tedious string copying changes
[blender.git] / source / blender / blenkernel / intern / constraint.c
1 /**
2  * $Id$
3  *
4  * ***** BEGIN GPL LICENSE BLOCK *****
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19  *
20  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
21  * All rights reserved.
22  *
23  * The Original Code is: all of this file.
24  *
25  * Contributor(s): 2007, Joshua Leung, major recode
26  *
27  * ***** END GPL LICENSE BLOCK *****
28  */
29
30 #include <stdio.h> 
31 #include <stddef.h>
32 #include <string.h>
33 #include <math.h>
34 #include <float.h>
35
36 #include "MEM_guardedalloc.h"
37
38 #include "BLI_blenlib.h"
39 #include "BLI_listbase.h"
40 #include "BLI_math.h"
41 #include "BLI_editVert.h"
42
43 #include "DNA_armature_types.h"
44 #include "DNA_constraint_types.h"
45 #include "DNA_modifier_types.h"
46 #include "DNA_object_types.h"
47 #include "DNA_action_types.h"
48 #include "DNA_curve_types.h"
49 #include "DNA_mesh_types.h"
50 #include "DNA_meshdata_types.h"
51 #include "DNA_lattice_types.h"
52 #include "DNA_scene_types.h"
53 #include "DNA_text_types.h"
54
55 #include "BKE_utildefines.h"
56 #include "BKE_action.h"
57 #include "BKE_anim.h" /* for the curve calculation part */
58 #include "BKE_armature.h"
59 #include "BKE_blender.h"
60 #include "BKE_constraint.h"
61 #include "BKE_displist.h"
62 #include "BKE_deform.h"
63 #include "BKE_DerivedMesh.h"    /* for geometry targets */
64 #include "BKE_cdderivedmesh.h" /* for geometry targets */
65 #include "BKE_object.h"
66 #include "BKE_ipo.h"
67 #include "BKE_global.h"
68 #include "BKE_library.h"
69 #include "BKE_idprop.h"
70 #include "BKE_shrinkwrap.h"
71 #include "BKE_mesh.h"
72
73 #ifdef WITH_PYTHON
74 #include "BPY_extern.h"
75 #endif
76
77 #ifndef M_PI
78 #define M_PI            3.14159265358979323846
79 #endif
80
81
82
83 /* ************************ Constraints - General Utilities *************************** */
84 /* These functions here don't act on any specific constraints, and are therefore should/will
85  * not require any of the special function-pointers afforded by the relevant constraint 
86  * type-info structs.
87  */
88
89 /* -------------- Naming -------------- */
90
91 /* Find the first available, non-duplicate name for a given constraint */
92 void unique_constraint_name (bConstraint *con, ListBase *list)
93 {
94         BLI_uniquename(list, con, "Const", '.', offsetof(bConstraint, name), sizeof(con->name));
95 }
96
97 /* ----------------- Evaluation Loop Preparation --------------- */
98
99 /* package an object/bone for use in constraint evaluation */
100 /* This function MEM_calloc's a bConstraintOb struct, that will need to be freed after evaluation */
101 bConstraintOb *constraints_make_evalob (Scene *scene, Object *ob, void *subdata, short datatype)
102 {
103         bConstraintOb *cob;
104         
105         /* create regardless of whether we have any data! */
106         cob= MEM_callocN(sizeof(bConstraintOb), "bConstraintOb");
107         
108         /* for system time, part of deglobalization, code nicer later with local time (ton) */
109         cob->scene= scene;
110         
111         /* based on type of available data */
112         switch (datatype) {
113                 case CONSTRAINT_OBTYPE_OBJECT:
114                 {
115                         /* disregard subdata... calloc should set other values right */
116                         if (ob) {
117                                 cob->ob = ob;
118                                 cob->type = datatype;
119                                 cob->rotOrder = EULER_ORDER_DEFAULT; // TODO: when objects have rotation order too, use that
120                                 copy_m4_m4(cob->matrix, ob->obmat);
121                         }
122                         else
123                                 unit_m4(cob->matrix);
124                         
125                         copy_m4_m4(cob->startmat, cob->matrix);
126                 }
127                         break;
128                 case CONSTRAINT_OBTYPE_BONE:
129                 {
130                         /* only set if we have valid bone, otherwise default */
131                         if (ob && subdata) {
132                                 cob->ob = ob;
133                                 cob->pchan = (bPoseChannel *)subdata;
134                                 cob->type = datatype;
135                                 
136                                 if (cob->pchan->rotmode > 0) {
137                                         /* should be some type of Euler order */
138                                         cob->rotOrder= cob->pchan->rotmode; 
139                                 }
140                                 else {
141                                         /* Quats, so eulers should just use default order */
142                                         cob->rotOrder= EULER_ORDER_DEFAULT;
143                                 }
144                                 
145                                 /* matrix in world-space */
146                                 mul_m4_m4m4(cob->matrix, cob->pchan->pose_mat, ob->obmat);
147                         }
148                         else
149                                 unit_m4(cob->matrix);
150                                 
151                         copy_m4_m4(cob->startmat, cob->matrix);
152                 }
153                         break;
154                         
155                 default: /* other types not yet handled */
156                         unit_m4(cob->matrix);
157                         unit_m4(cob->startmat);
158                         break;
159         }
160         
161         return cob;
162 }
163
164 /* cleanup after constraint evaluation */
165 void constraints_clear_evalob (bConstraintOb *cob)
166 {
167         float delta[4][4], imat[4][4];
168         
169         /* prevent crashes */
170         if (cob == NULL) 
171                 return;
172         
173         /* calculate delta of constraints evaluation */
174         invert_m4_m4(imat, cob->startmat);
175         mul_m4_m4m4(delta, imat, cob->matrix);
176         
177         /* copy matrices back to source */
178         switch (cob->type) {
179                 case CONSTRAINT_OBTYPE_OBJECT:
180                 {
181                         /* cob->ob might not exist! */
182                         if (cob->ob) {
183                                 /* copy new ob-matrix back to owner */
184                                 copy_m4_m4(cob->ob->obmat, cob->matrix);
185                                 
186                                 /* copy inverse of delta back to owner */
187                                 invert_m4_m4(cob->ob->constinv, delta);
188                         }
189                 }
190                         break;
191                 case CONSTRAINT_OBTYPE_BONE:
192                 {
193                         /* cob->ob or cob->pchan might not exist */
194                         if (cob->ob && cob->pchan) {
195                                 /* copy new pose-matrix back to owner */
196                                 mul_m4_m4m4(cob->pchan->pose_mat, cob->matrix, cob->ob->imat);
197                                 
198                                 /* copy inverse of delta back to owner */
199                                 invert_m4_m4(cob->pchan->constinv, delta);
200                         }
201                 }
202                         break;
203         }
204         
205         /* free tempolary struct */
206         MEM_freeN(cob);
207 }
208
209 /* -------------- Space-Conversion API -------------- */
210
211 /* This function is responsible for the correct transformations/conversions 
212  * of a matrix from one space to another for constraint evaluation.
213  * For now, this is only implemented for Objects and PoseChannels.
214  */
215 void constraint_mat_convertspace (Object *ob, bPoseChannel *pchan, float mat[][4], short from, short to)
216 {
217         float tempmat[4][4];
218         float diff_mat[4][4];
219         float imat[4][4];
220         
221         /* prevent crashes in these unlikely events  */
222         if (ob==NULL || mat==NULL) return;
223         /* optimise trick - check if need to do anything */
224         if (from == to) return;
225         
226         /* are we dealing with pose-channels or objects */
227         if (pchan) {
228                 /* pose channels */
229                 switch (from) {
230                         case CONSTRAINT_SPACE_WORLD: /* ---------- FROM WORLDSPACE ---------- */
231                         {
232                                 /* world to pose */
233                                 invert_m4_m4(imat, ob->obmat);
234                                 copy_m4_m4(tempmat, mat);
235                                 mul_m4_m4m4(mat, tempmat, imat);
236                                 
237                                 /* use pose-space as stepping stone for other spaces... */
238                                 if (ELEM(to, CONSTRAINT_SPACE_LOCAL, CONSTRAINT_SPACE_PARLOCAL)) {
239                                         /* call self with slightly different values */
240                                         constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
241                                 }
242                         }
243                                 break;
244                         case CONSTRAINT_SPACE_POSE:     /* ---------- FROM POSESPACE ---------- */
245                         {
246                                 /* pose to world */
247                                 if (to == CONSTRAINT_SPACE_WORLD) {
248                                         copy_m4_m4(tempmat, mat);
249                                         mul_m4_m4m4(mat, tempmat, ob->obmat);
250                                 }
251                                 /* pose to local */
252                                 else if (to == CONSTRAINT_SPACE_LOCAL) {
253                                         if (pchan->bone) {
254                                                 if (pchan->parent) {
255                                                         float offs_bone[4][4];
256                                                                 
257                                                         /* construct offs_bone the same way it is done in armature.c */
258                                                         copy_m4_m3(offs_bone, pchan->bone->bone_mat);
259                                                         copy_v3_v3(offs_bone[3], pchan->bone->head);
260                                                         offs_bone[3][1]+= pchan->bone->parent->length;
261                                                         
262                                                         if (pchan->bone->flag & BONE_HINGE) {
263                                                                 /* pose_mat = par_pose-space_location * chan_mat */
264                                                                 float tmat[4][4];
265                                                                 
266                                                                 /* the rotation of the parent restposition */
267                                                                 copy_m4_m4(tmat, pchan->bone->parent->arm_mat);
268                                                                 
269                                                                 /* the location of actual parent transform */
270                                                                 copy_v3_v3(tmat[3], offs_bone[3]);
271                                                                 offs_bone[3][0]= offs_bone[3][1]= offs_bone[3][2]= 0.0f;
272                                                                 mul_m4_v3(pchan->parent->pose_mat, tmat[3]);
273                                                                 
274                                                                 mul_m4_m4m4(diff_mat, offs_bone, tmat);
275                                                                 invert_m4_m4(imat, diff_mat);
276                                                         }
277                                                         else {
278                                                                 /* pose_mat = par_pose_mat * bone_mat * chan_mat */
279                                                                 mul_m4_m4m4(diff_mat, offs_bone, pchan->parent->pose_mat);
280                                                                 invert_m4_m4(imat, diff_mat);
281                                                         }
282                                                 }
283                                                 else {
284                                                         /* pose_mat = chan_mat * arm_mat */
285                                                         invert_m4_m4(imat, pchan->bone->arm_mat);
286                                                 }
287                                                 
288                                                 copy_m4_m4(tempmat, mat);
289                                                 mul_m4_m4m4(mat, tempmat, imat);
290                                         }
291                                 }
292                                 /* pose to local with parent */
293                                 else if (to == CONSTRAINT_SPACE_PARLOCAL) {
294                                         if (pchan->bone) {
295                                                 invert_m4_m4(imat, pchan->bone->arm_mat);
296                                                 copy_m4_m4(tempmat, mat);
297                                                 mul_m4_m4m4(mat, tempmat, imat);
298                                         }
299                                 }
300                         }
301                                 break;
302                         case CONSTRAINT_SPACE_LOCAL: /* ------------ FROM LOCALSPACE --------- */
303                         {
304                                 /* local to pose - do inverse procedure that was done for pose to local */
305                                 if (pchan->bone) {
306                                         /* we need the posespace_matrix = local_matrix + (parent_posespace_matrix + restpos) */                                         
307                                         if (pchan->parent) {
308                                                 float offs_bone[4][4];
309                                                 
310                                                 /* construct offs_bone the same way it is done in armature.c */
311                                                 copy_m4_m3(offs_bone, pchan->bone->bone_mat);
312                                                 copy_v3_v3(offs_bone[3], pchan->bone->head);
313                                                 offs_bone[3][1]+= pchan->bone->parent->length;
314                                                 
315                                                 if (pchan->bone->flag & BONE_HINGE) {
316                                                         /* pose_mat = par_pose-space_location * chan_mat */
317                                                         float tmat[4][4];
318                                                         
319                                                         /* the rotation of the parent restposition */
320                                                         copy_m4_m4(tmat, pchan->bone->parent->arm_mat);
321                                                         
322                                                         /* the location of actual parent transform */
323                                                         copy_v3_v3(tmat[3], offs_bone[3]);
324                                                         zero_v3(offs_bone[3]);
325                                                         mul_m4_v3(pchan->parent->pose_mat, tmat[3]);
326                                                         
327                                                         mul_m4_m4m4(diff_mat, offs_bone, tmat);
328                                                         copy_m4_m4(tempmat, mat);
329                                                         mul_m4_m4m4(mat, tempmat, diff_mat);
330                                                 }
331                                                 else {
332                                                         /* pose_mat = par_pose_mat * bone_mat * chan_mat */
333                                                         mul_m4_m4m4(diff_mat, offs_bone, pchan->parent->pose_mat);
334                                                         copy_m4_m4(tempmat, mat);
335                                                         mul_m4_m4m4(mat, tempmat, diff_mat);
336                                                 }
337                                         }
338                                         else {
339                                                 copy_m4_m4(diff_mat, pchan->bone->arm_mat);
340                                                 
341                                                 copy_m4_m4(tempmat, mat);
342                                                 mul_m4_m4m4(mat, tempmat, diff_mat);
343                                         }
344                                 }
345                                 
346                                 /* use pose-space as stepping stone for other spaces */
347                                 if (ELEM(to, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_PARLOCAL)) {
348                                         /* call self with slightly different values */
349                                         constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
350                                 }                               
351                         }
352                                 break;
353                         case CONSTRAINT_SPACE_PARLOCAL: /* -------------- FROM LOCAL WITH PARENT ---------- */
354                         {
355                                 /* local + parent to pose */
356                                 if (pchan->bone) {                                      
357                                         copy_m4_m4(diff_mat, pchan->bone->arm_mat);
358                                         copy_m4_m4(tempmat, mat);
359                                         mul_m4_m4m4(mat, diff_mat, tempmat);
360                                 }
361                                 
362                                 /* use pose-space as stepping stone for other spaces */
363                                 if (ELEM(to, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL)) {
364                                         /* call self with slightly different values */
365                                         constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
366                                 }
367                         }
368                                 break;
369                 }
370         }
371         else {
372                 /* objects */
373                 if (from==CONSTRAINT_SPACE_WORLD && to==CONSTRAINT_SPACE_LOCAL) {
374                         /* check if object has a parent - otherwise this won't work */
375                         if (ob->parent) {
376                                 /* 'subtract' parent's effects from owner */
377                                 mul_m4_m4m4(diff_mat, ob->parentinv, ob->parent->obmat);
378                                 invert_m4_m4(imat, diff_mat);
379                                 copy_m4_m4(tempmat, mat);
380                                 mul_m4_m4m4(mat, tempmat, imat);
381                         }
382                 }
383                 else if (from==CONSTRAINT_SPACE_LOCAL && to==CONSTRAINT_SPACE_WORLD) {
384                         /* check that object has a parent - otherwise this won't work */
385                         if (ob->parent) {
386                                 /* 'add' parent's effect back to owner */
387                                 copy_m4_m4(tempmat, mat);
388                                 mul_m4_m4m4(diff_mat, ob->parentinv, ob->parent->obmat);
389                                 mul_m4_m4m4(mat, tempmat, diff_mat);
390                         }
391                 }
392         }
393 }
394
395 /* ------------ General Target Matrix Tools ---------- */
396
397 /* function that sets the given matrix based on given vertex group in mesh */
398 static void contarget_get_mesh_mat (Scene *scene, Object *ob, char *substring, float mat[][4])
399 {
400         DerivedMesh *dm = NULL;
401         Mesh *me= ob->data;
402         EditMesh *em = BKE_mesh_get_editmesh(me);
403         float vec[3] = {0.0f, 0.0f, 0.0f};
404         float normal[3] = {0.0f, 0.0f, 0.0f}, plane[3];
405         float imat[3][3], tmat[3][3];
406         int dgroup;
407         short freeDM = 0;
408         
409         /* initialize target matrix using target matrix */
410         copy_m4_m4(mat, ob->obmat);
411         
412         /* get index of vertex group */
413         dgroup = defgroup_name_index(ob, substring);
414         if (dgroup < 0) return;
415         
416         /* get DerivedMesh */
417         if (em) {
418                 /* target is in editmode, so get a special derived mesh */
419                 dm = CDDM_from_editmesh(em, ob->data);
420                 freeDM= 1;
421         }
422         else {
423                 /* when not in EditMode, use the 'final' derived mesh 
424                  *      - check if the custom data masks for derivedFinal mean that we can just use that
425                  *        (this is more effficient + sufficient for most cases)
426                  */
427                 if (!(ob->lastDataMask & CD_MASK_MDEFORMVERT)) {
428                         dm = mesh_get_derived_final(scene, ob, CD_MASK_MDEFORMVERT);
429                         freeDM= 1;
430                 }
431                 else 
432                         dm = (DerivedMesh *)ob->derivedFinal;
433         }
434         
435         /* only continue if there's a valid DerivedMesh */
436         if (dm) {
437                 MDeformVert *dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
438                 int numVerts = dm->getNumVerts(dm);
439                 int i, j, count = 0;
440                 float co[3], nor[3];
441                 
442                 /* check that dvert is a valid pointers (just in case) */
443                 if (dvert) {
444                         /* get the average of all verts with that are in the vertex-group */
445                         for (i = 0; i < numVerts; i++) {        
446                                 for (j = 0; j < dvert[i].totweight; j++) {
447                                         /* does this vertex belong to nominated vertex group? */
448                                         if (dvert[i].dw[j].def_nr == dgroup) {
449                                                 dm->getVertCo(dm, i, co);
450                                                 dm->getVertNo(dm, i, nor);
451                                                 add_v3_v3(vec, co);
452                                                 add_v3_v3(normal, nor);
453                                                 count++;
454                                                 break;
455                                         }
456                                         
457                                 }
458                         }
459                         
460                         
461                         /* calculate averages of normal and coordinates */
462                         if (count > 0) {
463                                 mul_v3_fl(vec, 1.0f / count);
464                                 mul_v3_fl(normal, 1.0f / count);
465                         }
466                         
467                         
468                         /* derive the rotation from the average normal: 
469                          *              - code taken from transform_manipulator.c, 
470                          *                      calc_manipulator_stats, V3D_MANIP_NORMAL case
471                          */
472                         /*      we need the transpose of the inverse for a normal... */
473                         copy_m3_m4(imat, ob->obmat);
474                         
475                         invert_m3_m3(tmat, imat);
476                         transpose_m3(tmat);
477                         mul_m3_v3(tmat, normal);
478                         
479                         normalize_v3(normal);
480                         copy_v3_v3(plane, tmat[1]);
481                         
482                         copy_v3_v3(tmat[2], normal);
483                         cross_v3_v3v3(tmat[0], normal, plane);
484                         cross_v3_v3v3(tmat[1], tmat[2], tmat[0]);
485                         
486                         copy_m4_m3(mat, tmat);
487                         normalize_m4(mat);
488                         
489                         
490                         /* apply the average coordinate as the new location */
491                         mul_v3_m4v3(mat[3], ob->obmat, vec);
492                 }
493         }
494         
495         /* free temporary DerivedMesh created (in EditMode case) */
496         if (dm && freeDM)
497                 dm->release(dm);
498         if (em)
499                 BKE_mesh_end_editmesh(me, em);
500 }
501
502 /* function that sets the given matrix based on given vertex group in lattice */
503 static void contarget_get_lattice_mat (Object *ob, char *substring, float mat[][4])
504 {
505         Lattice *lt= (Lattice *)ob->data;
506         
507         DispList *dl = find_displist(&ob->disp, DL_VERTS);
508         float *co = dl?dl->verts:NULL;
509         BPoint *bp = lt->def;
510         
511         MDeformVert *dvert = lt->dvert;
512         int tot_verts= lt->pntsu*lt->pntsv*lt->pntsw;
513         float vec[3]= {0.0f, 0.0f, 0.0f}, tvec[3];
514         int dgroup=0, grouped=0;
515         int i, n;
516         
517         /* initialize target matrix using target matrix */
518         copy_m4_m4(mat, ob->obmat);
519         
520         /* get index of vertex group */
521         dgroup = defgroup_name_index(ob, substring);
522         if (dgroup < 0) return;
523         if (dvert == NULL) return;
524         
525         /* 1. Loop through control-points checking if in nominated vertex-group.
526          * 2. If it is, add it to vec to find the average point.
527          */
528         for (i=0; i < tot_verts; i++, dvert++) {
529                 for (n= 0; n < dvert->totweight; n++) {
530                         /* found match - vert is in vgroup */
531                         if (dvert->dw[n].def_nr == dgroup) {
532                                 /* copy coordinates of point to temporary vector, then add to find average */
533                                 if (co)
534                                         memcpy(tvec, co, 3*sizeof(float));
535                                 else
536                                         memcpy(tvec, bp->vec, 3*sizeof(float));
537                                         
538                                 add_v3_v3(vec, tvec);
539                                 grouped++;
540                                 
541                                 break;
542                         }
543                 }
544                 
545                 /* advance pointer to coordinate data */
546                 if (co) co+= 3;
547                 else bp++;
548         }
549         
550         /* find average location, then multiply by ob->obmat to find world-space location */
551         if (grouped)
552                 mul_v3_fl(vec, 1.0f / grouped);
553         mul_v3_m4v3(tvec, ob->obmat, vec);
554         
555         /* copy new location to matrix */
556         copy_v3_v3(mat[3], tvec);
557 }
558
559 /* generic function to get the appropriate matrix for most target cases */
560 /* The cases where the target can be object data have not been implemented */
561 static void constraint_target_to_mat4 (Scene *scene, Object *ob, char *substring, float mat[][4], short from, short to, float headtail)
562 {
563         /*      Case OBJECT */
564         if (!strlen(substring)) {
565                 copy_m4_m4(mat, ob->obmat);
566                 constraint_mat_convertspace(ob, NULL, mat, from, to);
567         }
568         /*      Case VERTEXGROUP */
569         /* Current method just takes the average location of all the points in the
570          * VertexGroup, and uses that as the location value of the targets. Where 
571          * possible, the orientation will also be calculated, by calculating an
572          * 'average' vertex normal, and deriving the rotaation from that.
573          *
574          * NOTE: EditMode is not currently supported, and will most likely remain that
575          *              way as constraints can only really affect things on object/bone level.
576          */
577         else if (ob->type == OB_MESH) {
578                 contarget_get_mesh_mat(scene, ob, substring, mat);
579                 constraint_mat_convertspace(ob, NULL, mat, from, to);
580         }
581         else if (ob->type == OB_LATTICE) {
582                 contarget_get_lattice_mat(ob, substring, mat);
583                 constraint_mat_convertspace(ob, NULL, mat, from, to);
584         }
585         /*      Case BONE */
586         else {
587                 bPoseChannel *pchan;
588                 
589                 pchan = get_pose_channel(ob->pose, substring);
590                 if (pchan) {
591                         /* Multiply the PoseSpace accumulation/final matrix for this
592                          * PoseChannel by the Armature Object's Matrix to get a worldspace
593                          * matrix.
594                          */
595                         if (headtail < 0.000001) {
596                                 /* skip length interpolation if set to head */
597                                 mul_m4_m4m4(mat, pchan->pose_mat, ob->obmat);
598                         }
599                         else {
600                                 float tempmat[4][4], loc[3];
601                                 
602                                 /* interpolate along length of bone */
603                                 interp_v3_v3v3(loc, pchan->pose_head, pchan->pose_tail, headtail);      
604                                 
605                                 /* use interpolated distance for subtarget */
606                                 copy_m4_m4(tempmat, pchan->pose_mat);   
607                                 copy_v3_v3(tempmat[3], loc);
608                                 
609                                 mul_m4_m4m4(mat, tempmat, ob->obmat);
610                         }
611                 } 
612                 else
613                         copy_m4_m4(mat, ob->obmat);
614                         
615                 /* convert matrix space as required */
616                 constraint_mat_convertspace(ob, pchan, mat, from, to);
617         }
618 }
619
620 /* ************************* Specific Constraints ***************************** */
621 /* Each constraint defines a set of functions, which will be called at the appropriate
622  * times. In addition to this, each constraint should have a type-info struct, where
623  * its functions are attached for use. 
624  */
625  
626 /* Template for type-info data:
627  *      - make a copy of this when creating new constraints, and just change the functions
628  *        pointed to as necessary
629  *      - although the naming of functions doesn't matter, it would help for code
630  *        readability, to follow the same naming convention as is presented here
631  *      - any functions that a constraint doesn't need to define, don't define
632  *        for such cases, just use NULL 
633  *      - these should be defined after all the functions have been defined, so that
634  *        forward-definitions/prototypes don't need to be used!
635  *      - keep this copy #if-def'd so that future constraints can get based off this
636  */
637 #if 0
638 static bConstraintTypeInfo CTI_CONSTRNAME = {
639         CONSTRAINT_TYPE_CONSTRNAME, /* type */
640         sizeof(bConstrNameConstraint), /* size */
641         "ConstrName", /* name */
642         "bConstrNameConstraint", /* struct name */
643         constrname_free, /* free data */
644         constrname_relink, /* relink data */
645         constrname_id_looper, /* id looper */
646         constrname_copy, /* copy data */
647         constrname_new_data, /* new data */
648         constrname_get_tars, /* get constraint targets */
649         constrname_flush_tars, /* flush constraint targets */
650         constrname_get_tarmat, /* get target matrix */
651         constrname_evaluate /* evaluate */
652 };
653 #endif
654
655 /* This function should be used for the get_target_matrix member of all 
656  * constraints that are not picky about what happens to their target matrix.
657  */
658 static void default_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
659 {
660         if (VALID_CONS_TARGET(ct))
661                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
662         else if (ct)
663                 unit_m4(ct->matrix);
664 }
665
666 /* This following macro should be used for all standard single-target *_get_tars functions 
667  * to save typing and reduce maintainance woes.
668  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
669  *  really just to help this code easier to read)
670  */
671 // TODO: cope with getting rotation order...
672 #define SINGLETARGET_GET_TARS(con, datatar, datasubtarget, ct, list) \
673         { \
674                 ct= MEM_callocN(sizeof(bConstraintTarget), "tempConstraintTarget"); \
675                  \
676                 ct->tar= datatar; \
677                 BLI_strncpy(ct->subtarget, datasubtarget, sizeof(ct->subtarget)); \
678                 ct->space= con->tarspace; \
679                 ct->flag= CONSTRAINT_TAR_TEMP; \
680                  \
681                 if (ct->tar) { \
682                         if ((ct->tar->type==OB_ARMATURE) && (ct->subtarget[0])) { \
683                                 bPoseChannel *pchan= get_pose_channel(ct->tar->pose, ct->subtarget); \
684                                 ct->type = CONSTRAINT_OBTYPE_BONE; \
685                                 ct->rotOrder= (pchan) ? (pchan->rotmode) : EULER_ORDER_DEFAULT; \
686                         }\
687                         else if (ELEM(ct->tar->type, OB_MESH, OB_LATTICE) && (ct->subtarget[0])) { \
688                                 ct->type = CONSTRAINT_OBTYPE_VERT; \
689                                 ct->rotOrder = EULER_ORDER_DEFAULT; \
690                         } \
691                         else {\
692                                 ct->type = CONSTRAINT_OBTYPE_OBJECT; \
693                                 ct->rotOrder= ct->tar->rotmode; \
694                         } \
695                 } \
696                  \
697                 BLI_addtail(list, ct); \
698         }
699         
700 /* This following macro should be used for all standard single-target *_get_tars functions 
701  * to save typing and reduce maintainance woes. It does not do the subtarget related operations
702  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
703  *  really just to help this code easier to read)
704  */
705 // TODO: cope with getting rotation order...
706 #define SINGLETARGETNS_GET_TARS(con, datatar, ct, list) \
707         { \
708                 ct= MEM_callocN(sizeof(bConstraintTarget), "tempConstraintTarget"); \
709                  \
710                 ct->tar= datatar; \
711                 ct->space= con->tarspace; \
712                 ct->flag= CONSTRAINT_TAR_TEMP; \
713                  \
714                 if (ct->tar) ct->type = CONSTRAINT_OBTYPE_OBJECT; \
715                  \
716                 BLI_addtail(list, ct); \
717         }
718
719 /* This following macro should be used for all standard single-target *_flush_tars functions
720  * to save typing and reduce maintainance woes.
721  * Note: the pointer to ct will be changed to point to the next in the list (as it gets removed)
722  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
723  *  really just to help this code easier to read)
724  */
725 #define SINGLETARGET_FLUSH_TARS(con, datatar, datasubtarget, ct, list, nocopy) \
726         { \
727                 if (ct) { \
728                         bConstraintTarget *ctn = ct->next; \
729                         if (nocopy == 0) { \
730                                 datatar= ct->tar; \
731                                 strcpy(datasubtarget, ct->subtarget); \
732                                 con->tarspace= (char)ct->space; \
733                         } \
734                          \
735                         BLI_freelinkN(list, ct); \
736                         ct= ctn; \
737                 } \
738         }
739         
740 /* This following macro should be used for all standard single-target *_flush_tars functions
741  * to save typing and reduce maintainance woes. It does not do the subtarget related operations.
742  * Note: the pointer to ct will be changed to point to the next in the list (as it gets removed)
743  * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
744  *  really just to help this code easier to read)
745  */
746 #define SINGLETARGETNS_FLUSH_TARS(con, datatar, ct, list, nocopy) \
747         { \
748                 if (ct) { \
749                         bConstraintTarget *ctn = ct->next; \
750                         if (nocopy == 0) { \
751                                 datatar= ct->tar; \
752                                 con->tarspace= (char)ct->space; \
753                         } \
754                          \
755                         BLI_freelinkN(list, ct); \
756                         ct= ctn; \
757                 } \
758         }
759  
760 /* --------- ChildOf Constraint ------------ */
761
762 static void childof_new_data (void *cdata)
763 {
764         bChildOfConstraint *data= (bChildOfConstraint *)cdata;
765         
766         data->flag = (CHILDOF_LOCX | CHILDOF_LOCY | CHILDOF_LOCZ |
767                                         CHILDOF_ROTX |CHILDOF_ROTY | CHILDOF_ROTZ |
768                                         CHILDOF_SIZEX | CHILDOF_SIZEY | CHILDOF_SIZEZ);
769         unit_m4(data->invmat);
770 }
771
772 static void childof_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
773 {
774         bChildOfConstraint *data= con->data;
775         
776         /* target only */
777         func(con, (ID**)&data->tar, userdata);
778 }
779
780 static int childof_get_tars (bConstraint *con, ListBase *list)
781 {
782         if (con && list) {
783                 bChildOfConstraint *data= con->data;
784                 bConstraintTarget *ct;
785                 
786                 /* standard target-getting macro for single-target constraints */
787                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
788                 
789                 return 1;
790         }
791         
792         return 0;
793 }
794
795 static void childof_flush_tars (bConstraint *con, ListBase *list, short nocopy)
796 {
797         if (con && list) {
798                 bChildOfConstraint *data= con->data;
799                 bConstraintTarget *ct= list->first;
800                 
801                 /* the following macro is used for all standard single-target constraints */
802                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
803         }
804 }
805
806 static void childof_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
807 {
808         bChildOfConstraint *data= con->data;
809         bConstraintTarget *ct= targets->first;
810         
811         /* only evaluate if there is a target */
812         if (VALID_CONS_TARGET(ct)) {
813                 float parmat[4][4], invmat[4][4], tempmat[4][4];
814                 float loc[3], eul[3], size[3];
815                 float loco[3], eulo[3], sizo[3];
816                 
817                 /* get offset (parent-inverse) matrix */
818                 copy_m4_m4(invmat, data->invmat);
819                 
820                 /* extract components of both matrices */
821                 copy_v3_v3(loc, ct->matrix[3]);
822                 mat4_to_eulO(eul, ct->rotOrder, ct->matrix);
823                 mat4_to_size(size, ct->matrix);
824                 
825                 copy_v3_v3(loco, invmat[3]);
826                 mat4_to_eulO(eulo, cob->rotOrder, invmat);
827                 mat4_to_size(sizo, invmat);
828                 
829                 /* disable channels not enabled */
830                 if (!(data->flag & CHILDOF_LOCX)) loc[0]= loco[0]= 0.0f;
831                 if (!(data->flag & CHILDOF_LOCY)) loc[1]= loco[1]= 0.0f;
832                 if (!(data->flag & CHILDOF_LOCZ)) loc[2]= loco[2]= 0.0f;
833                 if (!(data->flag & CHILDOF_ROTX)) eul[0]= eulo[0]= 0.0f;
834                 if (!(data->flag & CHILDOF_ROTY)) eul[1]= eulo[1]= 0.0f;
835                 if (!(data->flag & CHILDOF_ROTZ)) eul[2]= eulo[2]= 0.0f;
836                 if (!(data->flag & CHILDOF_SIZEX)) size[0]= sizo[0]= 1.0f;
837                 if (!(data->flag & CHILDOF_SIZEY)) size[1]= sizo[1]= 1.0f;
838                 if (!(data->flag & CHILDOF_SIZEZ)) size[2]= sizo[2]= 1.0f;
839                 
840                 /* make new target mat and offset mat */
841                 loc_eulO_size_to_mat4(ct->matrix, loc, eul, size, ct->rotOrder);
842                 loc_eulO_size_to_mat4(invmat, loco, eulo, sizo, cob->rotOrder);
843                 
844                 /* multiply target (parent matrix) by offset (parent inverse) to get 
845                  * the effect of the parent that will be exherted on the owner
846                  */
847                 mul_m4_m4m4(parmat, invmat, ct->matrix);
848                 
849                 /* now multiply the parent matrix by the owner matrix to get the 
850                  * the effect of this constraint (i.e.  owner is 'parented' to parent)
851                  */
852                 copy_m4_m4(tempmat, cob->matrix);
853                 mul_m4_m4m4(cob->matrix, tempmat, parmat);
854
855                 /* without this, changes to scale and rotation can change location
856                  * of a parentless bone or a disconnected bone. Even though its set
857                  * to zero above. */
858                 if (!(data->flag & CHILDOF_LOCX)) cob->matrix[3][0]= tempmat[3][0];
859                 if (!(data->flag & CHILDOF_LOCY)) cob->matrix[3][1]= tempmat[3][1];
860                 if (!(data->flag & CHILDOF_LOCZ)) cob->matrix[3][2]= tempmat[3][2];     
861         }
862 }
863
864 static bConstraintTypeInfo CTI_CHILDOF = {
865         CONSTRAINT_TYPE_CHILDOF, /* type */
866         sizeof(bChildOfConstraint), /* size */
867         "ChildOf", /* name */
868         "bChildOfConstraint", /* struct name */
869         NULL, /* free data */
870         NULL, /* relink data */
871         childof_id_looper, /* id looper */
872         NULL, /* copy data */
873         childof_new_data, /* new data */
874         childof_get_tars, /* get constraint targets */
875         childof_flush_tars, /* flush constraint targets */
876         default_get_tarmat, /* get a target matrix */
877         childof_evaluate /* evaluate */
878 };
879
880 /* -------- TrackTo Constraint ------- */
881
882 static void trackto_new_data (void *cdata)
883 {
884         bTrackToConstraint *data= (bTrackToConstraint *)cdata;
885         
886         data->reserved1 = TRACK_Y;
887         data->reserved2 = UP_Z;
888 }       
889
890 static void trackto_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
891 {
892         bTrackToConstraint *data= con->data;
893         
894         /* target only */
895         func(con, (ID**)&data->tar, userdata);
896 }
897
898 static int trackto_get_tars (bConstraint *con, ListBase *list)
899 {
900         if (con && list) {
901                 bTrackToConstraint *data= con->data;
902                 bConstraintTarget *ct;
903                 
904                 /* standard target-getting macro for single-target constraints */
905                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
906                 
907                 return 1;
908         }
909         
910         return 0;
911 }
912
913 static void trackto_flush_tars (bConstraint *con, ListBase *list, short nocopy)
914 {
915         if (con && list) {
916                 bTrackToConstraint *data= con->data;
917                 bConstraintTarget *ct= list->first;
918                 
919                 /* the following macro is used for all standard single-target constraints */
920                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
921         }
922 }
923
924
925 static int basis_cross (int n, int m)
926 {
927         switch (n-m) {
928                 case 1: 
929                 case -2:
930                         return 1;
931                         
932                 case -1: 
933                 case 2:
934                         return -1;
935                         
936                 default:
937                         return 0;
938         }
939 }
940
941 static void vectomat (float *vec, float *target_up, short axis, short upflag, short flags, float m[][3])
942 {
943         float n[3];
944         float u[3]; /* vector specifying the up axis */
945         float proj[3];
946         float right[3];
947         float neg = -1;
948         int right_index;
949
950         if (normalize_v3_v3(n, vec) == 0.0) { 
951                 n[0] = 0.0;
952                 n[1] = 0.0;
953                 n[2] = 1.0;
954         }
955         if (axis > 2) axis -= 3;
956         else negate_v3(n);
957
958         /* n specifies the transformation of the track axis */
959         if (flags & TARGET_Z_UP) { 
960                 /* target Z axis is the global up axis */
961                 copy_v3_v3(u, target_up);
962         }
963         else { 
964                 /* world Z axis is the global up axis */
965                 u[0] = 0;
966                 u[1] = 0;
967                 u[2] = 1;
968         }
969
970         /* project the up vector onto the plane specified by n */
971         project_v3_v3v3(proj, u, n); /* first u onto n... */
972         sub_v3_v3v3(proj, u, proj); /* then onto the plane */
973         /* proj specifies the transformation of the up axis */
974
975         if (normalize_v3(proj) == 0.0) { /* degenerate projection */
976                 proj[0] = 0.0;
977                 proj[1] = 1.0;
978                 proj[2] = 0.0;
979         }
980
981         /* Normalized cross product of n and proj specifies transformation of the right axis */
982         cross_v3_v3v3(right, proj, n);
983         normalize_v3(right);
984
985         if (axis != upflag) {
986                 right_index = 3 - axis - upflag;
987                 neg = (float)basis_cross(axis, upflag);
988                 
989                 /* account for up direction, track direction */
990                 m[right_index][0] = neg * right[0];
991                 m[right_index][1] = neg * right[1];
992                 m[right_index][2] = neg * right[2];
993                 
994                 copy_v3_v3(m[upflag], proj);
995                 
996                 copy_v3_v3(m[axis], n);
997         }
998         /* identity matrix - don't do anything if the two axes are the same */
999         else {
1000                 unit_m3(m);
1001         }
1002 }
1003
1004
1005 static void trackto_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1006 {
1007         bTrackToConstraint *data= con->data;
1008         bConstraintTarget *ct= targets->first;
1009         
1010         if (VALID_CONS_TARGET(ct)) {
1011                 float size[3], vec[3];
1012                 float totmat[3][3];
1013                 float tmat[4][4];
1014                 
1015                 /* Get size property, since ob->size is only the object's own relative size, not its global one */
1016                 mat4_to_size(size, cob->matrix);
1017                 
1018                 /* Clear the object's rotation */       
1019                 cob->matrix[0][0]=size[0];
1020                 cob->matrix[0][1]=0;
1021                 cob->matrix[0][2]=0;
1022                 cob->matrix[1][0]=0;
1023                 cob->matrix[1][1]=size[1];
1024                 cob->matrix[1][2]=0;
1025                 cob->matrix[2][0]=0;
1026                 cob->matrix[2][1]=0;
1027                 cob->matrix[2][2]=size[2];
1028                 
1029                 /* targetmat[2] instead of ownermat[2] is passed to vectomat
1030                  * for backwards compatability it seems... (Aligorith)
1031                  */
1032                 sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);
1033                 vectomat(vec, ct->matrix[2], 
1034                                 (short)data->reserved1, (short)data->reserved2, 
1035                                 data->flags, totmat);
1036                 
1037                 copy_m4_m4(tmat, cob->matrix);
1038                 mul_m4_m3m4(cob->matrix, totmat, tmat);
1039         }
1040 }
1041
1042 static bConstraintTypeInfo CTI_TRACKTO = {
1043         CONSTRAINT_TYPE_TRACKTO, /* type */
1044         sizeof(bTrackToConstraint), /* size */
1045         "TrackTo", /* name */
1046         "bTrackToConstraint", /* struct name */
1047         NULL, /* free data */
1048         NULL, /* relink data */
1049         trackto_id_looper, /* id looper */
1050         NULL, /* copy data */
1051         trackto_new_data, /* new data */
1052         trackto_get_tars, /* get constraint targets */
1053         trackto_flush_tars, /* flush constraint targets */
1054         default_get_tarmat, /* get target matrix */
1055         trackto_evaluate /* evaluate */
1056 };
1057
1058 /* --------- Inverse-Kinemetics --------- */
1059
1060 static void kinematic_new_data (void *cdata)
1061 {
1062         bKinematicConstraint *data= (bKinematicConstraint *)cdata;
1063         
1064         data->weight= (float)1.0;
1065         data->orientweight= (float)1.0;
1066         data->iterations = 500;
1067         data->dist= (float)1.0;
1068         data->flag= CONSTRAINT_IK_TIP|CONSTRAINT_IK_STRETCH|CONSTRAINT_IK_POS;
1069 }
1070
1071 static void kinematic_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1072 {
1073         bKinematicConstraint *data= con->data;
1074         
1075         /* chain target */
1076         func(con, (ID**)&data->tar, userdata);
1077         
1078         /* poletarget */
1079         func(con, (ID**)&data->poletar, userdata);
1080 }
1081
1082 static int kinematic_get_tars (bConstraint *con, ListBase *list)
1083 {
1084         if (con && list) {
1085                 bKinematicConstraint *data= con->data;
1086                 bConstraintTarget *ct;
1087                 
1088                 /* standard target-getting macro for single-target constraints is used twice here */
1089                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1090                 SINGLETARGET_GET_TARS(con, data->poletar, data->polesubtarget, ct, list)
1091                 
1092                 return 2;
1093         }
1094         
1095         return 0;
1096 }
1097
1098 static void kinematic_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1099 {
1100         if (con && list) {
1101                 bKinematicConstraint *data= con->data;
1102                 bConstraintTarget *ct= list->first;
1103                 
1104                 /* the following macro is used for all standard single-target constraints */
1105                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1106                 SINGLETARGET_FLUSH_TARS(con, data->poletar, data->polesubtarget, ct, list, nocopy)
1107         }
1108 }
1109
1110 static void kinematic_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
1111 {
1112         bKinematicConstraint *data= con->data;
1113         
1114         if (VALID_CONS_TARGET(ct)) 
1115                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
1116         else if (ct) {
1117                 if (data->flag & CONSTRAINT_IK_AUTO) {
1118                         Object *ob= cob->ob;
1119                         
1120                         if (ob == NULL) {
1121                                 unit_m4(ct->matrix);
1122                         }
1123                         else {
1124                                 float vec[3];
1125                                 /* move grabtarget into world space */
1126                                 mul_v3_m4v3(vec, ob->obmat, data->grabtarget);
1127                                 copy_m4_m4(ct->matrix, ob->obmat);
1128                                 copy_v3_v3(ct->matrix[3], vec);
1129                         }
1130                 }
1131                 else
1132                         unit_m4(ct->matrix);
1133         }
1134 }
1135
1136 static bConstraintTypeInfo CTI_KINEMATIC = {
1137         CONSTRAINT_TYPE_KINEMATIC, /* type */
1138         sizeof(bKinematicConstraint), /* size */
1139         "IK", /* name */
1140         "bKinematicConstraint", /* struct name */
1141         NULL, /* free data */
1142         NULL, /* relink data */
1143         kinematic_id_looper, /* id looper */
1144         NULL, /* copy data */
1145         kinematic_new_data, /* new data */
1146         kinematic_get_tars, /* get constraint targets */
1147         kinematic_flush_tars, /* flush constraint targets */
1148         kinematic_get_tarmat, /* get target matrix */
1149         NULL /* evaluate - solved as separate loop */
1150 };
1151
1152 /* -------- Follow-Path Constraint ---------- */
1153
1154 static void followpath_new_data (void *cdata)
1155 {
1156         bFollowPathConstraint *data= (bFollowPathConstraint *)cdata;
1157         
1158         data->trackflag = TRACK_Y;
1159         data->upflag = UP_Z;
1160         data->offset = 0;
1161         data->followflag = 0;
1162 }
1163
1164 static void followpath_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1165 {
1166         bFollowPathConstraint *data= con->data;
1167         
1168         /* target only */
1169         func(con, (ID**)&data->tar, userdata);
1170 }
1171
1172 static int followpath_get_tars (bConstraint *con, ListBase *list)
1173 {
1174         if (con && list) {
1175                 bFollowPathConstraint *data= con->data;
1176                 bConstraintTarget *ct;
1177                 
1178                 /* standard target-getting macro for single-target constraints without subtargets */
1179                 SINGLETARGETNS_GET_TARS(con, data->tar, ct, list)
1180                 
1181                 return 1;
1182         }
1183         
1184         return 0;
1185 }
1186
1187 static void followpath_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1188 {
1189         if (con && list) {
1190                 bFollowPathConstraint *data= con->data;
1191                 bConstraintTarget *ct= list->first;
1192                 
1193                 /* the following macro is used for all standard single-target constraints */
1194                 SINGLETARGETNS_FLUSH_TARS(con, data->tar, ct, list, nocopy)
1195         }
1196 }
1197
1198 static void followpath_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
1199 {
1200         bFollowPathConstraint *data= con->data;
1201         
1202         if (VALID_CONS_TARGET(ct)) {
1203                 Curve *cu= ct->tar->data;
1204                 float vec[4], dir[3], radius;
1205                 float totmat[4][4];
1206                 float curvetime;
1207                 
1208                 unit_m4(totmat);
1209                 unit_m4(ct->matrix);
1210                 
1211                 /* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
1212                  *              currently for paths to work it needs to go through the bevlist/displist system (ton) 
1213                  */
1214                 
1215                 /* only happens on reload file, but violates depsgraph still... fix! */
1216                 if (cu->path==NULL || cu->path->data==NULL)
1217                         makeDispListCurveTypes(cob->scene, ct->tar, 0);
1218                 
1219                 if (cu->path && cu->path->data) {
1220                         float quat[4];
1221                         if ((data->followflag & FOLLOWPATH_STATIC) == 0) {
1222                                 /* animated position along curve depending on time */
1223                                 if (cob->scene)
1224                                         curvetime= bsystem_time(cob->scene, ct->tar, cu->ctime, 0.0) - data->offset;
1225                                 else    
1226                                         curvetime= cu->ctime - data->offset;
1227                                 
1228                                 /* ctime is now a proper var setting of Curve which gets set by Animato like any other var that's animated,
1229                                  * but this will only work if it actually is animated... 
1230                                  *
1231                                  * we divide the curvetime calculated in the previous step by the length of the path, to get a time
1232                                  * factor, which then gets clamped to lie within 0.0 - 1.0 range
1233                                  */
1234                                 curvetime /= cu->pathlen;
1235                                 CLAMP(curvetime, 0.0, 1.0);
1236                         }
1237                         else {
1238                                 /* fixed position along curve */
1239                                 curvetime= data->offset_fac;
1240                         }
1241                         
1242                         if ( where_on_path(ct->tar, curvetime, vec, dir, (data->followflag & FOLLOWPATH_FOLLOW) ? quat : NULL, &radius, NULL) ) { /* quat_pt is quat or NULL*/
1243                                 if (data->followflag & FOLLOWPATH_FOLLOW) {
1244 #if 0
1245                                         float x1, q[4];
1246                                         vec_to_quat(quat, dir, (short)data->trackflag, (short)data->upflag);
1247                                         
1248                                         normalize_v3(dir);
1249                                         q[0]= (float)cos(0.5*vec[3]);
1250                                         x1= (float)sin(0.5*vec[3]);
1251                                         q[1]= -x1*dir[0];
1252                                         q[2]= -x1*dir[1];
1253                                         q[3]= -x1*dir[2];
1254                                         mul_qt_qtqt(quat, q, quat);
1255 #else
1256                                         quat_apply_track(quat, data->trackflag, data->upflag);
1257 #endif
1258
1259                                         quat_to_mat4(totmat, quat);
1260                                 }
1261
1262                                 if (data->followflag & FOLLOWPATH_RADIUS) {
1263                                         float tmat[4][4], rmat[4][4];
1264                                         scale_m4_fl(tmat, radius);
1265                                         mul_m4_m4m4(rmat, totmat, tmat);
1266                                         copy_m4_m4(totmat, rmat);
1267                                 }
1268                                 
1269                                 copy_v3_v3(totmat[3], vec);
1270                                 
1271                                 mul_serie_m4(ct->matrix, ct->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
1272                         }
1273                 }
1274         }
1275         else if (ct)
1276                 unit_m4(ct->matrix);
1277 }
1278
1279 static void followpath_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1280 {
1281         bConstraintTarget *ct= targets->first;
1282         
1283         /* only evaluate if there is a target */
1284         if (VALID_CONS_TARGET(ct)) {
1285                 float obmat[4][4];
1286                 float size[3];
1287                 bFollowPathConstraint *data= con->data;
1288                 
1289                 /* get Object transform (loc/rot/size) to determine transformation from path */
1290                 // TODO: this used to be local at one point, but is probably more useful as-is
1291                 copy_m4_m4(obmat, cob->matrix);
1292                 
1293                 /* get scaling of object before applying constraint */
1294                 mat4_to_size(size, cob->matrix);
1295                 
1296                 /* apply targetmat - containing location on path, and rotation */
1297                 mul_serie_m4(cob->matrix, ct->matrix, obmat, NULL, NULL, NULL, NULL, NULL, NULL);
1298                 
1299                 /* un-apply scaling caused by path */
1300                 if ((data->followflag & FOLLOWPATH_RADIUS)==0) { /* XXX - assume that scale correction means that radius will have some scale error in it - Campbell */
1301                         float obsize[3];
1302                         
1303                         mat4_to_size( obsize,cob->matrix);
1304                         if (obsize[0])
1305                                 mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
1306                         if (obsize[1])
1307                                 mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
1308                         if (obsize[2])
1309                                 mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
1310                 }
1311         }
1312 }
1313
1314 static bConstraintTypeInfo CTI_FOLLOWPATH = {
1315         CONSTRAINT_TYPE_FOLLOWPATH, /* type */
1316         sizeof(bFollowPathConstraint), /* size */
1317         "Follow Path", /* name */
1318         "bFollowPathConstraint", /* struct name */
1319         NULL, /* free data */
1320         NULL, /* relink data */
1321         followpath_id_looper, /* id looper */
1322         NULL, /* copy data */
1323         followpath_new_data, /* new data */
1324         followpath_get_tars, /* get constraint targets */
1325         followpath_flush_tars, /* flush constraint targets */
1326         followpath_get_tarmat, /* get target matrix */
1327         followpath_evaluate /* evaluate */
1328 };
1329
1330 /* --------- Limit Location --------- */
1331
1332
1333 static void loclimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
1334 {
1335         bLocLimitConstraint *data = con->data;
1336         
1337         if (data->flag & LIMIT_XMIN) {
1338                 if (cob->matrix[3][0] < data->xmin)
1339                         cob->matrix[3][0] = data->xmin;
1340         }
1341         if (data->flag & LIMIT_XMAX) {
1342                 if (cob->matrix[3][0] > data->xmax)
1343                         cob->matrix[3][0] = data->xmax;
1344         }
1345         if (data->flag & LIMIT_YMIN) {
1346                 if (cob->matrix[3][1] < data->ymin)
1347                         cob->matrix[3][1] = data->ymin;
1348         }
1349         if (data->flag & LIMIT_YMAX) {
1350                 if (cob->matrix[3][1] > data->ymax)
1351                         cob->matrix[3][1] = data->ymax;
1352         }
1353         if (data->flag & LIMIT_ZMIN) {
1354                 if (cob->matrix[3][2] < data->zmin) 
1355                         cob->matrix[3][2] = data->zmin;
1356         }
1357         if (data->flag & LIMIT_ZMAX) {
1358                 if (cob->matrix[3][2] > data->zmax)
1359                         cob->matrix[3][2] = data->zmax;
1360         }
1361 }
1362
1363 static bConstraintTypeInfo CTI_LOCLIMIT = {
1364         CONSTRAINT_TYPE_LOCLIMIT, /* type */
1365         sizeof(bLocLimitConstraint), /* size */
1366         "Limit Location", /* name */
1367         "bLocLimitConstraint", /* struct name */
1368         NULL, /* free data */
1369         NULL, /* relink data */
1370         NULL, /* id looper */
1371         NULL, /* copy data */
1372         NULL, /* new data */
1373         NULL, /* get constraint targets */
1374         NULL, /* flush constraint targets */
1375         NULL, /* get target matrix */
1376         loclimit_evaluate /* evaluate */
1377 };
1378
1379 /* -------- Limit Rotation --------- */
1380
1381 static void rotlimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
1382 {
1383         bRotLimitConstraint *data = con->data;
1384         float loc[3];
1385         float eul[3];
1386         float size[3];
1387         
1388         copy_v3_v3(loc, cob->matrix[3]);
1389         mat4_to_size(size, cob->matrix);
1390
1391         mat4_to_eulO(eul, cob->rotOrder, cob->matrix);
1392
1393         /* constraint data uses radians internally */
1394         
1395         /* limiting of euler values... */
1396         if (data->flag & LIMIT_XROT) {
1397                 if (eul[0] < data->xmin) 
1398                         eul[0] = data->xmin;
1399                         
1400                 if (eul[0] > data->xmax)
1401                         eul[0] = data->xmax;
1402         }
1403         if (data->flag & LIMIT_YROT) {
1404                 if (eul[1] < data->ymin)
1405                         eul[1] = data->ymin;
1406                         
1407                 if (eul[1] > data->ymax)
1408                         eul[1] = data->ymax;
1409         }
1410         if (data->flag & LIMIT_ZROT) {
1411                 if (eul[2] < data->zmin)
1412                         eul[2] = data->zmin;
1413                         
1414                 if (eul[2] > data->zmax)
1415                         eul[2] = data->zmax;
1416         }
1417                 
1418         loc_eulO_size_to_mat4(cob->matrix, loc, eul, size, cob->rotOrder);
1419 }
1420
1421 static bConstraintTypeInfo CTI_ROTLIMIT = {
1422         CONSTRAINT_TYPE_ROTLIMIT, /* type */
1423         sizeof(bRotLimitConstraint), /* size */
1424         "Limit Rotation", /* name */
1425         "bRotLimitConstraint", /* struct name */
1426         NULL, /* free data */
1427         NULL, /* relink data */
1428         NULL, /* id looper */
1429         NULL, /* copy data */
1430         NULL, /* new data */
1431         NULL, /* get constraint targets */
1432         NULL, /* flush constraint targets */
1433         NULL, /* get target matrix */
1434         rotlimit_evaluate /* evaluate */
1435 };
1436
1437 /* --------- Limit Scaling --------- */
1438
1439
1440 static void sizelimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
1441 {
1442         bSizeLimitConstraint *data = con->data;
1443         float obsize[3], size[3];
1444         
1445         mat4_to_size( size,cob->matrix);
1446         mat4_to_size( obsize,cob->matrix);
1447         
1448         if (data->flag & LIMIT_XMIN) {
1449                 if (size[0] < data->xmin) 
1450                         size[0] = data->xmin;   
1451         }
1452         if (data->flag & LIMIT_XMAX) {
1453                 if (size[0] > data->xmax) 
1454                         size[0] = data->xmax;
1455         }
1456         if (data->flag & LIMIT_YMIN) {
1457                 if (size[1] < data->ymin) 
1458                         size[1] = data->ymin;   
1459         }
1460         if (data->flag & LIMIT_YMAX) {
1461                 if (size[1] > data->ymax) 
1462                         size[1] = data->ymax;
1463         }
1464         if (data->flag & LIMIT_ZMIN) {
1465                 if (size[2] < data->zmin) 
1466                         size[2] = data->zmin;   
1467         }
1468         if (data->flag & LIMIT_ZMAX) {
1469                 if (size[2] > data->zmax) 
1470                         size[2] = data->zmax;
1471         }
1472         
1473         if (obsize[0]) 
1474                 mul_v3_fl(cob->matrix[0], size[0]/obsize[0]);
1475         if (obsize[1]) 
1476                 mul_v3_fl(cob->matrix[1], size[1]/obsize[1]);
1477         if (obsize[2]) 
1478                 mul_v3_fl(cob->matrix[2], size[2]/obsize[2]);
1479 }
1480
1481 static bConstraintTypeInfo CTI_SIZELIMIT = {
1482         CONSTRAINT_TYPE_SIZELIMIT, /* type */
1483         sizeof(bSizeLimitConstraint), /* size */
1484         "Limit Scaling", /* name */
1485         "bSizeLimitConstraint", /* struct name */
1486         NULL, /* free data */
1487         NULL, /* relink data */
1488         NULL, /* id looper */
1489         NULL, /* copy data */
1490         NULL, /* new data */
1491         NULL, /* get constraint targets */
1492         NULL, /* flush constraint targets */
1493         NULL, /* get target matrix */
1494         sizelimit_evaluate /* evaluate */
1495 };
1496
1497 /* ----------- Copy Location ------------- */
1498
1499 static void loclike_new_data (void *cdata)
1500 {
1501         bLocateLikeConstraint *data= (bLocateLikeConstraint *)cdata;
1502         
1503         data->flag = LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z;
1504 }
1505
1506 static void loclike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1507 {
1508         bLocateLikeConstraint *data= con->data;
1509         
1510         /* target only */
1511         func(con, (ID**)&data->tar, userdata);
1512 }
1513
1514 static int loclike_get_tars (bConstraint *con, ListBase *list)
1515 {
1516         if (con && list) {
1517                 bLocateLikeConstraint *data= con->data;
1518                 bConstraintTarget *ct;
1519                 
1520                 /* standard target-getting macro for single-target constraints */
1521                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1522                 
1523                 return 1;
1524         }
1525         
1526         return 0;
1527 }
1528
1529 static void loclike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1530 {
1531         if (con && list) {
1532                 bLocateLikeConstraint *data= con->data;
1533                 bConstraintTarget *ct= list->first;
1534                 
1535                 /* the following macro is used for all standard single-target constraints */
1536                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1537         }
1538 }
1539
1540 static void loclike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1541 {
1542         bLocateLikeConstraint *data= con->data;
1543         bConstraintTarget *ct= targets->first;
1544         
1545         if (VALID_CONS_TARGET(ct)) {
1546                 float offset[3] = {0.0f, 0.0f, 0.0f};
1547                 
1548                 if (data->flag & LOCLIKE_OFFSET)
1549                         copy_v3_v3(offset, cob->matrix[3]);
1550                         
1551                 if (data->flag & LOCLIKE_X) {
1552                         cob->matrix[3][0] = ct->matrix[3][0];
1553                         
1554                         if (data->flag & LOCLIKE_X_INVERT) cob->matrix[3][0] *= -1;
1555                         cob->matrix[3][0] += offset[0];
1556                 }
1557                 if (data->flag & LOCLIKE_Y) {
1558                         cob->matrix[3][1] = ct->matrix[3][1];
1559                         
1560                         if (data->flag & LOCLIKE_Y_INVERT) cob->matrix[3][1] *= -1;
1561                         cob->matrix[3][1] += offset[1];
1562                 }
1563                 if (data->flag & LOCLIKE_Z) {
1564                         cob->matrix[3][2] = ct->matrix[3][2];
1565                         
1566                         if (data->flag & LOCLIKE_Z_INVERT) cob->matrix[3][2] *= -1;
1567                         cob->matrix[3][2] += offset[2];
1568                 }
1569         }
1570 }
1571
1572 static bConstraintTypeInfo CTI_LOCLIKE = {
1573         CONSTRAINT_TYPE_LOCLIKE, /* type */
1574         sizeof(bLocateLikeConstraint), /* size */
1575         "Copy Location", /* name */
1576         "bLocateLikeConstraint", /* struct name */
1577         NULL, /* free data */
1578         NULL, /* relink data */
1579         loclike_id_looper, /* id looper */
1580         NULL, /* copy data */
1581         loclike_new_data, /* new data */
1582         loclike_get_tars, /* get constraint targets */
1583         loclike_flush_tars, /* flush constraint targets */
1584         default_get_tarmat, /* get target matrix */
1585         loclike_evaluate /* evaluate */
1586 };
1587
1588 /* ----------- Copy Rotation ------------- */
1589
1590 static void rotlike_new_data (void *cdata)
1591 {
1592         bRotateLikeConstraint *data= (bRotateLikeConstraint *)cdata;
1593         
1594         data->flag = ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z;
1595 }
1596
1597 static void rotlike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1598 {
1599         bChildOfConstraint *data= con->data;
1600         
1601         /* target only */
1602         func(con, (ID**)&data->tar, userdata);
1603 }
1604
1605 static int rotlike_get_tars (bConstraint *con, ListBase *list)
1606 {
1607         if (con && list) {
1608                 bRotateLikeConstraint *data= con->data;
1609                 bConstraintTarget *ct;
1610                 
1611                 /* standard target-getting macro for single-target constraints */
1612                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1613                 
1614                 return 1;
1615         }
1616         
1617         return 0;
1618 }
1619
1620 static void rotlike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1621 {
1622         if (con && list) {
1623                 bRotateLikeConstraint *data= con->data;
1624                 bConstraintTarget *ct= list->first;
1625                 
1626                 /* the following macro is used for all standard single-target constraints */
1627                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1628         }
1629 }
1630
1631 static void rotlike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1632 {
1633         bRotateLikeConstraint *data= con->data;
1634         bConstraintTarget *ct= targets->first;
1635         
1636         if (VALID_CONS_TARGET(ct)) {
1637                 float   loc[3];
1638                 float   eul[3], obeul[3];
1639                 float   size[3];
1640                 
1641                 copy_v3_v3(loc, cob->matrix[3]);
1642                 mat4_to_size(size, cob->matrix);
1643                 
1644                 /* to allow compatible rotations, must get both rotations in the order of the owner... */
1645                 mat4_to_eulO(obeul, cob->rotOrder, cob->matrix);
1646                 /* we must get compatible eulers from the beginning because some of them can be modified below (see bug #21875) */
1647                 mat4_to_compatible_eulO(eul, obeul, cob->rotOrder, ct->matrix);
1648                 
1649                 if ((data->flag & ROTLIKE_X)==0)
1650                         eul[0] = obeul[0];
1651                 else {
1652                         if (data->flag & ROTLIKE_OFFSET)
1653                                 rotate_eulO(eul, cob->rotOrder, 'X', obeul[0]);
1654                         
1655                         if (data->flag & ROTLIKE_X_INVERT)
1656                                 eul[0] *= -1;
1657                 }
1658                 
1659                 if ((data->flag & ROTLIKE_Y)==0)
1660                         eul[1] = obeul[1];
1661                 else {
1662                         if (data->flag & ROTLIKE_OFFSET)
1663                                 rotate_eulO(eul, cob->rotOrder, 'Y', obeul[1]);
1664                         
1665                         if (data->flag & ROTLIKE_Y_INVERT)
1666                                 eul[1] *= -1;
1667                 }
1668                 
1669                 if ((data->flag & ROTLIKE_Z)==0)
1670                         eul[2] = obeul[2];
1671                 else {
1672                         if (data->flag & ROTLIKE_OFFSET)
1673                                 rotate_eulO(eul, cob->rotOrder, 'Z', obeul[2]);
1674                         
1675                         if (data->flag & ROTLIKE_Z_INVERT)
1676                                 eul[2] *= -1;
1677                 }
1678                 
1679                 /* good to make eulers compatible again, since we don't know how much they were changed above */
1680                 compatible_eul(eul, obeul);
1681                 loc_eulO_size_to_mat4(cob->matrix, loc, eul, size, cob->rotOrder);
1682         }
1683 }
1684
1685 static bConstraintTypeInfo CTI_ROTLIKE = {
1686         CONSTRAINT_TYPE_ROTLIKE, /* type */
1687         sizeof(bRotateLikeConstraint), /* size */
1688         "Copy Rotation", /* name */
1689         "bRotateLikeConstraint", /* struct name */
1690         NULL, /* free data */
1691         NULL, /* relink data */
1692         rotlike_id_looper, /* id looper */
1693         NULL, /* copy data */
1694         rotlike_new_data, /* new data */
1695         rotlike_get_tars, /* get constraint targets */
1696         rotlike_flush_tars, /* flush constraint targets */
1697         default_get_tarmat, /* get target matrix */
1698         rotlike_evaluate /* evaluate */
1699 };
1700
1701 /* ---------- Copy Scaling ---------- */
1702
1703 static void sizelike_new_data (void *cdata)
1704 {
1705         bSizeLikeConstraint *data= (bSizeLikeConstraint *)cdata;
1706         
1707         data->flag = SIZELIKE_X|SIZELIKE_Y|SIZELIKE_Z;
1708 }
1709
1710 static void sizelike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1711 {
1712         bSizeLikeConstraint *data= con->data;
1713         
1714         /* target only */
1715         func(con, (ID**)&data->tar, userdata);
1716 }
1717
1718 static int sizelike_get_tars (bConstraint *con, ListBase *list)
1719 {
1720         if (con && list) {
1721                 bSizeLikeConstraint *data= con->data;
1722                 bConstraintTarget *ct;
1723                 
1724                 /* standard target-getting macro for single-target constraints */
1725                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1726                 
1727                 return 1;
1728         }
1729         
1730         return 0;
1731 }
1732
1733 static void sizelike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1734 {
1735         if (con && list) {
1736                 bSizeLikeConstraint *data= con->data;
1737                 bConstraintTarget *ct= list->first;
1738                 
1739                 /* the following macro is used for all standard single-target constraints */
1740                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1741         }
1742 }
1743
1744 static void sizelike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
1745 {
1746         bSizeLikeConstraint *data= con->data;
1747         bConstraintTarget *ct= targets->first;
1748         
1749         if (VALID_CONS_TARGET(ct)) {
1750                 float obsize[3], size[3];
1751                 
1752                 mat4_to_size(size, ct->matrix);
1753                 mat4_to_size(obsize, cob->matrix);
1754                 
1755                 if ((data->flag & SIZELIKE_X) && (obsize[0] != 0)) {
1756                         if (data->flag & SIZELIKE_OFFSET) {
1757                                 size[0] += (obsize[0] - 1.0f);
1758                                 mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
1759                         }
1760                         else
1761                                 mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
1762                 }
1763                 if ((data->flag & SIZELIKE_Y) && (obsize[1] != 0)) {
1764                         if (data->flag & SIZELIKE_OFFSET) {
1765                                 size[1] += (obsize[1] - 1.0f);
1766                                 mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
1767                         }
1768                         else
1769                                 mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
1770                 }
1771                 if ((data->flag & SIZELIKE_Z) && (obsize[2] != 0)) {
1772                         if (data->flag & SIZELIKE_OFFSET) {
1773                                 size[2] += (obsize[2] - 1.0f);
1774                                 mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
1775                         }
1776                         else
1777                                 mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
1778                 }
1779         }
1780 }
1781
1782 static bConstraintTypeInfo CTI_SIZELIKE = {
1783         CONSTRAINT_TYPE_SIZELIKE, /* type */
1784         sizeof(bSizeLikeConstraint), /* size */
1785         "Copy Scale", /* name */
1786         "bSizeLikeConstraint", /* struct name */
1787         NULL, /* free data */
1788         NULL, /* relink data */
1789         sizelike_id_looper, /* id looper */
1790         NULL, /* copy data */
1791         sizelike_new_data, /* new data */
1792         sizelike_get_tars, /* get constraint targets */
1793         sizelike_flush_tars, /* flush constraint targets */
1794         default_get_tarmat, /* get target matrix */
1795         sizelike_evaluate /* evaluate */
1796 };
1797
1798 /* ----------- Copy Transforms ------------- */
1799
1800 static void translike_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1801 {
1802         bTransLikeConstraint *data= con->data;
1803         
1804         /* target only */
1805         func(con, (ID**)&data->tar, userdata);
1806 }
1807
1808 static int translike_get_tars (bConstraint *con, ListBase *list)
1809 {
1810         if (con && list) {
1811                 bTransLikeConstraint *data= con->data;
1812                 bConstraintTarget *ct;
1813                 
1814                 /* standard target-getting macro for single-target constraints */
1815                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
1816                 
1817                 return 1;
1818         }
1819         
1820         return 0;
1821 }
1822
1823 static void translike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
1824 {
1825         if (con && list) {
1826                 bTransLikeConstraint *data= con->data;
1827                 bConstraintTarget *ct= list->first;
1828                 
1829                 /* the following macro is used for all standard single-target constraints */
1830                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
1831         }
1832 }
1833
1834 static void translike_evaluate (bConstraint *UNUSED(con), bConstraintOb *cob, ListBase *targets)
1835 {
1836         bConstraintTarget *ct= targets->first;
1837         
1838         if (VALID_CONS_TARGET(ct)) {
1839                 /* just copy the entire transform matrix of the target */
1840                 copy_m4_m4(cob->matrix, ct->matrix);
1841         }
1842 }
1843
1844 static bConstraintTypeInfo CTI_TRANSLIKE = {
1845         CONSTRAINT_TYPE_TRANSLIKE, /* type */
1846         sizeof(bTransLikeConstraint), /* size */
1847         "Copy Transforms", /* name */
1848         "bTransLikeConstraint", /* struct name */
1849         NULL, /* free data */
1850         NULL, /* relink data */
1851         translike_id_looper, /* id looper */
1852         NULL, /* copy data */
1853         NULL, /* new data */
1854         translike_get_tars, /* get constraint targets */
1855         translike_flush_tars, /* flush constraint targets */
1856         default_get_tarmat, /* get target matrix */
1857         translike_evaluate /* evaluate */
1858 };
1859
1860 /* ---------- Maintain Volume ---------- */
1861
1862 static void samevolume_new_data (void *cdata)
1863 {
1864         bSameVolumeConstraint *data= (bSameVolumeConstraint *)cdata;
1865
1866         data->flag = SAMEVOL_Y;
1867         data->volume = 1.0f;
1868 }
1869
1870 static void samevolume_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
1871 {
1872         bSameVolumeConstraint *data= con->data;
1873
1874         float volume = data->volume;
1875         float fac = 1.0f;
1876         float obsize[3];
1877
1878         mat4_to_size(obsize, cob->matrix);
1879         
1880         /* calculate normalising scale factor for non-essential values */
1881         if (obsize[data->flag] != 0) 
1882                 fac = sqrt(volume / obsize[data->flag]) / obsize[data->flag];
1883         
1884         /* apply scaling factor to the channels not being kept */
1885         switch (data->flag) {
1886                 case SAMEVOL_X:
1887                         mul_v3_fl(cob->matrix[1], fac);
1888                         mul_v3_fl(cob->matrix[2], fac);
1889                         break;
1890                 case SAMEVOL_Y:
1891                         mul_v3_fl(cob->matrix[0], fac);
1892                         mul_v3_fl(cob->matrix[2], fac);
1893                         break;
1894                 case SAMEVOL_Z:
1895                         mul_v3_fl(cob->matrix[0], fac);
1896                         mul_v3_fl(cob->matrix[1], fac);
1897                         break;
1898         }
1899 }
1900
1901 static bConstraintTypeInfo CTI_SAMEVOL = {
1902         CONSTRAINT_TYPE_SAMEVOL, /* type */
1903         sizeof(bSameVolumeConstraint), /* size */
1904         "Maintain Volume", /* name */
1905         "bSameVolumeConstraint", /* struct name */
1906         NULL, /* free data */
1907         NULL, /* relink data */
1908         NULL, /* id looper */
1909         NULL, /* copy data */
1910         samevolume_new_data, /* new data */
1911         NULL, /* get constraint targets */
1912         NULL, /* flush constraint targets */
1913         NULL, /* get target matrix */
1914         samevolume_evaluate /* evaluate */
1915 };
1916
1917 /* ----------- Python Constraint -------------- */
1918
1919 static void pycon_free (bConstraint *con)
1920 {
1921         bPythonConstraint *data= con->data;
1922         
1923         /* id-properties */
1924         IDP_FreeProperty(data->prop);
1925         MEM_freeN(data->prop);
1926         
1927         /* multiple targets */
1928         BLI_freelistN(&data->targets);
1929 }       
1930
1931 static void pycon_relink (bConstraint *con)
1932 {
1933         bPythonConstraint *data= con->data;
1934         
1935         ID_NEW(data->text);
1936 }
1937
1938 static void pycon_copy (bConstraint *con, bConstraint *srccon)
1939 {
1940         bPythonConstraint *pycon = (bPythonConstraint *)con->data;
1941         bPythonConstraint *opycon = (bPythonConstraint *)srccon->data;
1942         
1943         pycon->prop = IDP_CopyProperty(opycon->prop);
1944         BLI_duplicatelist(&pycon->targets, &opycon->targets);
1945 }
1946
1947 static void pycon_new_data (void *cdata)
1948 {
1949         bPythonConstraint *data= (bPythonConstraint *)cdata;
1950         
1951         /* everything should be set correctly by calloc, except for the prop->type constant.*/
1952         data->prop = MEM_callocN(sizeof(IDProperty), "PyConstraintProps");
1953         data->prop->type = IDP_GROUP;
1954 }
1955
1956 static int pycon_get_tars (bConstraint *con, ListBase *list)
1957 {
1958         if (con && list) {
1959                 bPythonConstraint *data= con->data;
1960                 
1961                 list->first = data->targets.first;
1962                 list->last = data->targets.last;
1963                 
1964                 return data->tarnum;
1965         }
1966         
1967         return 0;
1968 }
1969
1970 static void pycon_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
1971 {
1972         bPythonConstraint *data= con->data;
1973         bConstraintTarget *ct;
1974         
1975         /* targets */
1976         for (ct= data->targets.first; ct; ct= ct->next)
1977                 func(con, (ID**)&ct->tar, userdata);
1978                 
1979         /* script */
1980         func(con, (ID**)&data->text, userdata);
1981 }
1982
1983 /* Whether this approach is maintained remains to be seen (aligorith) */
1984 static void pycon_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
1985 {
1986 #ifdef WITH_PYTHON
1987         bPythonConstraint *data= con->data;
1988 #endif
1989
1990         if (VALID_CONS_TARGET(ct)) {
1991                 /* special exception for curves - depsgraph issues */
1992                 if (ct->tar->type == OB_CURVE) {
1993                         Curve *cu= ct->tar->data;
1994                         
1995                         /* this check is to make sure curve objects get updated on file load correctly.*/
1996                         if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
1997                                 makeDispListCurveTypes(cob->scene, ct->tar, 0);                         
1998                 }
1999                 
2000                 /* firstly calculate the matrix the normal way, then let the py-function override
2001                  * this matrix if it needs to do so
2002                  */
2003                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
2004                 
2005                 /* only execute target calculation if allowed */
2006 #ifdef WITH_PYTHON
2007                 if (G.f & G_SCRIPT_AUTOEXEC)
2008                         BPY_pyconstraint_target(data, ct);
2009 #endif
2010         }
2011         else if (ct)
2012                 unit_m4(ct->matrix);
2013 }
2014
2015 static void pycon_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2016 {
2017 #ifndef WITH_PYTHON
2018         (void)con; (void)cob; (void)targets; /* unused */
2019         return;
2020 #else
2021         bPythonConstraint *data= con->data;
2022         
2023         /* only evaluate in python if we're allowed to do so */
2024         if ((G.f & G_SCRIPT_AUTOEXEC)==0)  return;
2025         
2026 /* currently removed, until I this can be re-implemented for multiple targets */
2027 #if 0
2028         /* Firstly, run the 'driver' function which has direct access to the objects involved 
2029          * Technically, this is potentially dangerous as users may abuse this and cause dependency-problems,
2030          * but it also allows certain 'clever' rigging hacks to work.
2031          */
2032         BPY_pyconstraint_driver(data, cob, targets);
2033 #endif
2034         
2035         /* Now, run the actual 'constraint' function, which should only access the matrices */
2036         BPY_pyconstraint_eval(data, cob, targets);
2037 #endif /* WITH_PYTHON */
2038 }
2039
2040 static bConstraintTypeInfo CTI_PYTHON = {
2041         CONSTRAINT_TYPE_PYTHON, /* type */
2042         sizeof(bPythonConstraint), /* size */
2043         "Script", /* name */
2044         "bPythonConstraint", /* struct name */
2045         pycon_free, /* free data */
2046         pycon_relink, /* relink data */
2047         pycon_id_looper, /* id looper */
2048         pycon_copy, /* copy data */
2049         pycon_new_data, /* new data */
2050         pycon_get_tars, /* get constraint targets */
2051         NULL, /* flush constraint targets */
2052         pycon_get_tarmat, /* get target matrix */
2053         pycon_evaluate /* evaluate */
2054 };
2055
2056 /* -------- Action Constraint ----------- */
2057
2058 static void actcon_relink (bConstraint *con)
2059 {
2060         bActionConstraint *data= con->data;
2061         ID_NEW(data->act);
2062 }
2063
2064 static void actcon_new_data (void *cdata)
2065 {
2066         bActionConstraint *data= (bActionConstraint *)cdata;
2067         
2068         /* set type to 20 (Loc X), as 0 is Rot X for backwards compatability */
2069         data->type = 20;
2070 }
2071
2072 static void actcon_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2073 {
2074         bActionConstraint *data= con->data;
2075         
2076         /* target */
2077         func(con, (ID**)&data->tar, userdata);
2078         
2079         /* action */
2080         func(con, (ID**)&data->act, userdata);
2081 }
2082
2083 static int actcon_get_tars (bConstraint *con, ListBase *list)
2084 {
2085         if (con && list) {
2086                 bActionConstraint *data= con->data;
2087                 bConstraintTarget *ct;
2088                 
2089                 /* standard target-getting macro for single-target constraints */
2090                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2091                 
2092                 return 1;
2093         }
2094         
2095         return 0;
2096 }
2097
2098 static void actcon_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2099 {
2100         if (con && list) {
2101                 bActionConstraint *data= con->data;
2102                 bConstraintTarget *ct= list->first;
2103                 
2104                 /* the following macro is used for all standard single-target constraints */
2105                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2106         }
2107 }
2108
2109 static void actcon_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
2110 {
2111         extern void chan_calc_mat(bPoseChannel *chan);
2112         bActionConstraint *data = con->data;
2113         
2114         if (VALID_CONS_TARGET(ct)) {
2115                 float tempmat[4][4], vec[3];
2116                 float s, t;
2117                 short axis;
2118                 
2119                 /* initialise return matrix */
2120                 unit_m4(ct->matrix);
2121                 
2122                 /* get the transform matrix of the target */
2123                 constraint_target_to_mat4(cob->scene, ct->tar, ct->subtarget, tempmat, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
2124                 
2125                 /* determine where in transform range target is */
2126                 /* data->type is mapped as follows for backwards compatability:
2127                  *      00,01,02        - rotation (it used to be like this)
2128                  *      10,11,12        - scaling
2129                  *      20,21,22        - location
2130                  */
2131                 if (data->type < 10) {
2132                         /* extract rotation (is in whatever space target should be in) */
2133                         mat4_to_eul(vec, tempmat);
2134                         vec[0] *= (float)(180.0/M_PI);
2135                         vec[1] *= (float)(180.0/M_PI);
2136                         vec[2] *= (float)(180.0/M_PI);
2137                         axis= data->type;
2138                 }
2139                 else if (data->type < 20) {
2140                         /* extract scaling (is in whatever space target should be in) */
2141                         mat4_to_size(vec, tempmat);
2142                         axis= data->type - 10;
2143                 }
2144                 else {
2145                         /* extract location */
2146                         copy_v3_v3(vec, tempmat[3]);
2147                         axis= data->type - 20;
2148                 }
2149                 
2150                 /* Target defines the animation */
2151                 s = (vec[axis]-data->min) / (data->max-data->min);
2152                 CLAMP(s, 0, 1);
2153                 t = (s * (data->end-data->start)) + data->start;
2154                 
2155                 if (G.f & G_DEBUG)
2156                         printf("do Action Constraint %s - Ob %s Pchan %s \n", con->name, cob->ob->id.name+2, (cob->pchan)?cob->pchan->name:NULL);
2157                 
2158                 /* Get the appropriate information from the action */
2159                 if (cob->type == CONSTRAINT_OBTYPE_BONE) {
2160                         Object workob;
2161                         bPose *pose;
2162                         bPoseChannel *pchan, *tchan;
2163                         
2164                         /* make a temporary pose and evaluate using that */
2165                         pose = MEM_callocN(sizeof(bPose), "pose");
2166                         
2167                         /* make a copy of the bone of interest in the temp pose before evaluating action, so that it can get set 
2168                          *      - we need to manually copy over a few settings, including rotation order, otherwise this fails
2169                          */
2170                         pchan = cob->pchan;
2171                         
2172                         tchan= verify_pose_channel(pose, pchan->name);
2173                         tchan->rotmode= pchan->rotmode;
2174                         
2175                         /* evaluate action using workob (it will only set the PoseChannel in question) */
2176                         what_does_obaction(cob->scene, cob->ob, &workob, pose, data->act, pchan->name, t);
2177                         
2178                         /* convert animation to matrices for use here */
2179                         chan_calc_mat(tchan);
2180                         copy_m4_m4(ct->matrix, tchan->chan_mat);
2181                         
2182                         /* Clean up */
2183                         free_pose(pose);
2184                 }
2185                 else if (cob->type == CONSTRAINT_OBTYPE_OBJECT) {
2186                         Object workob;
2187                         
2188                         /* evaluate using workob */
2189                         // FIXME: we don't have any consistent standards on limiting effects on object...
2190                         what_does_obaction(cob->scene, cob->ob, &workob, NULL, data->act, NULL, t);
2191                         object_to_mat4(&workob, ct->matrix);
2192                 }
2193                 else {
2194                         /* behaviour undefined... */
2195                         puts("Error: unknown owner type for Action Constraint");
2196                 }
2197         }
2198 }
2199
2200 static void actcon_evaluate (bConstraint *UNUSED(con), bConstraintOb *cob, ListBase *targets)
2201 {
2202         bConstraintTarget *ct= targets->first;
2203         
2204         if (VALID_CONS_TARGET(ct)) {
2205                 float temp[4][4];
2206                 
2207                 /* Nice and simple... we just need to multiply the matrices, as the get_target_matrix
2208                  * function has already taken care of everything else.
2209                  */
2210                 copy_m4_m4(temp, cob->matrix);
2211                 mul_m4_m4m4(cob->matrix, ct->matrix, temp);
2212         }
2213 }
2214
2215 static bConstraintTypeInfo CTI_ACTION = {
2216         CONSTRAINT_TYPE_ACTION, /* type */
2217         sizeof(bActionConstraint), /* size */
2218         "Action", /* name */
2219         "bActionConstraint", /* struct name */
2220         NULL, /* free data */
2221         actcon_relink, /* relink data */
2222         actcon_id_looper, /* id looper */
2223         NULL, /* copy data */
2224         actcon_new_data, /* new data */
2225         actcon_get_tars, /* get constraint targets */
2226         actcon_flush_tars, /* flush constraint targets */
2227         actcon_get_tarmat, /* get target matrix */
2228         actcon_evaluate /* evaluate */
2229 };
2230
2231 /* --------- Locked Track ---------- */
2232
2233 static void locktrack_new_data (void *cdata)
2234 {
2235         bLockTrackConstraint *data= (bLockTrackConstraint *)cdata;
2236         
2237         data->trackflag = TRACK_Y;
2238         data->lockflag = LOCK_Z;
2239 }       
2240
2241 static void locktrack_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2242 {
2243         bLockTrackConstraint *data= con->data;
2244         
2245         /* target only */
2246         func(con, (ID**)&data->tar, userdata);
2247 }
2248
2249 static int locktrack_get_tars (bConstraint *con, ListBase *list)
2250 {
2251         if (con && list) {
2252                 bLockTrackConstraint *data= con->data;
2253                 bConstraintTarget *ct;
2254                 
2255                 /* the following macro is used for all standard single-target constraints */
2256                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2257                 
2258                 return 1;
2259         }
2260         
2261         return 0;
2262 }
2263
2264 static void locktrack_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2265 {
2266         if (con && list) {
2267                 bLockTrackConstraint *data= con->data;
2268                 bConstraintTarget *ct= list->first;
2269                 
2270                 /* the following macro is used for all standard single-target constraints */
2271                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2272         }
2273 }
2274
2275 static void locktrack_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2276 {
2277         bLockTrackConstraint *data= con->data;
2278         bConstraintTarget *ct= targets->first;
2279         
2280         if (VALID_CONS_TARGET(ct)) {
2281                 float vec[3],vec2[3];
2282                 float totmat[3][3];
2283                 float tmpmat[3][3];
2284                 float invmat[3][3];
2285                 float tmat[4][4];
2286                 float mdet;
2287                 
2288                 /* Vector object -> target */
2289                 sub_v3_v3v3(vec, ct->matrix[3], cob->matrix[3]);
2290                 switch (data->lockflag){
2291                 case LOCK_X: /* LOCK X */
2292                 {
2293                         switch (data->trackflag) {
2294                                 case TRACK_Y: /* LOCK X TRACK Y */
2295                                 {
2296                                         /* Projection of Vector on the plane */
2297                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2298                                         sub_v3_v3v3(totmat[1], vec, vec2);
2299                                         normalize_v3(totmat[1]);
2300                                         
2301                                         /* the x axis is fixed */
2302                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2303                                         
2304                                         /* the z axis gets mapped onto a third orthogonal vector */
2305                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2306                                 }
2307                                         break;
2308                                 case TRACK_Z: /* LOCK X TRACK Z */
2309                                 {
2310                                         /* Projection of Vector on the plane */
2311                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2312                                         sub_v3_v3v3(totmat[2], vec, vec2);
2313                                         normalize_v3(totmat[2]);
2314                                         
2315                                         /* the x axis is fixed */
2316                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2317                                         
2318                                         /* the z axis gets mapped onto a third orthogonal vector */
2319                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2320                                 }
2321                                         break;
2322                                 case TRACK_nY: /* LOCK X TRACK -Y */
2323                                 {
2324                                         /* Projection of Vector on the plane */
2325                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2326                                         sub_v3_v3v3(totmat[1], vec, vec2);
2327                                         normalize_v3(totmat[1]);
2328                                         negate_v3(totmat[1]);
2329                                         
2330                                         /* the x axis is fixed */
2331                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2332                                         
2333                                         /* the z axis gets mapped onto a third orthogonal vector */
2334                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2335                                 }
2336                                         break;
2337                                 case TRACK_nZ: /* LOCK X TRACK -Z */
2338                                 {
2339                                         /* Projection of Vector on the plane */
2340                                         project_v3_v3v3(vec2, vec, cob->matrix[0]);
2341                                         sub_v3_v3v3(totmat[2], vec, vec2);
2342                                         normalize_v3(totmat[2]);
2343                                         negate_v3(totmat[2]);
2344                                                 
2345                                         /* the x axis is fixed */
2346                                         normalize_v3_v3(totmat[0], cob->matrix[0]);
2347                                                 
2348                                         /* the z axis gets mapped onto a third orthogonal vector */
2349                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2350                                 }
2351                                         break;
2352                                 default:
2353                                 {
2354                                         unit_m3(totmat);
2355                                 }
2356                                         break;
2357                         }
2358                 }
2359                         break;
2360                 case LOCK_Y: /* LOCK Y */
2361                 {
2362                         switch (data->trackflag) {
2363                                 case TRACK_X: /* LOCK Y TRACK X */
2364                                 {
2365                                         /* Projection of Vector on the plane */
2366                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2367                                         sub_v3_v3v3(totmat[0], vec, vec2);
2368                                         normalize_v3(totmat[0]);
2369                                         
2370                                         /* the y axis is fixed */
2371                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2372
2373                                         /* the z axis gets mapped onto a third orthogonal vector */
2374                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2375                                 }
2376                                         break;
2377                                 case TRACK_Z: /* LOCK Y TRACK Z */
2378                                 {
2379                                         /* Projection of Vector on the plane */
2380                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2381                                         sub_v3_v3v3(totmat[2], vec, vec2);
2382                                         normalize_v3(totmat[2]);
2383                                         
2384                                         /* the y axis is fixed */
2385                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2386                                         
2387                                         /* the z axis gets mapped onto a third orthogonal vector */
2388                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2389                                 }
2390                                         break;
2391                                 case TRACK_nX: /* LOCK Y TRACK -X */
2392                                 {
2393                                         /* Projection of Vector on the plane */
2394                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2395                                         sub_v3_v3v3(totmat[0], vec, vec2);
2396                                         normalize_v3(totmat[0]);
2397                                         negate_v3(totmat[0]);
2398                                         
2399                                         /* the y axis is fixed */
2400                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2401                                         
2402                                         /* the z axis gets mapped onto a third orthogonal vector */
2403                                         cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
2404                                 }
2405                                         break;
2406                                 case TRACK_nZ: /* LOCK Y TRACK -Z */
2407                                 {
2408                                         /* Projection of Vector on the plane */
2409                                         project_v3_v3v3(vec2, vec, cob->matrix[1]);
2410                                         sub_v3_v3v3(totmat[2], vec, vec2);
2411                                         normalize_v3(totmat[2]);
2412                                         negate_v3(totmat[2]);
2413                                         
2414                                         /* the y axis is fixed */
2415                                         normalize_v3_v3(totmat[1], cob->matrix[1]);
2416                                         
2417                                         /* the z axis gets mapped onto a third orthogonal vector */
2418                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2419                                 }
2420                                         break;
2421                                 default:
2422                                 {
2423                                         unit_m3(totmat);
2424                                 }
2425                                         break;
2426                         }
2427                 }
2428                         break;
2429                 case LOCK_Z: /* LOCK Z */
2430                 {
2431                         switch (data->trackflag) {
2432                                 case TRACK_X: /* LOCK Z TRACK X */
2433                                 {
2434                                         /* Projection of Vector on the plane */
2435                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2436                                         sub_v3_v3v3(totmat[0], vec, vec2);
2437                                         normalize_v3(totmat[0]);
2438                                         
2439                                         /* the z axis is fixed */
2440                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2441                                         
2442                                         /* the x axis gets mapped onto a third orthogonal vector */
2443                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2444                                 }
2445                                         break;
2446                                 case TRACK_Y: /* LOCK Z TRACK Y */
2447                                 {
2448                                         /* Projection of Vector on the plane */
2449                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2450                                         sub_v3_v3v3(totmat[1], vec, vec2);
2451                                         normalize_v3(totmat[1]);
2452                                         
2453                                         /* the z axis is fixed */
2454                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2455                                                 
2456                                         /* the x axis gets mapped onto a third orthogonal vector */
2457                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2458                                 }
2459                                         break;
2460                                 case TRACK_nX: /* LOCK Z TRACK -X */
2461                                 {
2462                                         /* Projection of Vector on the plane */
2463                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2464                                         sub_v3_v3v3(totmat[0], vec, vec2);
2465                                         normalize_v3(totmat[0]);
2466                                         negate_v3(totmat[0]);
2467                                         
2468                                         /* the z axis is fixed */
2469                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2470                                         
2471                                         /* the x axis gets mapped onto a third orthogonal vector */
2472                                         cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
2473                                 }
2474                                         break;
2475                                 case TRACK_nY: /* LOCK Z TRACK -Y */
2476                                 {
2477                                         /* Projection of Vector on the plane */
2478                                         project_v3_v3v3(vec2, vec, cob->matrix[2]);
2479                                         sub_v3_v3v3(totmat[1], vec, vec2);
2480                                         normalize_v3(totmat[1]);
2481                                         negate_v3(totmat[1]);
2482                                         
2483                                         /* the z axis is fixed */
2484                                         normalize_v3_v3(totmat[2], cob->matrix[2]);
2485                                                 
2486                                         /* the x axis gets mapped onto a third orthogonal vector */
2487                                         cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
2488                                 }
2489                                         break;
2490                                 default:
2491                                 {
2492                                         unit_m3(totmat);
2493                                 }
2494                                         break;
2495                         }
2496                 }
2497                         break;
2498                 default:
2499                 {
2500                         unit_m3(totmat);
2501                 }
2502                         break;
2503                 }
2504                 /* Block to keep matrix heading */
2505                 copy_m3_m4(tmpmat, cob->matrix);
2506                 normalize_m3(tmpmat);
2507                 invert_m3_m3(invmat, tmpmat);
2508                 mul_m3_m3m3(tmpmat, totmat, invmat);
2509                 totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2];
2510                 totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2];
2511                 totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2];
2512                 
2513                 copy_m4_m4(tmat, cob->matrix);
2514                 
2515                 mdet = determinant_m3(  totmat[0][0],totmat[0][1],totmat[0][2],
2516                                                 totmat[1][0],totmat[1][1],totmat[1][2],
2517                                                 totmat[2][0],totmat[2][1],totmat[2][2]);
2518                 if (mdet==0) {
2519                         unit_m3(totmat);
2520                 }
2521                 
2522                 /* apply out transformaton to the object */
2523                 mul_m4_m3m4(cob->matrix, totmat, tmat);
2524         }
2525 }
2526
2527 static bConstraintTypeInfo CTI_LOCKTRACK = {
2528         CONSTRAINT_TYPE_LOCKTRACK, /* type */
2529         sizeof(bLockTrackConstraint), /* size */
2530         "Locked Track", /* name */
2531         "bLockTrackConstraint", /* struct name */
2532         NULL, /* free data */
2533         NULL, /* relink data */
2534         locktrack_id_looper, /* id looper */
2535         NULL, /* copy data */
2536         locktrack_new_data, /* new data */
2537         locktrack_get_tars, /* get constraint targets */
2538         locktrack_flush_tars, /* flush constraint targets */
2539         default_get_tarmat, /* get target matrix */
2540         locktrack_evaluate /* evaluate */
2541 };
2542
2543 /* ---------- Limit Distance Constraint ----------- */
2544
2545 static void distlimit_new_data (void *cdata)
2546 {
2547         bDistLimitConstraint *data= (bDistLimitConstraint *)cdata;
2548         
2549         data->dist= 0.0f;
2550 }
2551
2552 static void distlimit_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2553 {
2554         bDistLimitConstraint *data= con->data;
2555         
2556         /* target only */
2557         func(con, (ID**)&data->tar, userdata);
2558 }
2559
2560 static int distlimit_get_tars (bConstraint *con, ListBase *list)
2561 {
2562         if (con && list) {
2563                 bDistLimitConstraint *data= con->data;
2564                 bConstraintTarget *ct;
2565                 
2566                 /* standard target-getting macro for single-target constraints */
2567                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2568                 
2569                 return 1;
2570         }
2571         
2572         return 0;
2573 }
2574
2575 static void distlimit_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2576 {
2577         if (con && list) {
2578                 bDistLimitConstraint *data= con->data;
2579                 bConstraintTarget *ct= list->first;
2580                 
2581                 /* the following macro is used for all standard single-target constraints */
2582                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2583         }
2584 }
2585
2586 static void distlimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2587 {
2588         bDistLimitConstraint *data= con->data;
2589         bConstraintTarget *ct= targets->first;
2590         
2591         /* only evaluate if there is a target */
2592         if (VALID_CONS_TARGET(ct)) {
2593                 float dvec[3], dist=0.0f, sfac=1.0f;
2594                 short clamp_surf= 0;
2595                 
2596                 /* calculate our current distance from the target */
2597                 dist= len_v3v3(cob->matrix[3], ct->matrix[3]);
2598                 
2599                 /* set distance (flag is only set when user demands it) */
2600                 if (data->dist == 0)
2601                         data->dist= dist;
2602                 
2603                 /* check if we're which way to clamp from, and calculate interpolation factor (if needed) */
2604                 if (data->mode == LIMITDIST_OUTSIDE) {
2605                         /* if inside, then move to surface */
2606                         if (dist <= data->dist) {
2607                                 clamp_surf= 1;
2608                                 sfac= data->dist / dist;
2609                         }
2610                         /* if soft-distance is enabled, start fading once owner is dist+softdist from the target */
2611                         else if (data->flag & LIMITDIST_USESOFT) {
2612                                 if (dist <= (data->dist + data->soft)) {
2613                                         
2614                                 }
2615                         }
2616                 }
2617                 else if (data->mode == LIMITDIST_INSIDE) {
2618                         /* if outside, then move to surface */
2619                         if (dist >= data->dist) {
2620                                 clamp_surf= 1;
2621                                 sfac= data->dist / dist;
2622                         }
2623                         /* if soft-distance is enabled, start fading once owner is dist-soft from the target */
2624                         else if (data->flag & LIMITDIST_USESOFT) {
2625                                 // FIXME: there's a problem with "jumping" when this kicks in
2626                                 if (dist >= (data->dist - data->soft)) {
2627                                         sfac = (float)( data->soft*(1.0 - exp(-(dist - data->dist)/data->soft)) + data->dist );
2628                                         sfac /= dist;
2629                                         
2630                                         clamp_surf= 1;
2631                                 }
2632                         }
2633                 }
2634                 else {
2635                         if (IS_EQ(dist, data->dist)==0) {
2636                                 clamp_surf= 1;
2637                                 sfac= data->dist / dist;
2638                         }
2639                 }
2640                 
2641                 /* clamp to 'surface' (i.e. move owner so that dist == data->dist) */
2642                 if (clamp_surf) {
2643                         /* simply interpolate along line formed by target -> owner */
2644                         interp_v3_v3v3(dvec, ct->matrix[3], cob->matrix[3], sfac);
2645                         
2646                         /* copy new vector onto owner */
2647                         copy_v3_v3(cob->matrix[3], dvec);
2648                 }
2649         }
2650 }
2651
2652 static bConstraintTypeInfo CTI_DISTLIMIT = {
2653         CONSTRAINT_TYPE_DISTLIMIT, /* type */
2654         sizeof(bDistLimitConstraint), /* size */
2655         "Limit Distance", /* name */
2656         "bDistLimitConstraint", /* struct name */
2657         NULL, /* free data */
2658         NULL, /* relink data */
2659         distlimit_id_looper, /* id looper */
2660         NULL, /* copy data */
2661         distlimit_new_data, /* new data */
2662         distlimit_get_tars, /* get constraint targets */
2663         distlimit_flush_tars, /* flush constraint targets */
2664         default_get_tarmat, /* get a target matrix */
2665         distlimit_evaluate /* evaluate */
2666 };
2667
2668 /* ---------- Stretch To ------------ */
2669
2670 static void stretchto_new_data (void *cdata)
2671 {
2672         bStretchToConstraint *data= (bStretchToConstraint *)cdata;
2673         
2674         data->volmode = 0;
2675         data->plane = 0;
2676         data->orglength = 0.0; 
2677         data->bulge = 1.0;
2678 }
2679
2680 static void stretchto_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2681 {
2682         bStretchToConstraint *data= con->data;
2683         
2684         /* target only */
2685         func(con, (ID**)&data->tar, userdata);
2686 }
2687
2688 static int stretchto_get_tars (bConstraint *con, ListBase *list)
2689 {
2690         if (con && list) {
2691                 bStretchToConstraint *data= con->data;
2692                 bConstraintTarget *ct;
2693                 
2694                 /* standard target-getting macro for single-target constraints */
2695                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2696                 
2697                 return 1;
2698         }
2699         
2700         return 0;
2701 }
2702
2703 static void stretchto_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2704 {
2705         if (con && list) {
2706                 bStretchToConstraint *data= con->data;
2707                 bConstraintTarget *ct= list->first;
2708                 
2709                 /* the following macro is used for all standard single-target constraints */
2710                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2711         }
2712 }
2713
2714 static void stretchto_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2715 {
2716         bStretchToConstraint *data= con->data;
2717         bConstraintTarget *ct= targets->first;
2718         
2719         /* only evaluate if there is a target */
2720         if (VALID_CONS_TARGET(ct)) {
2721                 float size[3], scale[3], vec[3], xx[3], zz[3], orth[3];
2722                 float totmat[3][3];
2723                 float tmat[4][4];
2724                 float dist;
2725                 
2726                 /* store scaling before destroying obmat */
2727                 mat4_to_size(size, cob->matrix);
2728                 
2729                 /* store X orientation before destroying obmat */
2730                 normalize_v3_v3(xx, cob->matrix[0]);
2731                 
2732                 /* store Z orientation before destroying obmat */
2733                 normalize_v3_v3(zz, cob->matrix[2]);
2734                 
2735                 sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);
2736                 vec[0] /= size[0];
2737                 vec[1] /= size[1];
2738                 vec[2] /= size[2];
2739                 
2740                 dist = normalize_v3(vec);
2741                 //dist = len_v3v3( ob->obmat[3], targetmat[3]);
2742                 
2743                 /* data->orglength==0 occurs on first run, and after 'R' button is clicked */
2744                 if (data->orglength == 0)  
2745                         data->orglength = dist;
2746                 if (data->bulge == 0) 
2747                         data->bulge = 1.0;
2748                 
2749                 scale[1] = dist/data->orglength;
2750                 switch (data->volmode) {
2751                 /* volume preserving scaling */
2752                 case VOLUME_XZ :
2753                         scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist));
2754                         scale[2] = scale[0];
2755                         break;
2756                 case VOLUME_X:
2757                         scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1);
2758                         scale[2] = 1.0;
2759                         break;
2760                 case VOLUME_Z:
2761                         scale[0] = 1.0;
2762                         scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1);
2763                         break;
2764                         /* don't care for volume */
2765                 case NO_VOLUME:
2766                         scale[0] = 1.0;
2767                         scale[2] = 1.0;
2768                         break;
2769                 default: /* should not happen, but in case*/
2770                         return;    
2771                 } /* switch (data->volmode) */
2772
2773                 /* Clear the object's rotation and scale */
2774                 cob->matrix[0][0]=size[0]*scale[0];
2775                 cob->matrix[0][1]=0;
2776                 cob->matrix[0][2]=0;
2777                 cob->matrix[1][0]=0;
2778                 cob->matrix[1][1]=size[1]*scale[1];
2779                 cob->matrix[1][2]=0;
2780                 cob->matrix[2][0]=0;
2781                 cob->matrix[2][1]=0;
2782                 cob->matrix[2][2]=size[2]*scale[2];
2783                 
2784                 sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);
2785                 normalize_v3(vec);
2786                 
2787                 /* new Y aligns  object target connection*/
2788                 negate_v3_v3(totmat[1], vec);
2789                 switch (data->plane) {
2790                 case PLANE_X:
2791                         /* build new Z vector */
2792                         /* othogonal to "new Y" "old X! plane */
2793                         cross_v3_v3v3(orth, vec, xx);
2794                         normalize_v3(orth);
2795                         
2796                         /* new Z*/
2797                         copy_v3_v3(totmat[2], orth);
2798                         
2799                         /* we decided to keep X plane*/
2800                         cross_v3_v3v3(xx, orth, vec);
2801                         normalize_v3_v3(totmat[0], xx);
2802                         break;
2803                 case PLANE_Z:
2804                         /* build new X vector */
2805                         /* othogonal to "new Y" "old Z! plane */
2806                         cross_v3_v3v3(orth, vec, zz);
2807                         normalize_v3(orth);
2808                         
2809                         /* new X */
2810                         negate_v3_v3(totmat[0], orth);
2811                         
2812                         /* we decided to keep Z */
2813                         cross_v3_v3v3(zz, orth, vec);
2814                         normalize_v3_v3(totmat[2], zz);
2815                         break;
2816                 } /* switch (data->plane) */
2817                 
2818                 copy_m4_m4(tmat, cob->matrix);
2819                 mul_m4_m3m4(cob->matrix, totmat, tmat);
2820         }
2821 }
2822
2823 static bConstraintTypeInfo CTI_STRETCHTO = {
2824         CONSTRAINT_TYPE_STRETCHTO, /* type */
2825         sizeof(bStretchToConstraint), /* size */
2826         "Stretch To", /* name */
2827         "bStretchToConstraint", /* struct name */
2828         NULL, /* free data */
2829         NULL, /* relink data */
2830         stretchto_id_looper, /* id looper */
2831         NULL, /* copy data */
2832         stretchto_new_data, /* new data */
2833         stretchto_get_tars, /* get constraint targets */
2834         stretchto_flush_tars, /* flush constraint targets */
2835         default_get_tarmat, /* get target matrix */
2836         stretchto_evaluate /* evaluate */
2837 };
2838
2839 /* ---------- Floor ------------ */
2840
2841 static void minmax_new_data (void *cdata)
2842 {
2843         bMinMaxConstraint *data= (bMinMaxConstraint *)cdata;
2844         
2845         data->minmaxflag = TRACK_Z;
2846         data->offset = 0.0f;
2847         data->cache[0] = data->cache[1] = data->cache[2] = 0.0f;
2848         data->flag = 0;
2849 }
2850
2851 static void minmax_id_looper (bConstraint *con, ConstraintIDFunc func, void *userdata)
2852 {
2853         bMinMaxConstraint *data= con->data;
2854         
2855         /* target only */
2856         func(con, (ID**)&data->tar, userdata);
2857 }
2858
2859 static int minmax_get_tars (bConstraint *con, ListBase *list)
2860 {
2861         if (con && list) {
2862                 bMinMaxConstraint *data= con->data;
2863                 bConstraintTarget *ct;
2864                 
2865                 /* standard target-getting macro for single-target constraints */
2866                 SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
2867                 
2868                 return 1;
2869         }
2870         
2871         return 0;
2872 }
2873
2874 static void minmax_flush_tars (bConstraint *con, ListBase *list, short nocopy)
2875 {
2876         if (con && list) {
2877                 bMinMaxConstraint *data= con->data;
2878                 bConstraintTarget *ct= list->first;
2879                 
2880                 /* the following macro is used for all standard single-target constraints */
2881                 SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
2882         }
2883 }
2884
2885 static void minmax_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
2886 {
2887         bMinMaxConstraint *data= con->data;
2888         bConstraintTarget *ct= targets->first;
2889         
2890         /* only evaluate if there is a target */
2891         if (VALID_CONS_TARGET(ct)) {
2892                 float obmat[4][4], imat[4][4], tarmat[4][4], tmat[4][4];
2893                 float val1, val2;
2894                 int index;
2895                 
2896                 copy_m4_m4(obmat, cob->matrix);
2897                 copy_m4_m4(tarmat, ct->matrix);
2898                 
2899                 if (data->flag & MINMAX_USEROT) {
2900                         /* take rotation of target into account by doing the transaction in target's localspace */
2901                         invert_m4_m4(imat, tarmat);
2902                         mul_m4_m4m4(tmat, obmat, imat);
2903                         copy_m4_m4(obmat, tmat);
2904                         unit_m4(tarmat);
2905                 }
2906                 
2907                 switch (data->minmaxflag) {
2908                 case TRACK_Z:
2909                         val1 = tarmat[3][2];
2910                         val2 = obmat[3][2]-data->offset;
2911                         index = 2;
2912                         break;
2913                 case TRACK_Y:
2914                         val1 = tarmat[3][1];
2915                         val2 = obmat[3][1]-data->offset;
2916                         index = 1;
2917                         break;
2918                 case TRACK_X:
2919                         val1 = tarmat[3][0];
2920                         val2 = obmat[3][0]-data->offset;
2921                         index = 0;
2922                         break;
2923                 case TRACK_nZ:
2924                         val2 = tarmat[3][2];
2925                         val1 = obmat[3][2]-data->offset;
2926                         index = 2;
2927                         break;
2928                 case TRACK_nY:
2929                         val2 = tarmat[3][1];
2930                         val1 = obmat[3][1]-data->offset;
2931                         index = 1;
2932                         break;
2933                 case TRACK_nX:
2934                         val2 = tarmat[3][0];
2935                         val1 = obmat[3][0]-data->offset;
2936                         index = 0;
2937                         break;
2938                 default:
2939                         return;
2940                 }
2941                 
2942                 if (val1 > val2) {
2943                         obmat[3][index] = tarmat[3][index] + data->offset;
2944                         if (data->flag & MINMAX_STICKY) {
2945                                 if (data->flag & MINMAX_STUCK) {
2946                                         copy_v3_v3(obmat[3], data->cache);
2947                                 } 
2948                                 else {
2949                                         copy_v3_v3(data->cache, obmat[3]);