eca607c08df4731e0936531c9d388d9d7b0bbb7e
[blender.git] / source / blender / blenkernel / intern / armature.c
1 /*
2  * ***** BEGIN GPL LICENSE BLOCK *****
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17  *
18  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
19  * All rights reserved.
20  *
21  * Contributor(s): Full recode, Ton Roosendaal, Crete 2005
22  *
23  * ***** END GPL LICENSE BLOCK *****
24  */
25
26 /** \file blender/blenkernel/intern/armature.c
27  *  \ingroup bke
28  */
29
30
31 #include <ctype.h>
32 #include <stdlib.h>
33 #include <math.h>
34 #include <string.h>
35 #include <stdio.h>
36 #include <float.h>
37
38 #include "MEM_guardedalloc.h"
39
40 #include "BLI_math.h"
41 #include "BLI_blenlib.h"
42 #include "BLI_utildefines.h"
43
44 #include "DNA_anim_types.h"
45 #include "DNA_armature_types.h"
46 #include "DNA_constraint_types.h"
47 #include "DNA_mesh_types.h"
48 #include "DNA_lattice_types.h"
49 #include "DNA_meshdata_types.h"
50 #include "DNA_nla_types.h"
51 #include "DNA_scene_types.h"
52 #include "DNA_object_types.h"
53
54 #include "BKE_animsys.h"
55 #include "BKE_armature.h"
56 #include "BKE_action.h"
57 #include "BKE_anim.h"
58 #include "BKE_constraint.h"
59 #include "BKE_curve.h"
60 #include "BKE_depsgraph.h"
61 #include "BKE_DerivedMesh.h"
62 #include "BKE_deform.h"
63 #include "BKE_displist.h"
64 #include "BKE_global.h"
65 #include "BKE_idprop.h"
66 #include "BKE_library.h"
67 #include "BKE_lattice.h"
68 #include "BKE_main.h"
69 #include "BKE_object.h"
70 #include "BKE_scene.h"
71
72 #include "BIK_api.h"
73 #include "BKE_sketch.h"
74
75 /* **************** Generic Functions, data level *************** */
76
77 bArmature *BKE_armature_add(Main *bmain, const char *name)
78 {
79         bArmature *arm;
80
81         arm = BKE_libblock_alloc(&bmain->armature, ID_AR, name);
82         arm->deformflag = ARM_DEF_VGROUP | ARM_DEF_ENVELOPE;
83         arm->flag = ARM_COL_CUSTOM; /* custom bone-group colors */
84         arm->layer = 1;
85         return arm;
86 }
87
88 bArmature *BKE_armature_from_object(Object *ob)
89 {
90         if (ob->type == OB_ARMATURE)
91                 return (bArmature *)ob->data;
92         return NULL;
93 }
94
95 void BKE_armature_bonelist_free(ListBase *lb)
96 {
97         Bone *bone;
98
99         for (bone = lb->first; bone; bone = bone->next) {
100                 if (bone->prop) {
101                         IDP_FreeProperty(bone->prop);
102                         MEM_freeN(bone->prop);
103                 }
104                 BKE_armature_bonelist_free(&bone->childbase);
105         }
106
107         BLI_freelistN(lb);
108 }
109
110 void BKE_armature_free(bArmature *arm)
111 {
112         if (arm) {
113                 BKE_armature_bonelist_free(&arm->bonebase);
114
115                 /* free editmode data */
116                 if (arm->edbo) {
117                         BLI_freelistN(arm->edbo);
118
119                         MEM_freeN(arm->edbo);
120                         arm->edbo = NULL;
121                 }
122
123                 /* free sketch */
124                 if (arm->sketch) {
125                         freeSketch(arm->sketch);
126                         arm->sketch = NULL;
127                 }
128
129                 /* free animation data */
130                 if (arm->adt) {
131                         BKE_free_animdata(&arm->id);
132                         arm->adt = NULL;
133                 }
134         }
135 }
136
137 void BKE_armature_make_local(bArmature *arm)
138 {
139         Main *bmain = G.main;
140         int is_local = FALSE, is_lib = FALSE;
141         Object *ob;
142
143         if (arm->id.lib == NULL)
144                 return;
145         if (arm->id.us == 1) {
146                 id_clear_lib_data(bmain, &arm->id);
147                 return;
148         }
149
150         for (ob = bmain->object.first; ob && ELEM(0, is_lib, is_local); ob = ob->id.next) {
151                 if (ob->data == arm) {
152                         if (ob->id.lib)
153                                 is_lib = TRUE;
154                         else
155                                 is_local = TRUE;
156                 }
157         }
158
159         if (is_local && is_lib == FALSE) {
160                 id_clear_lib_data(bmain, &arm->id);
161         }
162         else if (is_local && is_lib) {
163                 bArmature *arm_new = BKE_armature_copy(arm);
164                 arm_new->id.us = 0;
165
166                 /* Remap paths of new ID using old library as base. */
167                 BKE_id_lib_local_paths(bmain, arm->id.lib, &arm_new->id);
168
169                 for (ob = bmain->object.first; ob; ob = ob->id.next) {
170                         if (ob->data == arm) {
171                                 if (ob->id.lib == NULL) {
172                                         ob->data = arm_new;
173                                         arm_new->id.us++;
174                                         arm->id.us--;
175                                 }
176                         }
177                 }
178         }
179 }
180
181 static void copy_bonechildren(Bone *newBone, Bone *oldBone, Bone *actBone, Bone **newActBone)
182 {
183         Bone *curBone, *newChildBone;
184
185         if (oldBone == actBone)
186                 *newActBone = newBone;
187
188         if (oldBone->prop)
189                 newBone->prop = IDP_CopyProperty(oldBone->prop);
190
191         /* Copy this bone's list */
192         BLI_duplicatelist(&newBone->childbase, &oldBone->childbase);
193
194         /* For each child in the list, update it's children */
195         newChildBone = newBone->childbase.first;
196         for (curBone = oldBone->childbase.first; curBone; curBone = curBone->next) {
197                 newChildBone->parent = newBone;
198                 copy_bonechildren(newChildBone, curBone, actBone, newActBone);
199                 newChildBone = newChildBone->next;
200         }
201 }
202
203 bArmature *BKE_armature_copy(bArmature *arm)
204 {
205         bArmature *newArm;
206         Bone *oldBone, *newBone;
207         Bone *newActBone = NULL;
208
209         newArm = BKE_libblock_copy(&arm->id);
210         BLI_duplicatelist(&newArm->bonebase, &arm->bonebase);
211
212         /* Duplicate the childrens' lists */
213         newBone = newArm->bonebase.first;
214         for (oldBone = arm->bonebase.first; oldBone; oldBone = oldBone->next) {
215                 newBone->parent = NULL;
216                 copy_bonechildren(newBone, oldBone, arm->act_bone, &newActBone);
217                 newBone = newBone->next;
218         }
219
220         newArm->act_bone = newActBone;
221
222         newArm->edbo = NULL;
223         newArm->act_edbone = NULL;
224         newArm->sketch = NULL;
225
226         return newArm;
227 }
228
229 static Bone *get_named_bone_bonechildren(Bone *bone, const char *name)
230 {
231         Bone *curBone, *rbone;
232
233         if (!strcmp(bone->name, name))
234                 return bone;
235
236         for (curBone = bone->childbase.first; curBone; curBone = curBone->next) {
237                 rbone = get_named_bone_bonechildren(curBone, name);
238                 if (rbone)
239                         return rbone;
240         }
241
242         return NULL;
243 }
244
245
246 /* Walk the list until the bone is found */
247 Bone *BKE_armature_find_bone_name(bArmature *arm, const char *name)
248 {
249         Bone *bone = NULL, *curBone;
250
251         if (!arm)
252                 return NULL;
253
254         for (curBone = arm->bonebase.first; curBone; curBone = curBone->next) {
255                 bone = get_named_bone_bonechildren(curBone, name);
256                 if (bone)
257                         return bone;
258         }
259
260         return bone;
261 }
262
263 /* Finds the best possible extension to the name on a particular axis. (For renaming, check for
264  * unique names afterwards) strip_number: removes number extensions  (TODO: not used)
265  * axis: the axis to name on
266  * head/tail: the head/tail co-ordinate of the bone on the specified axis */
267 int bone_autoside_name(char name[MAXBONENAME], int UNUSED(strip_number), short axis, float head, float tail)
268 {
269         unsigned int len;
270         char basename[MAXBONENAME] = "";
271         char extension[5] = "";
272
273         len = strlen(name);
274         if (len == 0)
275                 return 0;
276         BLI_strncpy(basename, name, sizeof(basename));
277
278         /* Figure out extension to append:
279          *      - The extension to append is based upon the axis that we are working on.
280          *      - If head happens to be on 0, then we must consider the tail position as well to decide
281          *        which side the bone is on
282          *              -> If tail is 0, then it's bone is considered to be on axis, so no extension should be added
283          *              -> Otherwise, extension is added from perspective of object based on which side tail goes to
284          *      - If head is non-zero, extension is added from perspective of object based on side head is on
285          */
286         if (axis == 2) {
287                 /* z-axis - vertical (top/bottom) */
288                 if (IS_EQ(head, 0)) {
289                         if (tail < 0)
290                                 strcpy(extension, "Bot");
291                         else if (tail > 0)
292                                 strcpy(extension, "Top");
293                 }
294                 else {
295                         if (head < 0)
296                                 strcpy(extension, "Bot");
297                         else
298                                 strcpy(extension, "Top");
299                 }
300         }
301         else if (axis == 1) {
302                 /* y-axis - depth (front/back) */
303                 if (IS_EQ(head, 0)) {
304                         if (tail < 0)
305                                 strcpy(extension, "Fr");
306                         else if (tail > 0)
307                                 strcpy(extension, "Bk");
308                 }
309                 else {
310                         if (head < 0)
311                                 strcpy(extension, "Fr");
312                         else
313                                 strcpy(extension, "Bk");
314                 }
315         }
316         else {
317                 /* x-axis - horizontal (left/right) */
318                 if (IS_EQ(head, 0)) {
319                         if (tail < 0)
320                                 strcpy(extension, "R");
321                         else if (tail > 0)
322                                 strcpy(extension, "L");
323                 }
324                 else {
325                         if (head < 0)
326                                 strcpy(extension, "R");
327                         /* XXX Shouldn't this be simple else, as for z and y axes? */
328                         else if (head > 0)
329                                 strcpy(extension, "L");
330                 }
331         }
332
333         /* Simple name truncation
334          *      - truncate if there is an extension and it wouldn't be able to fit
335          *      - otherwise, just append to end
336          */
337         if (extension[0]) {
338                 int change = 1;
339
340                 while (change) { /* remove extensions */
341                         change = 0;
342                         if (len > 2 && basename[len - 2] == '.') {
343                                 if (basename[len - 1] == 'L' || basename[len - 1] == 'R') { /* L R */
344                                         basename[len - 2] = '\0';
345                                         len -= 2;
346                                         change = 1;
347                                 }
348                         }
349                         else if (len > 3 && basename[len - 3] == '.') {
350                                 if ((basename[len - 2] == 'F' && basename[len - 1] == 'r') || /* Fr */
351                                     (basename[len - 2] == 'B' && basename[len - 1] == 'k')) /* Bk */
352                                 {
353                                         basename[len - 3] = '\0';
354                                         len -= 3;
355                                         change = 1;
356                                 }
357                         }
358                         else if (len > 4 && basename[len - 4] == '.') {
359                                 if ((basename[len - 3] == 'T' && basename[len - 2] == 'o' && basename[len - 1] == 'p') || /* Top */
360                                     (basename[len - 3] == 'B' && basename[len - 2] == 'o' && basename[len - 1] == 't')) /* Bot */
361                                 {
362                                         basename[len - 4] = '\0';
363                                         len -= 4;
364                                         change = 1;
365                                 }
366                         }
367                 }
368
369                 if ((MAXBONENAME - len) < strlen(extension) + 1) { /* add 1 for the '.' */
370                         strncpy(name, basename, len - strlen(extension));
371                 }
372
373                 BLI_snprintf(name, MAXBONENAME, "%s.%s", basename, extension);
374
375                 return 1;
376         }
377
378         else
379                 return 0;
380 }
381
382 /* ************* B-Bone support ******************* */
383
384 #define MAX_BBONE_SUBDIV    32
385
386 /* data has MAX_BBONE_SUBDIV+1 interpolated points, will become desired amount with equal distances */
387 static void equalize_bezier(float *data, int desired)
388 {
389         float *fp, totdist, ddist, dist, fac1, fac2;
390         float pdist[MAX_BBONE_SUBDIV + 1];
391         float temp[MAX_BBONE_SUBDIV + 1][4];
392         int a, nr;
393
394         pdist[0] = 0.0f;
395         for (a = 0, fp = data; a < MAX_BBONE_SUBDIV; a++, fp += 4) {
396                 copy_qt_qt(temp[a], fp);
397                 pdist[a + 1] = pdist[a] + len_v3v3(fp, fp + 4);
398         }
399         /* do last point */
400         copy_qt_qt(temp[a], fp);
401         totdist = pdist[a];
402
403         /* go over distances and calculate new points */
404         ddist = totdist / ((float)desired);
405         nr = 1;
406         for (a = 1, fp = data + 4; a < desired; a++, fp += 4) {
407                 dist = ((float)a) * ddist;
408
409                 /* we're looking for location (distance) 'dist' in the array */
410                 while ((dist >= pdist[nr]) && nr < MAX_BBONE_SUBDIV)
411                         nr++;
412
413                 fac1 = pdist[nr] - pdist[nr - 1];
414                 fac2 = pdist[nr] - dist;
415                 fac1 = fac2 / fac1;
416                 fac2 = 1.0f - fac1;
417
418                 fp[0] = fac1 * temp[nr - 1][0] + fac2 * temp[nr][0];
419                 fp[1] = fac1 * temp[nr - 1][1] + fac2 * temp[nr][1];
420                 fp[2] = fac1 * temp[nr - 1][2] + fac2 * temp[nr][2];
421                 fp[3] = fac1 * temp[nr - 1][3] + fac2 * temp[nr][3];
422         }
423         /* set last point, needed for orientation calculus */
424         copy_qt_qt(fp, temp[MAX_BBONE_SUBDIV]);
425 }
426
427 /* returns pointer to static array, filled with desired amount of bone->segments elements */
428 /* this calculation is done  within unit bone space */
429 Mat4 *b_bone_spline_setup(bPoseChannel *pchan, int rest)
430 {
431         static Mat4 bbone_array[MAX_BBONE_SUBDIV];
432         static Mat4 bbone_rest_array[MAX_BBONE_SUBDIV];
433         Mat4 *result_array = (rest) ? bbone_rest_array : bbone_array;
434         bPoseChannel *next, *prev;
435         Bone *bone = pchan->bone;
436         float h1[3], h2[3], scale[3], length, hlength1, hlength2, roll1 = 0.0f, roll2;
437         float mat3[3][3], imat[4][4], posemat[4][4], scalemat[4][4], iscalemat[4][4];
438         float data[MAX_BBONE_SUBDIV + 1][4], *fp;
439         int a, do_scale = 0;
440
441         length = bone->length;
442
443         if (!rest) {
444                 /* check if we need to take non-uniform bone scaling into account */
445                 scale[0] = len_v3(pchan->pose_mat[0]);
446                 scale[1] = len_v3(pchan->pose_mat[1]);
447                 scale[2] = len_v3(pchan->pose_mat[2]);
448
449                 if (fabsf(scale[0] - scale[1]) > 1e-6f || fabsf(scale[1] - scale[2]) > 1e-6f) {
450                         unit_m4(scalemat);
451                         scalemat[0][0] = scale[0];
452                         scalemat[1][1] = scale[1];
453                         scalemat[2][2] = scale[2];
454                         invert_m4_m4(iscalemat, scalemat);
455
456                         length *= scale[1];
457                         do_scale = 1;
458                 }
459         }
460
461         hlength1 = bone->ease1 * length * 0.390464f; /* 0.5f * sqrt(2) * kappa, the handle length for near-perfect circles */
462         hlength2 = bone->ease2 * length * 0.390464f;
463
464         /* evaluate next and prev bones */
465         if (bone->flag & BONE_CONNECTED)
466                 prev = pchan->parent;
467         else
468                 prev = NULL;
469
470         next = pchan->child;
471
472         /* find the handle points, since this is inside bone space, the
473          * first point = (0, 0, 0)
474          * last point =  (0, length, 0) */
475         if (rest) {
476                 invert_m4_m4(imat, pchan->bone->arm_mat);
477         }
478         else if (do_scale) {
479                 copy_m4_m4(posemat, pchan->pose_mat);
480                 normalize_m4(posemat);
481                 invert_m4_m4(imat, posemat);
482         }
483         else
484                 invert_m4_m4(imat, pchan->pose_mat);
485
486         if (prev) {
487                 float difmat[4][4], result[3][3], imat3[3][3];
488
489                 /* transform previous point inside this bone space */
490                 if (rest)
491                         copy_v3_v3(h1, prev->bone->arm_head);
492                 else
493                         copy_v3_v3(h1, prev->pose_head);
494                 mul_m4_v3(imat, h1);
495
496                 if (prev->bone->segments > 1) {
497                         /* if previous bone is B-bone too, use average handle direction */
498                         h1[1] -= length;
499                         roll1 = 0.0f;
500                 }
501
502                 normalize_v3(h1);
503                 mul_v3_fl(h1, -hlength1);
504
505                 if (prev->bone->segments == 1) {
506                         /* find the previous roll to interpolate */
507                         if (rest)
508                                 mul_m4_m4m4(difmat, imat, prev->bone->arm_mat);
509                         else
510                                 mul_m4_m4m4(difmat, imat, prev->pose_mat);
511                         copy_m3_m4(result, difmat); /* the desired rotation at beginning of next bone */
512
513                         vec_roll_to_mat3(h1, 0.0f, mat3); /* the result of vec_roll without roll */
514
515                         invert_m3_m3(imat3, mat3);
516                         mul_m3_m3m3(mat3, result, imat3); /* the matrix transforming vec_roll to desired roll */
517
518                         roll1 = (float)atan2(mat3[2][0], mat3[2][2]);
519                 }
520         }
521         else {
522                 h1[0] = 0.0f; h1[1] = hlength1; h1[2] = 0.0f;
523                 roll1 = 0.0f;
524         }
525         if (next) {
526                 float difmat[4][4], result[3][3], imat3[3][3];
527
528                 /* transform next point inside this bone space */
529                 if (rest)
530                         copy_v3_v3(h2, next->bone->arm_tail);
531                 else
532                         copy_v3_v3(h2, next->pose_tail);
533                 mul_m4_v3(imat, h2);
534
535                 /* if next bone is B-bone too, use average handle direction */
536                 if (next->bone->segments > 1) {
537                         /* pass */
538                 }
539                 else {
540                         h2[1] -= length;
541                 }
542                 normalize_v3(h2);
543
544                 /* find the next roll to interpolate as well */
545                 if (rest)
546                         mul_m4_m4m4(difmat, imat, next->bone->arm_mat);
547                 else
548                         mul_m4_m4m4(difmat, imat, next->pose_mat);
549                 copy_m3_m4(result, difmat); /* the desired rotation at beginning of next bone */
550
551                 vec_roll_to_mat3(h2, 0.0f, mat3); /* the result of vec_roll without roll */
552
553                 invert_m3_m3(imat3, mat3);
554                 mul_m3_m3m3(mat3, imat3, result); /* the matrix transforming vec_roll to desired roll */
555
556                 roll2 = (float)atan2(mat3[2][0], mat3[2][2]);
557
558                 /* and only now negate handle */
559                 mul_v3_fl(h2, -hlength2);
560         }
561         else {
562                 h2[0] = 0.0f; h2[1] = -hlength2; h2[2] = 0.0f;
563                 roll2 = 0.0;
564         }
565
566         /* make curve */
567         if (bone->segments > MAX_BBONE_SUBDIV)
568                 bone->segments = MAX_BBONE_SUBDIV;
569
570         BKE_curve_forward_diff_bezier(0.0f,  h1[0],                               h2[0],                               0.0f,   data[0],     MAX_BBONE_SUBDIV, 4 * sizeof(float));
571         BKE_curve_forward_diff_bezier(0.0f,  h1[1],                               length + h2[1],                      length, data[0] + 1, MAX_BBONE_SUBDIV, 4 * sizeof(float));
572         BKE_curve_forward_diff_bezier(0.0f,  h1[2],                               h2[2],                               0.0f,   data[0] + 2, MAX_BBONE_SUBDIV, 4 * sizeof(float));
573         BKE_curve_forward_diff_bezier(roll1, roll1 + 0.390464f * (roll2 - roll1), roll2 - 0.390464f * (roll2 - roll1), roll2,  data[0] + 3, MAX_BBONE_SUBDIV, 4 * sizeof(float));
574
575         equalize_bezier(data[0], bone->segments); /* note: does stride 4! */
576
577         /* make transformation matrices for the segments for drawing */
578         for (a = 0, fp = data[0]; a < bone->segments; a++, fp += 4) {
579                 sub_v3_v3v3(h1, fp + 4, fp);
580                 vec_roll_to_mat3(h1, fp[3], mat3); /* fp[3] is roll */
581
582                 copy_m4_m3(result_array[a].mat, mat3);
583                 copy_v3_v3(result_array[a].mat[3], fp);
584
585                 if (do_scale) {
586                         /* correct for scaling when this matrix is used in scaled space */
587                         mul_serie_m4(result_array[a].mat, iscalemat, result_array[a].mat, scalemat, NULL, NULL, NULL, NULL, NULL);
588                 }
589         }
590
591         return result_array;
592 }
593
594 /* ************ Armature Deform ******************* */
595
596 typedef struct bPoseChanDeform {
597         Mat4     *b_bone_mats;
598         DualQuat *dual_quat;
599         DualQuat *b_bone_dual_quats;
600 } bPoseChanDeform;
601
602 static void pchan_b_bone_defmats(bPoseChannel *pchan, bPoseChanDeform *pdef_info, int use_quaternion)
603 {
604         Bone *bone = pchan->bone;
605         Mat4 *b_bone = b_bone_spline_setup(pchan, 0);
606         Mat4 *b_bone_rest = b_bone_spline_setup(pchan, 1);
607         Mat4 *b_bone_mats;
608         DualQuat *b_bone_dual_quats = NULL;
609         float tmat[4][4] = MAT4_UNITY;
610         int a;
611
612         /* allocate b_bone matrices and dual quats */
613         b_bone_mats = MEM_mallocN((1 + bone->segments) * sizeof(Mat4), "BBone defmats");
614         pdef_info->b_bone_mats = b_bone_mats;
615
616         if (use_quaternion) {
617                 b_bone_dual_quats = MEM_mallocN((bone->segments) * sizeof(DualQuat), "BBone dqs");
618                 pdef_info->b_bone_dual_quats = b_bone_dual_quats;
619         }
620
621         /* first matrix is the inverse arm_mat, to bring points in local bone space
622          * for finding out which segment it belongs to */
623         invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat);
624
625         /* then we make the b_bone_mats:
626          * - first transform to local bone space
627          * - translate over the curve to the bbone mat space
628          * - transform with b_bone matrix
629          * - transform back into global space */
630
631         for (a = 0; a < bone->segments; a++) {
632                 invert_m4_m4(tmat, b_bone_rest[a].mat);
633
634                 mul_serie_m4(b_bone_mats[a + 1].mat, pchan->chan_mat, bone->arm_mat, b_bone[a].mat, tmat, b_bone_mats[0].mat,
635                              NULL, NULL, NULL);
636
637                 if (use_quaternion)
638                         mat4_to_dquat(&b_bone_dual_quats[a], bone->arm_mat, b_bone_mats[a + 1].mat);
639         }
640 }
641
642 static void b_bone_deform(bPoseChanDeform *pdef_info, Bone *bone, float co[3], DualQuat *dq, float defmat[3][3])
643 {
644         Mat4 *b_bone = pdef_info->b_bone_mats;
645         float (*mat)[4] = b_bone[0].mat;
646         float segment, y;
647         int a;
648
649         /* need to transform co back to bonespace, only need y */
650         y = mat[0][1] * co[0] + mat[1][1] * co[1] + mat[2][1] * co[2] + mat[3][1];
651
652         /* now calculate which of the b_bones are deforming this */
653         segment = bone->length / ((float)bone->segments);
654         a = (int)(y / segment);
655
656         /* note; by clamping it extends deform at endpoints, goes best with
657          * straight joints in restpos. */
658         CLAMP(a, 0, bone->segments - 1);
659
660         if (dq) {
661                 copy_dq_dq(dq, &(pdef_info->b_bone_dual_quats)[a]);
662         }
663         else {
664                 mul_m4_v3(b_bone[a + 1].mat, co);
665
666                 if (defmat) {
667                         copy_m3_m4(defmat, b_bone[a + 1].mat);
668                 }
669         }
670 }
671
672 /* using vec with dist to bone b1 - b2 */
673 float distfactor_to_bone(const float vec[3], const float b1[3], const float b2[3], float rad1, float rad2, float rdist)
674 {
675         float dist = 0.0f;
676         float bdelta[3];
677         float pdelta[3];
678         float hsqr, a, l, rad;
679
680         sub_v3_v3v3(bdelta, b2, b1);
681         l = normalize_v3(bdelta);
682
683         sub_v3_v3v3(pdelta, vec, b1);
684
685         a = dot_v3v3(bdelta, pdelta);
686         hsqr = dot_v3v3(pdelta, pdelta);
687
688         if (a < 0.0f) {
689                 /* If we're past the end of the bone, do a spherical field attenuation thing */
690                 dist = len_squared_v3v3(b1, vec);
691                 rad = rad1;
692         }
693         else if (a > l) {
694                 /* If we're past the end of the bone, do a spherical field attenuation thing */
695                 dist = len_squared_v3v3(b2, vec);
696                 rad = rad2;
697         }
698         else {
699                 dist = (hsqr - (a * a));
700
701                 if (l != 0.0f) {
702                         rad = a / l;
703                         rad = rad * rad2 + (1.0f - rad) * rad1;
704                 }
705                 else
706                         rad = rad1;
707         }
708
709         a = rad * rad;
710         if (dist < a)
711                 return 1.0f;
712         else {
713                 l = rad + rdist;
714                 l *= l;
715                 if (rdist == 0.0f || dist >= l)
716                         return 0.0f;
717                 else {
718                         a = sqrtf(dist) - rad;
719                         return 1.0f - (a * a) / (rdist * rdist);
720                 }
721         }
722 }
723
724 static void pchan_deform_mat_add(bPoseChannel *pchan, float weight, float bbonemat[3][3], float mat[3][3])
725 {
726         float wmat[3][3];
727
728         if (pchan->bone->segments > 1)
729                 copy_m3_m3(wmat, bbonemat);
730         else
731                 copy_m3_m4(wmat, pchan->chan_mat);
732
733         mul_m3_fl(wmat, weight);
734         add_m3_m3m3(mat, mat, wmat);
735 }
736
737 static float dist_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float vec[3], DualQuat *dq,
738                               float mat[3][3], const float co[3])
739 {
740         Bone *bone = pchan->bone;
741         float fac, contrib = 0.0;
742         float cop[3], bbonemat[3][3];
743         DualQuat bbonedq;
744
745         if (bone == NULL)
746                 return 0.0f;
747
748         copy_v3_v3(cop, co);
749
750         fac = distfactor_to_bone(cop, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
751
752         if (fac > 0.0f) {
753                 fac *= bone->weight;
754                 contrib = fac;
755                 if (contrib > 0.0f) {
756                         if (vec) {
757                                 if (bone->segments > 1)
758                                         /* applies on cop and bbonemat */
759                                         b_bone_deform(pdef_info, bone, cop, NULL, (mat) ? bbonemat : NULL);
760                                 else
761                                         mul_m4_v3(pchan->chan_mat, cop);
762
763                                 /* Make this a delta from the base position */
764                                 sub_v3_v3(cop, co);
765                                 madd_v3_v3fl(vec, cop, fac);
766
767                                 if (mat)
768                                         pchan_deform_mat_add(pchan, fac, bbonemat, mat);
769                         }
770                         else {
771                                 if (bone->segments > 1) {
772                                         b_bone_deform(pdef_info, bone, cop, &bbonedq, NULL);
773                                         add_weighted_dq_dq(dq, &bbonedq, fac);
774                                 }
775                                 else
776                                         add_weighted_dq_dq(dq, pdef_info->dual_quat, fac);
777                         }
778                 }
779         }
780
781         return contrib;
782 }
783
784 static void pchan_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float weight, float vec[3], DualQuat *dq,
785                               float mat[3][3], const float co[3], float *contrib)
786 {
787         float cop[3], bbonemat[3][3];
788         DualQuat bbonedq;
789
790         if (!weight)
791                 return;
792
793         copy_v3_v3(cop, co);
794
795         if (vec) {
796                 if (pchan->bone->segments > 1)
797                         /* applies on cop and bbonemat */
798                         b_bone_deform(pdef_info, pchan->bone, cop, NULL, (mat) ? bbonemat : NULL);
799                 else
800                         mul_m4_v3(pchan->chan_mat, cop);
801
802                 vec[0] += (cop[0] - co[0]) * weight;
803                 vec[1] += (cop[1] - co[1]) * weight;
804                 vec[2] += (cop[2] - co[2]) * weight;
805
806                 if (mat)
807                         pchan_deform_mat_add(pchan, weight, bbonemat, mat);
808         }
809         else {
810                 if (pchan->bone->segments > 1) {
811                         b_bone_deform(pdef_info, pchan->bone, cop, &bbonedq, NULL);
812                         add_weighted_dq_dq(dq, &bbonedq, weight);
813                 }
814                 else
815                         add_weighted_dq_dq(dq, pdef_info->dual_quat, weight);
816         }
817
818         (*contrib) += weight;
819 }
820
821 void armature_deform_verts(Object *armOb, Object *target, DerivedMesh *dm, float (*vertexCos)[3],
822                            float (*defMats)[3][3], int numVerts, int deformflag,
823                            float (*prevCos)[3], const char *defgrp_name)
824 {
825         bPoseChanDeform *pdef_info_array;
826         bPoseChanDeform *pdef_info = NULL;
827         bArmature *arm = armOb->data;
828         bPoseChannel *pchan, **defnrToPC = NULL;
829         int *defnrToPCIndex = NULL;
830         MDeformVert *dverts = NULL;
831         bDeformGroup *dg;
832         DualQuat *dualquats = NULL;
833         float obinv[4][4], premat[4][4], postmat[4][4];
834         const short use_envelope = deformflag & ARM_DEF_ENVELOPE;
835         const short use_quaternion = deformflag & ARM_DEF_QUATERNION;
836         const short invert_vgroup = deformflag & ARM_DEF_INVERT_VGROUP;
837         int defbase_tot = 0;       /* safety for vertexgroup index overflow */
838         int i, target_totvert = 0; /* safety for vertexgroup overflow */
839         int use_dverts = FALSE;
840         int armature_def_nr;
841         int totchan;
842
843         if (arm->edbo) return;
844
845         invert_m4_m4(obinv, target->obmat);
846         copy_m4_m4(premat, target->obmat);
847         mul_m4_m4m4(postmat, obinv, armOb->obmat);
848         invert_m4_m4(premat, postmat);
849
850         /* bone defmats are already in the channels, chan_mat */
851
852         /* initialize B_bone matrices and dual quaternions */
853         totchan = BLI_countlist(&armOb->pose->chanbase);
854
855         if (use_quaternion) {
856                 dualquats = MEM_callocN(sizeof(DualQuat) * totchan, "dualquats");
857         }
858
859         pdef_info_array = MEM_callocN(sizeof(bPoseChanDeform) * totchan, "bPoseChanDeform");
860
861         totchan = 0;
862         pdef_info = pdef_info_array;
863         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
864                 if (!(pchan->bone->flag & BONE_NO_DEFORM)) {
865                         if (pchan->bone->segments > 1)
866                                 pchan_b_bone_defmats(pchan, pdef_info, use_quaternion);
867
868                         if (use_quaternion) {
869                                 pdef_info->dual_quat = &dualquats[totchan++];
870                                 mat4_to_dquat(pdef_info->dual_quat, pchan->bone->arm_mat, pchan->chan_mat);
871                         }
872                 }
873         }
874
875         /* get the def_nr for the overall armature vertex group if present */
876         armature_def_nr = defgroup_name_index(target, defgrp_name);
877
878         if (ELEM(target->type, OB_MESH, OB_LATTICE)) {
879                 defbase_tot = BLI_countlist(&target->defbase);
880
881                 if (target->type == OB_MESH) {
882                         Mesh *me = target->data;
883                         dverts = me->dvert;
884                         if (dverts)
885                                 target_totvert = me->totvert;
886                 }
887                 else {
888                         Lattice *lt = target->data;
889                         dverts = lt->dvert;
890                         if (dverts)
891                                 target_totvert = lt->pntsu * lt->pntsv * lt->pntsw;
892                 }
893         }
894
895         /* get a vertex-deform-index to posechannel array */
896         if (deformflag & ARM_DEF_VGROUP) {
897                 if (ELEM(target->type, OB_MESH, OB_LATTICE)) {
898                         /* if we have a DerivedMesh, only use dverts if it has them */
899                         if (dm) {
900                                 use_dverts = (dm->getVertData(dm, 0, CD_MDEFORMVERT) != NULL);
901                         }
902                         else if (dverts) {
903                                 use_dverts = TRUE;
904                         }
905
906                         if (use_dverts) {
907                                 defnrToPC = MEM_callocN(sizeof(*defnrToPC) * defbase_tot, "defnrToBone");
908                                 defnrToPCIndex = MEM_callocN(sizeof(*defnrToPCIndex) * defbase_tot, "defnrToIndex");
909                                 for (i = 0, dg = target->defbase.first; dg; i++, dg = dg->next) {
910                                         defnrToPC[i] = BKE_pose_channel_find_name(armOb->pose, dg->name);
911                                         /* exclude non-deforming bones */
912                                         if (defnrToPC[i]) {
913                                                 if (defnrToPC[i]->bone->flag & BONE_NO_DEFORM) {
914                                                         defnrToPC[i] = NULL;
915                                                 }
916                                                 else {
917                                                         defnrToPCIndex[i] = BLI_findindex(&armOb->pose->chanbase, defnrToPC[i]);
918                                                 }
919                                         }
920                                 }
921                         }
922                 }
923         }
924
925         for (i = 0; i < numVerts; i++) {
926                 MDeformVert *dvert;
927                 DualQuat sumdq, *dq = NULL;
928                 float *co, dco[3];
929                 float sumvec[3], summat[3][3];
930                 float *vec = NULL, (*smat)[3] = NULL;
931                 float contrib = 0.0f;
932                 float armature_weight = 1.0f; /* default to 1 if no overall def group */
933                 float prevco_weight = 1.0f;   /* weight for optional cached vertexcos */
934
935                 if (use_quaternion) {
936                         memset(&sumdq, 0, sizeof(DualQuat));
937                         dq = &sumdq;
938                 }
939                 else {
940                         sumvec[0] = sumvec[1] = sumvec[2] = 0.0f;
941                         vec = sumvec;
942
943                         if (defMats) {
944                                 zero_m3(summat);
945                                 smat = summat;
946                         }
947                 }
948
949                 if (use_dverts || armature_def_nr != -1) {
950                         if (dm)
951                                 dvert = dm->getVertData(dm, i, CD_MDEFORMVERT);
952                         else if (dverts && i < target_totvert)
953                                 dvert = dverts + i;
954                         else
955                                 dvert = NULL;
956                 }
957                 else
958                         dvert = NULL;
959
960                 if (armature_def_nr != -1 && dvert) {
961                         armature_weight = defvert_find_weight(dvert, armature_def_nr);
962
963                         if (invert_vgroup)
964                                 armature_weight = 1.0f - armature_weight;
965
966                         /* hackish: the blending factor can be used for blending with prevCos too */
967                         if (prevCos) {
968                                 prevco_weight = armature_weight;
969                                 armature_weight = 1.0f;
970                         }
971                 }
972
973                 /* check if there's any  point in calculating for this vert */
974                 if (armature_weight == 0.0f)
975                         continue;
976
977                 /* get the coord we work on */
978                 co = prevCos ? prevCos[i] : vertexCos[i];
979
980                 /* Apply the object's matrix */
981                 mul_m4_v3(premat, co);
982
983                 if (use_dverts && dvert && dvert->totweight) { /* use weight groups ? */
984                         MDeformWeight *dw = dvert->dw;
985                         int deformed = 0;
986                         unsigned int j;
987
988                         for (j = dvert->totweight; j != 0; j--, dw++) {
989                                 const int index = dw->def_nr;
990                                 if (index >= 0 && index < defbase_tot && (pchan = defnrToPC[index])) {
991                                         float weight = dw->weight;
992                                         Bone *bone = pchan->bone;
993                                         pdef_info = pdef_info_array + defnrToPCIndex[index];
994
995                                         deformed = 1;
996
997                                         if (bone && bone->flag & BONE_MULT_VG_ENV) {
998                                                 weight *= distfactor_to_bone(co, bone->arm_head, bone->arm_tail,
999                                                                              bone->rad_head, bone->rad_tail, bone->dist);
1000                                         }
1001                                         pchan_bone_deform(pchan, pdef_info, weight, vec, dq, smat, co, &contrib);
1002                                 }
1003                         }
1004                         /* if there are vertexgroups but not groups with bones
1005                          * (like for softbody groups) */
1006                         if (deformed == 0 && use_envelope) {
1007                                 pdef_info = pdef_info_array;
1008                                 for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1009                                         if (!(pchan->bone->flag & BONE_NO_DEFORM))
1010                                                 contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
1011                                 }
1012                         }
1013                 }
1014                 else if (use_envelope) {
1015                         pdef_info = pdef_info_array;
1016                         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1017                                 if (!(pchan->bone->flag & BONE_NO_DEFORM))
1018                                         contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
1019                         }
1020                 }
1021
1022                 /* actually should be EPSILON? weight values and contrib can be like 10e-39 small */
1023                 if (contrib > 0.0001f) {
1024                         if (use_quaternion) {
1025                                 normalize_dq(dq, contrib);
1026
1027                                 if (armature_weight != 1.0f) {
1028                                         copy_v3_v3(dco, co);
1029                                         mul_v3m3_dq(dco, (defMats) ? summat : NULL, dq);
1030                                         sub_v3_v3(dco, co);
1031                                         mul_v3_fl(dco, armature_weight);
1032                                         add_v3_v3(co, dco);
1033                                 }
1034                                 else
1035                                         mul_v3m3_dq(co, (defMats) ? summat : NULL, dq);
1036
1037                                 smat = summat;
1038                         }
1039                         else {
1040                                 mul_v3_fl(vec, armature_weight / contrib);
1041                                 add_v3_v3v3(co, vec, co);
1042                         }
1043
1044                         if (defMats) {
1045                                 float pre[3][3], post[3][3], tmpmat[3][3];
1046
1047                                 copy_m3_m4(pre, premat);
1048                                 copy_m3_m4(post, postmat);
1049                                 copy_m3_m3(tmpmat, defMats[i]);
1050
1051                                 if (!use_quaternion) /* quaternion already is scale corrected */
1052                                         mul_m3_fl(smat, armature_weight / contrib);
1053
1054                                 mul_serie_m3(defMats[i], tmpmat, pre, smat, post, NULL, NULL, NULL, NULL);
1055                         }
1056                 }
1057
1058                 /* always, check above code */
1059                 mul_m4_v3(postmat, co);
1060
1061                 /* interpolate with previous modifier position using weight group */
1062                 if (prevCos) {
1063                         float mw = 1.0f - prevco_weight;
1064                         vertexCos[i][0] = prevco_weight * vertexCos[i][0] + mw * co[0];
1065                         vertexCos[i][1] = prevco_weight * vertexCos[i][1] + mw * co[1];
1066                         vertexCos[i][2] = prevco_weight * vertexCos[i][2] + mw * co[2];
1067                 }
1068         }
1069
1070         if (dualquats)
1071                 MEM_freeN(dualquats);
1072         if (defnrToPC)
1073                 MEM_freeN(defnrToPC);
1074         if (defnrToPCIndex)
1075                 MEM_freeN(defnrToPCIndex);
1076
1077         /* free B_bone matrices */
1078         pdef_info = pdef_info_array;
1079         for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
1080                 if (pdef_info->b_bone_mats)
1081                         MEM_freeN(pdef_info->b_bone_mats);
1082                 if (pdef_info->b_bone_dual_quats)
1083                         MEM_freeN(pdef_info->b_bone_dual_quats);
1084         }
1085
1086         MEM_freeN(pdef_info_array);
1087 }
1088
1089 /* ************ END Armature Deform ******************* */
1090
1091 void get_objectspace_bone_matrix(struct Bone *bone, float M_accumulatedMatrix[4][4], int UNUSED(root),
1092                                  int UNUSED(posed))
1093 {
1094         copy_m4_m4(M_accumulatedMatrix, bone->arm_mat);
1095 }
1096
1097 /* **************** Space to Space API ****************** */
1098
1099 /* Convert World-Space Matrix to Pose-Space Matrix */
1100 void BKE_armature_mat_world_to_pose(Object *ob, float inmat[4][4], float outmat[4][4])
1101 {
1102         float obmat[4][4];
1103
1104         /* prevent crashes */
1105         if (ob == NULL)
1106                 return;
1107
1108         /* get inverse of (armature) object's matrix  */
1109         invert_m4_m4(obmat, ob->obmat);
1110
1111         /* multiply given matrix by object's-inverse to find pose-space matrix */
1112         mul_m4_m4m4(outmat, inmat, obmat);
1113 }
1114
1115 /* Convert World-Space Location to Pose-Space Location
1116  * NOTE: this cannot be used to convert to pose-space location of the supplied
1117  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1118 void BKE_armature_loc_world_to_pose(Object *ob, const float inloc[3], float outloc[3])
1119 {
1120         float xLocMat[4][4] = MAT4_UNITY;
1121         float nLocMat[4][4];
1122
1123         /* build matrix for location */
1124         copy_v3_v3(xLocMat[3], inloc);
1125
1126         /* get bone-space cursor matrix and extract location */
1127         BKE_armature_mat_world_to_pose(ob, xLocMat, nLocMat);
1128         copy_v3_v3(outloc, nLocMat[3]);
1129 }
1130
1131 /* Simple helper, computes the offset bone matrix.
1132  *     offs_bone = yoffs(b-1) + root(b) + bonemat(b).
1133  * Not exported, as it is only used in this file currently... */
1134 static void get_offset_bone_mat(Bone *bone, float offs_bone[4][4])
1135 {
1136         if (!bone->parent)
1137                 return;
1138
1139         /* Bone transform itself. */
1140         copy_m4_m3(offs_bone, bone->bone_mat);
1141
1142         /* The bone's root offset (is in the parent's coordinate system). */
1143         copy_v3_v3(offs_bone[3], bone->head);
1144
1145         /* Get the length translation of parent (length along y axis). */
1146         offs_bone[3][1] += bone->parent->length;
1147 }
1148
1149 /* Construct the matrices (rot/scale and loc) to apply the PoseChannels into the armature (object) space.
1150  * I.e. (roughly) the "pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)" in the
1151  *     pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
1152  * ...function.
1153  *
1154  * This allows to get the transformations of a bone in its object space, *before* constraints (and IK)
1155  * get applied (used by pose evaluation code).
1156  * And reverse: to find pchan transformations needed to place a bone at a given loc/rot/scale
1157  * in object space (used by interactive transform, and snapping code).
1158  *
1159  * Note that, with the HINGE/NO_SCALE/NO_LOCAL_LOCATION options, the location matrix
1160  * will differ from the rotation/scale matrix...
1161  *
1162  * NOTE: This cannot be used to convert to pose-space transforms of the supplied
1163  *       pose-channel into its local space (i.e. 'visual'-keyframing).
1164  *       (note: I don't understand that, so I keep it :p --mont29).
1165  */
1166 void BKE_pchan_to_pose_mat(bPoseChannel *pchan, float rotscale_mat[4][4], float loc_mat[4][4])
1167 {
1168         Bone *bone, *parbone;
1169         bPoseChannel *parchan;
1170
1171         /* set up variables for quicker access below */
1172         bone = pchan->bone;
1173         parbone = bone->parent;
1174         parchan = pchan->parent;
1175
1176         if (parchan) {
1177                 float offs_bone[4][4];
1178                 /* yoffs(b-1) + root(b) + bonemat(b). */
1179                 get_offset_bone_mat(bone, offs_bone);
1180
1181                 /* Compose the rotscale matrix for this bone. */
1182                 if ((bone->flag & BONE_HINGE) && (bone->flag & BONE_NO_SCALE)) {
1183                         /* Parent rest rotation and scale. */
1184                         mul_m4_m4m4(rotscale_mat, parbone->arm_mat, offs_bone);
1185                 }
1186                 else if (bone->flag & BONE_HINGE) {
1187                         /* Parent rest rotation and pose scale. */
1188                         float tmat[4][4], tscale[3];
1189
1190                         /* Extract the scale of the parent pose matrix. */
1191                         mat4_to_size(tscale, parchan->pose_mat);
1192                         size_to_mat4(tmat, tscale);
1193
1194                         /* Applies the parent pose scale to the rest matrix. */
1195                         mul_m4_m4m4(tmat, tmat, parbone->arm_mat);
1196
1197                         mul_m4_m4m4(rotscale_mat, tmat, offs_bone);
1198                 }
1199                 else if (bone->flag & BONE_NO_SCALE) {
1200                         /* Parent pose rotation and rest scale (i.e. no scaling). */
1201                         float tmat[4][4];
1202                         copy_m4_m4(tmat, parchan->pose_mat);
1203                         normalize_m4(tmat);
1204                         mul_m4_m4m4(rotscale_mat, tmat, offs_bone);
1205                 }
1206                 else
1207                         mul_m4_m4m4(rotscale_mat, parchan->pose_mat, offs_bone);
1208
1209                 /* Compose the loc matrix for this bone. */
1210                 /* NOTE: That version does not modify bone's loc when HINGE/NO_SCALE options are set. */
1211
1212                 /* In this case, use the object's space *orientation*. */
1213                 if (bone->flag & BONE_NO_LOCAL_LOCATION) {
1214                         /* XXX I'm sure that code can be simplified! */
1215                         float bone_loc[4][4], bone_rotscale[3][3], tmat4[4][4], tmat3[3][3];
1216                         unit_m4(bone_loc);
1217                         unit_m4(loc_mat);
1218                         unit_m4(tmat4);
1219
1220                         mul_v3_m4v3(bone_loc[3], parchan->pose_mat, offs_bone[3]);
1221
1222                         unit_m3(bone_rotscale);
1223                         copy_m3_m4(tmat3, parchan->pose_mat);
1224                         mul_m3_m3m3(bone_rotscale, tmat3, bone_rotscale);
1225
1226                         copy_m4_m3(tmat4, bone_rotscale);
1227                         mul_m4_m4m4(loc_mat, bone_loc, tmat4);
1228                 }
1229                 /* Those flags do not affect position, use plain parent transform space! */
1230                 else if (bone->flag & (BONE_HINGE | BONE_NO_SCALE)) {
1231                         mul_m4_m4m4(loc_mat, parchan->pose_mat, offs_bone);
1232                 }
1233                 /* Else (i.e. default, usual case), just use the same matrix for rotation/scaling, and location. */
1234                 else
1235                         copy_m4_m4(loc_mat, rotscale_mat);
1236         }
1237         /* Root bones. */
1238         else {
1239                 /* Rotation/scaling. */
1240                 copy_m4_m4(rotscale_mat, pchan->bone->arm_mat);
1241                 /* Translation. */
1242                 if (pchan->bone->flag & BONE_NO_LOCAL_LOCATION) {
1243                         /* Translation of arm_mat, without the rotation. */
1244                         unit_m4(loc_mat);
1245                         copy_v3_v3(loc_mat[3], pchan->bone->arm_mat[3]);
1246                 }
1247                 else
1248                         copy_m4_m4(loc_mat, rotscale_mat);
1249         }
1250 }
1251
1252 /* Convert Pose-Space Matrix to Bone-Space Matrix.
1253  * NOTE: this cannot be used to convert to pose-space transforms of the supplied
1254  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1255 void BKE_armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[4][4], float outmat[4][4])
1256 {
1257         float rotscale_mat[4][4], loc_mat[4][4], inmat_[4][4];
1258
1259         /* Security, this allows to call with inmat == outmat! */
1260         copy_m4_m4(inmat_, inmat);
1261
1262         BKE_pchan_to_pose_mat(pchan, rotscale_mat, loc_mat);
1263         invert_m4(rotscale_mat);
1264         invert_m4(loc_mat);
1265
1266         mul_m4_m4m4(outmat, rotscale_mat, inmat_);
1267         mul_v3_m4v3(outmat[3], loc_mat, inmat_[3]);
1268 }
1269
1270 /* Convert Bone-Space Matrix to Pose-Space Matrix. */
1271 void BKE_armature_mat_bone_to_pose(bPoseChannel *pchan, float inmat[4][4], float outmat[4][4])
1272 {
1273         float rotscale_mat[4][4], loc_mat[4][4], inmat_[4][4];
1274
1275         /* Security, this allows to call with inmat == outmat! */
1276         copy_m4_m4(inmat_, inmat);
1277
1278         BKE_pchan_to_pose_mat(pchan, rotscale_mat, loc_mat);
1279
1280         mul_m4_m4m4(outmat, rotscale_mat, inmat_);
1281         mul_v3_m4v3(outmat[3], loc_mat, inmat_[3]);
1282 }
1283
1284 /* Convert Pose-Space Location to Bone-Space Location
1285  * NOTE: this cannot be used to convert to pose-space location of the supplied
1286  *       pose-channel into its local space (i.e. 'visual'-keyframing) */
1287 void BKE_armature_loc_pose_to_bone(bPoseChannel *pchan, const float inloc[3], float outloc[3])
1288 {
1289         float xLocMat[4][4] = MAT4_UNITY;
1290         float nLocMat[4][4];
1291
1292         /* build matrix for location */
1293         copy_v3_v3(xLocMat[3], inloc);
1294
1295         /* get bone-space cursor matrix and extract location */
1296         BKE_armature_mat_pose_to_bone(pchan, xLocMat, nLocMat);
1297         copy_v3_v3(outloc, nLocMat[3]);
1298 }
1299
1300 void BKE_armature_mat_pose_to_bone_ex(Object *ob, bPoseChannel *pchan, float inmat[4][4], float outmat[4][4])
1301 {
1302         bPoseChannel work_pchan = *pchan;
1303
1304         /* recalculate pose matrix with only parent transformations,
1305          * bone loc/sca/rot is ignored, scene and frame are not used. */
1306         BKE_pose_where_is_bone(NULL, ob, &work_pchan, 0.0f, FALSE);
1307
1308         /* find the matrix, need to remove the bone transforms first so this is
1309          * calculated as a matrix to set rather then a difference ontop of whats
1310          * already there. */
1311         unit_m4(outmat);
1312         BKE_pchan_apply_mat4(&work_pchan, outmat, FALSE);
1313
1314         BKE_armature_mat_pose_to_bone(&work_pchan, inmat, outmat);
1315 }
1316
1317 /* same as BKE_object_mat3_to_rot() */
1318 void BKE_pchan_mat3_to_rot(bPoseChannel *pchan, float mat[3][3], short use_compat)
1319 {
1320         switch (pchan->rotmode) {
1321                 case ROT_MODE_QUAT:
1322                         mat3_to_quat(pchan->quat, mat);
1323                         break;
1324                 case ROT_MODE_AXISANGLE:
1325                         mat3_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat);
1326                         break;
1327                 default: /* euler */
1328                         if (use_compat)
1329                                 mat3_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat);
1330                         else
1331                                 mat3_to_eulO(pchan->eul, pchan->rotmode, mat);
1332                         break;
1333         }
1334 }
1335
1336 /* Apply a 4x4 matrix to the pose bone,
1337  * similar to BKE_object_apply_mat4() */
1338 void BKE_pchan_apply_mat4(bPoseChannel *pchan, float mat[4][4], short use_compat)
1339 {
1340         float rot[3][3];
1341         mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat);
1342         BKE_pchan_mat3_to_rot(pchan, rot, use_compat);
1343 }
1344
1345 /* Remove rest-position effects from pose-transform for obtaining
1346  * 'visual' transformation of pose-channel.
1347  * (used by the Visual-Keyframing stuff) */
1348 void BKE_armature_mat_pose_to_delta(float delta_mat[4][4], float pose_mat[4][4], float arm_mat[4][4])
1349 {
1350         float imat[4][4];
1351
1352         invert_m4_m4(imat, arm_mat);
1353         mul_m4_m4m4(delta_mat, imat, pose_mat);
1354 }
1355
1356 /* **************** Rotation Mode Conversions ****************************** */
1357 /* Used for Objects and Pose Channels, since both can have multiple rotation representations */
1358
1359 /* Called from RNA when rotation mode changes
1360  * - the result should be that the rotations given in the provided pointers have had conversions
1361  *   applied (as appropriate), such that the rotation of the element hasn't 'visually' changed  */
1362 void BKE_rotMode_change_values(float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode)
1363 {
1364         /* check if any change - if so, need to convert data */
1365         if (newMode > 0) { /* to euler */
1366                 if (oldMode == ROT_MODE_AXISANGLE) {
1367                         /* axis-angle to euler */
1368                         axis_angle_to_eulO(eul, newMode, axis, *angle);
1369                 }
1370                 else if (oldMode == ROT_MODE_QUAT) {
1371                         /* quat to euler */
1372                         normalize_qt(quat);
1373                         quat_to_eulO(eul, newMode, quat);
1374                 }
1375                 /* else { no conversion needed } */
1376         }
1377         else if (newMode == ROT_MODE_QUAT) { /* to quat */
1378                 if (oldMode == ROT_MODE_AXISANGLE) {
1379                         /* axis angle to quat */
1380                         axis_angle_to_quat(quat, axis, *angle);
1381                 }
1382                 else if (oldMode > 0) {
1383                         /* euler to quat */
1384                         eulO_to_quat(quat, eul, oldMode);
1385                 }
1386                 /* else { no conversion needed } */
1387         }
1388         else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */
1389                 if (oldMode > 0) {
1390                         /* euler to axis angle */
1391                         eulO_to_axis_angle(axis, angle, eul, oldMode);
1392                 }
1393                 else if (oldMode == ROT_MODE_QUAT) {
1394                         /* quat to axis angle */
1395                         normalize_qt(quat);
1396                         quat_to_axis_angle(axis, angle, quat);
1397                 }
1398
1399                 /* when converting to axis-angle, we need a special exception for the case when there is no axis */
1400                 if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
1401                         /* for now, rotate around y-axis then (so that it simply becomes the roll) */
1402                         axis[1] = 1.0f;
1403                 }
1404         }
1405 }
1406
1407 /* **************** The new & simple (but OK!) armature evaluation ********* */
1408
1409 /* ****************** And how it works! ****************************************
1410  *
1411  * This is the bone transformation trick; they're hierarchical so each bone(b)
1412  * is in the coord system of bone(b-1):
1413  *
1414  * arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)
1415  *
1416  * -> yoffs is just the y axis translation in parent's coord system
1417  * -> d_root is the translation of the bone root, also in parent's coord system
1418  *
1419  * pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
1420  *
1421  * we then - in init deform - store the deform in chan_mat, such that:
1422  *
1423  * pose_mat(b)= arm_mat(b) * chan_mat(b)
1424  *
1425  * *************************************************************************** */
1426 /* Computes vector and roll based on a rotation.
1427  * "mat" must contain only a rotation, and no scaling. */
1428 void mat3_to_vec_roll(float mat[3][3], float r_vec[3], float *r_roll)
1429 {
1430         if (r_vec) {
1431                 copy_v3_v3(r_vec, mat[1]);
1432         }
1433
1434         if (r_roll) {
1435                 float vecmat[3][3], vecmatinv[3][3], rollmat[3][3];
1436
1437                 vec_roll_to_mat3(mat[1], 0.0f, vecmat);
1438                 invert_m3_m3(vecmatinv, vecmat);
1439                 mul_m3_m3m3(rollmat, vecmatinv, mat);
1440
1441                 *r_roll = atan2f(rollmat[2][0], rollmat[2][2]);
1442         }
1443 }
1444
1445 /* Calculates the rest matrix of a bone based
1446  * On its vector and a roll around that vector */
1447 void vec_roll_to_mat3(const float vec[3], const float roll, float mat[3][3])
1448 {
1449         float nor[3], axis[3], target[3] = {0, 1, 0};
1450         float theta;
1451         float rMatrix[3][3], bMatrix[3][3];
1452
1453         normalize_v3_v3(nor, vec);
1454
1455         /* Find Axis & Amount for bone matrix */
1456         cross_v3_v3v3(axis, target, nor);
1457
1458         /* was 0.0000000000001, caused bug [#23954], smaller values give unstable
1459          * roll when toggling editmode.
1460          *
1461          * was 0.00001, causes bug [#27675], with 0.00000495,
1462          * so a value inbetween these is needed.
1463          *
1464          * was 0.000001, causes bug [#30438] (which is same as [#27675, imho).
1465          * Resetting it to org value seems to cause no more [#23954]...
1466          *
1467          * was 0.0000000000001, caused bug [#31333], smaller values give unstable
1468          * roll when toggling editmode again...
1469          * No good value here, trying 0.000000001 as best compromise. :/
1470          */
1471         if (dot_v3v3(axis, axis) > 1.0e-9f) {
1472                 /* if nor is *not* a multiple of target ... */
1473                 normalize_v3(axis);
1474
1475                 theta = angle_normalized_v3v3(target, nor);
1476
1477                 /* Make Bone matrix*/
1478                 axis_angle_normalized_to_mat3(bMatrix, axis, theta);
1479         }
1480         else {
1481                 /* if nor is a multiple of target ... */
1482                 float updown;
1483
1484                 /* point same direction, or opposite? */
1485                 updown = (dot_v3v3(target, nor) > 0) ? 1.0f : -1.0f;
1486
1487                 /* I think this should work... */
1488                 bMatrix[0][0] = updown; bMatrix[0][1] = 0.0;    bMatrix[0][2] = 0.0;
1489                 bMatrix[1][0] = 0.0;    bMatrix[1][1] = updown; bMatrix[1][2] = 0.0;
1490                 bMatrix[2][0] = 0.0;    bMatrix[2][1] = 0.0;    bMatrix[2][2] = 1.0;
1491         }
1492
1493         /* Make Roll matrix */
1494         axis_angle_normalized_to_mat3(rMatrix, nor, roll);
1495
1496         /* Combine and output result */
1497         mul_m3_m3m3(mat, rMatrix, bMatrix);
1498 }
1499
1500
1501 /* recursive part, calculates restposition of entire tree of children */
1502 /* used by exiting editmode too */
1503 void BKE_armature_where_is_bone(Bone *bone, Bone *prevbone)
1504 {
1505         float vec[3];
1506
1507         /* Bone Space */
1508         sub_v3_v3v3(vec, bone->tail, bone->head);
1509         vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);
1510
1511         bone->length = len_v3v3(bone->head, bone->tail);
1512
1513         /* this is called on old file reading too... */
1514         if (bone->xwidth == 0.0f) {
1515                 bone->xwidth = 0.1f;
1516                 bone->zwidth = 0.1f;
1517                 bone->segments = 1;
1518         }
1519
1520         if (prevbone) {
1521                 float offs_bone[4][4];
1522                 /* yoffs(b-1) + root(b) + bonemat(b) */
1523                 get_offset_bone_mat(bone, offs_bone);
1524
1525                 /* Compose the matrix for this bone  */
1526                 mul_m4_m4m4(bone->arm_mat, prevbone->arm_mat, offs_bone);
1527         }
1528         else {
1529                 copy_m4_m3(bone->arm_mat, bone->bone_mat);
1530                 copy_v3_v3(bone->arm_mat[3], bone->head);
1531         }
1532
1533         /* and the kiddies */
1534         prevbone = bone;
1535         for (bone = bone->childbase.first; bone; bone = bone->next) {
1536                 BKE_armature_where_is_bone(bone, prevbone);
1537         }
1538 }
1539
1540 /* updates vectors and matrices on rest-position level, only needed
1541  * after editing armature itself, now only on reading file */
1542 void BKE_armature_where_is(bArmature *arm)
1543 {
1544         Bone *bone;
1545
1546         /* hierarchical from root to children */
1547         for (bone = arm->bonebase.first; bone; bone = bone->next) {
1548                 BKE_armature_where_is_bone(bone, NULL);
1549         }
1550 }
1551
1552 /* if bone layer is protected, copy the data from from->pose
1553  * when used with linked libraries this copies from the linked pose into the local pose */
1554 static void pose_proxy_synchronize(Object *ob, Object *from, int layer_protected)
1555 {
1556         bPose *pose = ob->pose, *frompose = from->pose;
1557         bPoseChannel *pchan, *pchanp;
1558         bConstraint *con;
1559         int error = 0;
1560
1561         if (frompose == NULL)
1562                 return;
1563
1564         /* in some cases when rigs change, we cant synchronize
1565          * to avoid crashing check for possible errors here */
1566         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1567                 if (pchan->bone->layer & layer_protected) {
1568                         if (BKE_pose_channel_find_name(frompose, pchan->name) == NULL) {
1569                                 printf("failed to sync proxy armature because '%s' is missing pose channel '%s'\n",
1570                                        from->id.name, pchan->name);
1571                                 error = 1;
1572                         }
1573                 }
1574         }
1575
1576         if (error)
1577                 return;
1578
1579         /* clear all transformation values from library */
1580         BKE_pose_rest(frompose);
1581
1582         /* copy over all of the proxy's bone groups */
1583         /* TODO for later
1584          * - implement 'local' bone groups as for constraints
1585          * Note: this isn't trivial, as bones reference groups by index not by pointer,
1586          *       so syncing things correctly needs careful attention */
1587         BLI_freelistN(&pose->agroups);
1588         BLI_duplicatelist(&pose->agroups, &frompose->agroups);
1589         pose->active_group = frompose->active_group;
1590
1591         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1592                 pchanp = BKE_pose_channel_find_name(frompose, pchan->name);
1593                 
1594                 if (UNLIKELY(pchanp == NULL)) {
1595                         /* happens for proxies that become invalid because of a missing link
1596                          * for regular cases it shouldn't happen at all */
1597                 }
1598                 else if (pchan->bone->layer & layer_protected) {
1599                         ListBase proxylocal_constraints = {NULL, NULL};
1600                         bPoseChannel pchanw;
1601                         
1602                         /* copy posechannel to temp, but restore important pointers */
1603                         pchanw = *pchanp;
1604                         pchanw.prev = pchan->prev;
1605                         pchanw.next = pchan->next;
1606                         pchanw.parent = pchan->parent;
1607                         pchanw.child = pchan->child;
1608                         
1609                         /* this is freed so copy a copy, else undo crashes */
1610                         if (pchanw.prop) {
1611                                 pchanw.prop = IDP_CopyProperty(pchanw.prop);
1612                                 
1613                                 /* use the values from the the existing props */
1614                                 if (pchan->prop) {
1615                                         IDP_SyncGroupValues(pchanw.prop, pchan->prop);
1616                                 }
1617                         }
1618                         
1619                         /* constraints - proxy constraints are flushed... local ones are added after
1620                          *     1. extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints
1621                          *     2. copy proxy-pchan's constraints on-to new
1622                          *     3. add extracted local constraints back on top
1623                          *
1624                          * Note for BKE_copy_constraints: when copying constraints, disable 'do_extern' otherwise
1625                          *                                we get the libs direct linked in this blend.
1626                          */
1627                         BKE_extract_proxylocal_constraints(&proxylocal_constraints, &pchan->constraints);
1628                         BKE_copy_constraints(&pchanw.constraints, &pchanp->constraints, FALSE);
1629                         BLI_movelisttolist(&pchanw.constraints, &proxylocal_constraints);
1630                         
1631                         /* constraints - set target ob pointer to own object */
1632                         for (con = pchanw.constraints.first; con; con = con->next) {
1633                                 bConstraintTypeInfo *cti = BKE_constraint_get_typeinfo(con);
1634                                 ListBase targets = {NULL, NULL};
1635                                 bConstraintTarget *ct;
1636                                 
1637                                 if (cti && cti->get_constraint_targets) {
1638                                         cti->get_constraint_targets(con, &targets);
1639                                         
1640                                         for (ct = targets.first; ct; ct = ct->next) {
1641                                                 if (ct->tar == from)
1642                                                         ct->tar = ob;
1643                                         }
1644                                         
1645                                         if (cti->flush_constraint_targets)
1646                                                 cti->flush_constraint_targets(con, &targets, 0);
1647                                 }
1648                         }
1649                         
1650                         /* free stuff from current channel */
1651                         BKE_pose_channel_free(pchan);
1652                         
1653                         /* copy data in temp back over to the cleaned-out (but still allocated) original channel */
1654                         *pchan = pchanw;
1655                         if (pchan->custom) {
1656                                 id_us_plus(&pchan->custom->id);
1657                         }
1658                 }
1659                 else {
1660                         /* always copy custom shape */
1661                         pchan->custom = pchanp->custom;
1662                         if (pchan->custom) {
1663                                 id_us_plus(&pchan->custom->id);
1664                         }
1665                         if (pchanp->custom_tx)
1666                                 pchan->custom_tx = BKE_pose_channel_find_name(pose, pchanp->custom_tx->name);
1667
1668                         /* ID-Property Syncing */
1669                         {
1670                                 IDProperty *prop_orig = pchan->prop;
1671                                 if (pchanp->prop) {
1672                                         pchan->prop = IDP_CopyProperty(pchanp->prop);
1673                                         if (prop_orig) {
1674                                                 /* copy existing values across when types match */
1675                                                 IDP_SyncGroupValues(pchan->prop, prop_orig);
1676                                         }
1677                                 }
1678                                 else {
1679                                         pchan->prop = NULL;
1680                                 }
1681                                 if (prop_orig) {
1682                                         IDP_FreeProperty(prop_orig);
1683                                         MEM_freeN(prop_orig);
1684                                 }
1685                         }
1686                 }
1687         }
1688 }
1689
1690 static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
1691 {
1692         bPoseChannel *pchan = BKE_pose_channel_verify(pose, bone->name); /* verify checks and/or adds */
1693
1694         pchan->bone = bone;
1695         pchan->parent = parchan;
1696
1697         counter++;
1698
1699         for (bone = bone->childbase.first; bone; bone = bone->next) {
1700                 counter = rebuild_pose_bone(pose, bone, pchan, counter);
1701                 /* for quick detecting of next bone in chain, only b-bone uses it now */
1702                 if (bone->flag & BONE_CONNECTED)
1703                         pchan->child = BKE_pose_channel_find_name(pose, bone->name);
1704         }
1705
1706         return counter;
1707 }
1708
1709 /* only after leave editmode, duplicating, validating older files, library syncing */
1710 /* NOTE: pose->flag is set for it */
1711 void BKE_pose_rebuild(Object *ob, bArmature *arm)
1712 {
1713         Bone *bone;
1714         bPose *pose;
1715         bPoseChannel *pchan, *next;
1716         int counter = 0;
1717
1718         /* only done here */
1719         if (ob->pose == NULL) {
1720                 /* create new pose */
1721                 ob->pose = MEM_callocN(sizeof(bPose), "new pose");
1722
1723                 /* set default settings for animviz */
1724                 animviz_settings_init(&ob->pose->avs);
1725         }
1726         pose = ob->pose;
1727
1728         /* clear */
1729         for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
1730                 pchan->bone = NULL;
1731                 pchan->child = NULL;
1732         }
1733
1734         /* first step, check if all channels are there */
1735         for (bone = arm->bonebase.first; bone; bone = bone->next) {
1736                 counter = rebuild_pose_bone(pose, bone, NULL, counter);
1737         }
1738
1739         /* and a check for garbage */
1740         for (pchan = pose->chanbase.first; pchan; pchan = next) {
1741                 next = pchan->next;
1742                 if (pchan->bone == NULL) {
1743                         BKE_pose_channel_free(pchan);
1744                         BKE_pose_channels_hash_free(pose);
1745                         BLI_freelinkN(&pose->chanbase, pchan);
1746                 }
1747         }
1748         /* printf("rebuild pose %s, %d bones\n", ob->id.name, counter); */
1749
1750         /* synchronize protected layers with proxy */
1751         if (ob->proxy) {
1752                 BKE_object_copy_proxy_drivers(ob, ob->proxy);
1753                 pose_proxy_synchronize(ob, ob->proxy, arm->layer_protected);
1754         }
1755
1756         BKE_pose_update_constraint_flags(ob->pose); /* for IK detection for example */
1757
1758         /* the sorting */
1759         if (counter > 1)
1760                 DAG_pose_sort(ob);
1761
1762         ob->pose->flag &= ~POSE_RECALC;
1763         ob->pose->flag |= POSE_WAS_REBUILT;
1764
1765         BKE_pose_channels_hash_make(ob->pose);
1766 }
1767
1768
1769 /* ********************** SPLINE IK SOLVER ******************* */
1770
1771 /* Temporary evaluation tree data used for Spline IK */
1772 typedef struct tSplineIK_Tree {
1773         struct tSplineIK_Tree *next, *prev;
1774
1775         int type;                    /* type of IK that this serves (CONSTRAINT_TYPE_KINEMATIC or ..._SPLINEIK) */
1776
1777         short free_points;           /* free the point positions array */
1778         short chainlen;              /* number of bones in the chain */
1779
1780         float *points;               /* parametric positions for the joints along the curve */
1781         bPoseChannel **chain;        /* chain of bones to affect using Spline IK (ordered from the tip) */
1782
1783         bPoseChannel *root;          /* bone that is the root node of the chain */
1784
1785         bConstraint *con;            /* constraint for this chain */
1786         bSplineIKConstraint *ikData; /* constraint settings for this chain */
1787 } tSplineIK_Tree;
1788
1789 /* ----------- */
1790
1791 /* Tag the bones in the chain formed by the given bone for IK */
1792 static void splineik_init_tree_from_pchan(Scene *scene, Object *UNUSED(ob), bPoseChannel *pchan_tip)
1793 {
1794         bPoseChannel *pchan, *pchanRoot = NULL;
1795         bPoseChannel *pchanChain[255];
1796         bConstraint *con = NULL;
1797         bSplineIKConstraint *ikData = NULL;
1798         float boneLengths[255], *jointPoints;
1799         float totLength = 0.0f;
1800         short free_joints = 0;
1801         int segcount = 0;
1802
1803         /* find the SplineIK constraint */
1804         for (con = pchan_tip->constraints.first; con; con = con->next) {
1805                 if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
1806                         ikData = con->data;
1807
1808                         /* target can only be curve */
1809                         if ((ikData->tar == NULL) || (ikData->tar->type != OB_CURVE))
1810                                 continue;
1811                         /* skip if disabled */
1812                         if ((con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)))
1813                                 continue;
1814
1815                         /* otherwise, constraint is ok... */
1816                         break;
1817                 }
1818         }
1819         if (con == NULL)
1820                 return;
1821
1822         /* make sure that the constraint targets are ok
1823          *     - this is a workaround for a depsgraph bug...
1824          */
1825         if (ikData->tar) {
1826                 Curve *cu = ikData->tar->data;
1827
1828                 /* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
1829                  *       currently for paths to work it needs to go through the bevlist/displist system (ton)
1830                  */
1831
1832                 /* only happens on reload file, but violates depsgraph still... fix! */
1833                 if (ELEM(NULL, cu->path, cu->path->data)) {
1834                         BKE_displist_make_curveTypes(scene, ikData->tar, 0);
1835                         
1836                         /* path building may fail in EditMode after removing verts [#33268]*/
1837                         if (ELEM(NULL, cu->path, cu->path->data)) {
1838                                 /* BLI_assert(cu->path != NULL); */
1839                                 return;
1840                         }
1841                 }
1842         }
1843
1844         /* find the root bone and the chain of bones from the root to the tip
1845          * NOTE: this assumes that the bones are connected, but that may not be true... */
1846         for (pchan = pchan_tip; pchan && (segcount < ikData->chainlen); pchan = pchan->parent, segcount++) {
1847                 /* store this segment in the chain */
1848                 pchanChain[segcount] = pchan;
1849
1850                 /* if performing rebinding, calculate the length of the bone */
1851                 boneLengths[segcount] = pchan->bone->length;
1852                 totLength += boneLengths[segcount];
1853         }
1854
1855         if (segcount == 0)
1856                 return;
1857         else
1858                 pchanRoot = pchanChain[segcount - 1];
1859
1860         /* perform binding step if required */
1861         if ((ikData->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
1862                 float segmentLen = (1.0f / (float)segcount);
1863                 int i;
1864
1865                 /* setup new empty array for the points list */
1866                 if (ikData->points)
1867                         MEM_freeN(ikData->points);
1868                 ikData->numpoints = ikData->chainlen + 1;
1869                 ikData->points = MEM_callocN(sizeof(float) * ikData->numpoints, "Spline IK Binding");
1870
1871                 /* bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint) */
1872                 ikData->points[0] = 1.0f;
1873
1874                 /* perform binding of the joints to parametric positions along the curve based
1875                  * proportion of the total length that each bone occupies
1876                  */
1877                 for (i = 0; i < segcount; i++) {
1878                         /* 'head' joints, traveling towards the root of the chain
1879                          *  - 2 methods; the one chosen depends on whether we've got usable lengths
1880                          */
1881                         if ((ikData->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totLength == 0.0f)) {
1882                                 /* 1) equi-spaced joints */
1883                                 ikData->points[i + 1] = ikData->points[i] - segmentLen;
1884                         }
1885                         else {
1886                                 /* 2) to find this point on the curve, we take a step from the previous joint
1887                                  *    a distance given by the proportion that this bone takes
1888                                  */
1889                                 ikData->points[i + 1] = ikData->points[i] - (boneLengths[i] / totLength);
1890                         }
1891                 }
1892
1893                 /* spline has now been bound */
1894                 ikData->flag |= CONSTRAINT_SPLINEIK_BOUND;
1895         }
1896
1897         /* apply corrections for sensitivity to scaling on a copy of the bind points,
1898          * since it's easier to determine the positions of all the joints beforehand this way
1899          */
1900         if ((ikData->flag & CONSTRAINT_SPLINEIK_SCALE_LIMITED) && (totLength != 0.0f)) {
1901                 Curve *cu = (Curve *)ikData->tar->data;
1902                 float splineLen, maxScale;
1903                 int i;
1904
1905                 /* make a copy of the points array, that we'll store in the tree
1906                  *     - although we could just multiply the points on the fly, this approach means that
1907                  *       we can introduce per-segment stretchiness later if it is necessary
1908                  */
1909                 jointPoints = MEM_dupallocN(ikData->points);
1910                 free_joints = 1;
1911
1912                 /* get the current length of the curve */
1913                 /* NOTE: this is assumed to be correct even after the curve was resized */
1914                 splineLen = cu->path->totdist;
1915
1916                 /* calculate the scale factor to multiply all the path values by so that the
1917                  * bone chain retains its current length, such that
1918                  *     maxScale * splineLen = totLength
1919                  */
1920                 maxScale = totLength / splineLen;
1921
1922                 /* apply scaling correction to all of the temporary points */
1923                 /* TODO: this is really not adequate enough on really short chains */
1924                 for (i = 0; i < segcount; i++)
1925                         jointPoints[i] *= maxScale;
1926         }
1927         else {
1928                 /* just use the existing points array */
1929                 jointPoints = ikData->points;
1930                 free_joints = 0;
1931         }
1932
1933         /* make a new Spline-IK chain, and store it in the IK chains */
1934         /* TODO: we should check if there is already an IK chain on this, since that would take presidence... */
1935         {
1936                 /* make new tree */
1937                 tSplineIK_Tree *tree = MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree");
1938                 tree->type = CONSTRAINT_TYPE_SPLINEIK;
1939
1940                 tree->chainlen = segcount;
1941
1942                 /* copy over the array of links to bones in the chain (from tip to root) */
1943                 tree->chain = MEM_callocN(sizeof(bPoseChannel *) * segcount, "SplineIK Chain");
1944                 memcpy(tree->chain, pchanChain, sizeof(bPoseChannel *) * segcount);
1945
1946                 /* store reference to joint position array */
1947                 tree->points = jointPoints;
1948                 tree->free_points = free_joints;
1949
1950                 /* store references to different parts of the chain */
1951                 tree->root = pchanRoot;
1952                 tree->con = con;
1953                 tree->ikData = ikData;
1954
1955                 /* AND! link the tree to the root */
1956                 BLI_addtail(&pchanRoot->siktree, tree);
1957         }
1958
1959         /* mark root channel having an IK tree */
1960         pchanRoot->flag |= POSE_IKSPLINE;
1961 }
1962
1963 /* Tag which bones are members of Spline IK chains */
1964 static void splineik_init_tree(Scene *scene, Object *ob, float UNUSED(ctime))
1965 {
1966         bPoseChannel *pchan;
1967
1968         /* find the tips of Spline IK chains, which are simply the bones which have been tagged as such */
1969         for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
1970                 if (pchan->constflag & PCHAN_HAS_SPLINEIK)
1971                         splineik_init_tree_from_pchan(scene, ob, pchan);
1972         }
1973 }
1974
1975 /* ----------- */
1976
1977 /* Evaluate spline IK for a given bone */
1978 static void splineik_evaluate_bone(tSplineIK_Tree *tree, Scene *scene, Object *ob, bPoseChannel *pchan,
1979                                    int index, float ctime)
1980 {
1981         bSplineIKConstraint *ikData = tree->ikData;
1982         float poseHead[3], poseTail[3], poseMat[4][4];
1983         float splineVec[3], scaleFac, radius = 1.0f;
1984
1985         /* firstly, calculate the bone matrix the standard way, since this is needed for roll control */
1986         BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);
1987
1988         copy_v3_v3(poseHead, pchan->pose_head);
1989         copy_v3_v3(poseTail, pchan->pose_tail);
1990
1991         /* step 1: determine the positions for the endpoints of the bone */
1992         {
1993                 float vec[4], dir[3], rad;
1994                 float tailBlendFac = 1.0f;
1995
1996                 /* determine if the bone should still be affected by SplineIK */
1997                 if (tree->points[index + 1] >= 1.0f) {
1998                         /* spline doesn't affect the bone anymore, so done... */
1999                         pchan->flag |= POSE_DONE;
2000                         return;
2001                 }
2002                 else if ((tree->points[index] >= 1.0f) && (tree->points[index + 1] < 1.0f)) {
2003                         /* blending factor depends on the amount of the bone still left on the chain */
2004                         tailBlendFac = (1.0f - tree->points[index + 1]) / (tree->points[index] - tree->points[index + 1]);
2005                 }
2006
2007                 /* tail endpoint */
2008                 if (where_on_path(ikData->tar, tree->points[index], vec, dir, NULL, &rad, NULL)) {
2009                         /* apply curve's object-mode transforms to the position
2010                          * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
2011                          */
2012                         if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
2013                                 mul_m4_v3(ikData->tar->obmat, vec);
2014
2015                         /* convert the position to pose-space, then store it */
2016                         mul_m4_v3(ob->imat, vec);
2017                         interp_v3_v3v3(poseTail, pchan->pose_tail, vec, tailBlendFac);
2018
2019                         /* set the new radius */
2020                         radius = rad;
2021                 }
2022
2023                 /* head endpoint */
2024                 if (where_on_path(ikData->tar, tree->points[index + 1], vec, dir, NULL, &rad, NULL)) {
2025                         /* apply curve's object-mode transforms to the position
2026                          * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
2027                          */
2028                         if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
2029                                 mul_m4_v3(ikData->tar->obmat, vec);
2030
2031                         /* store the position, and convert it to pose space */
2032                         mul_m4_v3(ob->imat, vec);
2033                         copy_v3_v3(poseHead, vec);
2034
2035                         /* set the new radius (it should be the average value) */
2036                         radius = (radius + rad) / 2;
2037                 }
2038         }
2039
2040         /* step 2: determine the implied transform from these endpoints
2041          *     - splineVec: the vector direction that the spline applies on the bone
2042          *     - scaleFac: the factor that the bone length is scaled by to get the desired amount
2043          */
2044         sub_v3_v3v3(splineVec, poseTail, poseHead);
2045         scaleFac = len_v3(splineVec) / pchan->bone->length;
2046
2047         /* step 3: compute the shortest rotation needed to map from the bone rotation to the current axis
2048          *      - this uses the same method as is used for the Damped Track Constraint (see the code there for details)
2049          */
2050         {
2051                 float dmat[3][3], rmat[3][3], tmat[3][3];
2052                 float raxis[3], rangle;
2053
2054                 /* compute the raw rotation matrix from the bone's current matrix by extracting only the
2055                  * orientation-relevant axes, and normalizing them
2056                  */
2057                 copy_v3_v3(rmat[0], pchan->pose_mat[0]);
2058                 copy_v3_v3(rmat[1], pchan->pose_mat[1]);
2059                 copy_v3_v3(rmat[2], pchan->pose_mat[2]);
2060                 normalize_m3(rmat);
2061
2062                 /* also, normalize the orientation imposed by the bone, now that we've extracted the scale factor */
2063                 normalize_v3(splineVec);
2064
2065                 /* calculate smallest axis-angle rotation necessary for getting from the
2066                  * current orientation of the bone, to the spline-imposed direction
2067                  */
2068                 cross_v3_v3v3(raxis, rmat[1], splineVec);
2069
2070                 rangle = dot_v3v3(rmat[1], splineVec);
2071                 CLAMP(rangle, -1.0f, 1.0f);
2072                 rangle = acosf(rangle);
2073
2074                 /* multiply the magnitude of the angle by the influence of the constraint to
2075                  * control the influence of the SplineIK effect
2076                  */
2077                 rangle *= tree->con->enforce;
2078
2079                 /* construct rotation matrix from the axis-angle rotation found above
2080                  *      - this call takes care to make sure that the axis provided is a unit vector first
2081                  */
2082                 axis_angle_to_mat3(dmat, raxis, rangle);
2083
2084                 /* combine these rotations so that the y-axis of the bone is now aligned as the spline dictates,
2085                  * while still maintaining roll control from the existing bone animation
2086                  */
2087                 mul_m3_m3m3(tmat, dmat, rmat); /* m1, m3, m2 */
2088                 normalize_m3(tmat); /* attempt to reduce shearing, though I doubt this'll really help too much now... */
2089                 copy_m4_m3(poseMat, tmat);
2090         }
2091
2092         /* step 4: set the scaling factors for the axes */
2093         {
2094                 /* only multiply the y-axis by the scaling factor to get nice volume-preservation */
2095                 mul_v3_fl(poseMat[1], scaleFac);
2096
2097                 /* set the scaling factors of the x and z axes from... */
2098                 switch (ikData->xzScaleMode) {
2099                         case CONSTRAINT_SPLINEIK_XZS_ORIGINAL:
2100                         {
2101                                 /* original scales get used */
2102                                 float scale;
2103
2104                                 /* x-axis scale */
2105                                 scale = len_v3(pchan->pose_mat[0]);
2106                                 mul_v3_fl(poseMat[0], scale);
2107                                 /* z-axis scale */
2108                                 scale = len_v3(pchan->pose_mat[2]);
2109                                 mul_v3_fl(poseMat[2], scale);
2110                                 break;
2111                         }
2112                         case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC:
2113                         {
2114                                 /* 'volume preservation' */
2115                                 float scale;
2116
2117                                 /* calculate volume preservation factor which is
2118                                  * basically the inverse of the y-scaling factor
2119                                  */
2120                                 if (fabsf(scaleFac) != 0.0f) {
2121                                         scale = 1.0f / fabsf(scaleFac);
2122
2123                                         /* we need to clamp this within sensible values */
2124                                         /* NOTE: these should be fine for now, but should get sanitised in future */
2125                                         CLAMP(scale, 0.0001f, 100000.0f);
2126                                 }
2127                                 else
2128                                         scale = 1.0f;
2129
2130                                 /* apply the scaling */
2131                                 mul_v3_fl(poseMat[0], scale);
2132                                 mul_v3_fl(poseMat[2], scale);
2133                                 break;
2134                         }
2135                 }
2136
2137                 /* finally, multiply the x and z scaling by the radius of the curve too,
2138                  * to allow automatic scales to get tweaked still
2139                  */
2140                 if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
2141                         mul_v3_fl(poseMat[0], radius);
2142                         mul_v3_fl(poseMat[2], radius);
2143                 }
2144         }
2145
2146         /* step 5: set the location of the bone in the matrix */
2147         if (ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
2148                 /* when the 'no-root' option is affected, the chain can retain
2149                  * the shape but be moved elsewhere
2150                  */
2151                 copy_v3_v3(poseHead, pchan->pose_head);
2152         }
2153         else if (tree->con->enforce < 1.0f) {
2154                 /* when the influence is too low
2155                  *      - blend the positions for the 'root' bone
2156                  *      - stick to the parent for any other
2157                  */
2158                 if (pchan->parent) {
2159                         copy_v3_v3(poseHead, pchan->pose_head);
2160                 }
2161                 else {
2162                         /* FIXME: this introduces popping artifacts when we reach 0.0 */
2163                         interp_v3_v3v3(poseHead, pchan->pose_head, poseHead, tree->con->enforce);
2164                 }
2165         }
2166         copy_v3_v3(poseMat[3], poseHead);
2167
2168         /* finally, store the new transform */
2169         copy_m4_m4(pchan->pose_mat, poseMat);
2170         copy_v3_v3(pchan->pose_head, poseHead);
2171
2172         /* recalculate tail, as it's now outdated after the head gets adjusted above! */
2173         BKE_pose_where_is_bone_tail(pchan);
2174
2175         /* done! */
2176         pchan->flag |= POSE_DONE;
2177 }
2178
2179 /* Evaluate the chain starting from the nominated bone */
2180 static void splineik_execute_tree(Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
2181 {
2182         tSplineIK_Tree *tree;
2183
2184         /* for each pose-tree, execute it if it is spline, otherwise just free it */
2185         while ((tree = pchan_root->siktree.first) != NULL) {
2186                 int i;
2187
2188                 /* walk over each bone in the chain, calculating the effects of spline IK
2189                  *     - the chain is traversed in the opposite order to storage order (i.e. parent to children)
2190                  *       so that dependencies are correct
2191                  */
2192                 for (i = tree->chainlen - 1; i >= 0; i--) {
2193                         bPoseChannel *pchan = tree->chain[i];
2194                         splineik_evaluate_bone(tree, scene, ob, pchan, i, ctime);
2195                 }
2196
2197                 /* free the tree info specific to SplineIK trees now */
2198                 if (tree->chain)
2199                         MEM_freeN(tree->chain);
2200                 if (tree->free_points)
2201                         MEM_freeN(tree->points);
2202
2203                 /* free this tree */
2204                 BLI_freelinkN(&pchan_root->siktree, tree);
2205         }
2206 }
2207
2208 /* ********************** THE POSE SOLVER ******************* */
2209
2210 /* loc/rot/size to given mat4 */
2211 void BKE_pchan_to_mat4(bPoseChannel *pchan, float chan_mat[4][4])
2212 {
2213         float smat[3][3];
2214         float rmat[3][3];
2215         float tmat[3][3];
2216
2217         /* get scaling matrix */
2218         size_to_mat3(smat, pchan->size);
2219
2220         /* rotations may either be quats, eulers (with various rotation orders), or axis-angle */
2221         if (pchan->rotmode > 0) {
2222                 /* euler rotations (will cause gimble lock, but this can be alleviated a bit with rotation orders) */
2223                 eulO_to_mat3(rmat, pchan->eul, pchan->rotmode);
2224         }
2225         else if (pchan->rotmode == ROT_MODE_AXISANGLE) {
2226                 /* axis-angle - not really that great for 3D-changing orientations */
2227                 axis_angle_to_mat3(rmat, pchan->rotAxis, pchan->rotAngle);
2228         }
2229         else {
2230                 /* quats are normalized before use to eliminate scaling issues */
2231                 float quat[4];
2232
2233                 /* NOTE: we now don't normalize the stored values anymore, since this was kindof evil in some cases
2234                  * but if this proves to be too problematic, switch back to the old system of operating directly on
2235                  * the stored copy
2236                  */
2237                 normalize_qt_qt(quat, pchan->quat);
2238                 quat_to_mat3(rmat, quat);
2239         }
2240
2241         /* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */
2242         mul_m3_m3m3(tmat, rmat, smat);
2243         copy_m4_m3(chan_mat, tmat);
2244
2245         /* prevent action channels breaking chains */
2246         /* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
2247         if ((pchan->bone == NULL) || !(pchan->bone->flag & BONE_CONNECTED)) {
2248                 copy_v3_v3(chan_mat[3], pchan->loc);
2249         }
2250 }
2251
2252 /* loc/rot/size to mat4 */
2253 /* used in constraint.c too */
2254 void BKE_pchan_calc_mat(bPoseChannel *pchan)
2255 {
2256         /* this is just a wrapper around the copy of this function which calculates the matrix
2257          * and stores the result in any given channel
2258          */
2259         BKE_pchan_to_mat4(pchan, pchan->chan_mat);
2260 }
2261
2262 #if 0 /* XXX OLD ANIMSYS, NLASTRIPS ARE NO LONGER USED */
2263
2264 /* NLA strip modifiers */
2265 static void do_strip_modifiers(Scene *scene, Object *armob, Bone *bone, bPoseChannel *pchan)
2266 {
2267         bActionModifier *amod;
2268         bActionStrip *strip, *strip2;
2269         float scene_cfra = BKE_scene_frame_get(scene);
2270         int do_modif;
2271
2272         for (strip = armob->nlastrips.first; strip; strip = strip->next) {
2273                 do_modif = FALSE;
2274
2275                 if (scene_cfra >= strip->start && scene_cfra <= strip->end)
2276                         do_modif = TRUE;
2277
2278                 if ((scene_cfra > strip->end) && (strip->flag & ACTSTRIP_HOLDLASTFRAME)) {
2279                         do_modif = TRUE;
2280
2281                         /* if there are any other strips active, ignore modifiers for this strip -
2282                          * 'hold' option should only hold action modifiers if there are
2283                          * no other active strips */
2284                         for (strip2 = strip->next; strip2; strip2 = strip2->next) {
2285                                 if (strip2 == strip) continue;
2286
2287                                 if (scene_cfra >= strip2->start && scene_cfra <= strip2->end) {
2288                                         if (!(strip2->flag & ACTSTRIP_MUTE))
2289                                                 do_modif = FALSE;
2290                                 }
2291                         }
2292
2293                         /* if there are any later, activated, strips with 'hold' set, they take precedence,
2294                          * so ignore modifiers for this strip */
2295                         for (strip2 = strip->next; strip2; strip2 = strip2->next) {
2296                                 if (scene_cfra < strip2->start) continue;
2297                                 if ((strip2->flag & ACTSTRIP_HOLDLASTFRAME) && !(strip2->flag & ACTSTRIP_MUTE)) {
2298                                         do_modif = FALSE;
2299                                 }
2300                         }
2301                 }
2302
2303                 if (do_modif) {
2304                         /* temporal solution to prevent 2 strips accumulating */
2305                         if (scene_cfra == strip->end && strip->next && strip->next->start == scene_cfra)
2306                                 continue;
2307
2308                         for (amod = strip->modifiers.first; amod; amod = amod->next) {
2309                                 switch (amod->type) {
2310                                         case ACTSTRIP_MOD_DEFORM:
2311                                         {
2312                                                 /* validate first */
2313                                                 if (amod->ob && amod->ob->type == OB_CURVE && amod->channel[0]) {
2314
2315                                                         if (strcmp(pchan->name, amod->channel) == 0) {
2316                                                                 float mat4[4][4], mat3[3][3];
2317
2318                                                                 curve_deform_vector(scene, amod->ob, armob, bone->arm_mat[3], pchan->pose_mat[3], mat3, amod->no_rot_axis);
2319                                                                 copy_m4_m4(mat4, pchan->pose_mat);
2320                                                                 mul_m4_m3m4(pchan->pose_mat, mat3, mat4);
2321
2322                                                         }
2323                                                 }
2324                                         }
2325                                         break;
2326                                         case ACTSTRIP_MOD_NOISE:
2327                                         {
2328                                                 if (strcmp(pchan->name, amod->channel) == 0) {
2329                                                         float nor[3], loc[3], ofs;
2330                                                         float eul[3], size[3], eulo[3], sizeo[3];
2331
2332                                                         /* calculate turbulance */
2333                                                         ofs = amod->turbul / 200.0f;
2334
2335                                                         /* make a copy of starting conditions */
2336                                                         copy_v3_v3(loc, pchan->pose_mat[3]);
2337                                                         mat4_to_eul(eul, pchan->pose_mat);
2338                                                         mat4_to_size(size, pchan->pose_mat);
2339                                                         copy_v3_v3(eulo, eul);
2340                                                         copy_v3_v3(sizeo, size);
2341
2342                                                         /* apply noise to each set of channels */
2343                                                         if (amod->channels & 4) {
2344                                                                 /* for scaling */
2345                                                                 nor[0] = BLI_gNoise(amod->noisesize, size[0] + ofs, size[1], size[2], 0, 0) - ofs;
2346                                                                 nor[1] = BLI_gNoise(amod->noisesize, size[0], size[1] + ofs, size[2], 0, 0) - ofs;
2347                                                                 nor[2] = BLI_gNoise(amod->noisesize, size[0], size[1], size[2] + ofs, 0, 0) - ofs;
2348                                                                 add_v3_v3(size, nor);
2349
2350                                                                 if (sizeo[0] != 0)
2351                                                                         mul_v3_fl(pchan->pose_mat[0], size[0] / sizeo[0]);
2352                                                                 if (sizeo[1] != 0)
2353                                                                         mul_v3_fl(pchan->pose_mat[1], size[1] / sizeo[1]);
2354                                                                 if (sizeo[2] != 0)
2355                                                                         mul_v3_fl(pchan->pose_mat[2], size[2] / sizeo[2]);
2356                                                         }
2357                                                         if (amod->channels & 2) {
2358                                                                 /* for rotation */
2359                                                                 nor[0] = BLI_gNoise(amod->noisesize, eul[0] + ofs, eul[1], eul[2], 0, 0) - ofs;
2360                                                                 nor[1] = BLI_gNoise(amod->noisesize, eul[0], eul[1] + ofs, eul[2], 0, 0) - ofs;
2361                                                                 nor[2] = BLI_gNoise(amod->noisesize, eul[0], eul[1], eul[2] + ofs, 0, 0) - ofs;
2362
2363                                                                 compatible_eul(nor, eulo);
2364                                                                 add_v3_v3(eul, nor);
2365                                                                 compatible_eul(eul, eulo);
2366
2367                                                                 loc_eul_size_to_mat4(pchan->pose_mat, loc, eul, size);
2368                                                         }
2369                                                         if (amod->channels & 1) {
2370                                                                 /* for location */
2371                                                                 nor[0] = BLI_gNoise(amod->noisesize, loc[0] + ofs, loc[1], loc[2], 0, 0) - ofs;
2372                                                                 nor[1] = BLI_gNoise(amod->noisesize, loc[0], loc[1] + ofs, loc[2], 0, 0) - ofs;
2373                                                                 nor[2] = BLI_gNoise(amod->noisesize, loc[0], loc[1], loc[2] + ofs, 0, 0) - ofs;
2374
2375                                                                 add_v3_v3v3(pchan->pose_mat[3], loc, nor);
2376                                                         }
2377                                                 }
2378                                         }
2379                                         break;
2380                                 }
2381                         }
2382                 }
2383         }
2384 }
2385
2386 #endif
2387
2388 /* calculate tail of posechannel */
2389 void BKE_pose_where_is_bone_tail(bPoseChannel *pchan)
2390 {
2391         float vec[3];
2392
2393         copy_v3_v3(vec, pchan->pose_mat[1]);
2394         mul_v3_fl(vec, pchan->bone->length);
2395         add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec);
2396 }
2397
2398 /* The main armature solver, does all constraints excluding IK */
2399 /* pchan is validated, as having bone and parent pointer
2400  * 'do_extra': when zero skips loc/size/rot, constraints and strip modifiers.
2401  */
2402 void BKE_pose_where_is_bone(Scene *scene, Object *ob, bPoseChannel *pchan, float ctime, int do_extra)
2403 {
2404         /* This gives a chan_mat with actions (ipos) results. */
2405         if (do_extra)
2406                 BKE_pchan_calc_mat(pchan);
2407         else
2408                 unit_m4(pchan->chan_mat);
2409
2410         /* Construct the posemat based on PoseChannels, that we do before applying constraints. */
2411         /* pose_mat(b) = pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
2412         BKE_armature_mat_bone_to_pose(pchan, pchan->chan_mat, pchan->pose_mat);
2413
2414         /* Only rootbones get the cyclic offset (unless user doesn't want that). */
2415         /* XXX That could be a problem for snapping and other "reverse transform" features... */
2416         if (!pchan->parent) {
2417                 if ((pchan->bone->flag & BONE_NO_CYCLICOFFSET) == 0)
2418                         add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset);
2419         }
2420
2421         if (do_extra) {
2422 #if 0   /* XXX OLD ANIMSYS, NLASTRIPS ARE NO LONGER USED */
2423                 /* do NLA strip modifiers - i.e. curve follow */
2424                 do_strip_modifiers(scene, ob, bone, pchan);
2425 #endif
2426
2427                 /* Do constraints */
2428                 if (pchan->constraints.first) {
2429                         bConstraintOb *cob;
2430                         float vec[3];
2431
2432                         /* make a copy of location of PoseChannel for later */
2433                         copy_v3_v3(vec, pchan->pose_mat[3]);
2434
2435                         /* prepare PoseChannel for Constraint solving
2436                          * - makes a copy of matrix, and creates temporary struct to use
2437                          */
2438                         cob = BKE_constraints_make_evalob(scene, ob, pchan, CONSTRAINT_OBTYPE_BONE);
2439
2440                         /* Solve PoseChannel's Constraints */
2441                         BKE_solve_constraints(&pchan->constraints, cob, ctime); /* ctime doesnt alter objects */
2442
2443                         /* cleanup after Constraint Solving
2444                          * - applies matrix back to pchan, and frees temporary struct used
2445                          */
2446                         BKE_constraints_clear_evalob(cob);
2447
2448                         /* prevent constraints breaking a chain */
2449                         if (pchan->bone->flag & BONE_CONNECTED) {
2450                                 copy_v3_v3(pchan->pose_mat[3], vec);
2451                         }
2452                 }
2453         }
2454
2455         /* calculate head */
2456         copy_v3_v3(pchan->pose_head, pchan->pose_mat[3]);
2457         /* calculate tail */
2458         BKE_pose_where_is_bone_tail(pchan);
2459 }
2460
2461 /* This only reads anim data from channels, and writes to channels */
2462 /* This is the only function adding poses */
2463 void BKE_pose_where_is(Scene *scene, Object *ob)
2464 {
2465         bArmature *arm;
2466         Bone *bone;
2467         bPoseChannel *pchan;
2468         float imat[4][4];
2469         float ctime;
2470
2471         if (ob->type != OB_ARMATURE)
2472                 return;
2473         arm = ob->data;
2474
2475         if (ELEM(NULL, arm, scene))
2476                 return;
2477         if ((ob->pose == NULL) || (ob->pose->flag & POSE_RECALC))
2478                 BKE_pose_rebuild(ob, arm);
2479
2480         ctime = BKE_scene_frame_get(scene); /* not accurate... */
2481
2482         /* In editmode or restposition we read the data from the bones */
2483         if (arm->edbo || (arm->flag & ARM_RESTPOS)) {
2484                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2485                         bone = pchan->bone;
2486                         if (bone) {
2487                                 copy_m4_m4(pchan->pose_mat, bone->arm_mat);
2488                                 copy_v3_v3(pchan->pose_head, bone->arm_head);
2489                                 copy_v3_v3(pchan->pose_tail, bone->arm_tail);
2490                         }
2491                 }
2492         }
2493         else {
2494                 invert_m4_m4(ob->imat, ob->obmat); /* imat is needed */
2495
2496                 /* 1. clear flags */
2497                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2498                         pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE);
2499                 }
2500
2501                 /* 2a. construct the IK tree (standard IK) */
2502                 BIK_initialize_tree(scene, ob, ctime);
2503
2504                 /* 2b. construct the Spline IK trees
2505                  *  - this is not integrated as an IK plugin, since it should be able
2506                  *        to function in conjunction with standard IK
2507                  */
2508                 splineik_init_tree(scene, ob, ctime);
2509
2510                 /* 3. the main loop, channels are already hierarchical sorted from root to children */
2511                 for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2512                         /* 4a. if we find an IK root, we handle it separated */
2513                         if (pchan->flag & POSE_IKTREE) {
2514                                 BIK_execute_tree(scene, ob, pchan, ctime);
2515                         }
2516                         /* 4b. if we find a Spline IK root, we handle it separated too */
2517                         else if (pchan->flag & POSE_IKSPLINE) {
2518                                 splineik_execute_tree(scene, ob, pchan, ctime);
2519                         }
2520                         /* 5. otherwise just call the normal solver */
2521                         else if (!(pchan->flag & POSE_DONE)) {
2522                                 BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);
2523                         }
2524                 }
2525                 /* 6. release the IK tree */
2526                 BIK_release_tree(scene, ob, ctime);
2527         }
2528
2529         /* calculating deform matrices */
2530         for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2531                 if (pchan->bone) {
2532                         invert_m4_m4(imat, pchan->bone->arm_mat);
2533                         mul_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat);
2534                 }
2535         }
2536 }
2537
2538 /************** Bounding box ********************/
2539 static int minmax_armature(Object *ob, float r_min[3], float r_max[3])
2540 {
2541         bPoseChannel *pchan;
2542
2543         /* For now, we assume BKE_pose_where_is has already been called (hence we have valid data in pachan). */
2544         for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
2545                 minmax_v3v3_v3(r_min, r_max, pchan->pose_head);
2546                 minmax_v3v3_v3(r_min, r_max, pchan->pose_tail);
2547         }
2548
2549         return (ob->pose->chanbase.first != NULL);
2550 }
2551
2552 static void boundbox_armature(Object *ob, float loc[3], float size[3])
2553 {
2554         BoundBox *bb;
2555         float min[3], max[3];
2556         float mloc[3], msize[3];
2557
2558         if (ob->bb == NULL)
2559                 ob->bb = MEM_callocN(sizeof(BoundBox), "Armature boundbox");
2560         bb = ob->bb;
2561
2562         if (!loc)
2563                 loc = mloc;
2564         if (!size)
2565                 size = msize;
2566
2567         INIT_MINMAX(min, max);
2568         if (!minmax_armature(ob, min, max)) {
2569                 min[0] = min[1] = min[2] = -1.0f;
2570                 max[0] = max[1] = max[2] = 1.0f;
2571         }
2572
2573         mid_v3_v3v3(loc, min, max);
2574
2575         size[0] = (max[0] - min[0]) / 2.0f;
2576         size[1] = (max[1] - min[1]) / 2.0f;
2577         size[2] = (max[2] - min[2]) / 2.0f;
2578
2579         BKE_boundbox_init_from_minmax(bb, min, max);
2580 }
2581
2582 BoundBox *BKE_armature_boundbox_get(Object *ob)
2583 {
2584         boundbox_armature(ob, NULL, NULL);
2585
2586         return ob->bb;
2587 }