ClangFormat: apply to source, most of intern
[blender.git] / intern / cycles / kernel / kernel_projection.h
1 /*
2  * Parts adapted from Open Shading Language with this license:
3  *
4  * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
5  * All Rights Reserved.
6  *
7  * Modifications Copyright 2011, Blender Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions are
11  * met:
12  * * Redistributions of source code must retain the above copyright
13  *   notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above copyright
15  *   notice, this list of conditions and the following disclaimer in the
16  *   documentation and/or other materials provided with the distribution.
17  * * Neither the name of Sony Pictures Imageworks nor the names of its
18  *   contributors may be used to endorse or promote products derived from
19  *   this software without specific prior written permission.
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #ifndef __KERNEL_PROJECTION_CL__
34 #define __KERNEL_PROJECTION_CL__
35
36 CCL_NAMESPACE_BEGIN
37
38 /* Spherical coordinates <-> Cartesian direction  */
39
40 ccl_device float2 direction_to_spherical(float3 dir)
41 {
42   float theta = safe_acosf(dir.z);
43   float phi = atan2f(dir.x, dir.y);
44
45   return make_float2(theta, phi);
46 }
47
48 ccl_device float3 spherical_to_direction(float theta, float phi)
49 {
50   float sin_theta = sinf(theta);
51   return make_float3(sin_theta * cosf(phi), sin_theta * sinf(phi), cosf(theta));
52 }
53
54 /* Equirectangular coordinates <-> Cartesian direction */
55
56 ccl_device float2 direction_to_equirectangular_range(float3 dir, float4 range)
57 {
58   if (is_zero(dir))
59     return make_float2(0.0f, 0.0f);
60
61   float u = (atan2f(dir.y, dir.x) - range.y) / range.x;
62   float v = (acosf(dir.z / len(dir)) - range.w) / range.z;
63
64   return make_float2(u, v);
65 }
66
67 ccl_device float3 equirectangular_range_to_direction(float u, float v, float4 range)
68 {
69   float phi = range.x * u + range.y;
70   float theta = range.z * v + range.w;
71   float sin_theta = sinf(theta);
72   return make_float3(sin_theta * cosf(phi), sin_theta * sinf(phi), cosf(theta));
73 }
74
75 ccl_device float2 direction_to_equirectangular(float3 dir)
76 {
77   return direction_to_equirectangular_range(dir, make_float4(-M_2PI_F, M_PI_F, -M_PI_F, M_PI_F));
78 }
79
80 ccl_device float3 equirectangular_to_direction(float u, float v)
81 {
82   return equirectangular_range_to_direction(u, v, make_float4(-M_2PI_F, M_PI_F, -M_PI_F, M_PI_F));
83 }
84
85 /* Fisheye <-> Cartesian direction */
86
87 ccl_device float2 direction_to_fisheye(float3 dir, float fov)
88 {
89   float r = atan2f(sqrtf(dir.y * dir.y + dir.z * dir.z), dir.x) / fov;
90   float phi = atan2f(dir.z, dir.y);
91
92   float u = r * cosf(phi) + 0.5f;
93   float v = r * sinf(phi) + 0.5f;
94
95   return make_float2(u, v);
96 }
97
98 ccl_device float3 fisheye_to_direction(float u, float v, float fov)
99 {
100   u = (u - 0.5f) * 2.0f;
101   v = (v - 0.5f) * 2.0f;
102
103   float r = sqrtf(u * u + v * v);
104
105   if (r > 1.0f)
106     return make_float3(0.0f, 0.0f, 0.0f);
107
108   float phi = safe_acosf((r != 0.0f) ? u / r : 0.0f);
109   float theta = r * fov * 0.5f;
110
111   if (v < 0.0f)
112     phi = -phi;
113
114   return make_float3(cosf(theta), -cosf(phi) * sinf(theta), sinf(phi) * sinf(theta));
115 }
116
117 ccl_device float2 direction_to_fisheye_equisolid(float3 dir, float lens, float width, float height)
118 {
119   float theta = safe_acosf(dir.x);
120   float r = 2.0f * lens * sinf(theta * 0.5f);
121   float phi = atan2f(dir.z, dir.y);
122
123   float u = r * cosf(phi) / width + 0.5f;
124   float v = r * sinf(phi) / height + 0.5f;
125
126   return make_float2(u, v);
127 }
128
129 ccl_device_inline float3
130 fisheye_equisolid_to_direction(float u, float v, float lens, float fov, float width, float height)
131 {
132   u = (u - 0.5f) * width;
133   v = (v - 0.5f) * height;
134
135   float rmax = 2.0f * lens * sinf(fov * 0.25f);
136   float r = sqrtf(u * u + v * v);
137
138   if (r > rmax)
139     return make_float3(0.0f, 0.0f, 0.0f);
140
141   float phi = safe_acosf((r != 0.0f) ? u / r : 0.0f);
142   float theta = 2.0f * asinf(r / (2.0f * lens));
143
144   if (v < 0.0f)
145     phi = -phi;
146
147   return make_float3(cosf(theta), -cosf(phi) * sinf(theta), sinf(phi) * sinf(theta));
148 }
149
150 /* Mirror Ball <-> Cartesion direction */
151
152 ccl_device float3 mirrorball_to_direction(float u, float v)
153 {
154   /* point on sphere */
155   float3 dir;
156
157   dir.x = 2.0f * u - 1.0f;
158   dir.z = 2.0f * v - 1.0f;
159
160   if (dir.x * dir.x + dir.z * dir.z > 1.0f)
161     return make_float3(0.0f, 0.0f, 0.0f);
162
163   dir.y = -sqrtf(max(1.0f - dir.x * dir.x - dir.z * dir.z, 0.0f));
164
165   /* reflection */
166   float3 I = make_float3(0.0f, -1.0f, 0.0f);
167
168   return 2.0f * dot(dir, I) * dir - I;
169 }
170
171 ccl_device float2 direction_to_mirrorball(float3 dir)
172 {
173   /* inverse of mirrorball_to_direction */
174   dir.y -= 1.0f;
175
176   float div = 2.0f * sqrtf(max(-0.5f * dir.y, 0.0f));
177   if (div > 0.0f)
178     dir /= div;
179
180   float u = 0.5f * (dir.x + 1.0f);
181   float v = 0.5f * (dir.z + 1.0f);
182
183   return make_float2(u, v);
184 }
185
186 ccl_device_inline float3 panorama_to_direction(ccl_constant KernelCamera *cam, float u, float v)
187 {
188   switch (cam->panorama_type) {
189     case PANORAMA_EQUIRECTANGULAR:
190       return equirectangular_range_to_direction(u, v, cam->equirectangular_range);
191     case PANORAMA_MIRRORBALL:
192       return mirrorball_to_direction(u, v);
193     case PANORAMA_FISHEYE_EQUIDISTANT:
194       return fisheye_to_direction(u, v, cam->fisheye_fov);
195     case PANORAMA_FISHEYE_EQUISOLID:
196     default:
197       return fisheye_equisolid_to_direction(
198           u, v, cam->fisheye_lens, cam->fisheye_fov, cam->sensorwidth, cam->sensorheight);
199   }
200 }
201
202 ccl_device_inline float2 direction_to_panorama(ccl_constant KernelCamera *cam, float3 dir)
203 {
204   switch (cam->panorama_type) {
205     case PANORAMA_EQUIRECTANGULAR:
206       return direction_to_equirectangular_range(dir, cam->equirectangular_range);
207     case PANORAMA_MIRRORBALL:
208       return direction_to_mirrorball(dir);
209     case PANORAMA_FISHEYE_EQUIDISTANT:
210       return direction_to_fisheye(dir, cam->fisheye_fov);
211     case PANORAMA_FISHEYE_EQUISOLID:
212     default:
213       return direction_to_fisheye_equisolid(
214           dir, cam->fisheye_lens, cam->sensorwidth, cam->sensorheight);
215   }
216 }
217
218 ccl_device_inline void spherical_stereo_transform(ccl_constant KernelCamera *cam,
219                                                   float3 *P,
220                                                   float3 *D)
221 {
222   float interocular_offset = cam->interocular_offset;
223
224   /* Interocular offset of zero means either non stereo, or stereo without
225    * spherical stereo. */
226   kernel_assert(interocular_offset != 0.0f);
227
228   if (cam->pole_merge_angle_to > 0.0f) {
229     const float pole_merge_angle_from = cam->pole_merge_angle_from,
230                 pole_merge_angle_to = cam->pole_merge_angle_to;
231     float altitude = fabsf(safe_asinf((*D).z));
232     if (altitude > pole_merge_angle_to) {
233       interocular_offset = 0.0f;
234     }
235     else if (altitude > pole_merge_angle_from) {
236       float fac = (altitude - pole_merge_angle_from) /
237                   (pole_merge_angle_to - pole_merge_angle_from);
238       float fade = cosf(fac * M_PI_2_F);
239       interocular_offset *= fade;
240     }
241   }
242
243   float3 up = make_float3(0.0f, 0.0f, 1.0f);
244   float3 side = normalize(cross(*D, up));
245   float3 stereo_offset = side * interocular_offset;
246
247   *P += stereo_offset;
248
249   /* Convergence distance is FLT_MAX in the case of parallel convergence mode,
250    * no need to modify direction in this case either. */
251   const float convergence_distance = cam->convergence_distance;
252
253   if (convergence_distance != FLT_MAX) {
254     float3 screen_offset = convergence_distance * (*D);
255     *D = normalize(screen_offset - stereo_offset);
256   }
257 }
258
259 CCL_NAMESPACE_END
260
261 #endif /* __KERNEL_PROJECTION_CL__ */