangents[v2->index], tface->uv[1]);
651                                 copy_v3_v3(ftang+4, vtang);
652                                 normalize_v3(ftang+4);
653                                 vtang= find_vertex_tangent(vtangents[v3->index], tface->uv[2]);
654                                 copy_v3_v3(ftang+8, vtang);
655                                 normalize_v3(ftang+8);
656                                 if(v4) {
657                                         vtang= find_vertex_tangent(vtangents[v4->index], tface->uv[3]);
658                                         copy_v3_v3(ftang+12, vtang);
659                                         normalize_v3(ftang+12);
660                                 }
661                                 for(k=0; k<4; k++) ftang[4*k+3]=1;
662                         }
663                 }
664         }
665         
666                 /* normalize vertex normals */
667         for(a=0; a<obr->totvert; a++) {
668                 VertRen *ver= RE_findOrAddVert(obr, a);
669                 normalize_v3(ver->n);
670                 if(do_tangent) {
671                         float *tav= RE_vertren_get_tangent(obr, ver, 0);
672                         if (tav) {
673                                 /* orthonorm. */
674                                 const float tdn = dot_v3v3(tav, ver->n);
675                                 tav[0] -= ver->n[0]*tdn;
676                                 tav[1] -= ver->n[1]*tdn;
677                                 tav[2] -= ver->n[2]*tdn;
678                                 normalize_v3(tav);
679                         }
680                 }
681         }
682
683         if(do_nmap_tangent!=0)
684         {
685                 SRenderMeshToTangent mesh2tangent;
686                 SMikkTSpaceContext sContext;
687                 SMikkTSpaceInterface sInterface;
688                 memset(&mesh2tangent, 0, sizeof(SRenderMeshToTangent));
689                 memset(&sContext, 0, sizeof(SMikkTSpaceContext));
690                 memset(&sInterface, 0, sizeof(SMikkTSpaceInterface));
691
692                 mesh2tangent.obr = obr;
693
694                 sContext.m_pUserData = &mesh2tangent;
695                 sContext.m_pInterface = &sInterface;
696                 sInterface.m_getNumFaces = GetNumFaces;
697                 sInterface.m_getNumVerticesOfFace = GetNumVertsOfFace;
698                 sInterface.m_getPosition = GetPosition;
699                 sInterface.m_getTexCoord = GetTextureCoordinate;
700                 sInterface.m_getNormal = GetNormal;
701                 sInterface.m_setTSpaceBasic = SetTSpace;
702
703                 genTangSpaceDefault(&sContext);
704         }
705
706         if(arena)
707                 BLI_memarena_free(arena);
708         if(vtangents)
709                 MEM_freeN(vtangents);
710 }
711
712 /* ------------------------------------------------------------------------- */
713 /* Autosmoothing:                                                            */
714 /* ------------------------------------------------------------------------- */
715
716 typedef struct ASvert {
717         int totface;
718         ListBase faces;
719 } ASvert;
720
721 typedef struct ASface {
722         struct ASface *next, *prev;
723         VlakRen *vlr[4];
724         VertRen *nver[4];
725 } ASface;
726
727 static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
728 {
729         ASface *asf;
730         int a;
731         
732         if(v1 == NULL) return;
733         
734         if(asv->faces.first==NULL) {
735                 asf= MEM_callocN(sizeof(ASface), "asface");
736                 BLI_addtail(&asv->faces, asf);
737         }
738         
739         asf= asv->faces.last;
740         for(a=0; a<4; a++) {
741                 if(asf->vlr[a]==NULL) {
742                         asf->vlr[a]= vlr;
743                         asv->totface++;
744                         break;
745                 }
746         }
747         
748         /* new face struct */
749         if(a==4) {
750                 asf= MEM_callocN(sizeof(ASface), "asface");
751                 BLI_addtail(&asv->faces, asf);
752                 asf->vlr[0]= vlr;
753                 asv->totface++;
754         }
755 }
756
757 static int as_testvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
758 {
759         /* return 1: vertex needs a copy */
760         ASface *asf;
761         float inp;
762         int a;
763         
764         if(vlr==0) return 0;
765         
766         asf= asv->faces.first;
767         while(asf) {
768                 for(a=0; a<4; a++) {
769                         if(asf->vlr[a] && asf->vlr[a]!=vlr) {
770                                 inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
771                                 if(inp < thresh) return 1;
772                         }
773                 }
774                 asf= asf->next;
775         }
776         
777         return 0;
778 }
779
780 static VertRen *as_findvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
781 {
782         /* return when new vertex already was made */
783         ASface *asf;
784         float inp;
785         int a;
786         
787         asf= asv->faces.first;
788         while(asf) {
789                 for(a=0; a<4; a++) {
790                         if(asf->vlr[a] && asf->vlr[a]!=vlr) {
791                                 /* this face already made a copy for this vertex! */
792                                 if(asf->nver[a]) {
793                                         inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
794                                         if(inp >= thresh) {
795                                                 return asf->nver[a];
796                                         }
797                                 }
798                         }
799                 }
800                 asf= asf->next;
801         }
802         
803         return NULL;
804 }
805
806 /* note; autosmooth happens in object space still, after applying autosmooth we rotate */
807 /* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
808 static void autosmooth(Render *UNUSED(re), ObjectRen *obr, float mat[][4], int degr)
809 {
810         ASvert *asv, *asverts;
811         ASface *asf;
812         VertRen *ver, *v1;
813         VlakRen *vlr;
814         float thresh;
815         int a, b, totvert;
816         
817         if(obr->totvert==0) return;
818         asverts= MEM_callocN(sizeof(ASvert)*obr->totvert, "all smooth verts");
819         
820         thresh= cosf(DEG2RADF((0.5f + (float)degr)));
821         
822         /* step zero: give faces normals of original mesh, if this is provided */
823         
824         
825         /* step one: construct listbase of all vertices and pointers to faces */
826         for(a=0; a<obr->totvlak; a++) {
827                 vlr= RE_findOrAddVlak(obr, a);
828                 /* skip wire faces */
829                 if(vlr->v2 != vlr->v3) {
830                         as_addvert(asverts+vlr->v1->index, vlr->v1, vlr);
831                         as_addvert(asverts+vlr->v2->index, vlr->v2, vlr);
832                         as_addvert(asverts+vlr->v3->index, vlr->v3, vlr);
833                         if(vlr->v4) 
834                                 as_addvert(asverts+vlr->v4->index, vlr->v4, vlr);
835                 }
836         }
837         
838         totvert= obr->totvert;
839         /* we now test all vertices, when faces have a normal too much different: they get a new vertex */
840         for(a=0, asv=asverts; a<totvert; a++, asv++) {
841                 if(asv && asv->totface>1) {
842                         ver= RE_findOrAddVert(obr, a);
843
844                         asf= asv->faces.first;
845                         while(asf) {
846                                 for(b=0; b<4; b++) {
847                                 
848                                         /* is there a reason to make a new vertex? */
849                                         vlr= asf->vlr[b];
850                                         if( as_testvertex(vlr, ver, asv, thresh) ) {
851                                                 
852                                                 /* already made a new vertex within threshold? */
853                                                 v1= as_findvertex(vlr, ver, asv, thresh);
854                                                 if(v1==NULL) {
855                                                         /* make a new vertex */
856                                                         v1= RE_vertren_copy(obr, ver);
857                                                 }
858                                                 asf->nver[b]= v1;
859                                                 if(vlr->v1==ver) vlr->v1= v1;
860                                                 if(vlr->v2==ver) vlr->v2= v1;
861                                                 if(vlr->v3==ver) vlr->v3= v1;
862                                                 if(vlr->v4==ver) vlr->v4= v1;
863                                         }
864                                 }
865                                 asf= asf->next;
866                         }
867                 }
868         }
869         
870         /* free */
871         for(a=0; a<totvert; a++) {
872                 BLI_freelistN(&asverts[a].faces);
873         }
874         MEM_freeN(asverts);
875         
876         /* rotate vertices and calculate normal of faces */
877         for(a=0; a<obr->totvert; a++) {
878                 ver= RE_findOrAddVert(obr, a);
879                 mul_m4_v3(mat, ver->co);
880         }
881         for(a=0; a<obr->totvlak; a++) {
882                 vlr= RE_findOrAddVlak(obr, a);
883                 
884                 /* skip wire faces */
885                 if(vlr->v2 != vlr->v3) {
886                         if(vlr->v4) 
887                                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
888                         else 
889                                 normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
890                 }
891         }               
892 }
893
894 /* ------------------------------------------------------------------------- */
895 /* Orco hash and Materials                                                   */
896 /* ------------------------------------------------------------------------- */
897
898 static float *get_object_orco(Render *re, Object *ob)
899 {
900         float *orco;
901
902         if (!re->orco_hash)
903                 re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp, "get_object_orco gh");
904
905         orco = BLI_ghash_lookup(re->orco_hash, ob);
906
907         if (!orco) {
908                 if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
909                         orco = make_orco_curve(re->scene, ob);
910                 } else if (ob->type==OB_SURF) {
911                         orco = make_orco_surf(ob);
912                 }
913
914                 if (orco)
915                         BLI_ghash_insert(re->orco_hash, ob, orco);
916         }
917
918         return orco;
919 }
920
921 static void set_object_orco(Render *re, void *ob, float *orco)
922 {
923         if (!re->orco_hash)
924                 re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp, "set_object_orco gh");
925         
926         BLI_ghash_insert(re->orco_hash, ob, orco);
927 }
928
929 static void free_mesh_orco_hash(Render *re) 
930 {
931         if (re->orco_hash) {
932                 BLI_ghash_free(re->orco_hash, NULL, (GHashValFreeFP)MEM_freeN);
933                 re->orco_hash = NULL;
934         }
935 }
936
937 static void check_material_mapto(Material *ma)
938 {
939         int a;
940         ma->mapto_textured = 0;
941         
942         /* cache which inputs are actually textured.
943          * this can avoid a bit of time spent iterating through all the texture slots, map inputs and map tos
944          * every time a property which may or may not be textured is accessed */
945         
946         for(a=0; a<MAX_MTEX; a++) {
947                 if(ma->mtex[a] && ma->mtex[a]->tex) {
948                         /* currently used only in volume render, so we'll check for those flags */
949                         if(ma->mtex[a]->mapto & MAP_DENSITY) ma->mapto_textured |= MAP_DENSITY;
950                         if(ma->mtex[a]->mapto & MAP_EMISSION) ma->mapto_textured |= MAP_EMISSION;
951                         if(ma->mtex[a]->mapto & MAP_EMISSION_COL) ma->mapto_textured |= MAP_EMISSION_COL;
952                         if(ma->mtex[a]->mapto & MAP_SCATTERING) ma->mapto_textured |= MAP_SCATTERING;
953                         if(ma->mtex[a]->mapto & MAP_TRANSMISSION_COL) ma->mapto_textured |= MAP_TRANSMISSION_COL;
954                         if(ma->mtex[a]->mapto & MAP_REFLECTION) ma->mapto_textured |= MAP_REFLECTION;
955                         if(ma->mtex[a]->mapto & MAP_REFLECTION_COL) ma->mapto_textured |= MAP_REFLECTION_COL;
956                 }
957         }
958 }
959 static void flag_render_node_material(Render *re, bNodeTree *ntree)
960 {
961         bNode *node;
962
963         for(node=ntree->nodes.first; node; node= node->next) {
964                 if(node->id) {
965                         if(GS(node->id->name)==ID_MA) {
966                                 Material *ma= (Material *)node->id;
967
968                                 if((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
969                                         re->flag |= R_ZTRA;
970
971                                 ma->flag |= MA_IS_USED;
972                         }
973                         else if(node->type==NODE_GROUP)
974                                 flag_render_node_material(re, (bNodeTree *)node->id);
975                 }
976         }
977 }
978
979 static Material *give_render_material(Render *re, Object *ob, short nr)
980 {
981         extern Material defmaterial;    /* material.c */
982         Material *ma;
983         
984         ma= give_current_material(ob, nr);
985         if(ma==NULL) 
986                 ma= &defmaterial;
987         
988         if(re->r.mode & R_SPEED) ma->texco |= NEED_UV;
989         
990         if(ma->material_type == MA_TYPE_VOLUME) {
991                 ma->mode |= MA_TRANSP;
992                 ma->mode &= ~MA_SHADBUF;
993         }
994         if((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
995                 re->flag |= R_ZTRA;
996         
997         /* for light groups and SSS */
998         ma->flag |= MA_IS_USED;
999
1000         if(ma->nodetree && ma->use_nodes)
1001                 flag_render_node_material(re, ma->nodetree);
1002         
1003         check_material_mapto(ma);
1004         
1005         return ma;
1006 }
1007
1008 /* ------------------------------------------------------------------------- */
1009 /* Particles                                                                 */
1010 /* ------------------------------------------------------------------------- */
1011 typedef struct ParticleStrandData
1012 {
1013         struct MCol *mcol;
1014         float *orco, *uvco, *surfnor;
1015         float time, adapt_angle, adapt_pix, size;
1016         int totuv, totcol;
1017         int first, line, adapt, override_uv;
1018 }
1019 ParticleStrandData;
1020 /* future thread problem... */
1021 static void static_particle_strand(Render *re, ObjectRen *obr, Material *ma, ParticleStrandData *sd, const float vec[3], const float vec1[3])
1022 {
1023         static VertRen *v1= NULL, *v2= NULL;
1024         VlakRen *vlr= NULL;
1025         float nor[3], cross[3], crosslen, w, dx, dy, width;
1026         static float anor[3], avec[3];
1027         int flag, i;
1028         static int second=0;
1029         
1030         sub_v3_v3v3(nor, vec, vec1);
1031         normalize_v3(nor);              // nor needed as tangent 
1032         cross_v3_v3v3(cross, vec, nor);
1033
1034         /* turn cross in pixelsize */
1035         w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1036         dx= re->winx*cross[0]*re->winmat[0][0];
1037         dy= re->winy*cross[1]*re->winmat[1][1];
1038         w= sqrt(dx*dx + dy*dy)/w;
1039         
1040         if(w!=0.0f) {
1041                 float fac;
1042                 if(ma->strand_ease!=0.0f) {
1043                         if(ma->strand_ease<0.0f)
1044                                 fac= pow(sd->time, 1.0f+ma->strand_ease);
1045                         else
1046                                 fac= pow(sd->time, 1.0f/(1.0f-ma->strand_ease));
1047                 }
1048                 else fac= sd->time;
1049
1050                 width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
1051
1052                 /* use actual Blender units for strand width and fall back to minimum width */
1053                 if(ma->mode & MA_STR_B_UNITS){
1054                         crosslen= len_v3(cross);
1055                         w= 2.0f*crosslen*ma->strand_min/w;
1056
1057                         if(width < w)
1058                                 width= w;
1059
1060                         /*cross is the radius of the strand so we want it to be half of full width */
1061                         mul_v3_fl(cross,0.5f/crosslen);
1062                 }
1063                 else
1064                         width/=w;
1065
1066                 mul_v3_fl(cross, width);
1067         }
1068         
1069         if(ma->mode & MA_TANGENT_STR)
1070                 flag= R_SMOOTH|R_TANGENT;
1071         else
1072                 flag= R_SMOOTH;
1073         
1074         /* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
1075         if(ma->strand_sta==1.0f)
1076                 flag |= R_STRAND;
1077         
1078         /* single face line */
1079         if(sd->line) {
1080                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1081                 vlr->flag= flag;
1082                 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1083                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1084                 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1085                 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1086                 
1087                 copy_v3_v3(vlr->v1->co, vec);
1088                 add_v3_v3(vlr->v1->co, cross);
1089                 copy_v3_v3(vlr->v1->n, nor);
1090                 vlr->v1->orco= sd->orco;
1091                 vlr->v1->accum= -1.0f;  // accum abuse for strand texco
1092                 
1093                 copy_v3_v3(vlr->v2->co, vec);
1094                 sub_v3_v3v3(vlr->v2->co, vlr->v2->co, cross);
1095                 copy_v3_v3(vlr->v2->n, nor);
1096                 vlr->v2->orco= sd->orco;
1097                 vlr->v2->accum= vlr->v1->accum;
1098
1099                 copy_v3_v3(vlr->v4->co, vec1);
1100                 add_v3_v3(vlr->v4->co, cross);
1101                 copy_v3_v3(vlr->v4->n, nor);
1102                 vlr->v4->orco= sd->orco;
1103                 vlr->v4->accum= 1.0f;   // accum abuse for strand texco
1104                 
1105                 copy_v3_v3(vlr->v3->co, vec1);
1106                 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1107                 copy_v3_v3(vlr->v3->n, nor);
1108                 vlr->v3->orco= sd->orco;
1109                 vlr->v3->accum= vlr->v4->accum;
1110
1111                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1112                 
1113                 vlr->mat= ma;
1114                 vlr->ec= ME_V2V3;
1115
1116                 if(sd->surfnor) {
1117                         float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1118                         copy_v3_v3(snor, sd->surfnor);
1119                 }
1120
1121                 if(sd->uvco){
1122                         for(i=0; i<sd->totuv; i++){
1123                                 MTFace *mtf;
1124                                 mtf=RE_vlakren_get_tface(obr,vlr,i,NULL,1);
1125                                 mtf->uv[0][0]=mtf->uv[1][0]=
1126                                 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1127                                 mtf->uv[0][1]=mtf->uv[1][1]=
1128                                 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1129                         }
1130                         if(sd->override_uv>=0){
1131                                 MTFace *mtf;
1132                                 mtf=RE_vlakren_get_tface(obr,vlr,sd->override_uv,NULL,0);
1133                                 
1134                                 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1135                                 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1136
1137                                 mtf->uv[0][1]=mtf->uv[1][1]=0.0f;
1138                                 mtf->uv[2][1]=mtf->uv[3][1]=1.0f;
1139                         }
1140                 }
1141                 if(sd->mcol){
1142                         for(i=0; i<sd->totcol; i++){
1143                                 MCol *mc;
1144                                 mc=RE_vlakren_get_mcol(obr,vlr,i,NULL,1);
1145                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1146                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1147                         }
1148                 }
1149         }
1150         /* first two vertices of a strand */
1151         else if(sd->first) {
1152                 if(sd->adapt){
1153                         copy_v3_v3(anor, nor);
1154                         copy_v3_v3(avec, vec);
1155                         second=1;
1156                 }
1157
1158                 v1= RE_findOrAddVert(obr, obr->totvert++);
1159                 v2= RE_findOrAddVert(obr, obr->totvert++);
1160                 
1161                 copy_v3_v3(v1->co, vec);
1162                 add_v3_v3(v1->co, cross);
1163                 copy_v3_v3(v1->n, nor);
1164                 v1->orco= sd->orco;
1165                 v1->accum= -1.0f;       // accum abuse for strand texco
1166                 
1167                 copy_v3_v3(v2->co, vec);
1168                 sub_v3_v3v3(v2->co, v2->co, cross);
1169                 copy_v3_v3(v2->n, nor);
1170                 v2->orco= sd->orco;
1171                 v2->accum= v1->accum;
1172         }
1173         /* more vertices & faces to strand */
1174         else {
1175                 if(sd->adapt==0 || second){
1176                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1177                         vlr->flag= flag;
1178                         vlr->v1= v1;
1179                         vlr->v2= v2;
1180                         vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1181                         vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1182                         
1183                         v1= vlr->v4; // cycle
1184                         v2= vlr->v3; // cycle
1185
1186                         
1187                         if(sd->adapt){
1188                                 second=0;
1189                                 copy_v3_v3(anor,nor);
1190                                 copy_v3_v3(avec,vec);
1191                         }
1192
1193                 }
1194                 else if(sd->adapt){
1195                         float dvec[3],pvec[3];
1196                         sub_v3_v3v3(dvec,avec,vec);
1197                         project_v3_v3v3(pvec,dvec,vec);
1198                         sub_v3_v3v3(dvec,dvec,pvec);
1199
1200                         w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1201                         dx= re->winx*dvec[0]*re->winmat[0][0]/w;
1202                         dy= re->winy*dvec[1]*re->winmat[1][1]/w;
1203                         w= sqrt(dx*dx + dy*dy);
1204                         if(dot_v3v3(anor,nor)<sd->adapt_angle && w>sd->adapt_pix){
1205                                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1206                                 vlr->flag= flag;
1207                                 vlr->v1= v1;
1208                                 vlr->v2= v2;
1209                                 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1210                                 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1211                                 
1212                                 v1= vlr->v4; // cycle
1213                                 v2= vlr->v3; // cycle
1214
1215                                 copy_v3_v3(anor,nor);
1216                                 copy_v3_v3(avec,vec);
1217                         }
1218                         else{
1219                                 vlr= RE_findOrAddVlak(obr, obr->totvlak-1);
1220                         }
1221                 }
1222         
1223                 copy_v3_v3(vlr->v4->co, vec);
1224                 add_v3_v3(vlr->v4->co, cross);
1225                 copy_v3_v3(vlr->v4->n, nor);
1226                 vlr->v4->orco= sd->orco;
1227                 vlr->v4->accum= -1.0f + 2.0f*sd->time;  // accum abuse for strand texco
1228                 
1229                 copy_v3_v3(vlr->v3->co, vec);
1230                 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1231                 copy_v3_v3(vlr->v3->n, nor);
1232                 vlr->v3->orco= sd->orco;
1233                 vlr->v3->accum= vlr->v4->accum;
1234                 
1235                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1236                 
1237                 vlr->mat= ma;
1238                 vlr->ec= ME_V2V3;
1239
1240                 if(sd->surfnor) {
1241                         float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1242                         copy_v3_v3(snor, sd->surfnor);
1243                 }
1244
1245                 if(sd->uvco){
1246                         for(i=0; i<sd->totuv; i++){
1247                                 MTFace *mtf;
1248                                 mtf=RE_vlakren_get_tface(obr,vlr,i,NULL,1);
1249                                 mtf->uv[0][0]=mtf->uv[1][0]=
1250                                 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1251                                 mtf->uv[0][1]=mtf->uv[1][1]=
1252                                 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1253                         }
1254                         if(sd->override_uv>=0){
1255                                 MTFace *mtf;
1256                                 mtf=RE_vlakren_get_tface(obr,vlr,sd->override_uv,NULL,0);
1257                                 
1258                                 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1259                                 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1260
1261                                 mtf->uv[0][1]=mtf->uv[1][1]=(vlr->v1->accum+1.0f)/2.0f;
1262                                 mtf->uv[2][1]=mtf->uv[3][1]=(vlr->v3->accum+1.0f)/2.0f;
1263                         }
1264                 }
1265                 if(sd->mcol){
1266                         for(i=0; i<sd->totcol; i++){
1267                                 MCol *mc;
1268                                 mc=RE_vlakren_get_mcol(obr,vlr,i,NULL,1);
1269                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1270                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1271                         }
1272                 }
1273         }
1274 }
1275
1276 static void static_particle_wire(ObjectRen *obr, Material *ma, const float vec[3], const float vec1[3], int first, int line)
1277 {
1278         VlakRen *vlr;
1279         static VertRen *v1;
1280
1281         if(line) {
1282                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1283                 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1284                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1285                 vlr->v3= vlr->v2;
1286                 vlr->v4= NULL;
1287                 
1288                 copy_v3_v3(vlr->v1->co, vec);
1289                 copy_v3_v3(vlr->v2->co, vec1);
1290                 
1291                 sub_v3_v3v3(vlr->n, vec, vec1);
1292                 normalize_v3(vlr->n);
1293                 copy_v3_v3(vlr->v1->n, vlr->n);
1294                 copy_v3_v3(vlr->v2->n, vlr->n);
1295                 
1296                 vlr->mat= ma;
1297                 vlr->ec= ME_V1V2;
1298
1299         }
1300         else if(first) {
1301                 v1= RE_findOrAddVert(obr, obr->totvert++);
1302                 copy_v3_v3(v1->co, vec);
1303         }
1304         else {
1305                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1306                 vlr->v1= v1;
1307                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1308                 vlr->v3= vlr->v2;
1309                 vlr->v4= NULL;
1310                 
1311                 v1= vlr->v2; // cycle
1312                 copy_v3_v3(v1->co, vec);
1313                 
1314                 sub_v3_v3v3(vlr->n, vec, vec1);
1315                 normalize_v3(vlr->n);
1316                 copy_v3_v3(v1->n, vlr->n);
1317                 
1318                 vlr->mat= ma;
1319                 vlr->ec= ME_V1V2;
1320         }
1321
1322 }
1323
1324 static void particle_curve(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, float *loc, float *loc1,  int seed, float *pa_co)
1325 {
1326         HaloRen *har=0;
1327
1328         if(ma->material_type == MA_TYPE_WIRE)
1329                 static_particle_wire(obr, ma, loc, loc1, sd->first, sd->line);
1330         else if(ma->material_type == MA_TYPE_HALO) {
1331                 har= RE_inithalo_particle(re, obr, dm, ma, loc, loc1, sd->orco, sd->uvco, sd->size, 1.0, seed, pa_co);
1332                 if(har) har->lay= obr->ob->lay;
1333         }
1334         else
1335                 static_particle_strand(re, obr, ma, sd, loc, loc1);
1336 }
1337 static void particle_billboard(Render *re, ObjectRen *obr, Material *ma, ParticleBillboardData *bb)
1338 {
1339         VlakRen *vlr;
1340         MTFace *mtf;
1341         float xvec[3], yvec[3], zvec[3], bb_center[3];
1342         /* Number of tiles */
1343         int totsplit = bb->uv_split * bb->uv_split;
1344         int tile, x, y;
1345         /* Tile offsets */
1346         float uvx = 0.0f, uvy = 0.0f, uvdx = 1.0f, uvdy = 1.0f, time = 0.0f;
1347
1348         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1349         vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1350         vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1351         vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1352         vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1353
1354         psys_make_billboard(bb, xvec, yvec, zvec, bb_center);
1355
1356         add_v3_v3v3(vlr->v1->co, bb_center, xvec);
1357         add_v3_v3(vlr->v1->co, yvec);
1358         mul_m4_v3(re->viewmat, vlr->v1->co);
1359
1360         sub_v3_v3v3(vlr->v2->co, bb_center, xvec);
1361         add_v3_v3(vlr->v2->co, yvec);
1362         mul_m4_v3(re->viewmat, vlr->v2->co);
1363
1364         sub_v3_v3v3(vlr->v3->co, bb_center, xvec);
1365         sub_v3_v3v3(vlr->v3->co, vlr->v3->co, yvec);
1366         mul_m4_v3(re->viewmat, vlr->v3->co);
1367
1368         add_v3_v3v3(vlr->v4->co, bb_center, xvec);
1369         sub_v3_v3(vlr->v4->co, yvec);
1370         mul_m4_v3(re->viewmat, vlr->v4->co);
1371
1372         normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1373         copy_v3_v3(vlr->v1->n,vlr->n);
1374         copy_v3_v3(vlr->v2->n,vlr->n);
1375         copy_v3_v3(vlr->v3->n,vlr->n);
1376         copy_v3_v3(vlr->v4->n,vlr->n);
1377         
1378         vlr->mat= ma;
1379         vlr->ec= ME_V2V3;
1380
1381         if(bb->uv_split > 1){
1382                 uvdx = uvdy = 1.0f / (float)bb->uv_split;
1383
1384                 if(ELEM(bb->anim, PART_BB_ANIM_AGE, PART_BB_ANIM_FRAME)) {
1385                         if(bb->anim == PART_BB_ANIM_FRAME)
1386                                 time = ((int)(bb->time * bb->lifetime) % totsplit)/(float)totsplit;
1387                         else
1388                                 time = bb->time;
1389                 }
1390                 else if(bb->anim == PART_BB_ANIM_ANGLE) {
1391                         if(bb->align == PART_BB_VIEW) {
1392                                 time = (float)fmod((bb->tilt + 1.0f) / 2.0f, 1.0);
1393                         }
1394                         else {
1395                                 float axis1[3] = {0.0f,0.0f,0.0f};
1396                                 float axis2[3] = {0.0f,0.0f,0.0f};
1397
1398                                 axis1[(bb->align + 1) % 3] = 1.0f;
1399                                 axis2[(bb->align + 2) % 3] = 1.0f;
1400
1401                                 if(bb->lock == 0) {
1402                                         zvec[bb->align] = 0.0f;
1403                                         normalize_v3(zvec);
1404                                 }
1405                                 
1406                                 time = saacos(dot_v3v3(zvec, axis1)) / (float)M_PI;
1407                                 
1408                                 if(dot_v3v3(zvec, axis2) < 0.0f)
1409                                         time = 1.0f - time / 2.0f;
1410                                 else
1411                                         time /= 2.0f;
1412                         }
1413                 }
1414
1415                 if(bb->split_offset == PART_BB_OFF_LINEAR)
1416                         time = (float)fmod(time + (float)bb->num / (float)totsplit, 1.0f);
1417                 else if(bb->split_offset==PART_BB_OFF_RANDOM)
1418                         time = (float)fmod(time + bb->random, 1.0f);
1419
1420                 /* Find the coordinates in tile space (integer), then convert to UV
1421                  * space (float). Note that Y is flipped. */
1422                 tile = (int)((time + FLT_EPSILON10) * totsplit);
1423                 x = tile % bb->uv_split;
1424                 y = tile / bb->uv_split;
1425                 y = (bb->uv_split - 1) - y;
1426                 uvx = uvdx * x;
1427                 uvy = uvdy * y;
1428         }
1429
1430         /* normal UVs */
1431         if(bb->uv[0] >= 0){
1432                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[0], NULL, 1);
1433                 mtf->uv[0][0] = 1.0f;
1434                 mtf->uv[0][1] = 1.0f;
1435                 mtf->uv[1][0] = 0.0f;
1436                 mtf->uv[1][1] = 1.0f;
1437                 mtf->uv[2][0] = 0.0f;
1438                 mtf->uv[2][1] = 0.0f;
1439                 mtf->uv[3][0] = 1.0f;
1440                 mtf->uv[3][1] = 0.0f;
1441         }
1442
1443         /* time-index UVs */
1444         if(bb->uv[1] >= 0){
1445                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[1], NULL, 1);
1446                 mtf->uv[0][0] = mtf->uv[1][0] = mtf->uv[2][0] = mtf->uv[3][0] = bb->time;
1447                 mtf->uv[0][1] = mtf->uv[1][1] = mtf->uv[2][1] = mtf->uv[3][1] = (float)bb->num/(float)bb->totnum;
1448         }
1449
1450         /* split UVs */
1451         if(bb->uv_split > 1 && bb->uv[2] >= 0){
1452                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[2], NULL, 1);
1453                 mtf->uv[0][0] = uvx + uvdx;
1454                 mtf->uv[0][1] = uvy + uvdy;
1455                 mtf->uv[1][0] = uvx;
1456                 mtf->uv[1][1] = uvy + uvdy;
1457                 mtf->uv[2][0] = uvx;
1458                 mtf->uv[2][1] = uvy;
1459                 mtf->uv[3][0] = uvx + uvdx;
1460                 mtf->uv[3][1] = uvy;
1461         }
1462 }
1463 static void particle_normal_ren(short ren_as, ParticleSettings *part, Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, ParticleBillboardData *bb, ParticleKey *state, int seed, float hasize, float *pa_co)
1464 {
1465         float loc[3], loc0[3], loc1[3], vel[3];
1466         
1467         copy_v3_v3(loc, state->co);
1468
1469         if(ren_as != PART_DRAW_BB)
1470                 mul_m4_v3(re->viewmat, loc);
1471
1472         switch(ren_as) {
1473                 case PART_DRAW_LINE:
1474                         sd->line = 1;
1475                         sd->time = 0.0f;
1476                         sd->size = hasize;
1477
1478                         copy_v3_v3(vel, state->vel);
1479                         mul_mat3_m4_v3(re->viewmat, vel);
1480                         normalize_v3(vel);
1481
1482                         if(part->draw & PART_DRAW_VEL_LENGTH)
1483                                 mul_v3_fl(vel, len_v3(state->vel));
1484
1485                         madd_v3_v3v3fl(loc0, loc, vel, -part->draw_line[0]);
1486                         madd_v3_v3v3fl(loc1, loc, vel, part->draw_line[1]);
1487
1488                         particle_curve(re, obr, dm, ma, sd, loc0, loc1, seed, pa_co);
1489
1490                         break;
1491
1492                 case PART_DRAW_BB:
1493
1494                         copy_v3_v3(bb->vec, loc);
1495                         copy_v3_v3(bb->vel, state->vel);
1496
1497                         particle_billboard(re, obr, ma, bb);
1498
1499                         break;
1500
1501                 default:
1502                 {
1503                         HaloRen *har=0;
1504
1505                         har = RE_inithalo_particle(re, obr, dm, ma, loc, NULL, sd->orco, sd->uvco, hasize, 0.0, seed, pa_co);
1506                         
1507                         if(har) har->lay= obr->ob->lay;
1508
1509                         break;
1510                 }
1511         }
1512 }
1513 static void get_particle_uvco_mcol(short from, DerivedMesh *dm, float *fuv, int num, ParticleStrandData *sd)
1514 {
1515         int i;
1516
1517         /* get uvco */
1518         if(sd->uvco && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
1519                 for(i=0; i<sd->totuv; i++) {
1520                         if(num != DMCACHE_NOTFOUND) {
1521                                 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1522                                 MTFace *mtface = (MTFace*)CustomData_get_layer_n(&dm->faceData, CD_MTFACE, i);
1523                                 mtface += num;
1524                                 
1525                                 psys_interpolate_uvs(mtface, mface->v4, fuv, sd->uvco + 2 * i);
1526                         }
1527                         else {
1528                                 sd->uvco[2*i] = 0.0f;
1529                                 sd->uvco[2*i + 1] = 0.0f;
1530                         }
1531                 }
1532         }
1533
1534         /* get mcol */
1535         if(sd->mcol && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
1536                 for(i=0; i<sd->totcol; i++) {
1537                         if(num != DMCACHE_NOTFOUND) {
1538                                 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1539                                 MCol *mc = (MCol*)CustomData_get_layer_n(&dm->faceData, CD_MCOL, i);
1540                                 mc += num * 4;
1541
1542                                 psys_interpolate_mcol(mc, mface->v4, fuv, sd->mcol + i);
1543                         }
1544                         else
1545                                 memset(&sd->mcol[i], 0, sizeof(MCol));
1546                 }
1547         }
1548 }
1549 static int render_new_particle_system(Render *re, ObjectRen *obr, ParticleSystem *psys, int timeoffset)
1550 {
1551         Object *ob= obr->ob;
1552 //      Object *tob=0;
1553         Material *ma=0;
1554         ParticleSystemModifierData *psmd;
1555         ParticleSystem *tpsys=0;
1556         ParticleSettings *part, *tpart=0;
1557         ParticleData *pars, *pa=0,*tpa=0;
1558         ParticleKey *states=0;
1559         ParticleKey state;
1560         ParticleCacheKey *cache=0;
1561         ParticleBillboardData bb;
1562         ParticleSimulationData sim = {0};
1563         ParticleStrandData sd;
1564         StrandBuffer *strandbuf=0;
1565         StrandVert *svert=0;
1566         StrandBound *sbound= 0;
1567         StrandRen *strand=0;
1568         RNG *rng= 0;
1569         float loc[3],loc1[3],loc0[3],mat[4][4],nmat[3][3],co[3],nor[3],duplimat[4][4];
1570         float strandlen=0.0f, curlen=0.0f;
1571         float hasize, pa_size, r_tilt, r_length;
1572         float pa_time, pa_birthtime, pa_dietime;
1573         float random, simplify[2], pa_co[3];
1574         const float cfra= BKE_curframe(re->scene);
1575         int i, a, k, max_k=0, totpart, dosimplify = 0, dosurfacecache = 0, use_duplimat = 0;
1576         int totchild=0;
1577         int seed, path_nbr=0, orco1=0, num;
1578         int totface, *origindex = 0;
1579         char **uv_name=0;
1580
1581 /* 1. check that everything is ok & updated */
1582         if(psys==NULL)
1583                 return 0;
1584
1585         part=psys->part;
1586         pars=psys->particles;
1587
1588         if(part==NULL || pars==NULL || !psys_check_enabled(ob, psys))
1589                 return 0;
1590         
1591         if(part->ren_as==PART_DRAW_OB || part->ren_as==PART_DRAW_GR || part->ren_as==PART_DRAW_NOT)
1592                 return 1;
1593
1594 /* 2. start initialising things */
1595
1596         /* last possibility to bail out! */
1597         psmd = psys_get_modifier(ob,psys);
1598         if(!(psmd->modifier.mode & eModifierMode_Render))
1599                 return 0;
1600
1601         sim.scene= re->scene;
1602         sim.ob= ob;
1603         sim.psys= psys;
1604         sim.psmd= psmd;
1605
1606         if(part->phystype==PART_PHYS_KEYED)
1607                 psys_count_keyed_targets(&sim);
1608
1609         totchild=psys->totchild;
1610
1611         /* can happen for disconnected/global hair */
1612         if(part->type==PART_HAIR && !psys->childcache)
1613                 totchild= 0;
1614
1615         if(G.rendering == 0) { /* preview render */
1616                 totchild = (int)((float)totchild * (float)part->disp / 100.0f);
1617         }
1618
1619         psys->flag |= PSYS_DRAWING;
1620
1621         rng= rng_new(psys->seed);
1622
1623         totpart=psys->totpart;
1624
1625         memset(&sd, 0, sizeof(ParticleStrandData));
1626         sd.override_uv = -1;
1627
1628 /* 2.1 setup material stff */
1629         ma= give_render_material(re, ob, part->omat);
1630         
1631 #if 0 // XXX old animation system
1632         if(ma->ipo){
1633                 calc_ipo(ma->ipo, cfra);
1634                 execute_ipo((ID *)ma, ma->ipo);
1635         }
1636 #endif // XXX old animation system
1637
1638         hasize = ma->hasize;
1639         seed = ma->seed1;
1640
1641         re->flag |= R_HALO;
1642
1643         RE_set_customdata_names(obr, &psmd->dm->faceData);
1644         sd.totuv = CustomData_number_of_layers(&psmd->dm->faceData, CD_MTFACE);
1645         sd.totcol = CustomData_number_of_layers(&psmd->dm->faceData, CD_MCOL);
1646
1647         if(ma->texco & TEXCO_UV && sd.totuv) {
1648                 sd.uvco = MEM_callocN(sd.totuv * 2 * sizeof(float), "particle_uvs");
1649
1650                 if(ma->strand_uvname[0]) {
1651                         sd.override_uv = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, ma->strand_uvname);
1652                         sd.override_uv -= CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1653                 }
1654         }
1655         else
1656                 sd.uvco = NULL;
1657
1658         if(sd.totcol)
1659                 sd.mcol = MEM_callocN(sd.totcol * sizeof(MCol), "particle_mcols");
1660
1661 /* 2.2 setup billboards */
1662         if(part->ren_as == PART_DRAW_BB) {
1663                 int first_uv = CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1664
1665                 bb.uv[0] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[0]);
1666                 if(bb.uv[0] < 0)
1667                         bb.uv[0] = CustomData_get_active_layer_index(&psmd->dm->faceData, CD_MTFACE);
1668
1669                 bb.uv[1] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[1]);
1670
1671                 bb.uv[2] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[2]);
1672
1673                 if(first_uv >= 0) {
1674                         bb.uv[0] -= first_uv;
1675                         bb.uv[1] -= first_uv;
1676                         bb.uv[2] -= first_uv;
1677                 }
1678
1679                 bb.align = part->bb_align;
1680                 bb.anim = part->bb_anim;
1681                 bb.lock = part->draw & PART_DRAW_BB_LOCK;
1682                 bb.ob = (part->bb_ob ? part->bb_ob : RE_GetCamera(re));
1683                 bb.split_offset = part->bb_split_offset;
1684                 bb.totnum = totpart+totchild;
1685                 bb.uv_split = part->bb_uv_split;
1686         }
1687         
1688 /* 2.5 setup matrices */
1689         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
1690         invert_m4_m4(ob->imat, mat);    /* need to be that way, for imat texture */
1691         copy_m3_m4(nmat, ob->imat);
1692         transpose_m3(nmat);
1693
1694         if(psys->flag & PSYS_USE_IMAT) {
1695                 /* psys->imat is the original emitter's inverse matrix, ob->obmat is the duplicated object's matrix */
1696                 mult_m4_m4m4(duplimat, ob->obmat, psys->imat);
1697                 use_duplimat = 1;
1698         }
1699
1700 /* 2.6 setup strand rendering */
1701         if(part->ren_as == PART_DRAW_PATH && psys->pathcache){
1702                 path_nbr=(int)pow(2.0,(double) part->ren_step);
1703
1704                 if(path_nbr) {
1705                         if(!ELEM(ma->material_type, MA_TYPE_HALO, MA_TYPE_WIRE)) {
1706                                 sd.orco = MEM_mallocN(3*sizeof(float)*(totpart+totchild), "particle orcos");
1707                                 set_object_orco(re, psys, sd.orco);
1708                         }
1709                 }
1710
1711                 if(part->draw & PART_DRAW_REN_ADAPT) {
1712                         sd.adapt = 1;
1713                         sd.adapt_pix = (float)part->adapt_pix;
1714                         sd.adapt_angle = cosf(DEG2RADF((float)part->adapt_angle));
1715                 }
1716
1717                 if (part->draw & PART_DRAW_REN_STRAND) {
1718                         strandbuf= RE_addStrandBuffer(obr, (totpart+totchild)*(path_nbr+1));
1719                         strandbuf->ma= ma;
1720                         strandbuf->lay= ob->lay;
1721                         copy_m4_m4(strandbuf->winmat, re->winmat);
1722                         strandbuf->winx= re->winx;
1723                         strandbuf->winy= re->winy;
1724                         strandbuf->maxdepth= 2;
1725                         strandbuf->adaptcos= cosf(DEG2RADF((float)part->adapt_angle));
1726                         strandbuf->overrideuv= sd.override_uv;
1727                         strandbuf->minwidth= ma->strand_min;
1728
1729                         if(ma->strand_widthfade == 0.0f)
1730                                 strandbuf->widthfade= 0.0f;
1731                         else if(ma->strand_widthfade >= 1.0f)
1732                                 strandbuf->widthfade= 2.0f - ma->strand_widthfade;
1733                         else
1734                                 strandbuf->widthfade= 1.0f/MAX2(ma->strand_widthfade, 1e-5f);
1735
1736                         if(part->flag & PART_HAIR_BSPLINE)
1737                                 strandbuf->flag |= R_STRAND_BSPLINE;
1738                         if(ma->mode & MA_STR_B_UNITS)
1739                                 strandbuf->flag |= R_STRAND_B_UNITS;
1740
1741                         svert= strandbuf->vert;
1742
1743                         if(re->r.mode & R_SPEED)
1744                                 dosurfacecache= 1;
1745                         else if((re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT)) && (re->wrld.ao_gather_method == WO_AOGATHER_APPROX))
1746                                 if(ma->amb != 0.0f)
1747                                         dosurfacecache= 1;
1748
1749                         totface= psmd->dm->getNumTessFaces(psmd->dm);
1750                         origindex= psmd->dm->getTessFaceDataArray(psmd->dm, CD_ORIGINDEX);
1751                         for(a=0; a<totface; a++)
1752                                 strandbuf->totbound= MAX2(strandbuf->totbound, (origindex)? origindex[a]: a);
1753
1754                         strandbuf->totbound++;
1755                         strandbuf->bound= MEM_callocN(sizeof(StrandBound)*strandbuf->totbound, "StrandBound");
1756                         sbound= strandbuf->bound;
1757                         sbound->start= sbound->end= 0;
1758                 }
1759         }
1760
1761         if(sd.orco == 0) {
1762                 sd.orco = MEM_mallocN(3 * sizeof(float), "particle orco");
1763                 orco1 = 1;
1764         }
1765
1766         if(path_nbr == 0)
1767                 psys->lattice = psys_get_lattice(&sim);
1768
1769 /* 3. start creating renderable things */
1770         for(a=0,pa=pars; a<totpart+totchild; a++, pa++, seed++) {
1771                 random = rng_getFloat(rng);
1772                 /* setup per particle individual stuff */
1773                 if(a<totpart){
1774                         if(pa->flag & PARS_UNEXIST) continue;
1775
1776                         pa_time=(cfra-pa->time)/pa->lifetime;
1777                         pa_birthtime = pa->time;
1778                         pa_dietime = pa->dietime;
1779
1780                         hasize = ma->hasize;
1781
1782                         /* get orco */
1783                         if(tpsys && part->phystype==PART_PHYS_NO){
1784                                 tpa=tpsys->particles+pa->num;
1785                                 psys_particle_on_emitter(psmd,tpart->from,tpa->num,pa->num_dmcache,tpa->fuv,tpa->foffset,co,nor,0,0,sd.orco,0);
1786                         }
1787                         else
1788                                 psys_particle_on_emitter(psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,sd.orco,0);
1789
1790                         /* get uvco & mcol */
1791                         num= pa->num_dmcache;
1792
1793                         if(num == DMCACHE_NOTFOUND)
1794                                 if(pa->num < psmd->dm->getNumTessFaces(psmd->dm))
1795                                         num= pa->num;
1796
1797                         get_particle_uvco_mcol(part->from, psmd->dm, pa->fuv, num, &sd);
1798
1799                         pa_size = pa->size;
1800
1801                         r_tilt = 2.0f*(PSYS_FRAND(a) - 0.5f);
1802                         r_length = PSYS_FRAND(a+1);
1803
1804                         if(path_nbr) {
1805                                 cache = psys->pathcache[a];
1806                                 max_k = (int)cache->steps;
1807                         }
1808
1809                         if(totchild && (part->draw&PART_DRAW_PARENT)==0) continue;
1810                 }
1811                 else {
1812                         ChildParticle *cpa= psys->child+a-totpart;
1813
1814                         if(path_nbr) {
1815                                 cache = psys->childcache[a-totpart];
1816
1817                                 if(cache->steps < 0)
1818                                         continue;
1819
1820                                 max_k = (int)cache->steps;
1821                         }
1822                         
1823                         pa_time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
1824                         pa_size = psys_get_child_size(psys, cpa, cfra, &pa_time);
1825
1826                         r_tilt = 2.0f*(PSYS_FRAND(a + 21) - 0.5f);
1827                         r_length = PSYS_FRAND(a + 22);
1828
1829                         num = cpa->num;
1830
1831                         /* get orco */
1832                         if(part->childtype == PART_CHILD_FACES) {
1833                                 psys_particle_on_emitter(psmd,
1834                                         PART_FROM_FACE, cpa->num,DMCACHE_ISCHILD,
1835                                         cpa->fuv,cpa->foffset,co,nor,0,0,sd.orco,0);
1836                         }
1837                         else {
1838                                 ParticleData *par = psys->particles + cpa->parent;
1839                                 psys_particle_on_emitter(psmd, part->from,
1840                                         par->num,DMCACHE_ISCHILD,par->fuv,
1841                                         par->foffset,co,nor,0,0,sd.orco,0);
1842                         }
1843
1844                         /* get uvco & mcol */
1845                         if(part->childtype==PART_CHILD_FACES) {
1846                                 get_particle_uvco_mcol(PART_FROM_FACE, psmd->dm, cpa->fuv, cpa->num, &sd);
1847                         }
1848                         else {
1849                                 ParticleData *parent = psys->particles + cpa->parent;
1850                                 num = parent->num_dmcache;
1851
1852                                 if(num == DMCACHE_NOTFOUND)
1853                                         if(parent->num < psmd->dm->getNumTessFaces(psmd->dm))
1854                                                 num = parent->num;
1855
1856                                 get_particle_uvco_mcol(part->from, psmd->dm, parent->fuv, num, &sd);
1857                         }
1858
1859                         dosimplify = psys_render_simplify_params(psys, cpa, simplify);
1860
1861                         if(strandbuf) {
1862                                 int orignum= (origindex)? origindex[cpa->num]: cpa->num;
1863
1864                                 if(orignum > sbound - strandbuf->bound) {
1865                                         sbound= strandbuf->bound + orignum;
1866                                         sbound->start= sbound->end= obr->totstrand;
1867                                 }
1868                         }
1869                 }
1870
1871                 /* TEXCO_PARTICLE */
1872                 pa_co[0] = pa_time;
1873                 pa_co[1] = 0.f;
1874                 pa_co[2] = 0.f;
1875
1876                 /* surface normal shading setup */
1877                 if(ma->mode_l & MA_STR_SURFDIFF) {
1878                         mul_m3_v3(nmat, nor);
1879                         sd.surfnor= nor;
1880                 }
1881                 else
1882                         sd.surfnor= NULL;
1883
1884                 /* strand render setup */
1885                 if(strandbuf) {
1886                         strand= RE_findOrAddStrand(obr, obr->totstrand++);
1887                         strand->buffer= strandbuf;
1888                         strand->vert= svert;
1889                         copy_v3_v3(strand->orco, sd.orco);
1890
1891                         if(dosimplify) {
1892                                 float *ssimplify= RE_strandren_get_simplify(obr, strand, 1);
1893                                 ssimplify[0]= simplify[0];
1894                                 ssimplify[1]= simplify[1];
1895                         }
1896
1897                         if(sd.surfnor) {
1898                                 float *snor= RE_strandren_get_surfnor(obr, strand, 1);
1899                                 copy_v3_v3(snor, sd.surfnor);
1900                         }
1901
1902                         if(dosurfacecache && num >= 0) {
1903                                 int *facenum= RE_strandren_get_face(obr, strand, 1);
1904                                 *facenum= num;
1905                         }
1906
1907                         if(sd.uvco) {
1908                                 for(i=0; i<sd.totuv; i++) {
1909                                         if(i != sd.override_uv) {
1910                                                 float *uv= RE_strandren_get_uv(obr, strand, i, NULL, 1);
1911
1912                                                 uv[0]= sd.uvco[2*i];
1913                                                 uv[1]= sd.uvco[2*i+1];
1914                                         }
1915                                 }
1916                         }
1917                         if(sd.mcol) {
1918                                 for(i=0; i<sd.totcol; i++) {
1919                                         MCol *mc= RE_strandren_get_mcol(obr, strand, i, NULL, 1);
1920                                         *mc = sd.mcol[i];
1921                                 }
1922                         }
1923
1924                         sbound->end++;
1925                 }
1926
1927                 /* strandco computation setup */
1928                 if(path_nbr) {
1929                         strandlen= 0.0f;
1930                         curlen= 0.0f;
1931                         for(k=1; k<=path_nbr; k++)
1932                                 if(k<=max_k)
1933                                         strandlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1934                 }
1935
1936                 if(path_nbr) {
1937                         /* render strands */
1938                         for(k=0; k<=path_nbr; k++){
1939                                 float time;
1940
1941                                 if(k<=max_k){
1942                                         copy_v3_v3(state.co,(cache+k)->co);
1943                                         copy_v3_v3(state.vel,(cache+k)->vel);
1944                                 }
1945                                 else
1946                                         continue;       
1947
1948                                 if(k > 0)
1949                                         curlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1950                                 time= curlen/strandlen;
1951
1952                                 copy_v3_v3(loc,state.co);
1953                                 mul_m4_v3(re->viewmat,loc);
1954
1955                                 if(strandbuf) {
1956                                         copy_v3_v3(svert->co, loc);
1957                                         svert->strandco= -1.0f + 2.0f*time;
1958                                         svert++;
1959                                         strand->totvert++;
1960                                 }
1961                                 else{
1962                                         sd.size = hasize;
1963
1964                                         if(k==1){
1965                                                 sd.first = 1;
1966                                                 sd.time = 0.0f;
1967                                                 sub_v3_v3v3(loc0,loc1,loc);
1968                                                 add_v3_v3v3(loc0,loc1,loc0);
1969
1970                                                 particle_curve(re, obr, psmd->dm, ma, &sd, loc1, loc0, seed, pa_co);
1971                                         }
1972
1973                                         sd.first = 0;
1974                                         sd.time = time;
1975
1976                                         if(k)
1977                                                 particle_curve(re, obr, psmd->dm, ma, &sd, loc, loc1, seed, pa_co);
1978
1979                                         copy_v3_v3(loc1,loc);
1980                                 }
1981                         }
1982
1983                 }
1984                 else {
1985                         /* render normal particles */
1986                         if(part->trail_count > 1) {
1987                                 float length = part->path_end * (1.0f - part->randlength * r_length);
1988                                 int trail_count = part->trail_count * (1.0f - part->randlength * r_length);
1989                                 float ct = (part->draw & PART_ABS_PATH_TIME) ? cfra : pa_time;
1990                                 float dt = length / (trail_count ? (float)trail_count : 1.0f);
1991
1992                                 /* make sure we have pointcache in memory before getting particle on path */
1993                                 psys_make_temp_pointcache(ob, psys);
1994
1995                                 for(i=0; i < trail_count; i++, ct -= dt) {
1996                                         if(part->draw & PART_ABS_PATH_TIME) {
1997                                                 if(ct < pa_birthtime || ct > pa_dietime)
1998                                                         continue;
1999                                         }
2000                                         else if(ct < 0.0f || ct > 1.0f)
2001                                                 continue;
2002
2003                                         state.time = (part->draw & PART_ABS_PATH_TIME) ? -ct : ct;
2004                                         psys_get_particle_on_path(&sim,a,&state,1);
2005
2006                                         if(psys->parent)
2007                                                 mul_m4_v3(psys->parent->obmat, state.co);
2008
2009                                         if(use_duplimat)
2010                                                 mul_m4_v4(duplimat, state.co);
2011
2012                                         if(part->ren_as == PART_DRAW_BB) {
2013                                                 bb.random = random;
2014                                                 bb.offset[0] = part->bb_offset[0];
2015                                                 bb.offset[1] = part->bb_offset[1];
2016                                                 bb.size[0] = part->bb_size[0] * pa_size;
2017                                                 if (part->bb_align==PART_BB_VEL) {
2018                                                         float pa_vel = len_v3(state.vel);
2019                                                         float head = part->bb_vel_head*pa_vel;
2020                                                         float tail = part->bb_vel_tail*pa_vel;
2021                                                         bb.size[1] = part->bb_size[1]*pa_size + head + tail;
2022                                                         /* use offset to adjust the particle center. this is relative to size, so need to divide! */
2023                                                         if (bb.size[1] > 0.0f)
2024                                                                 bb.offset[1] += (head-tail) / bb.size[1];
2025                                                 }
2026                                                 else
2027                                                         bb.size[1] = part->bb_size[1] * pa_size;
2028                                                 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2029                                                 bb.time = ct;
2030                                                 bb.num = a;
2031                                         }
2032
2033                                         pa_co[0] = (part->draw & PART_ABS_PATH_TIME) ? (ct-pa_birthtime)/(pa_dietime-pa_birthtime) : ct;
2034                                         pa_co[1] = (float)i/(float)(trail_count-1);
2035
2036                                         particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2037                                 }
2038                         }
2039                         else {
2040                                 state.time=cfra;
2041                                 if(psys_get_particle_state(&sim,a,&state,0)==0)
2042                                         continue;
2043
2044                                 if(psys->parent)
2045                                         mul_m4_v3(psys->parent->obmat, state.co);
2046
2047                                 if(use_duplimat)
2048                                         mul_m4_v3(duplimat, state.co);
2049
2050                                 if(part->ren_as == PART_DRAW_BB) {
2051                                         bb.random = random;
2052                                         bb.offset[0] = part->bb_offset[0];
2053                                         bb.offset[1] = part->bb_offset[1];
2054                                         bb.size[0] = part->bb_size[0] * pa_size;
2055                                         if (part->bb_align==PART_BB_VEL) {
2056                                                 float pa_vel = len_v3(state.vel);
2057                                                 float head = part->bb_vel_head*pa_vel;
2058                                                 float tail = part->bb_vel_tail*pa_vel;
2059                                                 bb.size[1] = part->bb_size[1]*pa_size + head + tail;
2060                                                 /* use offset to adjust the particle center. this is relative to size, so need to divide! */
2061                                                 if (bb.size[1] > 0.0f)
2062                                                         bb.offset[1] += (head-tail) / bb.size[1];
2063                                         }
2064                                         else
2065                                                 bb.size[1] = part->bb_size[1] * pa_size;
2066                                         bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2067                                         bb.time = pa_time;
2068                                         bb.num = a;
2069                                         bb.lifetime = pa_dietime-pa_birthtime;
2070                                 }
2071
2072                                 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2073                         }
2074                 }
2075
2076                 if(orco1==0)
2077                         sd.orco+=3;
2078
2079                 if(re->test_break(re->tbh))
2080                         break;
2081         }
2082
2083         if(dosurfacecache)
2084                 strandbuf->surface= cache_strand_surface(re, obr, psmd->dm, mat, timeoffset);
2085
2086 /* 4. clean up */
2087 #if 0 // XXX old animation system
2088         if(ma) do_mat_ipo(re->scene, ma);
2089 #endif // XXX old animation system
2090         
2091         if(orco1)
2092                 MEM_freeN(sd.orco);
2093
2094         if(sd.uvco)
2095                 MEM_freeN(sd.uvco);
2096         
2097         if(sd.mcol)
2098                 MEM_freeN(sd.mcol);
2099
2100         if(uv_name)
2101                 MEM_freeN(uv_name);
2102
2103         if(states)
2104                 MEM_freeN(states);
2105         
2106         rng_free(rng);
2107
2108         psys->flag &= ~PSYS_DRAWING;
2109
2110         if(psys->lattice){
2111                 end_latt_deform(psys->lattice);
2112                 psys->lattice= NULL;
2113         }
2114
2115         if(path_nbr && (ma->mode_l & MA_TANGENT_STR)==0)
2116                 calc_vertexnormals(re, obr, 0, 0);
2117
2118         return 1;
2119 }
2120
2121 /* ------------------------------------------------------------------------- */
2122 /* Halo's                                                                                                                                */
2123 /* ------------------------------------------------------------------------- */
2124
2125 static void make_render_halos(Render *re, ObjectRen *obr, Mesh *UNUSED(me), int totvert, MVert *mvert, Material *ma, float *orco)
2126 {
2127         Object *ob= obr->ob;
2128         HaloRen *har;
2129         float xn, yn, zn, nor[3], view[3];
2130         float vec[3], hasize, mat[4][4], imat[3][3];
2131         int a, ok, seed= ma->seed1;
2132
2133         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2134         copy_m3_m4(imat, ob->imat);
2135
2136         re->flag |= R_HALO;
2137
2138         for(a=0; a<totvert; a++, mvert++) {
2139                 ok= 1;
2140
2141                 if(ok) {
2142                         hasize= ma->hasize;
2143
2144                         copy_v3_v3(vec, mvert->co);
2145                         mul_m4_v3(mat, vec);
2146
2147                         if(ma->mode & MA_HALOPUNO) {
2148                                 xn= mvert->no[0];
2149                                 yn= mvert->no[1];
2150                                 zn= mvert->no[2];
2151
2152                                 /* transpose ! */
2153                                 nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2154                                 nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2155                                 nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2156                                 normalize_v3(nor);
2157
2158                                 copy_v3_v3(view, vec);
2159                                 normalize_v3(view);
2160
2161                                 zn = dot_v3v3(nor, view);
2162                                 if(zn>=0.0f) hasize= 0.0f;
2163                                 else hasize*= zn*zn*zn*zn;
2164                         }
2165
2166                         if(orco) har= RE_inithalo(re, obr, ma, vec, NULL, orco, hasize, 0.0, seed);
2167                         else har= RE_inithalo(re, obr, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
2168                         if(har) har->lay= ob->lay;
2169                 }
2170                 if(orco) orco+= 3;
2171                 seed++;
2172         }
2173 }
2174
2175 static int verghalo(const void *a1, const void *a2)
2176 {
2177         const HaloRen *har1= *(const HaloRen**)a1;
2178         const HaloRen *har2= *(const HaloRen**)a2;
2179         
2180         if(har1->zs < har2->zs) return 1;
2181         else if(har1->zs > har2->zs) return -1;
2182         return 0;
2183 }
2184
2185 static void sort_halos(Render *re, int totsort)
2186 {
2187         ObjectRen *obr;
2188         HaloRen *har= NULL, **haso;
2189         int a;
2190
2191         if(re->tothalo==0) return;
2192
2193         re->sortedhalos= MEM_callocN(sizeof(HaloRen*)*re->tothalo, "sorthalos");
2194         haso= re->sortedhalos;
2195
2196         for(obr=re->objecttable.first; obr; obr=obr->next) {
2197                 for(a=0; a<obr->tothalo; a++) {
2198                         if((a & 255)==0) har= obr->bloha[a>>8];
2199                         else har++;
2200
2201                         *(haso++)= har;
2202                 }
2203         }
2204
2205         qsort(re->sortedhalos, totsort, sizeof(HaloRen*), verghalo);
2206 }
2207
2208 /* ------------------------------------------------------------------------- */
2209 /* Displacement Mapping                                                                                                          */
2210 /* ------------------------------------------------------------------------- */
2211
2212 static short test_for_displace(Render *re, Object *ob)
2213 {
2214         /* return 1 when this object uses displacement textures. */
2215         Material *ma;
2216         int i;
2217         
2218         for (i=1; i<=ob->totcol; i++) {
2219                 ma=give_render_material(re, ob, i);
2220                 /* ma->mapto is ORed total of all mapto channels */
2221                 if(ma && (ma->mapto & MAP_DISPLACE)) return 1;
2222         }
2223         return 0;
2224 }
2225
2226 static void displace_render_vert(Render *re, ObjectRen *obr, ShadeInput *shi, VertRen *vr, int vindex, float *scale, float mat[][4], float imat[][3])
2227 {
2228         MTFace *tface;
2229         short texco= shi->mat->texco;
2230         float sample=0, displace[3];
2231         char *name;
2232         int i;
2233
2234         /* shi->co is current render coord, just make sure at least some vector is here */
2235         copy_v3_v3(shi->co, vr->co);
2236         /* vertex normal is used for textures type 'col' and 'var' */
2237         copy_v3_v3(shi->vn, vr->n);
2238
2239         if(mat)
2240                 mul_m4_v3(mat, shi->co);
2241
2242         if(imat) {
2243                 shi->vn[0] = dot_v3v3(imat[0], vr->n);
2244                 shi->vn[1] = dot_v3v3(imat[1], vr->n);
2245                 shi->vn[2] = dot_v3v3(imat[2], vr->n);
2246         }
2247
2248         if (texco & TEXCO_UV) {
2249                 shi->totuv= 0;
2250                 shi->actuv= obr->actmtface;
2251
2252                 for (i=0; (tface=RE_vlakren_get_tface(obr, shi->vlr, i, &name, 0)); i++) {
2253                         ShadeInputUV *suv= &shi->uv[i];
2254
2255                         /* shi.uv needs scale correction from tface uv */
2256                         suv->uv[0]= 2*tface->uv[vindex][0]-1.0f;
2257                         suv->uv[1]= 2*tface->uv[vindex][1]-1.0f;
2258                         suv->uv[2]= 0.0f;
2259                         suv->name= name;
2260                         shi->totuv++;
2261                 }
2262         }
2263
2264         /* set all rendercoords, 'texco' is an ORed value for all textures needed */
2265         if ((texco & TEXCO_ORCO) && (vr->orco)) {
2266                 copy_v3_v3(shi->lo, vr->orco);
2267         }
2268         if (texco & TEXCO_STICKY) {
2269                 float *sticky= RE_vertren_get_sticky(obr, vr, 0);
2270                 if(sticky) {
2271                         shi->sticky[0]= sticky[0];
2272                         shi->sticky[1]= sticky[1];
2273                         shi->sticky[2]= 0.0f;
2274                 }
2275         }
2276         if (texco & TEXCO_GLOB) {
2277                 copy_v3_v3(shi->gl, shi->co);
2278                 mul_m4_v3(re->viewinv, shi->gl);
2279         }
2280         if (texco & TEXCO_NORM) {
2281                 copy_v3_v3(shi->orn, shi->vn);
2282         }
2283         if(texco & TEXCO_REFL) {
2284                 /* not (yet?) */
2285         }
2286         if(texco & TEXCO_STRESS) {
2287                 float *s= RE_vertren_get_stress(obr, vr, 0);
2288
2289                 if(s) {
2290                         shi->stress= *s;
2291                         if(shi->stress<1.0f) shi->stress-= 1.0f;
2292                         else shi->stress= (shi->stress-1.0f)/shi->stress;
2293                 }
2294                 else
2295                         shi->stress= 0.0f;
2296         }
2297
2298         shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
2299         
2300         do_material_tex(shi, re);
2301         
2302         //printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2], 
2303         //vr->co[0], vr->co[1], vr->co[2]);
2304
2305         displace[0]= shi->displace[0] * scale[0];
2306         displace[1]= shi->displace[1] * scale[1];
2307         displace[2]= shi->displace[2] * scale[2];
2308         
2309         if(mat)
2310                 mul_m3_v3(imat, displace);
2311
2312         /* 0.5 could become button once?  */
2313         vr->co[0] += displace[0]; 
2314         vr->co[1] += displace[1];
2315         vr->co[2] += displace[2];
2316         
2317         //printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]); 
2318         
2319         /* we just don't do this vertex again, bad luck for other face using same vertex with
2320                 different material... */
2321         vr->flag |= 1;
2322         
2323         /* Pass sample back so displace_face can decide which way to split the quad */
2324         sample  = shi->displace[0]*shi->displace[0];
2325         sample += shi->displace[1]*shi->displace[1];
2326         sample += shi->displace[2]*shi->displace[2];
2327         
2328         vr->accum=sample; 
2329         /* Should be sqrt(sample), but I'm only looking for "bigger".  Save the cycles. */
2330         return;
2331 }
2332
2333 static void displace_render_face(Render *re, ObjectRen *obr, VlakRen *vlr, float *scale, float mat[][4], float imat[][3])
2334 {
2335         ShadeInput shi;
2336
2337         /* Warning, This is not that nice, and possibly a bit slow,
2338         however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
2339         memset(&shi, 0, sizeof(ShadeInput)); 
2340         /* end warning! - Campbell */
2341         
2342         /* set up shadeinput struct for multitex() */
2343         
2344         /* memset above means we dont need this */
2345         /*shi.osatex= 0;*/              /* signal not to use dx[] and dy[] texture AA vectors */
2346
2347         shi.obr= obr;
2348         shi.vlr= vlr;           /* current render face */
2349         shi.mat= vlr->mat;              /* current input material */
2350         shi.thread= 0;
2351         
2352         /* TODO, assign these, displacement with new bumpmap is skipped without - campbell */
2353 #if 0
2354         /* order is not known ? */
2355         shi.v1= vlr->v1;
2356         shi.v2= vlr->v2;
2357         shi.v3= vlr->v3;
2358 #endif
2359
2360         /* Displace the verts, flag is set when done */
2361         if (!vlr->v1->flag)
2362                 displace_render_vert(re, obr, &shi, vlr->v1,0,  scale, mat, imat);
2363         
2364         if (!vlr->v2->flag)
2365                 displace_render_vert(re, obr, &shi, vlr->v2, 1, scale, mat, imat);
2366
2367         if (!vlr->v3->flag)
2368                 displace_render_vert(re, obr, &shi, vlr->v3, 2, scale, mat, imat);
2369
2370         if (vlr->v4) {
2371                 if (!vlr->v4->flag)
2372                         displace_render_vert(re, obr, &shi, vlr->v4, 3, scale, mat, imat);
2373
2374                 /*      closest in displace value.  This will help smooth edges.   */ 
2375                 if ( fabs(vlr->v1->accum - vlr->v3->accum) > fabs(vlr->v2->accum - vlr->v4->accum)) 
2376                         vlr->flag |= R_DIVIDE_24;
2377                 else vlr->flag &= ~R_DIVIDE_24;
2378         }
2379         
2380         /* Recalculate the face normal  - if flipped before, flip now */
2381         if(vlr->v4) {
2382                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2383         }       
2384         else {
2385                 normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
2386         }
2387 }
2388
2389 static void do_displacement(Render *re, ObjectRen *obr, float mat[][4], float imat[][3])
2390 {
2391         VertRen *vr;
2392         VlakRen *vlr;
2393 //      float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
2394         float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
2395         int i; //, texflag=0;
2396         Object *obt;
2397                 
2398         /* Object Size with parenting */
2399         obt=obr->ob;
2400         while(obt){
2401                 mul_v3_v3v3(temp, obt->size, obt->dscale);
2402                 scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
2403                 obt=obt->parent;
2404         }
2405         
2406         /* Clear all flags */
2407         for(i=0; i<obr->totvert; i++){ 
2408                 vr= RE_findOrAddVert(obr, i);
2409                 vr->flag= 0;
2410         }
2411
2412         for(i=0; i<obr->totvlak; i++){
2413                 vlr=RE_findOrAddVlak(obr, i);
2414                 displace_render_face(re, obr, vlr, scale, mat, imat);
2415         }
2416         
2417         /* Recalc vertex normals */
2418         calc_vertexnormals(re, obr, 0, 0);
2419 }
2420
2421 /* ------------------------------------------------------------------------- */
2422 /* Metaball                                                                                                                              */
2423 /* ------------------------------------------------------------------------- */
2424
2425 static void init_render_mball(Render *re, ObjectRen *obr)
2426 {
2427         Object *ob= obr->ob;
2428         DispList *dl;
2429         VertRen *ver;
2430         VlakRen *vlr, *vlr1;
2431         Material *ma;
2432         float *data, *nors, *orco=NULL, mat[4][4], imat[3][3], xn, yn, zn;
2433         int a, need_orco, vlakindex, *index;
2434         ListBase dispbase= {NULL, NULL};
2435
2436         if (ob!=find_basis_mball(re->scene, ob))
2437                 return;
2438
2439         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2440         invert_m4_m4(ob->imat, mat);
2441         copy_m3_m4(imat, ob->imat);
2442
2443         ma= give_render_material(re, ob, 1);
2444
2445         need_orco= 0;
2446         if(ma->texco & TEXCO_ORCO) {
2447                 need_orco= 1;
2448         }
2449
2450         makeDispListMBall_forRender(re->scene, ob, &dispbase);
2451         dl= dispbase.first;
2452         if(dl==0) return;
2453
2454         data= dl->verts;
2455         nors= dl->nors;
2456         if(need_orco) {
2457                 orco= get_object_orco(re, ob);
2458
2459                 if (!orco) {
2460                         /* orco hasn't been found in cache - create new one and add to cache */
2461                         orco= make_orco_mball(ob, &dispbase);
2462                         set_object_orco(re, ob, orco);
2463                 }
2464         }
2465
2466         for(a=0; a<dl->nr; a++, data+=3, nors+=3) {
2467
2468                 ver= RE_findOrAddVert(obr, obr->totvert++);
2469                 copy_v3_v3(ver->co, data);
2470                 mul_m4_v3(mat, ver->co);
2471
2472                 /* render normals are inverted */
2473                 xn= -nors[0];
2474                 yn= -nors[1];
2475                 zn= -nors[2];
2476
2477                 /* transpose ! */
2478                 ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2479                 ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2480                 ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2481                 normalize_v3(ver->n);
2482                 //if(ob->transflag & OB_NEG_SCALE) negate_v3(ver->n);
2483                 
2484                 if(need_orco) {
2485                         ver->orco= orco;
2486                         orco+=3;
2487                 }
2488         }
2489
2490         index= dl->index;
2491         for(a=0; a<dl->parts; a++, index+=4) {
2492
2493                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2494                 vlr->v1= RE_findOrAddVert(obr, index[0]);
2495                 vlr->v2= RE_findOrAddVert(obr, index[1]);
2496                 vlr->v3= RE_findOrAddVert(obr, index[2]);
2497                 vlr->v4= 0;
2498
2499                 if(ob->transflag & OB_NEG_SCALE) 
2500                         normal_tri_v3( vlr->n,vlr->v1->co, vlr->v2->co, vlr->v3->co);
2501                 else
2502                         normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
2503
2504                 vlr->mat= ma;
2505                 vlr->flag= ME_SMOOTH;
2506                 vlr->ec= 0;
2507
2508                 /* mball -too bad- always has triangles, because quads can be non-planar */
2509                 if(index[3] && index[3]!=index[2]) {
2510                         vlr1= RE_findOrAddVlak(obr, obr->totvlak++);
2511                         vlakindex= vlr1->index;
2512                         *vlr1= *vlr;
2513                         vlr1->index= vlakindex;
2514                         vlr1->v2= vlr1->v3;
2515                         vlr1->v3= RE_findOrAddVert(obr, index[3]);
2516                         if(ob->transflag & OB_NEG_SCALE) 
2517                                 normal_tri_v3( vlr1->n,vlr1->v1->co, vlr1->v2->co, vlr1->v3->co);
2518                         else
2519                                 normal_tri_v3( vlr1->n,vlr1->v3->co, vlr1->v2->co, vlr1->v1->co);
2520                 }
2521         }
2522
2523         /* enforce display lists remade */
2524         freedisplist(&dispbase);
2525 }
2526
2527 /* ------------------------------------------------------------------------- */
2528 /* Surfaces and Curves                                                                                                           */
2529 /* ------------------------------------------------------------------------- */
2530
2531 /* returns amount of vertices added for orco */
2532 static int dl_surf_to_renderdata(ObjectRen *obr, DispList *dl, Material **matar, float *orco, float mat[4][4])
2533 {
2534         VertRen *v1, *v2, *v3, *v4, *ver;
2535         VlakRen *vlr, *vlr1, *vlr2, *vlr3;
2536         float *data, n1[3];
2537         int u, v, orcoret= 0;
2538         int p1, p2, p3, p4, a;
2539         int sizeu, nsizeu, sizev, nsizev;
2540         int startvert, startvlak;
2541         
2542         startvert= obr->totvert;
2543         nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr; 
2544         
2545         data= dl->verts;
2546         for (u = 0; u < sizeu; u++) {
2547                 v1 = RE_findOrAddVert(obr, obr->totvert++); /* save this for possible V wrapping */
2548                 copy_v3_v3(v1->co, data); data += 3;
2549                 if(orco) {
2550                         v1->orco= orco; orco+= 3; orcoret++;
2551                 }       
2552                 mul_m4_v3(mat, v1->co);
2553                 
2554                 for (v = 1; v < sizev; v++) {
2555                         ver= RE_findOrAddVert(obr, obr->totvert++);
2556                         copy_v3_v3(ver->co, data); data += 3;
2557                         if(orco) {
2558                                 ver->orco= orco; orco+= 3; orcoret++;
2559                         }       
2560                         mul_m4_v3(mat, ver->co);
2561                 }
2562                 /* if V-cyclic, add extra vertices at end of the row */
2563                 if (dl->flag & DL_CYCL_U) {
2564                         ver= RE_findOrAddVert(obr, obr->totvert++);
2565                         copy_v3_v3(ver->co, v1->co);
2566                         if(orco) {
2567                                 ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
2568                         }
2569                 }       
2570         }       
2571         
2572         /* Done before next loop to get corner vert */
2573         if (dl->flag & DL_CYCL_U) nsizev++;
2574         if (dl->flag & DL_CYCL_V) nsizeu++;
2575         
2576         /* if U cyclic, add extra row at end of column */
2577         if (dl->flag & DL_CYCL_V) {
2578                 for (v = 0; v < nsizev; v++) {
2579                         v1= RE_findOrAddVert(obr, startvert + v);
2580                         ver= RE_findOrAddVert(obr, obr->totvert++);
2581                         copy_v3_v3(ver->co, v1->co);
2582                         if(orco) {
2583                                 ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
2584                         }
2585                 }
2586         }
2587         
2588         sizeu = nsizeu;
2589         sizev = nsizev;
2590         
2591         startvlak= obr->totvlak;
2592         
2593         for(u = 0; u < sizeu - 1; u++) {
2594                 p1 = startvert + u * sizev; /* walk through face list */
2595                 p2 = p1 + 1;
2596                 p3 = p2 + sizev;
2597                 p4 = p3 - 1;
2598                 
2599                 for(v = 0; v < sizev - 1; v++) {
2600                         v1= RE_findOrAddVert(obr, p1);
2601                         v2= RE_findOrAddVert(obr, p2);
2602                         v3= RE_findOrAddVert(obr, p3);
2603                         v4= RE_findOrAddVert(obr, p4);
2604                         
2605                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2606                         vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
2607                         
2608                         normal_quad_v3( n1,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2609                         
2610                         copy_v3_v3(vlr->n, n1);
2611                         
2612                         vlr->mat= matar[ dl->col];
2613                         vlr->ec= ME_V1V2+ME_V2V3;
2614                         vlr->flag= dl->rt;
2615                         
2616                         add_v3_v3(v1->n, n1);
2617                         add_v3_v3(v2->n, n1);
2618                         add_v3_v3(v3->n, n1);
2619                         add_v3_v3(v4->n, n1);
2620                         
2621                         p1++; p2++; p3++; p4++;
2622                 }
2623         }       
2624         /* fix normals for U resp. V cyclic faces */
2625         sizeu--; sizev--;  /* dec size for face array */
2626         if (dl->flag & DL_CYCL_V) {
2627                 
2628                 for (v = 0; v < sizev; v++)
2629                 {
2630                         /* optimize! :*/
2631                         vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, v));
2632                         vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, v));
2633                         add_v3_v3(vlr1->v1->n, vlr->n);
2634                         add_v3_v3(vlr1->v2->n, vlr->n);
2635                         add_v3_v3(vlr->v3->n, vlr1->n);
2636                         add_v3_v3(vlr->v4->n, vlr1->n);
2637                 }
2638         }
2639         if (dl->flag & DL_CYCL_U) {
2640                 
2641                 for (u = 0; u < sizeu; u++)
2642                 {
2643                         /* optimize! :*/
2644                         vlr= RE_findOrAddVlak(obr, UVTOINDEX(u, 0));
2645                         vlr1= RE_findOrAddVlak(obr, UVTOINDEX(u, sizev-1));
2646                         add_v3_v3(vlr1->v2->n, vlr->n);
2647                         add_v3_v3(vlr1->v3->n, vlr->n);
2648                         add_v3_v3(vlr->v1->n, vlr1->n);
2649                         add_v3_v3(vlr->v4->n, vlr1->n);
2650                 }
2651         }
2652         /* last vertex is an extra case: 
2653                 
2654                 ^       ()----()----()----()
2655                 |       |     |     ||     |
2656                 u       |     |(0,n)||(0,0)|
2657                 |     |     ||     |
2658                 ()====()====[]====()
2659                 |     |     ||     |
2660                 |     |(m,n)||(m,0)|
2661                 |     |     ||     |
2662                 ()----()----()----()
2663                 v ->
2664                 
2665                 vertex [] is no longer shared, therefore distribute
2666                 normals of the surrounding faces to all of the duplicates of []
2667                 */
2668         
2669         if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U))
2670         {
2671                 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m,n) */
2672                 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0,0));  /* (0,0) */
2673                 add_v3_v3v3(n1, vlr->n, vlr1->n);
2674                 vlr2= RE_findOrAddVlak(obr, UVTOINDEX(0, sizev-1)); /* (0,n) */
2675                 add_v3_v3(n1, vlr2->n);
2676                 vlr3= RE_findOrAddVlak(obr, UVTOINDEX(sizeu-1, 0)); /* (m,0) */
2677                 add_v3_v3(n1, vlr3->n);
2678                 copy_v3_v3(vlr->v3->n, n1);
2679                 copy_v3_v3(vlr1->v1->n, n1);
2680                 copy_v3_v3(vlr2->v2->n, n1);
2681                 copy_v3_v3(vlr3->v4->n, n1);
2682         }
2683         for(a = startvert; a < obr->totvert; a++) {
2684                 ver= RE_findOrAddVert(obr, a);
2685                 normalize_v3(ver->n);
2686         }
2687         
2688         
2689         return orcoret;
2690 }
2691
2692 static void init_render_dm(DerivedMesh *dm, Render *re, ObjectRen *obr,
2693         int timeoffset, float *orco, float mat[4][4])
2694 {
2695         Object *ob= obr->ob;
2696         int a, end, totvert, vertofs;
2697         short mat_iter;
2698         VertRen *ver;
2699         VlakRen *vlr;
2700         MVert *mvert = NULL;
2701         MFace *mface;
2702         Material *ma;
2703         /* Curve *cu= ELEM(ob->type, OB_FONT, OB_CURVE) ? ob->data : NULL; */
2704
2705         mvert= dm->getVertArray(dm);
2706         totvert= dm->getNumVerts(dm);
2707
2708         for(a=0; a<totvert; a++, mvert++) {
2709                 ver= RE_findOrAddVert(obr, obr->totvert++);
2710                 copy_v3_v3(ver->co, mvert->co);
2711                 mul_m4_v3(mat, ver->co);
2712
2713                 if(orco) {
2714                         ver->orco= orco;
2715                         orco+=3;
2716                 }
2717         }
2718
2719         if(!timeoffset) {
2720                 /* store customdata names, because DerivedMesh is freed */
2721                 RE_set_customdata_names(obr, &dm->faceData);
2722
2723                 /* still to do for keys: the correct local texture coordinate */
2724
2725                 /* faces in order of color blocks */
2726                 vertofs= obr->totvert - totvert;
2727                 for(mat_iter= 0; (mat_iter < ob->totcol || (mat_iter==0 && ob->totcol==0)); mat_iter++) {
2728
2729                         ma= give_render_material(re, ob, mat_iter+1);
2730                         end= dm->getNumTessFaces(dm);
2731                         mface= dm->getTessFaceArray(dm);
2732
2733                         for(a=0; a<end; a++, mface++) {
2734                                 int v1, v2, v3, v4, flag;
2735
2736                                 if(mface->mat_nr == mat_iter) {
2737                                         float len;
2738
2739                                         v1= mface->v1;
2740                                         v2= mface->v2;
2741                                         v3= mface->v3;
2742                                         v4= mface->v4;
2743                                         flag= mface->flag & ME_SMOOTH;
2744
2745                                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2746                                         vlr->v1= RE_findOrAddVert(obr, vertofs+v1);
2747                                         vlr->v2= RE_findOrAddVert(obr, vertofs+v2);
2748                                         vlr->v3= RE_findOrAddVert(obr, vertofs+v3);
2749                                         if(v4) vlr->v4= RE_findOrAddVert(obr, vertofs+v4);
2750                                         else vlr->v4= 0;
2751
2752                                         /* render normals are inverted in render */
2753                                         if(vlr->v4)
2754                                                 len= normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2755                                         else
2756                                                 len= normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
2757
2758                                         vlr->mat= ma;
2759                                         vlr->flag= flag;
2760                                         vlr->ec= 0; /* mesh edges rendered separately */
2761
2762                                         if(len==0) obr->totvlak--;
2763                                         else {
2764                                                 CustomDataLayer *layer;
2765                                                 MTFace *mtface, *mtf;
2766                                                 MCol *mcol, *mc;
2767                                                 int index, mtfn= 0, mcn= 0;
2768                                                 char *name;
2769
2770                                                 for(index=0; index<dm->faceData.totlayer; index++) {
2771                                                         layer= &dm->faceData.layers[index];
2772                                                         name= layer->name;
2773
2774                                                         if(layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
2775                                                                 mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
2776                                                                 mtface= (MTFace*)layer->data;
2777                                                                 *mtf= mtface[a];
2778                                                         }
2779                                                         else if(layer->type == CD_MCOL && mcn < MAX_MCOL) {
2780                                                                 mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
2781                                                                 mcol= (MCol*)layer->data;
2782                                                                 memcpy(mc, &mcol[a*4], sizeof(MCol)*4);
2783                                                         }
2784                                                 }
2785                                         }
2786                                 }
2787                         }
2788                 }
2789
2790                 /* Normals */
2791                 calc_vertexnormals(re, obr, 0, 0);
2792         }
2793
2794 }
2795
2796 static void init_render_surf(Render *re, ObjectRen *obr, int timeoffset)
2797 {
2798         Object *ob= obr->ob;
2799         Nurb *nu=0;
2800         Curve *cu;
2801         ListBase displist= {NULL, NULL};
2802         DispList *dl;
2803         Material **matar;
2804         float *orco=NULL, mat[4][4];
2805         int a, totmat, need_orco=0;
2806         DerivedMesh *dm= NULL;
2807
2808         cu= ob->data;
2809         nu= cu->nurb.first;
2810         if(nu==0) return;
2811
2812         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2813         invert_m4_m4(ob->imat, mat);
2814
2815         /* material array */
2816         totmat= ob->totcol+1;
2817         matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2818
2819         for(a=0; a<totmat; a++) {
2820                 matar[a]= give_render_material(re, ob, a+1);
2821
2822                 if(matar[a] && matar[a]->texco & TEXCO_ORCO)
2823                         need_orco= 1;
2824         }
2825
2826         if(ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
2827
2828         makeDispListSurf(re->scene, ob, &displist, &dm, 1, 0);
2829
2830         if (dm) {
2831                 if(need_orco) {
2832                         orco= makeOrcoDispList(re->scene, ob, dm, 1);
2833                         if(orco) {
2834                                 set_object_orco(re, ob, orco);
2835                         }
2836                 }
2837
2838                 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2839                 dm->release(dm);
2840         } else {
2841                 if(need_orco) {
2842                         orco= get_object_orco(re, ob);
2843                 }
2844
2845                 /* walk along displaylist and create rendervertices/-faces */
2846                 for(dl=displist.first; dl; dl=dl->next) {
2847                         /* watch out: u ^= y, v ^= x !! */
2848                         if(dl->type==DL_SURF)
2849                                 orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
2850                 }
2851         }
2852
2853         freedisplist(&displist);
2854
2855         MEM_freeN(matar);
2856 }
2857
2858 static void init_render_curve(Render *re, ObjectRen *obr, int timeoffset)
2859 {
2860         Object *ob= obr->ob;
2861         Curve *cu;
2862         VertRen *ver;
2863         VlakRen *vlr;
2864         DispList *dl;
2865         DerivedMesh *dm = NULL;
2866         ListBase disp={NULL, NULL};
2867         Material **matar;
2868         float *data, *fp, *orco=NULL;
2869         float n[3], mat[4][4];
2870         int nr, startvert, a, b;
2871         int need_orco=0, totmat;
2872
2873         cu= ob->data;
2874         if(ob->type==OB_FONT && cu->str==NULL) return;
2875         else if(ob->type==OB_CURVE && cu->nurb.first==NULL) return;
2876
2877         makeDispListCurveTypes_forRender(re->scene, ob, &disp, &dm, 0);
2878         dl= disp.first;
2879         if(dl==NULL) return;
2880         
2881         mult_m4_m4m4(mat, re->viewmat, ob->obmat);
2882         invert_m4_m4(ob->imat, mat);
2883
2884         /* material array */
2885         totmat= ob->totcol+1;
2886         matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2887
2888         for(a=0; a<totmat; a++) {
2889                 matar[a]= give_render_material(re, ob, a+1);
2890
2891                 if(matar[a] && matar[a]->texco & TEXCO_ORCO)
2892                         need_orco= 1;
2893         }
2894
2895         if (dm) {
2896                 if(need_orco) {
2897                         orco= makeOrcoDispList(re->scene, ob, dm, 1);
2898                         if(orco) {
2899                                 set_object_orco(re, ob, orco);
2900                         }
2901                 }
2902
2903                 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2904                 dm->release(dm);
2905         } else {
2906                 if(need_orco) {
2907                   orco= get_object_orco(re, ob);
2908                 }
2909
2910                 while(dl) {
2911                         if(dl->col > ob->totcol) {
2912                                 /* pass */
2913                         }
2914                         else if(dl->type==DL_INDEX3) {
2915                                 int *index;
2916
2917                                 startvert= obr->totvert;
2918                                 data= dl->verts;
2919
2920                                 for(a=0; a<dl->nr; a++, data+=3) {
2921                                         ver= RE_findOrAddVert(obr, obr->totvert++);
2922                                         copy_v3_v3(ver->co, data);
2923
2924                                         mul_m4_v3(mat, ver->co);
2925
2926                                         if (orco) {
2927                                                 ver->orco = orco;
2928                                                 orco += 3;
2929                                         }
2930                                 }
2931
2932                                 if(timeoffset==0) {
2933                                         float tmp[3];
2934