2 * Licensed under the Apache License, Version 2.0 (the "License");
3 * you may not use this file except in compliance with the License.
4 * You may obtain a copy of the License at
6 * http://www.apache.org/licenses/LICENSE-2.0
8 * Unless required by applicable law or agreed to in writing, software
9 * distributed under the License is distributed on an "AS IS" BASIS,
10 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11 * See the License for the specific language governing permissions and
12 * limitations under the License.
17 * All mesh and curve primitives are part of an object. The same mesh and curves
18 * may be instanced multiple times by different objects.
20 * If the mesh is not instanced multiple times, the object will not be explicitly
21 * stored as a primitive in the BVH, rather the bare triangles are curved are
22 * directly primitives in the BVH with world space locations applied, and the object
23 * ID is looked up afterwards. */
27 /* Object attributes, for now a fixed size and contents */
29 enum ObjectTransform {
31 OBJECT_INVERSE_TRANSFORM = 1,
34 enum ObjectVectorTransform {
35 OBJECT_PASS_MOTION_PRE = 0,
36 OBJECT_PASS_MOTION_POST = 1
39 /* Object to world space transformation */
41 ccl_device_inline Transform object_fetch_transform(KernelGlobals *kg, int object, enum ObjectTransform type)
43 if(type == OBJECT_INVERSE_TRANSFORM) {
44 return kernel_tex_fetch(__objects, object).itfm;
47 return kernel_tex_fetch(__objects, object).tfm;
51 /* Lamp to world space transformation */
53 ccl_device_inline Transform lamp_fetch_transform(KernelGlobals *kg, int lamp, bool inverse)
56 return kernel_tex_fetch(__lights, lamp).itfm;
59 return kernel_tex_fetch(__lights, lamp).tfm;
63 /* Object to world space transformation for motion vectors */
65 ccl_device_inline Transform object_fetch_motion_pass_transform(KernelGlobals *kg, int object, enum ObjectVectorTransform type)
67 int offset = object*OBJECT_MOTION_PASS_SIZE + (int)type;
68 return kernel_tex_fetch(__object_motion_pass, offset);
71 /* Motion blurred object transformations */
73 #ifdef __OBJECT_MOTION__
74 ccl_device_inline Transform object_fetch_transform_motion(KernelGlobals *kg, int object, float time)
76 const uint motion_offset = kernel_tex_fetch(__objects, object).motion_offset;
77 const ccl_global DecomposedTransform *motion = &kernel_tex_fetch(__object_motion, motion_offset);
78 const uint num_steps = kernel_tex_fetch(__objects, object).numsteps * 2 + 1;
81 transform_motion_array_interpolate(&tfm, motion, num_steps, time);
86 ccl_device_inline Transform object_fetch_transform_motion_test(KernelGlobals *kg, int object, float time, Transform *itfm)
88 int object_flag = kernel_tex_fetch(__object_flag, object);
89 if(object_flag & SD_OBJECT_MOTION) {
90 /* if we do motion blur */
91 Transform tfm = object_fetch_transform_motion(kg, object, time);
94 *itfm = transform_quick_inverse(tfm);
99 Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
101 *itfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
108 /* Transform position from object to world space */
110 ccl_device_inline void object_position_transform(KernelGlobals *kg, const ShaderData *sd, float3 *P)
112 #ifdef __OBJECT_MOTION__
113 *P = transform_point_auto(&sd->ob_tfm, *P);
115 Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
116 *P = transform_point(&tfm, *P);
120 /* Transform position from world to object space */
122 ccl_device_inline void object_inverse_position_transform(KernelGlobals *kg, const ShaderData *sd, float3 *P)
124 #ifdef __OBJECT_MOTION__
125 *P = transform_point_auto(&sd->ob_itfm, *P);
127 Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
128 *P = transform_point(&tfm, *P);
132 /* Transform normal from world to object space */
134 ccl_device_inline void object_inverse_normal_transform(KernelGlobals *kg, const ShaderData *sd, float3 *N)
136 #ifdef __OBJECT_MOTION__
137 if((sd->object != OBJECT_NONE) || (sd->type == PRIMITIVE_LAMP)) {
138 *N = normalize(transform_direction_transposed_auto(&sd->ob_tfm, *N));
141 if(sd->object != OBJECT_NONE) {
142 Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
143 *N = normalize(transform_direction_transposed(&tfm, *N));
145 else if(sd->type == PRIMITIVE_LAMP) {
146 Transform tfm = lamp_fetch_transform(kg, sd->lamp, false);
147 *N = normalize(transform_direction_transposed(&tfm, *N));
152 /* Transform normal from object to world space */
154 ccl_device_inline void object_normal_transform(KernelGlobals *kg, const ShaderData *sd, float3 *N)
156 #ifdef __OBJECT_MOTION__
157 *N = normalize(transform_direction_transposed_auto(&sd->ob_itfm, *N));
159 Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
160 *N = normalize(transform_direction_transposed(&tfm, *N));
164 /* Transform direction vector from object to world space */
166 ccl_device_inline void object_dir_transform(KernelGlobals *kg, const ShaderData *sd, float3 *D)
168 #ifdef __OBJECT_MOTION__
169 *D = transform_direction_auto(&sd->ob_tfm, *D);
171 Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
172 *D = transform_direction(&tfm, *D);
176 /* Transform direction vector from world to object space */
178 ccl_device_inline void object_inverse_dir_transform(KernelGlobals *kg, const ShaderData *sd, float3 *D)
180 #ifdef __OBJECT_MOTION__
181 *D = transform_direction_auto(&sd->ob_itfm, *D);
183 Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
184 *D = transform_direction(&tfm, *D);
188 /* Object center position */
190 ccl_device_inline float3 object_location(KernelGlobals *kg, const ShaderData *sd)
192 if(sd->object == OBJECT_NONE)
193 return make_float3(0.0f, 0.0f, 0.0f);
195 #ifdef __OBJECT_MOTION__
196 return make_float3(sd->ob_tfm.x.w, sd->ob_tfm.y.w, sd->ob_tfm.z.w);
198 Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
199 return make_float3(tfm.x.w, tfm.y.w, tfm.z.w);
203 /* Total surface area of object */
205 ccl_device_inline float object_surface_area(KernelGlobals *kg, int object)
207 return kernel_tex_fetch(__objects, object).surface_area;
210 /* Pass ID number of object */
212 ccl_device_inline float object_pass_id(KernelGlobals *kg, int object)
214 if(object == OBJECT_NONE)
217 return kernel_tex_fetch(__objects, object).pass_id;
220 /* Per lamp random number for shader variation */
222 ccl_device_inline float lamp_random_number(KernelGlobals *kg, int lamp)
224 if(lamp == LAMP_NONE)
227 return kernel_tex_fetch(__lights, lamp).random;
230 /* Per object random number for shader variation */
232 ccl_device_inline float object_random_number(KernelGlobals *kg, int object)
234 if(object == OBJECT_NONE)
237 return kernel_tex_fetch(__objects, object).random_number;
240 /* Particle ID from which this object was generated */
242 ccl_device_inline int object_particle_id(KernelGlobals *kg, int object)
244 if(object == OBJECT_NONE)
247 return kernel_tex_fetch(__objects, object).particle_index;
250 /* Generated texture coordinate on surface from where object was instanced */
252 ccl_device_inline float3 object_dupli_generated(KernelGlobals *kg, int object)
254 if(object == OBJECT_NONE)
255 return make_float3(0.0f, 0.0f, 0.0f);
257 const ccl_global KernelObject *kobject = &kernel_tex_fetch(__objects, object);
258 return make_float3(kobject->dupli_generated[0],
259 kobject->dupli_generated[1],
260 kobject->dupli_generated[2]);
263 /* UV texture coordinate on surface from where object was instanced */
265 ccl_device_inline float3 object_dupli_uv(KernelGlobals *kg, int object)
267 if(object == OBJECT_NONE)
268 return make_float3(0.0f, 0.0f, 0.0f);
270 const ccl_global KernelObject *kobject = &kernel_tex_fetch(__objects, object);
271 return make_float3(kobject->dupli_uv[0],
272 kobject->dupli_uv[1],
276 /* Information about mesh for motion blurred triangles and curves */
278 ccl_device_inline void object_motion_info(KernelGlobals *kg, int object, int *numsteps, int *numverts, int *numkeys)
281 *numkeys = kernel_tex_fetch(__objects, object).numkeys;
285 *numsteps = kernel_tex_fetch(__objects, object).numsteps;
287 *numverts = kernel_tex_fetch(__objects, object).numverts;
290 /* Offset to an objects patch map */
292 ccl_device_inline uint object_patch_map_offset(KernelGlobals *kg, int object)
294 if(object == OBJECT_NONE)
297 return kernel_tex_fetch(__objects, object).patch_map_offset;
300 /* Pass ID for shader */
302 ccl_device int shader_pass_id(KernelGlobals *kg, const ShaderData *sd)
304 return kernel_tex_fetch(__shaders, (sd->shader & SHADER_MASK)).pass_id;
309 ccl_device_inline float object_cryptomatte_id(KernelGlobals *kg, int object)
311 if(object == OBJECT_NONE)
314 return kernel_tex_fetch(__objects, object).cryptomatte_object;
317 ccl_device_inline float object_cryptomatte_asset_id(KernelGlobals *kg, int object)
319 if(object == OBJECT_NONE)
322 return kernel_tex_fetch(__objects, object).cryptomatte_asset;
325 /* Particle data from which object was instanced */
327 ccl_device_inline uint particle_index(KernelGlobals *kg, int particle)
329 return kernel_tex_fetch(__particles, particle).index;
332 ccl_device float particle_age(KernelGlobals *kg, int particle)
334 return kernel_tex_fetch(__particles, particle).age;
337 ccl_device float particle_lifetime(KernelGlobals *kg, int particle)
339 return kernel_tex_fetch(__particles, particle).lifetime;
342 ccl_device float particle_size(KernelGlobals *kg, int particle)
344 return kernel_tex_fetch(__particles, particle).size;
347 ccl_device float4 particle_rotation(KernelGlobals *kg, int particle)
349 return kernel_tex_fetch(__particles, particle).rotation;
352 ccl_device float3 particle_location(KernelGlobals *kg, int particle)
354 return float4_to_float3(kernel_tex_fetch(__particles, particle).location);
357 ccl_device float3 particle_velocity(KernelGlobals *kg, int particle)
359 return float4_to_float3(kernel_tex_fetch(__particles, particle).velocity);
362 ccl_device float3 particle_angular_velocity(KernelGlobals *kg, int particle)
364 return float4_to_float3(kernel_tex_fetch(__particles, particle).angular_velocity);
367 /* Object intersection in BVH */
369 ccl_device_inline float3 bvh_clamp_direction(float3 dir)
371 /* clamp absolute values by exp2f(-80.0f) to avoid division by zero when calculating inverse direction */
372 #if defined(__KERNEL_SSE__) && defined(__KERNEL_SSE2__)
373 const ssef oopes(8.271806E-25f,8.271806E-25f,8.271806E-25f,0.0f);
374 const ssef mask = _mm_cmpgt_ps(fabs(dir), oopes);
375 const ssef signdir = signmsk(dir.m128) | oopes;
376 # ifndef __KERNEL_AVX__
377 ssef res = mask & ssef(dir);
378 res = _mm_or_ps(res,_mm_andnot_ps(mask, signdir));
380 ssef res = _mm_blendv_ps(signdir, dir, mask);
383 #else /* __KERNEL_SSE__ && __KERNEL_SSE2__ */
384 const float ooeps = 8.271806E-25f;
385 return make_float3((fabsf(dir.x) > ooeps)? dir.x: copysignf(ooeps, dir.x),
386 (fabsf(dir.y) > ooeps)? dir.y: copysignf(ooeps, dir.y),
387 (fabsf(dir.z) > ooeps)? dir.z: copysignf(ooeps, dir.z));
388 #endif /* __KERNEL_SSE__ && __KERNEL_SSE2__ */
391 ccl_device_inline float3 bvh_inverse_direction(float3 dir)
396 /* Transform ray into object space to enter static object in BVH */
398 ccl_device_inline float bvh_instance_push(KernelGlobals *kg,
406 Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
408 *P = transform_point(&tfm, ray->P);
411 *dir = bvh_clamp_direction(normalize_len(transform_direction(&tfm, ray->D), &len));
412 *idir = bvh_inverse_direction(*dir);
422 /* Same as above, but optimized for QBVH scene intersection,
423 * which needs to modify two max distances.
425 * TODO(sergey): Investigate if passing NULL instead of t1 gets optimized
426 * so we can avoid having this duplication.
428 ccl_device_inline void qbvh_instance_push(KernelGlobals *kg,
437 Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
439 *P = transform_point(&tfm, ray->P);
442 *dir = bvh_clamp_direction(normalize_len(transform_direction(&tfm, ray->D), &len));
443 *idir = bvh_inverse_direction(*dir);
453 /* Transorm ray to exit static object in BVH */
455 ccl_device_inline float bvh_instance_pop(KernelGlobals *kg,
464 Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
465 t /= len(transform_direction(&tfm, ray->D));
469 *dir = bvh_clamp_direction(ray->D);
470 *idir = bvh_inverse_direction(*dir);
475 /* Same as above, but returns scale factor to apply to multiple intersection distances */
477 ccl_device_inline void bvh_instance_pop_factor(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float *t_fac)
479 Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
480 *t_fac = 1.0f / len(transform_direction(&tfm, ray->D));
483 *dir = bvh_clamp_direction(ray->D);
484 *idir = bvh_inverse_direction(*dir);
488 #ifdef __OBJECT_MOTION__
489 /* Transform ray into object space to enter motion blurred object in BVH */
491 ccl_device_inline float bvh_instance_motion_push(KernelGlobals *kg,
500 object_fetch_transform_motion_test(kg, object, ray->time, itfm);
502 *P = transform_point(itfm, ray->P);
505 *dir = bvh_clamp_direction(normalize_len(transform_direction(itfm, ray->D), &len));
506 *idir = bvh_inverse_direction(*dir);
516 /* Same as above, but optimized for QBVH scene intersection,
517 * which needs to modify two max distances.
519 * TODO(sergey): Investigate if passing NULL instead of t1 gets optimized
520 * so we can avoid having this duplication.
522 ccl_device_inline void qbvh_instance_motion_push(KernelGlobals *kg,
532 object_fetch_transform_motion_test(kg, object, ray->time, itfm);
534 *P = transform_point(itfm, ray->P);
537 *dir = bvh_clamp_direction(normalize_len(transform_direction(itfm, ray->D), &len));
538 *idir = bvh_inverse_direction(*dir);
548 /* Transorm ray to exit motion blurred object in BVH */
550 ccl_device_inline float bvh_instance_motion_pop(KernelGlobals *kg,
560 t /= len(transform_direction(itfm, ray->D));
564 *dir = bvh_clamp_direction(ray->D);
565 *idir = bvh_inverse_direction(*dir);
570 /* Same as above, but returns scale factor to apply to multiple intersection distances */
572 ccl_device_inline void bvh_instance_motion_pop_factor(KernelGlobals *kg,
581 *t_fac = 1.0f / len(transform_direction(itfm, ray->D));
583 *dir = bvh_clamp_direction(ray->D);
584 *idir = bvh_inverse_direction(*dir);
589 /* TODO(sergey): This is only for until we've got OpenCL 2.0
590 * on all devices we consider supported. It'll be replaced with
591 * generic address space.
594 #ifdef __KERNEL_OPENCL__
595 ccl_device_inline void object_position_transform_addrspace(KernelGlobals *kg,
596 const ShaderData *sd,
597 ccl_addr_space float3 *P)
599 float3 private_P = *P;
600 object_position_transform(kg, sd, &private_P);
604 ccl_device_inline void object_dir_transform_addrspace(KernelGlobals *kg,
605 const ShaderData *sd,
606 ccl_addr_space float3 *D)
608 float3 private_D = *D;
609 object_dir_transform(kg, sd, &private_D);
613 ccl_device_inline void object_normal_transform_addrspace(KernelGlobals *kg,
614 const ShaderData *sd,
615 ccl_addr_space float3 *N)
617 float3 private_N = *N;
618 object_normal_transform(kg, sd, &private_N);
623 #ifndef __KERNEL_OPENCL__
624 # define object_position_transform_auto object_position_transform
625 # define object_dir_transform_auto object_dir_transform
626 # define object_normal_transform_auto object_normal_transform
628 # define object_position_transform_auto object_position_transform_addrspace
629 # define object_dir_transform_auto object_dir_transform_addrspace
630 # define object_normal_transform_auto object_normal_transform_addrspace