revert own commit r34706 (fix for [#25801]), this causes bug [#25801].
[blender.git] / source / blender / blenkernel / intern / shrinkwrap.c
1 /*
2  * ***** BEGIN GPL LICENSE BLOCK *****
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17  *
18  * The Original Code is Copyright (C) Blender Foundation.
19  * All rights reserved.
20  *
21  * The Original Code is: all of this file.
22  *
23  * Contributor(s): Andr Pinto
24  *
25  * ***** END GPL LICENSE BLOCK *****
26  */
27
28 /** \file blender/blenkernel/intern/shrinkwrap.c
29  *  \ingroup bke
30  */
31
32 #include <string.h>
33 #include <float.h>
34 #include <math.h>
35 #include <memory.h>
36 #include <stdio.h>
37 #include <time.h>
38 #include <assert.h>
39
40 #include "DNA_object_types.h"
41 #include "DNA_modifier_types.h"
42 #include "DNA_meshdata_types.h"
43 #include "DNA_mesh_types.h"
44 #include "DNA_scene_types.h"
45
46 #include "BLI_math.h"
47 #include "BLI_utildefines.h"
48
49 #include "BKE_shrinkwrap.h"
50 #include "BKE_DerivedMesh.h"
51 #include "BKE_lattice.h"
52
53 #include "BKE_deform.h"
54 #include "BKE_mesh.h"
55 #include "BKE_subsurf.h"
56 #include "BKE_mesh.h"
57 #include "BKE_tessmesh.h"
58
59 /* Util macros */
60 #define OUT_OF_MEMORY() ((void)printf("Shrinkwrap: Out of memory\n"))
61
62 /* Benchmark macros */
63 #if !defined(_WIN32) && 0
64
65 #include <sys/time.h>
66
67 #define BENCH(a)        \
68         do {                    \
69                 double _t1, _t2;                                \
70                 struct timeval _tstart, _tend;  \
71                 clock_t _clock_init = clock();  \
72                 gettimeofday ( &_tstart, NULL); \
73                 (a);                                                    \
74                 gettimeofday ( &_tend, NULL);   \
75                 _t1 = ( double ) _tstart.tv_sec + ( double ) _tstart.tv_usec/ ( 1000*1000 );    \
76                 _t2 = ( double )   _tend.tv_sec + ( double )   _tend.tv_usec/ ( 1000*1000 );    \
77                 printf("%s: %fs (real) %fs (cpu)\n", #a, _t2-_t1, (float)(clock()-_clock_init)/CLOCKS_PER_SEC);\
78         } while (0)
79
80 #else
81
82 #define BENCH(a)    (a)
83
84 #endif
85
86 /* get derived mesh */
87 /* TODO is anyfunction that does this? returning the derivedFinal without we caring if its in edit mode or not? */
88 DerivedMesh *object_get_derived_final(Object *ob)
89 {
90         Mesh *me = ob->data;
91         BMEditMesh *em = me->edit_btmesh;
92
93         if (em) {
94                 DerivedMesh *dm = em->derivedFinal;
95                 return dm;
96         }
97
98         return ob->derivedFinal;
99 }
100
101 /* Space transform */
102 void space_transform_from_matrixs(SpaceTransform *data, float local[4][4], float target[4][4])
103 {
104         float itarget[4][4];
105         invert_m4_m4(itarget, target);
106         mul_serie_m4(data->local2target, itarget, local, NULL, NULL, NULL, NULL, NULL, NULL);
107         invert_m4_m4(data->target2local, data->local2target);
108 }
109
110 void space_transform_apply(const SpaceTransform *data, float co[3])
111 {
112         mul_v3_m4v3(co, ((SpaceTransform *)data)->local2target, co);
113 }
114
115 void space_transform_invert(const SpaceTransform *data, float co[3])
116 {
117         mul_v3_m4v3(co, ((SpaceTransform *)data)->target2local, co);
118 }
119
120 static void space_transform_apply_normal(const SpaceTransform *data, float no[3])
121 {
122         mul_mat3_m4_v3(((SpaceTransform *)data)->local2target, no);
123         normalize_v3(no); /* TODO: could we just determine de scale value from the matrix? */
124 }
125
126 static void space_transform_invert_normal(const SpaceTransform *data, float no[3])
127 {
128         mul_mat3_m4_v3(((SpaceTransform *)data)->target2local, no);
129         normalize_v3(no); /* TODO: could we just determine de scale value from the matrix? */
130 }
131
132 /*
133  * Shrinkwrap to the nearest vertex
134  *
135  * it builds a kdtree of vertexs we can attach to and then
136  * for each vertex performs a nearest vertex search on the tree
137  */
138 static void shrinkwrap_calc_nearest_vertex(ShrinkwrapCalcData *calc)
139 {
140         int i;
141
142         BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
143         BVHTreeNearest nearest  = NULL_BVHTreeNearest;
144
145
146         BENCH(bvhtree_from_mesh_verts(&treeData, calc->target, 0.0, 2, 6));
147         if (treeData.tree == NULL) {
148                 OUT_OF_MEMORY();
149                 return;
150         }
151
152         /* Setup nearest */
153         nearest.index = -1;
154         nearest.dist = FLT_MAX;
155 #ifndef __APPLE__
156 #pragma omp parallel for default(none) private(i) firstprivate(nearest) shared(treeData,calc) schedule(static)
157 #endif
158         for (i = 0; i < calc->numVerts; ++i) {
159                 float *co = calc->vertexCos[i];
160                 float tmp_co[3];
161                 float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
162                 if (weight == 0.0f) continue;
163
164
165                 /* Convert the vertex to tree coordinates */
166                 if (calc->vert) {
167                         copy_v3_v3(tmp_co, calc->vert[i].co);
168                 }
169                 else {
170                         copy_v3_v3(tmp_co, co);
171                 }
172                 space_transform_apply(&calc->local2target, tmp_co);
173
174                 /* Use local proximity heuristics (to reduce the nearest search)
175                  *
176                  * If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex
177                  * so we can initiate the "nearest.dist" with the expected value to that last hit.
178                  * This will lead in prunning of the search tree. */
179                 if (nearest.index != -1)
180                         nearest.dist = len_squared_v3v3(tmp_co, nearest.co);
181                 else
182                         nearest.dist = FLT_MAX;
183
184                 BLI_bvhtree_find_nearest(treeData.tree, tmp_co, &nearest, treeData.nearest_callback, &treeData);
185
186
187                 /* Found the nearest vertex */
188                 if (nearest.index != -1) {
189                         /* Adjusting the vertex weight,
190                          * so that after interpolating it keeps a certain distance from the nearest position */
191                         float dist = sasqrt(nearest.dist);
192                         if (dist > FLT_EPSILON) weight *= (dist - calc->keepDist) / dist;
193
194                         /* Convert the coordinates back to mesh coordinates */
195                         copy_v3_v3(tmp_co, nearest.co);
196                         space_transform_invert(&calc->local2target, tmp_co);
197
198                         interp_v3_v3v3(co, co, tmp_co, weight);  /* linear interpolation */
199                 }
200         }
201
202         free_bvhtree_from_mesh(&treeData);
203 }
204
205 /*
206  * This function raycast a single vertex and updates the hit if the "hit" is considered valid.
207  * Returns TRUE if "hit" was updated.
208  * Opts control whether an hit is valid or not
209  * Supported options are:
210  *      MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE (front faces hits are ignored)
211  *      MOD_SHRINKWRAP_CULL_TARGET_BACKFACE (back faces hits are ignored)
212  */
213 int normal_projection_project_vertex(char options, const float vert[3], const float dir[3],
214                                      const SpaceTransform *transf,
215                                      BVHTree *tree, BVHTreeRayHit *hit,
216                                      BVHTree_RayCastCallback callback, void *userdata)
217 {
218         float tmp_co[3], tmp_no[3];
219         const float *co, *no;
220         BVHTreeRayHit hit_tmp;
221
222         /* Copy from hit (we need to convert hit rays from one space coordinates to the other */
223         memcpy(&hit_tmp, hit, sizeof(hit_tmp));
224
225         /* Apply space transform (TODO readjust dist) */
226         if (transf) {
227                 copy_v3_v3(tmp_co, vert);
228                 space_transform_apply(transf, tmp_co);
229                 co = tmp_co;
230
231                 copy_v3_v3(tmp_no, dir);
232                 space_transform_apply_normal(transf, tmp_no);
233                 no = tmp_no;
234
235                 hit_tmp.dist *= mat4_to_scale(((SpaceTransform *)transf)->local2target);
236         }
237         else {
238                 co = vert;
239                 no = dir;
240         }
241
242         hit_tmp.index = -1;
243
244         BLI_bvhtree_ray_cast(tree, co, no, 0.0f, &hit_tmp, callback, userdata);
245
246         if (hit_tmp.index != -1) {
247                 /* invert the normal first so face culling works on rotated objects */
248                 if (transf) {
249                         space_transform_invert_normal(transf, hit_tmp.no);
250                 }
251
252                 if (options & (MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE | MOD_SHRINKWRAP_CULL_TARGET_BACKFACE)) {
253                         /* apply backface */
254                         const float dot = dot_v3v3(dir, hit_tmp.no);
255                         if (((options & MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE) && dot <= 0.0f) ||
256                             ((options & MOD_SHRINKWRAP_CULL_TARGET_BACKFACE)  && dot >= 0.0f))
257                         {
258                                 return FALSE; /* Ignore hit */
259                         }
260                 }
261
262                 if (transf) {
263                         /* Inverting space transform (TODO make coeherent with the initial dist readjust) */
264                         space_transform_invert(transf, hit_tmp.co);
265                         hit_tmp.dist = len_v3v3(vert, hit_tmp.co);
266                 }
267
268                 memcpy(hit, &hit_tmp, sizeof(hit_tmp));
269                 return TRUE;
270         }
271         return FALSE;
272 }
273
274
275 static void shrinkwrap_calc_normal_projection(ShrinkwrapCalcData *calc)
276 {
277         int i;
278
279         /* Options about projection direction */
280         const char use_normal   = calc->smd->shrinkOpts;
281         float proj_axis[3]      = {0.0f, 0.0f, 0.0f};
282
283         /* Raycast and tree stuff */
284         BVHTreeRayHit hit;
285         BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
286
287         /* auxiliary target */
288         DerivedMesh *auxMesh    = NULL;
289         BVHTreeFromMesh auxData = NULL_BVHTreeFromMesh;
290         SpaceTransform local2aux;
291
292         /* If the user doesn't allows to project in any direction of projection axis
293          * then theres nothing todo. */
294         if ((use_normal & (MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR | MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR)) == 0)
295                 return;
296
297
298         /* Prepare data to retrieve the direction in which we should project each vertex */
299         if (calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) {
300                 if (calc->vert == NULL) return;
301         }
302         else {
303                 /* The code supports any axis that is a combination of X,Y,Z
304                  * although currently UI only allows to set the 3 different axis */
305                 if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_X_AXIS) proj_axis[0] = 1.0f;
306                 if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Y_AXIS) proj_axis[1] = 1.0f;
307                 if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Z_AXIS) proj_axis[2] = 1.0f;
308
309                 normalize_v3(proj_axis);
310
311                 /* Invalid projection direction */
312                 if (len_squared_v3(proj_axis) < FLT_EPSILON) {
313                         return;
314                 }
315         }
316
317         if (calc->smd->auxTarget) {
318                 auxMesh = object_get_derived_final(calc->smd->auxTarget);
319                 if (!auxMesh)
320                         return;
321                 SPACE_TRANSFORM_SETUP(&local2aux, calc->ob, calc->smd->auxTarget);
322         }
323
324         /* After sucessufuly build the trees, start projection vertexs */
325         if (bvhtree_from_mesh_faces(&treeData, calc->target, 0.0, 4, 6) &&
326             (auxMesh == NULL || bvhtree_from_mesh_faces(&auxData, auxMesh, 0.0, 4, 6)))
327         {
328
329 #ifndef __APPLE__
330 #pragma omp parallel for private(i,hit) schedule(static)
331 #endif
332                 for (i = 0; i < calc->numVerts; ++i) {
333                         float *co = calc->vertexCos[i];
334                         float tmp_co[3], tmp_no[3];
335                         const float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
336
337                         if (weight == 0.0f) {
338                                 continue;
339                         }
340
341                         if (calc->vert) {
342                                 /* calc->vert contains verts from derivedMesh  */
343                                 /* this coordinated are deformed by vertexCos only for normal projection (to get correct normals) */
344                                 /* for other cases calc->varts contains undeformed coordinates and vertexCos should be used */
345                                 if (calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) {
346                                         copy_v3_v3(tmp_co, calc->vert[i].co);
347                                         normal_short_to_float_v3(tmp_no, calc->vert[i].no);
348                                 }
349                                 else {
350                                         copy_v3_v3(tmp_co, co);
351                                         copy_v3_v3(tmp_no, proj_axis);
352                                 }
353                         }
354                         else {
355                                 copy_v3_v3(tmp_co, co);
356                                 copy_v3_v3(tmp_no, proj_axis);
357                         }
358
359
360                         hit.index = -1;
361                         hit.dist = 10000.0f; /* TODO: we should use FLT_MAX here, but sweepsphere code isn't prepared for that */
362
363                         /* Project over positive direction of axis */
364                         if (use_normal & MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR) {
365
366                                 if (auxData.tree) {
367                                         normal_projection_project_vertex(0, tmp_co, tmp_no,
368                                                                          &local2aux, auxData.tree, &hit,
369                                                                          auxData.raycast_callback, &auxData);
370                                 }
371
372                                 normal_projection_project_vertex(calc->smd->shrinkOpts, tmp_co, tmp_no,
373                                                                  &calc->local2target, treeData.tree, &hit,
374                                                                  treeData.raycast_callback, &treeData);
375                         }
376
377                         /* Project over negative direction of axis */
378                         if (use_normal & MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR) {
379                                 float inv_no[3];
380                                 negate_v3_v3(inv_no, tmp_no);
381
382                                 if (auxData.tree) {
383                                         normal_projection_project_vertex(0, tmp_co, inv_no,
384                                                                          &local2aux, auxData.tree, &hit,
385                                                                          auxData.raycast_callback, &auxData);
386                                 }
387
388                                 normal_projection_project_vertex(calc->smd->shrinkOpts, tmp_co, inv_no,
389                                                                  &calc->local2target, treeData.tree, &hit,
390                                                                  treeData.raycast_callback, &treeData);
391                         }
392
393
394                         if (hit.index != -1) {
395                                 madd_v3_v3v3fl(hit.co, hit.co, tmp_no, calc->keepDist);
396                                 interp_v3_v3v3(co, co, hit.co, weight);
397                         }
398                 }
399         }
400
401         /* free data structures */
402         free_bvhtree_from_mesh(&treeData);
403         free_bvhtree_from_mesh(&auxData);
404 }
405
406 /*
407  * Shrinkwrap moving vertexs to the nearest surface point on the target
408  *
409  * it builds a BVHTree from the target mesh and then performs a
410  * NN matches for each vertex
411  */
412 static void shrinkwrap_calc_nearest_surface_point(ShrinkwrapCalcData *calc)
413 {
414         int i;
415
416         BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
417         BVHTreeNearest nearest  = NULL_BVHTreeNearest;
418
419         /* Create a bvh-tree of the given target */
420         BENCH(bvhtree_from_mesh_faces(&treeData, calc->target, 0.0, 2, 6));
421         if (treeData.tree == NULL) {
422                 OUT_OF_MEMORY();
423                 return;
424         }
425
426         /* Setup nearest */
427         nearest.index = -1;
428         nearest.dist = FLT_MAX;
429
430
431         /* Find the nearest vertex */
432 #ifndef __APPLE__
433 #pragma omp parallel for default(none) private(i) firstprivate(nearest) shared(calc,treeData) schedule(static)
434 #endif
435         for (i = 0; i < calc->numVerts; ++i) {
436                 float *co = calc->vertexCos[i];
437                 float tmp_co[3];
438                 float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
439                 if (weight == 0.0f) continue;
440
441                 /* Convert the vertex to tree coordinates */
442                 if (calc->vert) {
443                         copy_v3_v3(tmp_co, calc->vert[i].co);
444                 }
445                 else {
446                         copy_v3_v3(tmp_co, co);
447                 }
448                 space_transform_apply(&calc->local2target, tmp_co);
449
450                 /* Use local proximity heuristics (to reduce the nearest search)
451                  *
452                  * If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex
453                  * so we can initiate the "nearest.dist" with the expected value to that last hit.
454                  * This will lead in prunning of the search tree. */
455                 if (nearest.index != -1)
456                         nearest.dist = len_squared_v3v3(tmp_co, nearest.co);
457                 else
458                         nearest.dist = FLT_MAX;
459
460                 BLI_bvhtree_find_nearest(treeData.tree, tmp_co, &nearest, treeData.nearest_callback, &treeData);
461
462                 /* Found the nearest vertex */
463                 if (nearest.index != -1) {
464                         if (calc->smd->shrinkOpts & MOD_SHRINKWRAP_KEEP_ABOVE_SURFACE) {
465                                 /* Make the vertex stay on the front side of the face */
466                                 madd_v3_v3v3fl(tmp_co, nearest.co, nearest.no, calc->keepDist);
467                         }
468                         else {
469                                 /* Adjusting the vertex weight,
470                                  * so that after interpolating it keeps a certain distance from the nearest position */
471                                 float dist = sasqrt(nearest.dist);
472                                 if (dist > FLT_EPSILON) {
473                                         /* linear interpolation */
474                                         interp_v3_v3v3(tmp_co, tmp_co, nearest.co, (dist - calc->keepDist) / dist);
475                                 }
476                                 else {
477                                         copy_v3_v3(tmp_co, nearest.co);
478                                 }
479                         }
480
481                         /* Convert the coordinates back to mesh coordinates */
482                         space_transform_invert(&calc->local2target, tmp_co);
483                         interp_v3_v3v3(co, co, tmp_co, weight);  /* linear interpolation */
484                 }
485         }
486
487         free_bvhtree_from_mesh(&treeData);
488 }
489
490 /* Main shrinkwrap function */
491 void shrinkwrapModifier_deform(ShrinkwrapModifierData *smd, Object *ob, DerivedMesh *dm,
492                                float (*vertexCos)[3], int numVerts)
493 {
494
495         DerivedMesh *ss_mesh    = NULL;
496         ShrinkwrapCalcData calc = NULL_ShrinkwrapCalcData;
497
498         /* remove loop dependencies on derived meshs (TODO should this be done elsewhere?) */
499         if (smd->target == ob) smd->target = NULL;
500         if (smd->auxTarget == ob) smd->auxTarget = NULL;
501
502
503         /* Configure Shrinkwrap calc data */
504         calc.smd = smd;
505         calc.ob = ob;
506         calc.numVerts = numVerts;
507         calc.vertexCos = vertexCos;
508
509         /* DeformVertex */
510         calc.vgroup = defgroup_name_index(calc.ob, calc.smd->vgroup_name);
511         if (dm) {
512                 calc.dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
513         }
514         else if (calc.ob->type == OB_LATTICE) {
515                 calc.dvert = BKE_lattice_deform_verts_get(calc.ob);
516         }
517
518
519         if (smd->target) {
520                 calc.target = object_get_derived_final(smd->target);
521
522                 /* TODO there might be several "bugs" on non-uniform scales matrixs
523                  * because it will no longer be nearest surface, not sphere projection
524                  * because space has been deformed */
525                 SPACE_TRANSFORM_SETUP(&calc.local2target, ob, smd->target);
526
527                 /* TODO: smd->keepDist is in global units.. must change to local */
528                 calc.keepDist = smd->keepDist;
529         }
530
531
532
533         calc.vgroup = defgroup_name_index(calc.ob, smd->vgroup_name);
534
535         if (dm != NULL && smd->shrinkType == MOD_SHRINKWRAP_PROJECT) {
536                 /* Setup arrays to get vertexs positions, normals and deform weights */
537                 calc.vert   = dm->getVertDataArray(dm, CD_MVERT);
538                 calc.dvert  = dm->getVertDataArray(dm, CD_MDEFORMVERT);
539
540                 /* Using vertexs positions/normals as if a subsurface was applied */
541                 if (smd->subsurfLevels) {
542                         SubsurfModifierData ssmd = {{NULL}};
543                         ssmd.subdivType = ME_CC_SUBSURF;        /* catmull clark */
544                         ssmd.levels     = smd->subsurfLevels;   /* levels */
545
546                         ss_mesh = subsurf_make_derived_from_derived(dm, &ssmd, NULL, (ob->mode & OB_MODE_EDIT) ? SUBSURF_IN_EDIT_MODE : 0);
547
548                         if (ss_mesh) {
549                                 calc.vert = ss_mesh->getVertDataArray(ss_mesh, CD_MVERT);
550                                 if (calc.vert) {
551                                         /* TRICKY: this code assumes subsurface will have the transformed original vertices
552                                          * in their original order at the end of the vert array. */
553                                         calc.vert = calc.vert + ss_mesh->getNumVerts(ss_mesh) - dm->getNumVerts(dm);
554                                 }
555                         }
556
557                         /* Just to make sure we are not leaving any memory behind */
558                         assert(ssmd.emCache == NULL);
559                         assert(ssmd.mCache == NULL);
560                 }
561         }
562
563         /* Projecting target defined - lets work! */
564         if (calc.target) {
565                 switch (smd->shrinkType) {
566                         case MOD_SHRINKWRAP_NEAREST_SURFACE:
567                                 BENCH(shrinkwrap_calc_nearest_surface_point(&calc));
568                                 break;
569
570                         case MOD_SHRINKWRAP_PROJECT:
571                                 BENCH(shrinkwrap_calc_normal_projection(&calc));
572                                 break;
573
574                         case MOD_SHRINKWRAP_NEAREST_VERTEX:
575                                 BENCH(shrinkwrap_calc_nearest_vertex(&calc));
576                                 break;
577                 }
578         }
579
580         /* free memory */
581         if (ss_mesh)
582                 ss_mesh->release(ss_mesh);
583 }