svn merge -r39792:39829 https://svn.blender.org/svnroot/bf-blender/trunk/blender
[blender.git] / source / blender / render / intern / source / convertblender.c
1 /*
2  * $Id$
3  *
4  * ***** BEGIN GPL LICENSE BLOCK *****
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19  *
20  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
21  * All rights reserved.
22  *
23  * Contributors: 2004/2005/2006 Blender Foundation, full recode
24  *
25  * ***** END GPL LICENSE BLOCK *****
26  */
27
28 /** \file blender/render/intern/source/convertblender.c
29  *  \ingroup render
30  */
31
32
33 #include <math.h>
34 #include <stdlib.h>
35 #include <stdio.h>
36 #include <string.h>
37 #include <limits.h>
38
39 #include "MEM_guardedalloc.h"
40
41 #include "BLI_math.h"
42 #include "BLI_blenlib.h"
43 #include "BLI_utildefines.h"
44 #include "BLI_rand.h"
45 #include "BLI_memarena.h"
46 #include "BLI_ghash.h"
47
48 #include "DNA_armature_types.h"
49 #include "DNA_camera_types.h"
50 #include "DNA_material_types.h"
51 #include "DNA_curve_types.h"
52 #include "DNA_effect_types.h"
53 #include "DNA_group_types.h"
54 #include "DNA_lamp_types.h"
55 #include "DNA_image_types.h"
56 #include "DNA_lattice_types.h"
57 #include "DNA_mesh_types.h"
58 #include "DNA_meshdata_types.h"
59 #include "DNA_meta_types.h"
60 #include "DNA_modifier_types.h"
61 #include "DNA_node_types.h"
62 #include "DNA_object_types.h"
63 #include "DNA_object_force.h"
64 #include "DNA_object_fluidsim.h"
65 #include "DNA_particle_types.h"
66 #include "DNA_scene_types.h"
67 #include "DNA_texture_types.h"
68 #include "DNA_view3d_types.h"
69
70 #include "BKE_anim.h"
71 #include "BKE_armature.h"
72 #include "BKE_action.h"
73 #include "BKE_curve.h"
74 #include "BKE_customdata.h"
75 #include "BKE_colortools.h"
76 #include "BKE_constraint.h"
77 #include "BKE_displist.h"
78 #include "BKE_deform.h"
79 #include "BKE_DerivedMesh.h"
80 #include "BKE_effect.h"
81 #include "BKE_global.h"
82 #include "BKE_group.h"
83 #include "BKE_key.h"
84 #include "BKE_ipo.h"
85 #include "BKE_image.h"
86 #include "BKE_lattice.h"
87 #include "BKE_library.h"
88 #include "BKE_material.h"
89 #include "BKE_main.h"
90 #include "BKE_mball.h"
91 #include "BKE_mesh.h"
92 #include "BKE_modifier.h"
93 #include "BKE_node.h"
94 #include "BKE_object.h"
95 #include "BKE_particle.h"
96 #include "BKE_scene.h"
97 #include "BKE_subsurf.h"
98 #include "BKE_texture.h"
99
100 #include "BKE_world.h"
101
102 #include "PIL_time.h"
103 #include "IMB_imbuf_types.h"
104
105 #include "envmap.h"
106 #include "occlusion.h"
107 #include "pointdensity.h"
108 #include "voxeldata.h"
109 #include "render_types.h"
110 #include "rendercore.h"
111 #include "renderdatabase.h"
112 #include "renderpipeline.h"
113 #include "shadbuf.h"
114 #include "shading.h"
115 #include "strand.h"
116 #include "texture.h"
117 #include "volume_precache.h"
118 #include "sss.h"
119 #include "strand.h"
120 #include "zbuf.h"
121 #include "sunsky.h"
122
123
124 /* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
125 /* or for checking vertex normal flips */
126 #define FLT_EPSILON10 1.19209290e-06F
127
128 /* ------------------------------------------------------------------------- */
129
130 /* Stuff for stars. This sits here because it uses gl-things. Part of
131 this code may move down to the converter.  */
132 /* ------------------------------------------------------------------------- */
133 /* this is a bad beast, since it is misused by the 3d view drawing as well. */
134
135 static HaloRen *initstar(Render *re, ObjectRen *obr, float *vec, float hasize)
136 {
137         HaloRen *har;
138         float hoco[4];
139         
140         projectverto(vec, re->winmat, hoco);
141         
142         har= RE_findOrAddHalo(obr, obr->tothalo++);
143         
144         /* projectvert is done in function zbufvlaggen again, because of parts */
145         VECCOPY(har->co, vec);
146         har->hasize= hasize;
147         
148         har->zd= 0.0;
149         
150         return har;
151 }
152
153 /* there must be a 'fixed' amount of stars generated between
154 *         near and far
155 * all stars must by preference lie on the far and solely
156 *        differ in clarity/color
157 */
158
159 void RE_make_stars(Render *re, Scene *scenev3d, void (*initfunc)(void),
160                                    void (*vertexfunc)(float*),  void (*termfunc)(void))
161 {
162         extern unsigned char hash[512];
163         ObjectRen *obr= NULL;
164         World *wrld= NULL;
165         HaloRen *har;
166         Scene *scene;
167         Object *camera;
168         Camera *cam;
169         double dblrand, hlfrand;
170         float vec[4], fx, fy, fz;
171         float fac, starmindist, clipend;
172         float mat[4][4], stargrid, maxrand, maxjit, force, alpha;
173         int x, y, z, sx, sy, sz, ex, ey, ez, done = 0;
174         unsigned int totstar= 0;
175         
176         if(initfunc) {
177                 scene= scenev3d;
178                 wrld= scene->world;
179         }
180         else {
181                 scene= re->scene;
182                 wrld= &(re->wrld);
183         }
184
185         stargrid = wrld->stardist;                      /* distance between stars */
186         maxrand = 2.0;                                          /* amount a star can be shifted (in grid units) */
187         maxjit = (wrld->starcolnoise);          /* amount a color is being shifted */
188         
189         /* size of stars */
190         force = ( wrld->starsize );
191         
192         /* minimal free space (starting at camera) */
193         starmindist= wrld->starmindist;
194         
195         if (stargrid <= 0.10f) return;
196         
197         if (re) re->flag |= R_HALO;
198         else stargrid *= 1.0f;                          /* then it draws fewer */
199         
200         if(re) invert_m4_m4(mat, re->viewmat);
201         else unit_m4(mat);
202         
203         /* BOUNDING BOX CALCULATION
204                 * bbox goes from z = loc_near_var | loc_far_var,
205                 * x = -z | +z,
206                 * y = -z | +z
207                 */
208
209         camera= re ? RE_GetCamera(re) : scene->camera;
210
211         if(camera==NULL || camera->type != OB_CAMERA)
212                 return;
213
214         cam = camera->data;
215         clipend = cam->clipend;
216         
217         /* convert to grid coordinates */
218         
219         sx = ((mat[3][0] - clipend) / stargrid) - maxrand;
220         sy = ((mat[3][1] - clipend) / stargrid) - maxrand;
221         sz = ((mat[3][2] - clipend) / stargrid) - maxrand;
222         
223         ex = ((mat[3][0] + clipend) / stargrid) + maxrand;
224         ey = ((mat[3][1] + clipend) / stargrid) + maxrand;
225         ez = ((mat[3][2] + clipend) / stargrid) + maxrand;
226         
227         dblrand = maxrand * stargrid;
228         hlfrand = 2.0 * dblrand;
229         
230         if (initfunc) {
231                 initfunc();     
232         }
233
234         if(re) /* add render object for stars */
235                 obr= RE_addRenderObject(re, NULL, NULL, 0, 0, 0);
236         
237         for (x = sx, fx = sx * stargrid; x <= ex; x++, fx += stargrid) {
238                 for (y = sy, fy = sy * stargrid; y <= ey ; y++, fy += stargrid) {
239                         for (z = sz, fz = sz * stargrid; z <= ez; z++, fz += stargrid) {
240
241                                 BLI_srand((hash[z & 0xff] << 24) + (hash[y & 0xff] << 16) + (hash[x & 0xff] << 8));
242                                 vec[0] = fx + (hlfrand * BLI_drand()) - dblrand;
243                                 vec[1] = fy + (hlfrand * BLI_drand()) - dblrand;
244                                 vec[2] = fz + (hlfrand * BLI_drand()) - dblrand;
245                                 vec[3] = 1.0;
246                                 
247                                 if (vertexfunc) {
248                                         if(done & 1) vertexfunc(vec);
249                                         done++;
250                                 }
251                                 else {
252                                         mul_m4_v3(re->viewmat, vec);
253                                         
254                                         /* in vec are global coordinates
255                                         * calculate distance to camera
256                                         * and using that, define the alpha
257                                         */
258                                         
259                                         {
260                                                 float tx, ty, tz;
261                                                 
262                                                 tx = vec[0];
263                                                 ty = vec[1];
264                                                 tz = vec[2];
265                                                 
266                                                 alpha = sqrt(tx * tx + ty * ty + tz * tz);
267                                                 
268                                                 if (alpha >= clipend) alpha = 0.0;
269                                                 else if (alpha <= starmindist) alpha = 0.0;
270                                                 else if (alpha <= 2.0f * starmindist) {
271                                                         alpha = (alpha - starmindist) / starmindist;
272                                                 } else {
273                                                         alpha -= 2.0f * starmindist;
274                                                         alpha /= (clipend - 2.0f * starmindist);
275                                                         alpha = 1.0f - alpha;
276                                                 }
277                                         }
278                                         
279                                         
280                                         if (alpha != 0.0f) {
281                                                 fac = force * BLI_drand();
282                                                 
283                                                 har = initstar(re, obr, vec, fac);
284                                                 
285                                                 if (har) {
286                                                         har->alfa = sqrt(sqrt(alpha));
287                                                         har->add= 255;
288                                                         har->r = har->g = har->b = 1.0;
289                                                         if (maxjit) {
290                                                                 har->r += ((maxjit * BLI_drand()) ) - maxjit;
291                                                                 har->g += ((maxjit * BLI_drand()) ) - maxjit;
292                                                                 har->b += ((maxjit * BLI_drand()) ) - maxjit;
293                                                         }
294                                                         har->hard = 32;
295                                                         har->lay= -1;
296                                                         har->type |= HA_ONLYSKY;
297                                                         done++;
298                                                 }
299                                         }
300                                 }
301
302                                 /* break out of the loop if generating stars takes too long */
303                                 if(re && !(totstar % 1000000)) {
304                                         if(re->test_break(re->tbh)) {
305                                                 x= ex + 1;
306                                                 y= ey + 1;
307                                                 z= ez + 1;
308                                         }
309                                 }
310                                 
311                                 totstar++;
312                         }
313                         /* do not call blender_test_break() here, since it is used in UI as well, confusing the callback system */
314                         /* main cause is G.afbreek of course, a global again... (ton) */
315                 }
316         }
317         if (termfunc) termfunc();
318
319         if(obr)
320                 re->tothalo += obr->tothalo;
321 }
322
323
324 /* ------------------------------------------------------------------------- */
325 /* tool functions/defines for ad hoc simplification and possible future 
326    cleanup      */
327 /* ------------------------------------------------------------------------- */
328
329 #define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
330 /*
331
332 NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
333         
334 ^       ()----p4----p3----()
335 |       |     |     |     |
336 u       |     |  F1 |  F2 |
337         |     |     |     |
338         ()----p1----p2----()
339                    v ->
340 */
341
342 /* ------------------------------------------------------------------------- */
343
344 static void split_v_renderfaces(ObjectRen *obr, int startvlak, int UNUSED(startvert), int UNUSED(usize), int vsize, int uIndex, int UNUSED(cyclu), int cyclv)
345 {
346         int vLen = vsize-1+(!!cyclv);
347         int v;
348
349         for (v=0; v<vLen; v++) {
350                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v);
351                 VertRen *vert = RE_vertren_copy(obr, vlr->v2);
352
353                 if (cyclv) {
354                         vlr->v2 = vert;
355
356                         if (v==vLen-1) {
357                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + 0);
358                                 vlr->v1 = vert;
359                         } else {
360                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
361                                 vlr->v1 = vert;
362                         }
363                 } else {
364                         vlr->v2 = vert;
365
366                         if (v<vLen-1) {
367                                 VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
368                                 vlr->v1 = vert;
369                         }
370
371                         if (v==0) {
372                                 vlr->v1 = RE_vertren_copy(obr, vlr->v1);
373                         } 
374                 }
375         }
376 }
377
378 /* ------------------------------------------------------------------------- */
379 /* Stress, tangents and normals                                              */
380 /* ------------------------------------------------------------------------- */
381
382 static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
383 {
384         float len= len_v3v3(v1->co, v2->co)/len_v3v3(v1->orco, v2->orco);
385         float *acc;
386         
387         acc= accum + 2*v1->index;
388         acc[0]+= len;
389         acc[1]+= 1.0f;
390         
391         acc= accum + 2*v2->index;
392         acc[0]+= len;
393         acc[1]+= 1.0f;
394 }
395
396 static void calc_edge_stress(Render *UNUSED(re), ObjectRen *obr, Mesh *me)
397 {
398         float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
399         int a;
400         
401         if(obr->totvert==0) return;
402         
403         mesh_get_texspace(me, loc, NULL, size);
404         
405         accum= MEM_callocN(2*sizeof(float)*obr->totvert, "temp accum for stress");
406         
407         /* de-normalize orco */
408         for(a=0; a<obr->totvert; a++) {
409                 VertRen *ver= RE_findOrAddVert(obr, a);
410                 if(ver->orco) {
411                         ver->orco[0]= ver->orco[0]*size[0] +loc[0];
412                         ver->orco[1]= ver->orco[1]*size[1] +loc[1];
413                         ver->orco[2]= ver->orco[2]*size[2] +loc[2];
414                 }
415         }
416         
417         /* add stress values */
418         accumoffs= accum;       /* so we can use vertex index */
419         for(a=0; a<obr->totvlak; a++) {
420                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
421
422                 if(vlr->v1->orco && vlr->v4) {
423                         calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
424                         calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
425                         calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
426                         if(vlr->v4) {
427                                 calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
428                                 calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
429                                 calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
430                         }
431                 }
432         }
433         
434         for(a=0; a<obr->totvert; a++) {
435                 VertRen *ver= RE_findOrAddVert(obr, a);
436                 if(ver->orco) {
437                         /* find stress value */
438                         acc= accumoffs + 2*ver->index;
439                         if(acc[1]!=0.0f)
440                                 acc[0]/= acc[1];
441                         stress= RE_vertren_get_stress(obr, ver, 1);
442                         *stress= *acc;
443                         
444                         /* restore orcos */
445                         ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
446                         ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
447                         ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
448                 }
449         }
450         
451         MEM_freeN(accum);
452 }
453
454 /* gets tangent from tface or orco */
455 static void calc_tangent_vector(ObjectRen *obr, VertexTangent **vtangents, MemArena *arena, VlakRen *vlr, int do_nmap_tangent, int do_tangent)
456 {
457         MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
458         VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
459         float tang[3], *tav;
460         float *uv1, *uv2, *uv3, *uv4;
461         float uv[4][2];
462         
463         if(tface) {
464                 uv1= tface->uv[0];
465                 uv2= tface->uv[1];
466                 uv3= tface->uv[2];
467                 uv4= tface->uv[3];
468         }
469         else if(v1->orco) {
470                 uv1= uv[0]; uv2= uv[1]; uv3= uv[2]; uv4= uv[3];
471                 map_to_sphere( &uv[0][0], &uv[0][1],v1->orco[0], v1->orco[1], v1->orco[2]);
472                 map_to_sphere( &uv[1][0], &uv[1][1],v2->orco[0], v2->orco[1], v2->orco[2]);
473                 map_to_sphere( &uv[2][0], &uv[2][1],v3->orco[0], v3->orco[1], v3->orco[2]);
474                 if(v4)
475                         map_to_sphere( &uv[3][0], &uv[3][1],v4->orco[0], v4->orco[1], v4->orco[2]);
476         }
477         else return;
478
479         tangent_from_uv(uv1, uv2, uv3, v1->co, v2->co, v3->co, vlr->n, tang);
480         
481         if(do_tangent) {
482                 tav= RE_vertren_get_tangent(obr, v1, 1);
483                 VECADD(tav, tav, tang);
484                 tav= RE_vertren_get_tangent(obr, v2, 1);
485                 VECADD(tav, tav, tang);
486                 tav= RE_vertren_get_tangent(obr, v3, 1);
487                 VECADD(tav, tav, tang);
488         }
489         
490         if(do_nmap_tangent) {
491                 sum_or_add_vertex_tangent(arena, &vtangents[v1->index], tang, uv1);
492                 sum_or_add_vertex_tangent(arena, &vtangents[v2->index], tang, uv2);
493                 sum_or_add_vertex_tangent(arena, &vtangents[v3->index], tang, uv3);
494         }
495
496         if(v4) {
497                 tangent_from_uv(uv1, uv3, uv4, v1->co, v3->co, v4->co, vlr->n, tang);
498                 
499                 if(do_tangent) {
500                         tav= RE_vertren_get_tangent(obr, v1, 1);
501                         VECADD(tav, tav, tang);
502                         tav= RE_vertren_get_tangent(obr, v3, 1);
503                         VECADD(tav, tav, tang);
504                         tav= RE_vertren_get_tangent(obr, v4, 1);
505                         VECADD(tav, tav, tang);
506                 }
507
508                 if(do_nmap_tangent) {
509                         sum_or_add_vertex_tangent(arena, &vtangents[v1->index], tang, uv1);
510                         sum_or_add_vertex_tangent(arena, &vtangents[v3->index], tang, uv3);
511                         sum_or_add_vertex_tangent(arena, &vtangents[v4->index], tang, uv4);
512                 }
513         }
514 }
515
516
517
518 /****************************************************************
519 ************ tangent space generation interface *****************
520 ****************************************************************/
521
522 typedef struct
523 {
524         ObjectRen *obr;
525
526 } SRenderMeshToTangent;
527
528 // interface
529 #include "mikktspace.h"
530
531 static int GetNumFaces(const SMikkTSpaceContext * pContext)
532 {
533         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
534         return pMesh->obr->totvlak;
535 }
536
537 static int GetNumVertsOfFace(const SMikkTSpaceContext * pContext, const int face_num)
538 {
539         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
540         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
541         return vlr->v4!=NULL ? 4 : 3;
542 }
543
544 static void GetPosition(const SMikkTSpaceContext * pContext, float fPos[], const int face_num, const int vert_index)
545 {
546         //assert(vert_index>=0 && vert_index<4);
547         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
548         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
549         const float *co= (&vlr->v1)[vert_index]->co;
550         VECCOPY(fPos, co);
551 }
552
553 static void GetTextureCoordinate(const SMikkTSpaceContext * pContext, float fUV[], const int face_num, const int vert_index)
554 {
555         //assert(vert_index>=0 && vert_index<4);
556         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
557         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
558         MTFace *tface= RE_vlakren_get_tface(pMesh->obr, vlr, pMesh->obr->actmtface, NULL, 0);
559         const float *coord;
560         
561         if(tface != NULL)       {
562                 coord= tface->uv[vert_index];
563                 fUV[0]= coord[0]; fUV[1]= coord[1];
564         }
565         else if((coord= (&vlr->v1)[vert_index]->orco)) {
566                 map_to_sphere(&fUV[0], &fUV[1], coord[0], coord[1], coord[2]);
567         }
568         else { /* else we get un-initialized value, 0.0 ok default? */
569                 fUV[0]= fUV[1]= 0.0f;
570         }
571 }
572
573 static void GetNormal(const SMikkTSpaceContext * pContext, float fNorm[], const int face_num, const int vert_index)
574 {
575         //assert(vert_index>=0 && vert_index<4);
576         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
577         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
578         const float *n= (&vlr->v1)[vert_index]->n;
579         VECCOPY(fNorm, n);
580 }
581 static void SetTSpace(const SMikkTSpaceContext * pContext, const float fvTangent[], const float fSign, const int face_num, const int iVert)
582 {
583         //assert(vert_index>=0 && vert_index<4);
584         SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
585         VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
586         float * ftang= RE_vlakren_get_nmap_tangent(pMesh->obr, vlr, 1);
587         if(ftang!=NULL) {
588                 VECCOPY(&ftang[iVert*4+0], fvTangent);
589                 ftang[iVert*4+3]=fSign;
590         }
591 }
592
593 static void calc_vertexnormals(Render *UNUSED(re), ObjectRen *obr, int do_tangent, int do_nmap_tangent)
594 {
595         MemArena *arena= NULL;
596         VertexTangent **vtangents= NULL;
597         int a, iCalcNewMethod;
598
599         if(do_nmap_tangent) {
600                 arena= BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "nmap tangent arena");
601                 BLI_memarena_use_calloc(arena);
602
603                 vtangents= MEM_callocN(sizeof(VertexTangent*)*obr->totvert, "VertexTangent");
604         }
605
606                 /* clear all vertex normals */
607         for(a=0; a<obr->totvert; a++) {
608                 VertRen *ver= RE_findOrAddVert(obr, a);
609                 ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
610         }
611
612                 /* calculate cos of angles and point-masses, use as weight factor to
613                    add face normal to vertex */
614         for(a=0; a<obr->totvlak; a++) {
615                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
616                 if(vlr->flag & ME_SMOOTH) {
617                         float *n4= (vlr->v4)? vlr->v4->n: NULL;
618                         float *c4= (vlr->v4)? vlr->v4->co: NULL;
619
620                         accumulate_vertex_normals(vlr->v1->n, vlr->v2->n, vlr->v3->n, n4,
621                                 vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co, c4);
622                 }
623                 if(do_nmap_tangent || do_tangent) {
624                         /* tangents still need to be calculated for flat faces too */
625                         /* weighting removed, they are not vertexnormals */
626                         calc_tangent_vector(obr, vtangents, arena, vlr, do_nmap_tangent, do_tangent);
627                 }
628         }
629
630                 /* do solid faces */
631         for(a=0; a<obr->totvlak; a++) {
632                 VlakRen *vlr= RE_findOrAddVlak(obr, a);
633
634                 if((vlr->flag & ME_SMOOTH)==0) {
635                         if(is_zero_v3(vlr->v1->n)) VECCOPY(vlr->v1->n, vlr->n);
636                         if(is_zero_v3(vlr->v2->n)) VECCOPY(vlr->v2->n, vlr->n);
637                         if(is_zero_v3(vlr->v3->n)) VECCOPY(vlr->v3->n, vlr->n);
638                         if(vlr->v4 && is_zero_v3(vlr->v4->n)) VECCOPY(vlr->v4->n, vlr->n);
639                 }
640
641                 if(do_nmap_tangent) {
642                         VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
643                         MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
644
645                         if(tface) {
646                                 int k=0;
647                                 float *vtang, *ftang= RE_vlakren_get_nmap_tangent(obr, vlr, 1);
648
649                                 vtang= find_vertex_tangent(vtangents[v1->index], tface->uv[0]);
650                                 VECCOPY(ftang, vtang);
651                                 normalize_v3(ftang);
652                                 vtang= find_vertex_tangent(vtangents[v2->index], tface->uv[1]);
653                                 VECCOPY(ftang+4, vtang);
654                                 normalize_v3(ftang+4);
655                                 vtang= find_vertex_tangent(vtangents[v3->index], tface->uv[2]);
656                                 VECCOPY(ftang+8, vtang);
657                                 normalize_v3(ftang+8);
658                                 if(v4) {
659                                         vtang= find_vertex_tangent(vtangents[v4->index], tface->uv[3]);
660                                         VECCOPY(ftang+12, vtang);
661                                         normalize_v3(ftang+12);
662                                 }
663                                 for(k=0; k<4; k++) ftang[4*k+3]=1;
664                         }
665                 }
666         }
667         
668                 /* normalize vertex normals */
669         for(a=0; a<obr->totvert; a++) {
670                 VertRen *ver= RE_findOrAddVert(obr, a);
671                 normalize_v3(ver->n);
672                 if(do_tangent) {
673                         float *tav= RE_vertren_get_tangent(obr, ver, 0);
674                         if (tav) {
675                                 /* orthonorm. */
676                                 float tdn = tav[0]*ver->n[0] + tav[1]*ver->n[1] + tav[2]*ver->n[2];
677                                 tav[0] -= ver->n[0]*tdn;
678                                 tav[1] -= ver->n[1]*tdn;
679                                 tav[2] -= ver->n[2]*tdn;
680                                 normalize_v3(tav);
681                         }
682                 }
683         }
684
685         iCalcNewMethod = 1;
686         if(iCalcNewMethod!=0 && do_nmap_tangent!=0)
687         {
688                 SRenderMeshToTangent mesh2tangent;
689                 SMikkTSpaceContext sContext;
690                 SMikkTSpaceInterface sInterface;
691                 memset(&mesh2tangent, 0, sizeof(SRenderMeshToTangent));
692                 memset(&sContext, 0, sizeof(SMikkTSpaceContext));
693                 memset(&sInterface, 0, sizeof(SMikkTSpaceInterface));
694
695                 mesh2tangent.obr = obr;
696
697                 sContext.m_pUserData = &mesh2tangent;
698                 sContext.m_pInterface = &sInterface;
699                 sInterface.m_getNumFaces = GetNumFaces;
700                 sInterface.m_getNumVerticesOfFace = GetNumVertsOfFace;
701                 sInterface.m_getPosition = GetPosition;
702                 sInterface.m_getTexCoord = GetTextureCoordinate;
703                 sInterface.m_getNormal = GetNormal;
704                 sInterface.m_setTSpaceBasic = SetTSpace;
705
706                 // 0 if failed
707                 iCalcNewMethod = genTangSpaceDefault(&sContext);
708         }
709
710
711         if(arena)
712                 BLI_memarena_free(arena);
713         if(vtangents)
714                 MEM_freeN(vtangents);
715 }
716
717 /* ------------------------------------------------------------------------- */
718 /* Autosmoothing:                                                            */
719 /* ------------------------------------------------------------------------- */
720
721 typedef struct ASvert {
722         int totface;
723         ListBase faces;
724 } ASvert;
725
726 typedef struct ASface {
727         struct ASface *next, *prev;
728         VlakRen *vlr[4];
729         VertRen *nver[4];
730 } ASface;
731
732 static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
733 {
734         ASface *asf;
735         int a;
736         
737         if(v1 == NULL) return;
738         
739         if(asv->faces.first==NULL) {
740                 asf= MEM_callocN(sizeof(ASface), "asface");
741                 BLI_addtail(&asv->faces, asf);
742         }
743         
744         asf= asv->faces.last;
745         for(a=0; a<4; a++) {
746                 if(asf->vlr[a]==NULL) {
747                         asf->vlr[a]= vlr;
748                         asv->totface++;
749                         break;
750                 }
751         }
752         
753         /* new face struct */
754         if(a==4) {
755                 asf= MEM_callocN(sizeof(ASface), "asface");
756                 BLI_addtail(&asv->faces, asf);
757                 asf->vlr[0]= vlr;
758                 asv->totface++;
759         }
760 }
761
762 static int as_testvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
763 {
764         /* return 1: vertex needs a copy */
765         ASface *asf;
766         float inp;
767         int a;
768         
769         if(vlr==0) return 0;
770         
771         asf= asv->faces.first;
772         while(asf) {
773                 for(a=0; a<4; a++) {
774                         if(asf->vlr[a] && asf->vlr[a]!=vlr) {
775                                 inp= fabs( vlr->n[0]*asf->vlr[a]->n[0] + vlr->n[1]*asf->vlr[a]->n[1] + vlr->n[2]*asf->vlr[a]->n[2] );
776                                 if(inp < thresh) return 1;
777                         }
778                 }
779                 asf= asf->next;
780         }
781         
782         return 0;
783 }
784
785 static VertRen *as_findvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
786 {
787         /* return when new vertex already was made */
788         ASface *asf;
789         float inp;
790         int a;
791         
792         asf= asv->faces.first;
793         while(asf) {
794                 for(a=0; a<4; a++) {
795                         if(asf->vlr[a] && asf->vlr[a]!=vlr) {
796                                 /* this face already made a copy for this vertex! */
797                                 if(asf->nver[a]) {
798                                         inp= fabs( vlr->n[0]*asf->vlr[a]->n[0] + vlr->n[1]*asf->vlr[a]->n[1] + vlr->n[2]*asf->vlr[a]->n[2] );
799                                         if(inp >= thresh) {
800                                                 return asf->nver[a];
801                                         }
802                                 }
803                         }
804                 }
805                 asf= asf->next;
806         }
807         
808         return NULL;
809 }
810
811 /* note; autosmooth happens in object space still, after applying autosmooth we rotate */
812 /* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
813 static void autosmooth(Render *UNUSED(re), ObjectRen *obr, float mat[][4], int degr)
814 {
815         ASvert *asv, *asverts;
816         ASface *asf;
817         VertRen *ver, *v1;
818         VlakRen *vlr;
819         float thresh;
820         int a, b, totvert;
821         
822         if(obr->totvert==0) return;
823         asverts= MEM_callocN(sizeof(ASvert)*obr->totvert, "all smooth verts");
824         
825         thresh= cosf((float)M_PI*(0.5f+(float)degr)/180.0f );
826         
827         /* step zero: give faces normals of original mesh, if this is provided */
828         
829         
830         /* step one: construct listbase of all vertices and pointers to faces */
831         for(a=0; a<obr->totvlak; a++) {
832                 vlr= RE_findOrAddVlak(obr, a);
833                 /* skip wire faces */
834                 if(vlr->v2 != vlr->v3) {
835                         as_addvert(asverts+vlr->v1->index, vlr->v1, vlr);
836                         as_addvert(asverts+vlr->v2->index, vlr->v2, vlr);
837                         as_addvert(asverts+vlr->v3->index, vlr->v3, vlr);
838                         if(vlr->v4) 
839                                 as_addvert(asverts+vlr->v4->index, vlr->v4, vlr);
840                 }
841         }
842         
843         totvert= obr->totvert;
844         /* we now test all vertices, when faces have a normal too much different: they get a new vertex */
845         for(a=0, asv=asverts; a<totvert; a++, asv++) {
846                 if(asv && asv->totface>1) {
847                         ver= RE_findOrAddVert(obr, a);
848
849                         asf= asv->faces.first;
850                         while(asf) {
851                                 for(b=0; b<4; b++) {
852                                 
853                                         /* is there a reason to make a new vertex? */
854                                         vlr= asf->vlr[b];
855                                         if( as_testvertex(vlr, ver, asv, thresh) ) {
856                                                 
857                                                 /* already made a new vertex within threshold? */
858                                                 v1= as_findvertex(vlr, ver, asv, thresh);
859                                                 if(v1==NULL) {
860                                                         /* make a new vertex */
861                                                         v1= RE_vertren_copy(obr, ver);
862                                                 }
863                                                 asf->nver[b]= v1;
864                                                 if(vlr->v1==ver) vlr->v1= v1;
865                                                 if(vlr->v2==ver) vlr->v2= v1;
866                                                 if(vlr->v3==ver) vlr->v3= v1;
867                                                 if(vlr->v4==ver) vlr->v4= v1;
868                                         }
869                                 }
870                                 asf= asf->next;
871                         }
872                 }
873         }
874         
875         /* free */
876         for(a=0; a<totvert; a++) {
877                 BLI_freelistN(&asverts[a].faces);
878         }
879         MEM_freeN(asverts);
880         
881         /* rotate vertices and calculate normal of faces */
882         for(a=0; a<obr->totvert; a++) {
883                 ver= RE_findOrAddVert(obr, a);
884                 mul_m4_v3(mat, ver->co);
885         }
886         for(a=0; a<obr->totvlak; a++) {
887                 vlr= RE_findOrAddVlak(obr, a);
888                 
889                 /* skip wire faces */
890                 if(vlr->v2 != vlr->v3) {
891                         if(vlr->v4) 
892                                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
893                         else 
894                                 normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
895                 }
896         }               
897 }
898
899 /* ------------------------------------------------------------------------- */
900 /* Orco hash and Materials                                                   */
901 /* ------------------------------------------------------------------------- */
902
903 static float *get_object_orco(Render *re, Object *ob)
904 {
905         float *orco;
906
907         if (!re->orco_hash)
908                 re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp, "get_object_orco gh");
909
910         orco = BLI_ghash_lookup(re->orco_hash, ob);
911
912         if (!orco) {
913                 if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
914                         orco = make_orco_curve(re->scene, ob);
915                 } else if (ob->type==OB_SURF) {
916                         orco = make_orco_surf(ob);
917                 }
918
919                 if (orco)
920                         BLI_ghash_insert(re->orco_hash, ob, orco);
921         }
922
923         return orco;
924 }
925
926 static void set_object_orco(Render *re, void *ob, float *orco)
927 {
928         if (!re->orco_hash)
929                 re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp, "set_object_orco gh");
930         
931         BLI_ghash_insert(re->orco_hash, ob, orco);
932 }
933
934 static void free_mesh_orco_hash(Render *re) 
935 {
936         if (re->orco_hash) {
937                 BLI_ghash_free(re->orco_hash, NULL, (GHashValFreeFP)MEM_freeN);
938                 re->orco_hash = NULL;
939         }
940 }
941
942 static void check_material_mapto(Material *ma)
943 {
944         int a;
945         ma->mapto_textured = 0;
946         
947         /* cache which inputs are actually textured.
948          * this can avoid a bit of time spent iterating through all the texture slots, map inputs and map tos
949          * every time a property which may or may not be textured is accessed */
950         
951         for(a=0; a<MAX_MTEX; a++) {
952                 if(ma->mtex[a] && ma->mtex[a]->tex) {
953                         /* currently used only in volume render, so we'll check for those flags */
954                         if(ma->mtex[a]->mapto & MAP_DENSITY) ma->mapto_textured |= MAP_DENSITY;
955                         if(ma->mtex[a]->mapto & MAP_EMISSION) ma->mapto_textured |= MAP_EMISSION;
956                         if(ma->mtex[a]->mapto & MAP_EMISSION_COL) ma->mapto_textured |= MAP_EMISSION_COL;
957                         if(ma->mtex[a]->mapto & MAP_SCATTERING) ma->mapto_textured |= MAP_SCATTERING;
958                         if(ma->mtex[a]->mapto & MAP_TRANSMISSION_COL) ma->mapto_textured |= MAP_TRANSMISSION_COL;
959                         if(ma->mtex[a]->mapto & MAP_REFLECTION) ma->mapto_textured |= MAP_REFLECTION;
960                         if(ma->mtex[a]->mapto & MAP_REFLECTION_COL) ma->mapto_textured |= MAP_REFLECTION_COL;
961                 }
962         }
963 }
964 static void flag_render_node_material(Render *re, bNodeTree *ntree)
965 {
966         bNode *node;
967
968         for(node=ntree->nodes.first; node; node= node->next) {
969                 if(node->id) {
970                         if(GS(node->id->name)==ID_MA) {
971                                 Material *ma= (Material *)node->id;
972
973                                 if((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
974                                         re->flag |= R_ZTRA;
975
976                                 ma->flag |= MA_IS_USED;
977                         }
978                         else if(node->type==NODE_GROUP)
979                                 flag_render_node_material(re, (bNodeTree *)node->id);
980                 }
981         }
982 }
983
984 static Material *give_render_material(Render *re, Object *ob, int nr)
985 {
986         extern Material defmaterial;    /* material.c */
987         Material *ma;
988         
989         ma= give_current_material(ob, nr);
990         if(ma==NULL) 
991                 ma= &defmaterial;
992         
993         if(re->r.mode & R_SPEED) ma->texco |= NEED_UV;
994         
995         if(ma->material_type == MA_TYPE_VOLUME) {
996                 ma->mode |= MA_TRANSP;
997                 ma->mode &= ~MA_SHADBUF;
998         }
999         if((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
1000                 re->flag |= R_ZTRA;
1001         
1002         /* for light groups and SSS */
1003         ma->flag |= MA_IS_USED;
1004
1005         if(ma->nodetree && ma->use_nodes)
1006                 flag_render_node_material(re, ma->nodetree);
1007         
1008         check_material_mapto(ma);
1009         
1010         return ma;
1011 }
1012
1013 /* ------------------------------------------------------------------------- */
1014 /* Particles                                                                 */
1015 /* ------------------------------------------------------------------------- */
1016 typedef struct ParticleStrandData
1017 {
1018         struct MCol *mcol;
1019         float *orco, *uvco, *surfnor;
1020         float time, adapt_angle, adapt_pix, size;
1021         int totuv, totcol;
1022         int first, line, adapt, override_uv;
1023 }
1024 ParticleStrandData;
1025 /* future thread problem... */
1026 static void static_particle_strand(Render *re, ObjectRen *obr, Material *ma, ParticleStrandData *sd, float *vec, float *vec1)
1027 {
1028         static VertRen *v1= NULL, *v2= NULL;
1029         VlakRen *vlr= NULL;
1030         float nor[3], cross[3], crosslen, w, dx, dy, width;
1031         static float anor[3], avec[3];
1032         int flag, i;
1033         static int second=0;
1034         
1035         sub_v3_v3v3(nor, vec, vec1);
1036         normalize_v3(nor);              // nor needed as tangent 
1037         cross_v3_v3v3(cross, vec, nor);
1038
1039         /* turn cross in pixelsize */
1040         w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1041         dx= re->winx*cross[0]*re->winmat[0][0];
1042         dy= re->winy*cross[1]*re->winmat[1][1];
1043         w= sqrt(dx*dx + dy*dy)/w;
1044         
1045         if(w!=0.0f) {
1046                 float fac;
1047                 if(ma->strand_ease!=0.0f) {
1048                         if(ma->strand_ease<0.0f)
1049                                 fac= pow(sd->time, 1.0f+ma->strand_ease);
1050                         else
1051                                 fac= pow(sd->time, 1.0f/(1.0f-ma->strand_ease));
1052                 }
1053                 else fac= sd->time;
1054
1055                 width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
1056
1057                 /* use actual Blender units for strand width and fall back to minimum width */
1058                 if(ma->mode & MA_STR_B_UNITS){
1059                         crosslen= len_v3(cross);
1060                         w= 2.0f*crosslen*ma->strand_min/w;
1061
1062                         if(width < w)
1063                                 width= w;
1064
1065                         /*cross is the radius of the strand so we want it to be half of full width */
1066                         mul_v3_fl(cross,0.5f/crosslen);
1067                 }
1068                 else
1069                         width/=w;
1070
1071                 mul_v3_fl(cross, width);
1072         }
1073         else width= 1.0f;
1074         
1075         if(ma->mode & MA_TANGENT_STR)
1076                 flag= R_SMOOTH|R_TANGENT;
1077         else
1078                 flag= R_SMOOTH;
1079         
1080         /* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
1081         if(ma->strand_sta==1.0f)
1082                 flag |= R_STRAND;
1083         
1084         /* single face line */
1085         if(sd->line) {
1086                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1087                 vlr->flag= flag;
1088                 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1089                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1090                 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1091                 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1092                 
1093                 VECCOPY(vlr->v1->co, vec);
1094                 add_v3_v3(vlr->v1->co, cross);
1095                 VECCOPY(vlr->v1->n, nor);
1096                 vlr->v1->orco= sd->orco;
1097                 vlr->v1->accum= -1.0f;  // accum abuse for strand texco
1098                 
1099                 VECCOPY(vlr->v2->co, vec);
1100                 sub_v3_v3v3(vlr->v2->co, vlr->v2->co, cross);
1101                 VECCOPY(vlr->v2->n, nor);
1102                 vlr->v2->orco= sd->orco;
1103                 vlr->v2->accum= vlr->v1->accum;
1104
1105                 VECCOPY(vlr->v4->co, vec1);
1106                 add_v3_v3(vlr->v4->co, cross);
1107                 VECCOPY(vlr->v4->n, nor);
1108                 vlr->v4->orco= sd->orco;
1109                 vlr->v4->accum= 1.0f;   // accum abuse for strand texco
1110                 
1111                 VECCOPY(vlr->v3->co, vec1);
1112                 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1113                 VECCOPY(vlr->v3->n, nor);
1114                 vlr->v3->orco= sd->orco;
1115                 vlr->v3->accum= vlr->v4->accum;
1116
1117                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1118                 
1119                 vlr->mat= ma;
1120                 vlr->ec= ME_V2V3;
1121
1122                 if(sd->surfnor) {
1123                         float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1124                         VECCOPY(snor, sd->surfnor);
1125                 }
1126
1127                 if(sd->uvco){
1128                         for(i=0; i<sd->totuv; i++){
1129                                 MTFace *mtf;
1130                                 mtf=RE_vlakren_get_tface(obr,vlr,i,NULL,1);
1131                                 mtf->uv[0][0]=mtf->uv[1][0]=
1132                                 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1133                                 mtf->uv[0][1]=mtf->uv[1][1]=
1134                                 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1135                         }
1136                         if(sd->override_uv>=0){
1137                                 MTFace *mtf;
1138                                 mtf=RE_vlakren_get_tface(obr,vlr,sd->override_uv,NULL,0);
1139                                 
1140                                 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1141                                 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1142
1143                                 mtf->uv[0][1]=mtf->uv[1][1]=0.0f;
1144                                 mtf->uv[2][1]=mtf->uv[3][1]=1.0f;
1145                         }
1146                 }
1147                 if(sd->mcol){
1148                         for(i=0; i<sd->totcol; i++){
1149                                 MCol *mc;
1150                                 mc=RE_vlakren_get_mcol(obr,vlr,i,NULL,1);
1151                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1152                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1153                         }
1154                 }
1155         }
1156         /* first two vertices of a strand */
1157         else if(sd->first) {
1158                 if(sd->adapt){
1159                         VECCOPY(anor, nor);
1160                         VECCOPY(avec, vec);
1161                         second=1;
1162                 }
1163
1164                 v1= RE_findOrAddVert(obr, obr->totvert++);
1165                 v2= RE_findOrAddVert(obr, obr->totvert++);
1166                 
1167                 VECCOPY(v1->co, vec);
1168                 add_v3_v3(v1->co, cross);
1169                 VECCOPY(v1->n, nor);
1170                 v1->orco= sd->orco;
1171                 v1->accum= -1.0f;       // accum abuse for strand texco
1172                 
1173                 VECCOPY(v2->co, vec);
1174                 sub_v3_v3v3(v2->co, v2->co, cross);
1175                 VECCOPY(v2->n, nor);
1176                 v2->orco= sd->orco;
1177                 v2->accum= v1->accum;
1178         }
1179         /* more vertices & faces to strand */
1180         else {
1181                 if(sd->adapt==0 || second){
1182                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1183                         vlr->flag= flag;
1184                         vlr->v1= v1;
1185                         vlr->v2= v2;
1186                         vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1187                         vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1188                         
1189                         v1= vlr->v4; // cycle
1190                         v2= vlr->v3; // cycle
1191
1192                         
1193                         if(sd->adapt){
1194                                 second=0;
1195                                 VECCOPY(anor,nor);
1196                                 VECCOPY(avec,vec);
1197                         }
1198
1199                 }
1200                 else if(sd->adapt){
1201                         float dvec[3],pvec[3];
1202                         sub_v3_v3v3(dvec,avec,vec);
1203                         project_v3_v3v3(pvec,dvec,vec);
1204                         sub_v3_v3v3(dvec,dvec,pvec);
1205
1206                         w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
1207                         dx= re->winx*dvec[0]*re->winmat[0][0]/w;
1208                         dy= re->winy*dvec[1]*re->winmat[1][1]/w;
1209                         w= sqrt(dx*dx + dy*dy);
1210                         if(dot_v3v3(anor,nor)<sd->adapt_angle && w>sd->adapt_pix){
1211                                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1212                                 vlr->flag= flag;
1213                                 vlr->v1= v1;
1214                                 vlr->v2= v2;
1215                                 vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1216                                 vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1217                                 
1218                                 v1= vlr->v4; // cycle
1219                                 v2= vlr->v3; // cycle
1220
1221                                 VECCOPY(anor,nor);
1222                                 VECCOPY(avec,vec);
1223                         }
1224                         else{
1225                                 vlr= RE_findOrAddVlak(obr, obr->totvlak-1);
1226                         }
1227                 }
1228         
1229                 VECCOPY(vlr->v4->co, vec);
1230                 add_v3_v3(vlr->v4->co, cross);
1231                 VECCOPY(vlr->v4->n, nor);
1232                 vlr->v4->orco= sd->orco;
1233                 vlr->v4->accum= -1.0f + 2.0f*sd->time;  // accum abuse for strand texco
1234                 
1235                 VECCOPY(vlr->v3->co, vec);
1236                 sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
1237                 VECCOPY(vlr->v3->n, nor);
1238                 vlr->v3->orco= sd->orco;
1239                 vlr->v3->accum= vlr->v4->accum;
1240                 
1241                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1242                 
1243                 vlr->mat= ma;
1244                 vlr->ec= ME_V2V3;
1245
1246                 if(sd->surfnor) {
1247                         float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
1248                         VECCOPY(snor, sd->surfnor);
1249                 }
1250
1251                 if(sd->uvco){
1252                         for(i=0; i<sd->totuv; i++){
1253                                 MTFace *mtf;
1254                                 mtf=RE_vlakren_get_tface(obr,vlr,i,NULL,1);
1255                                 mtf->uv[0][0]=mtf->uv[1][0]=
1256                                 mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
1257                                 mtf->uv[0][1]=mtf->uv[1][1]=
1258                                 mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
1259                         }
1260                         if(sd->override_uv>=0){
1261                                 MTFace *mtf;
1262                                 mtf=RE_vlakren_get_tface(obr,vlr,sd->override_uv,NULL,0);
1263                                 
1264                                 mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
1265                                 mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
1266
1267                                 mtf->uv[0][1]=mtf->uv[1][1]=(vlr->v1->accum+1.0f)/2.0f;
1268                                 mtf->uv[2][1]=mtf->uv[3][1]=(vlr->v3->accum+1.0f)/2.0f;
1269                         }
1270                 }
1271                 if(sd->mcol){
1272                         for(i=0; i<sd->totcol; i++){
1273                                 MCol *mc;
1274                                 mc=RE_vlakren_get_mcol(obr,vlr,i,NULL,1);
1275                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1276                                 mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
1277                         }
1278                 }
1279         }
1280 }
1281
1282 static void static_particle_wire(ObjectRen *obr, Material *ma, float *vec, float *vec1, int first, int line)
1283 {
1284         VlakRen *vlr;
1285         static VertRen *v1;
1286
1287         if(line) {
1288                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1289                 vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1290                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1291                 vlr->v3= vlr->v2;
1292                 vlr->v4= NULL;
1293                 
1294                 VECCOPY(vlr->v1->co, vec);
1295                 VECCOPY(vlr->v2->co, vec1);
1296                 
1297                 sub_v3_v3v3(vlr->n, vec, vec1);
1298                 normalize_v3(vlr->n);
1299                 VECCOPY(vlr->v1->n, vlr->n);
1300                 VECCOPY(vlr->v2->n, vlr->n);
1301                 
1302                 vlr->mat= ma;
1303                 vlr->ec= ME_V1V2;
1304
1305         }
1306         else if(first) {
1307                 v1= RE_findOrAddVert(obr, obr->totvert++);
1308                 VECCOPY(v1->co, vec);
1309         }
1310         else {
1311                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1312                 vlr->v1= v1;
1313                 vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1314                 vlr->v3= vlr->v2;
1315                 vlr->v4= NULL;
1316                 
1317                 v1= vlr->v2; // cycle
1318                 VECCOPY(v1->co, vec);
1319                 
1320                 sub_v3_v3v3(vlr->n, vec, vec1);
1321                 normalize_v3(vlr->n);
1322                 VECCOPY(v1->n, vlr->n);
1323                 
1324                 vlr->mat= ma;
1325                 vlr->ec= ME_V1V2;
1326         }
1327
1328 }
1329
1330 static void particle_curve(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, float *loc, float *loc1,  int seed, float *pa_co)
1331 {
1332         HaloRen *har=0;
1333
1334         if(ma->material_type == MA_TYPE_WIRE)
1335                 static_particle_wire(obr, ma, loc, loc1, sd->first, sd->line);
1336         else if(ma->material_type == MA_TYPE_HALO) {
1337                 har= RE_inithalo_particle(re, obr, dm, ma, loc, loc1, sd->orco, sd->uvco, sd->size, 1.0, seed, pa_co);
1338                 if(har) har->lay= obr->ob->lay;
1339         }
1340         else
1341                 static_particle_strand(re, obr, ma, sd, loc, loc1);
1342 }
1343 static void particle_billboard(Render *re, ObjectRen *obr, Material *ma, ParticleBillboardData *bb)
1344 {
1345         VlakRen *vlr;
1346         MTFace *mtf;
1347         float xvec[3], yvec[3], zvec[3], bb_center[3];
1348         /* Number of tiles */
1349         int totsplit = bb->uv_split * bb->uv_split;
1350         int tile, x, y;
1351         /* Tile offsets */
1352         float uvx = 0.0f, uvy = 0.0f, uvdx = 1.0f, uvdy = 1.0f, time = 0.0f;
1353
1354         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
1355         vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
1356         vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
1357         vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
1358         vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
1359
1360         psys_make_billboard(bb, xvec, yvec, zvec, bb_center);
1361
1362         VECADD(vlr->v1->co, bb_center, xvec);
1363         VECADD(vlr->v1->co, vlr->v1->co, yvec);
1364         mul_m4_v3(re->viewmat, vlr->v1->co);
1365
1366         VECSUB(vlr->v2->co, bb_center, xvec);
1367         VECADD(vlr->v2->co, vlr->v2->co, yvec);
1368         mul_m4_v3(re->viewmat, vlr->v2->co);
1369
1370         VECSUB(vlr->v3->co, bb_center, xvec);
1371         VECSUB(vlr->v3->co, vlr->v3->co, yvec);
1372         mul_m4_v3(re->viewmat, vlr->v3->co);
1373
1374         VECADD(vlr->v4->co, bb_center, xvec);
1375         VECSUB(vlr->v4->co, vlr->v4->co, yvec);
1376         mul_m4_v3(re->viewmat, vlr->v4->co);
1377
1378         normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
1379         VECCOPY(vlr->v1->n,vlr->n);
1380         VECCOPY(vlr->v2->n,vlr->n);
1381         VECCOPY(vlr->v3->n,vlr->n);
1382         VECCOPY(vlr->v4->n,vlr->n);
1383         
1384         vlr->mat= ma;
1385         vlr->ec= ME_V2V3;
1386
1387         if(bb->uv_split > 1){
1388                 uvdx = uvdy = 1.0f / (float)bb->uv_split;
1389
1390                 if(ELEM(bb->anim, PART_BB_ANIM_AGE, PART_BB_ANIM_FRAME)) {
1391                         if(bb->anim == PART_BB_ANIM_FRAME)
1392                                 time = ((int)(bb->time * bb->lifetime) % totsplit)/(float)totsplit;
1393                         else
1394                                 time = bb->time;
1395                 }
1396                 else if(bb->anim == PART_BB_ANIM_ANGLE) {
1397                         if(bb->align == PART_BB_VIEW) {
1398                                 time = (float)fmod((bb->tilt + 1.0f) / 2.0f, 1.0);
1399                         }
1400                         else {
1401                                 float axis1[3] = {0.0f,0.0f,0.0f};
1402                                 float axis2[3] = {0.0f,0.0f,0.0f};
1403
1404                                 axis1[(bb->align + 1) % 3] = 1.0f;
1405                                 axis2[(bb->align + 2) % 3] = 1.0f;
1406
1407                                 if(bb->lock == 0) {
1408                                         zvec[bb->align] = 0.0f;
1409                                         normalize_v3(zvec);
1410                                 }
1411                                 
1412                                 time = saacos(dot_v3v3(zvec, axis1)) / (float)M_PI;
1413                                 
1414                                 if(dot_v3v3(zvec, axis2) < 0.0f)
1415                                         time = 1.0f - time / 2.0f;
1416                                 else
1417                                         time /= 2.0f;
1418                         }
1419                 }
1420
1421                 if(bb->split_offset == PART_BB_OFF_LINEAR)
1422                         time = (float)fmod(time + (float)bb->num / (float)totsplit, 1.0f);
1423                 else if(bb->split_offset==PART_BB_OFF_RANDOM)
1424                         time = (float)fmod(time + bb->random, 1.0f);
1425
1426                 /* Find the coordinates in tile space (integer), then convert to UV
1427                  * space (float). Note that Y is flipped. */
1428                 tile = (int)((time + FLT_EPSILON10) * totsplit);
1429                 x = tile % bb->uv_split;
1430                 y = tile / bb->uv_split;
1431                 y = (bb->uv_split - 1) - y;
1432                 uvx = uvdx * x;
1433                 uvy = uvdy * y;
1434         }
1435
1436         /* normal UVs */
1437         if(bb->uv[0] >= 0){
1438                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[0], NULL, 1);
1439                 mtf->uv[0][0] = 1.0f;
1440                 mtf->uv[0][1] = 1.0f;
1441                 mtf->uv[1][0] = 0.0f;
1442                 mtf->uv[1][1] = 1.0f;
1443                 mtf->uv[2][0] = 0.0f;
1444                 mtf->uv[2][1] = 0.0f;
1445                 mtf->uv[3][0] = 1.0f;
1446                 mtf->uv[3][1] = 0.0f;
1447         }
1448
1449         /* time-index UVs */
1450         if(bb->uv[1] >= 0){
1451                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[1], NULL, 1);
1452                 mtf->uv[0][0] = mtf->uv[1][0] = mtf->uv[2][0] = mtf->uv[3][0] = bb->time;
1453                 mtf->uv[0][1] = mtf->uv[1][1] = mtf->uv[2][1] = mtf->uv[3][1] = (float)bb->num/(float)bb->totnum;
1454         }
1455
1456         /* split UVs */
1457         if(bb->uv_split > 1 && bb->uv[2] >= 0){
1458                 mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[2], NULL, 1);
1459                 mtf->uv[0][0] = uvx + uvdx;
1460                 mtf->uv[0][1] = uvy + uvdy;
1461                 mtf->uv[1][0] = uvx;
1462                 mtf->uv[1][1] = uvy + uvdy;
1463                 mtf->uv[2][0] = uvx;
1464                 mtf->uv[2][1] = uvy;
1465                 mtf->uv[3][0] = uvx + uvdx;
1466                 mtf->uv[3][1] = uvy;
1467         }
1468 }
1469 static void particle_normal_ren(short ren_as, ParticleSettings *part, Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, ParticleBillboardData *bb, ParticleKey *state, int seed, float hasize, float *pa_co)
1470 {
1471         float loc[3], loc0[3], loc1[3], vel[3];
1472         
1473         VECCOPY(loc, state->co);
1474
1475         if(ren_as != PART_DRAW_BB)
1476                 mul_m4_v3(re->viewmat, loc);
1477
1478         switch(ren_as) {
1479                 case PART_DRAW_LINE:
1480                         sd->line = 1;
1481                         sd->time = 0.0f;
1482                         sd->size = hasize;
1483
1484                         VECCOPY(vel, state->vel);
1485                         mul_mat3_m4_v3(re->viewmat, vel);
1486                         normalize_v3(vel);
1487
1488                         if(part->draw & PART_DRAW_VEL_LENGTH)
1489                                 mul_v3_fl(vel, len_v3(state->vel));
1490
1491                         VECADDFAC(loc0, loc, vel, -part->draw_line[0]);
1492                         VECADDFAC(loc1, loc, vel, part->draw_line[1]);
1493
1494                         particle_curve(re, obr, dm, ma, sd, loc0, loc1, seed, pa_co);
1495
1496                         break;
1497
1498                 case PART_DRAW_BB:
1499
1500                         VECCOPY(bb->vec, loc);
1501                         VECCOPY(bb->vel, state->vel);
1502
1503                         particle_billboard(re, obr, ma, bb);
1504
1505                         break;
1506
1507                 default:
1508                 {
1509                         HaloRen *har=0;
1510
1511                         har = RE_inithalo_particle(re, obr, dm, ma, loc, NULL, sd->orco, sd->uvco, hasize, 0.0, seed, pa_co);
1512                         
1513                         if(har) har->lay= obr->ob->lay;
1514
1515                         break;
1516                 }
1517         }
1518 }
1519 static void get_particle_uvco_mcol(short from, DerivedMesh *dm, float *fuv, int num, ParticleStrandData *sd)
1520 {
1521         int i;
1522
1523         /* get uvco */
1524         if(sd->uvco && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
1525                 for(i=0; i<sd->totuv; i++) {
1526                         if(num != DMCACHE_NOTFOUND) {
1527                                 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1528                                 MTFace *mtface = (MTFace*)CustomData_get_layer_n(&dm->faceData, CD_MTFACE, i);
1529                                 mtface += num;
1530                                 
1531                                 psys_interpolate_uvs(mtface, mface->v4, fuv, sd->uvco + 2 * i);
1532                         }
1533                         else {
1534                                 sd->uvco[2*i] = 0.0f;
1535                                 sd->uvco[2*i + 1] = 0.0f;
1536                         }
1537                 }
1538         }
1539
1540         /* get mcol */
1541         if(sd->mcol && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
1542                 for(i=0; i<sd->totcol; i++) {
1543                         if(num != DMCACHE_NOTFOUND) {
1544                                 MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
1545                                 MCol *mc = (MCol*)CustomData_get_layer_n(&dm->faceData, CD_MCOL, i);
1546                                 mc += num * 4;
1547
1548                                 psys_interpolate_mcol(mc, mface->v4, fuv, sd->mcol + i);
1549                         }
1550                         else
1551                                 memset(&sd->mcol[i], 0, sizeof(MCol));
1552                 }
1553         }
1554 }
1555 static int render_new_particle_system(Render *re, ObjectRen *obr, ParticleSystem *psys, int timeoffset)
1556 {
1557         Object *ob= obr->ob;
1558 //      Object *tob=0;
1559         Material *ma=0;
1560         ParticleSystemModifierData *psmd;
1561         ParticleSystem *tpsys=0;
1562         ParticleSettings *part, *tpart=0;
1563         ParticleData *pars, *pa=0,*tpa=0;
1564         ParticleKey *states=0;
1565         ParticleKey state;
1566         ParticleCacheKey *cache=0;
1567         ParticleBillboardData bb;
1568         ParticleSimulationData sim = {0};
1569         ParticleStrandData sd;
1570         StrandBuffer *strandbuf=0;
1571         StrandVert *svert=0;
1572         StrandBound *sbound= 0;
1573         StrandRen *strand=0;
1574         RNG *rng= 0;
1575         float loc[3],loc1[3],loc0[3],mat[4][4],nmat[3][3],co[3],nor[3],duplimat[4][4];
1576         float strandlen=0.0f, curlen=0.0f;
1577         float hasize, pa_size, r_tilt, r_length;
1578         float pa_time, pa_birthtime, pa_dietime;
1579         float random, simplify[2], pa_co[3];
1580         const float cfra= BKE_curframe(re->scene);
1581         int i, a, k, max_k=0, totpart, dosimplify = 0, dosurfacecache = 0, use_duplimat = 0;
1582         int totchild=0;
1583         int seed, path_nbr=0, orco1=0, num;
1584         int totface, *origindex = 0;
1585         char **uv_name=0;
1586
1587 /* 1. check that everything is ok & updated */
1588         if(psys==NULL)
1589                 return 0;
1590
1591         part=psys->part;
1592         pars=psys->particles;
1593
1594         if(part==NULL || pars==NULL || !psys_check_enabled(ob, psys))
1595                 return 0;
1596         
1597         if(part->ren_as==PART_DRAW_OB || part->ren_as==PART_DRAW_GR || part->ren_as==PART_DRAW_NOT)
1598                 return 1;
1599
1600 /* 2. start initialising things */
1601
1602         /* last possibility to bail out! */
1603         psmd = psys_get_modifier(ob,psys);
1604         if(!(psmd->modifier.mode & eModifierMode_Render))
1605                 return 0;
1606
1607         sim.scene= re->scene;
1608         sim.ob= ob;
1609         sim.psys= psys;
1610         sim.psmd= psmd;
1611
1612         if(part->phystype==PART_PHYS_KEYED)
1613                 psys_count_keyed_targets(&sim);
1614
1615         totchild=psys->totchild;
1616
1617         /* can happen for disconnected/global hair */
1618         if(part->type==PART_HAIR && !psys->childcache)
1619                 totchild= 0;
1620
1621         if(G.rendering == 0) { /* preview render */
1622                 totchild = (int)((float)totchild * (float)part->disp / 100.0f);
1623         }
1624
1625         psys->flag |= PSYS_DRAWING;
1626
1627         rng= rng_new(psys->seed);
1628
1629         totpart=psys->totpart;
1630
1631         memset(&sd, 0, sizeof(ParticleStrandData));
1632         sd.override_uv = -1;
1633
1634 /* 2.1 setup material stff */
1635         ma= give_render_material(re, ob, part->omat);
1636         
1637 #if 0 // XXX old animation system
1638         if(ma->ipo){
1639                 calc_ipo(ma->ipo, cfra);
1640                 execute_ipo((ID *)ma, ma->ipo);
1641         }
1642 #endif // XXX old animation system
1643
1644         hasize = ma->hasize;
1645         seed = ma->seed1;
1646
1647         re->flag |= R_HALO;
1648
1649         RE_set_customdata_names(obr, &psmd->dm->faceData);
1650         sd.totuv = CustomData_number_of_layers(&psmd->dm->faceData, CD_MTFACE);
1651         sd.totcol = CustomData_number_of_layers(&psmd->dm->faceData, CD_MCOL);
1652
1653         if(ma->texco & TEXCO_UV && sd.totuv) {
1654                 sd.uvco = MEM_callocN(sd.totuv * 2 * sizeof(float), "particle_uvs");
1655
1656                 if(ma->strand_uvname[0]) {
1657                         sd.override_uv = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, ma->strand_uvname);
1658                         sd.override_uv -= CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1659                 }
1660         }
1661         else
1662                 sd.uvco = NULL;
1663
1664         if(sd.totcol)
1665                 sd.mcol = MEM_callocN(sd.totcol * sizeof(MCol), "particle_mcols");
1666
1667 /* 2.2 setup billboards */
1668         if(part->ren_as == PART_DRAW_BB) {
1669                 int first_uv = CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
1670
1671                 bb.uv[0] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[0]);
1672                 if(bb.uv[0] < 0)
1673                         bb.uv[0] = CustomData_get_active_layer_index(&psmd->dm->faceData, CD_MTFACE);
1674
1675                 bb.uv[1] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[1]);
1676
1677                 bb.uv[2] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[2]);
1678
1679                 if(first_uv >= 0) {
1680                         bb.uv[0] -= first_uv;
1681                         bb.uv[1] -= first_uv;
1682                         bb.uv[2] -= first_uv;
1683                 }
1684
1685                 bb.align = part->bb_align;
1686                 bb.anim = part->bb_anim;
1687                 bb.lock = part->draw & PART_DRAW_BB_LOCK;
1688                 bb.ob = (part->bb_ob ? part->bb_ob : RE_GetCamera(re));
1689                 bb.split_offset = part->bb_split_offset;
1690                 bb.totnum = totpart+totchild;
1691                 bb.uv_split = part->bb_uv_split;
1692         }
1693         
1694 /* 2.5 setup matrices */
1695         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
1696         invert_m4_m4(ob->imat, mat);    /* need to be that way, for imat texture */
1697         copy_m3_m4(nmat, ob->imat);
1698         transpose_m3(nmat);
1699
1700         if(psys->flag & PSYS_USE_IMAT) {
1701                 /* psys->imat is the original emitter's inverse matrix, ob->obmat is the duplicated object's matrix */
1702                 mul_m4_m4m4(duplimat, psys->imat, ob->obmat);
1703                 use_duplimat = 1;
1704         }
1705
1706 /* 2.6 setup strand rendering */
1707         if(part->ren_as == PART_DRAW_PATH && psys->pathcache){
1708                 path_nbr=(int)pow(2.0,(double) part->ren_step);
1709
1710                 if(path_nbr) {
1711                         if(!ELEM(ma->material_type, MA_TYPE_HALO, MA_TYPE_WIRE)) {
1712                                 sd.orco = MEM_mallocN(3*sizeof(float)*(totpart+totchild), "particle orcos");
1713                                 set_object_orco(re, psys, sd.orco);
1714                         }
1715                 }
1716
1717                 if(part->draw & PART_DRAW_REN_ADAPT) {
1718                         sd.adapt = 1;
1719                         sd.adapt_pix = (float)part->adapt_pix;
1720                         sd.adapt_angle = cos((float)part->adapt_angle * (float)(M_PI / 180.0));
1721                 }
1722
1723                 if(re->r.renderer==R_INTERN && part->draw&PART_DRAW_REN_STRAND) {
1724                         strandbuf= RE_addStrandBuffer(obr, (totpart+totchild)*(path_nbr+1));
1725                         strandbuf->ma= ma;
1726                         strandbuf->lay= ob->lay;
1727                         copy_m4_m4(strandbuf->winmat, re->winmat);
1728                         strandbuf->winx= re->winx;
1729                         strandbuf->winy= re->winy;
1730                         strandbuf->maxdepth= 2;
1731                         strandbuf->adaptcos= cos((float)part->adapt_angle*(float)(M_PI/180.0));
1732                         strandbuf->overrideuv= sd.override_uv;
1733                         strandbuf->minwidth= ma->strand_min;
1734
1735                         if(ma->strand_widthfade == 0.0f)
1736                                 strandbuf->widthfade= 0.0f;
1737                         else if(ma->strand_widthfade >= 1.0f)
1738                                 strandbuf->widthfade= 2.0f - ma->strand_widthfade;
1739                         else
1740                                 strandbuf->widthfade= 1.0f/MAX2(ma->strand_widthfade, 1e-5f);
1741
1742                         if(part->flag & PART_HAIR_BSPLINE)
1743                                 strandbuf->flag |= R_STRAND_BSPLINE;
1744                         if(ma->mode & MA_STR_B_UNITS)
1745                                 strandbuf->flag |= R_STRAND_B_UNITS;
1746
1747                         svert= strandbuf->vert;
1748
1749                         if(re->r.mode & R_SPEED)
1750                                 dosurfacecache= 1;
1751                         else if((re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT)) && (re->wrld.ao_gather_method == WO_AOGATHER_APPROX))
1752                                 if(ma->amb != 0.0f)
1753                                         dosurfacecache= 1;
1754
1755                         totface= psmd->dm->getNumTessFaces(psmd->dm);
1756                         origindex= psmd->dm->getTessFaceDataArray(psmd->dm, CD_ORIGINDEX);
1757                         for(a=0; a<totface; a++)
1758                                 strandbuf->totbound= MAX2(strandbuf->totbound, (origindex)? origindex[a]: a);
1759
1760                         strandbuf->totbound++;
1761                         strandbuf->bound= MEM_callocN(sizeof(StrandBound)*strandbuf->totbound, "StrandBound");
1762                         sbound= strandbuf->bound;
1763                         sbound->start= sbound->end= 0;
1764                 }
1765         }
1766
1767         if(sd.orco == 0) {
1768                 sd.orco = MEM_mallocN(3 * sizeof(float), "particle orco");
1769                 orco1 = 1;
1770         }
1771
1772         if(path_nbr == 0)
1773                 psys->lattice = psys_get_lattice(&sim);
1774
1775 /* 3. start creating renderable things */
1776         for(a=0,pa=pars; a<totpart+totchild; a++, pa++, seed++) {
1777                 random = rng_getFloat(rng);
1778                 /* setup per particle individual stuff */
1779                 if(a<totpart){
1780                         if(pa->flag & PARS_UNEXIST) continue;
1781
1782                         pa_time=(cfra-pa->time)/pa->lifetime;
1783                         pa_birthtime = pa->time;
1784                         pa_dietime = pa->dietime;
1785
1786                         hasize = ma->hasize;
1787
1788                         /* get orco */
1789                         if(tpsys && part->phystype==PART_PHYS_NO){
1790                                 tpa=tpsys->particles+pa->num;
1791                                 psys_particle_on_emitter(psmd,tpart->from,tpa->num,pa->num_dmcache,tpa->fuv,tpa->foffset,co,nor,0,0,sd.orco,0);
1792                         }
1793                         else
1794                                 psys_particle_on_emitter(psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,sd.orco,0);
1795
1796                         /* get uvco & mcol */
1797                         num= pa->num_dmcache;
1798
1799                         if(num == DMCACHE_NOTFOUND)
1800                                 if(pa->num < psmd->dm->getNumTessFaces(psmd->dm))
1801                                         num= pa->num;
1802
1803                         get_particle_uvco_mcol(part->from, psmd->dm, pa->fuv, num, &sd);
1804
1805                         pa_size = pa->size;
1806
1807                         r_tilt = 2.0f*(PSYS_FRAND(a) - 0.5f);
1808                         r_length = PSYS_FRAND(a+1);
1809
1810                         if(path_nbr) {
1811                                 cache = psys->pathcache[a];
1812                                 max_k = (int)cache->steps;
1813                         }
1814
1815                         if(totchild && (part->draw&PART_DRAW_PARENT)==0) continue;
1816                 }
1817                 else {
1818                         ChildParticle *cpa= psys->child+a-totpart;
1819
1820                         if(path_nbr) {
1821                                 cache = psys->childcache[a-totpart];
1822
1823                                 if(cache->steps < 0)
1824                                         continue;
1825
1826                                 max_k = (int)cache->steps;
1827                         }
1828                         
1829                         pa_time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
1830                         pa_size = psys_get_child_size(psys, cpa, cfra, &pa_time);
1831
1832                         r_tilt = 2.0f*(PSYS_FRAND(a + 21) - 0.5f);
1833                         r_length = PSYS_FRAND(a + 22);
1834
1835                         num = cpa->num;
1836
1837                         /* get orco */
1838                         if(part->childtype == PART_CHILD_FACES) {
1839                                 psys_particle_on_emitter(psmd,
1840                                         PART_FROM_FACE, cpa->num,DMCACHE_ISCHILD,
1841                                         cpa->fuv,cpa->foffset,co,nor,0,0,sd.orco,0);
1842                         }
1843                         else {
1844                                 ParticleData *par = psys->particles + cpa->parent;
1845                                 psys_particle_on_emitter(psmd, part->from,
1846                                         par->num,DMCACHE_ISCHILD,par->fuv,
1847                                         par->foffset,co,nor,0,0,sd.orco,0);
1848                         }
1849
1850                         /* get uvco & mcol */
1851                         if(part->childtype==PART_CHILD_FACES) {
1852                                 get_particle_uvco_mcol(PART_FROM_FACE, psmd->dm, cpa->fuv, cpa->num, &sd);
1853                         }
1854                         else {
1855                                 ParticleData *parent = psys->particles + cpa->parent;
1856                                 num = parent->num_dmcache;
1857
1858                                 if(num == DMCACHE_NOTFOUND)
1859                                         if(parent->num < psmd->dm->getNumTessFaces(psmd->dm))
1860                                                 num = parent->num;
1861
1862                                 get_particle_uvco_mcol(part->from, psmd->dm, parent->fuv, num, &sd);
1863                         }
1864
1865                         dosimplify = psys_render_simplify_params(psys, cpa, simplify);
1866
1867                         if(strandbuf) {
1868                                 int orignum= (origindex)? origindex[cpa->num]: cpa->num;
1869
1870                                 if(orignum > sbound - strandbuf->bound) {
1871                                         sbound= strandbuf->bound + orignum;
1872                                         sbound->start= sbound->end= obr->totstrand;
1873                                 }
1874                         }
1875                 }
1876
1877                 /* TEXCO_PARTICLE */
1878                 pa_co[0] = pa_time;
1879                 pa_co[1] = 0.f;
1880                 pa_co[2] = 0.f;
1881
1882                 /* surface normal shading setup */
1883                 if(ma->mode_l & MA_STR_SURFDIFF) {
1884                         mul_m3_v3(nmat, nor);
1885                         sd.surfnor= nor;
1886                 }
1887                 else
1888                         sd.surfnor= NULL;
1889
1890                 /* strand render setup */
1891                 if(strandbuf) {
1892                         strand= RE_findOrAddStrand(obr, obr->totstrand++);
1893                         strand->buffer= strandbuf;
1894                         strand->vert= svert;
1895                         VECCOPY(strand->orco, sd.orco);
1896
1897                         if(dosimplify) {
1898                                 float *ssimplify= RE_strandren_get_simplify(obr, strand, 1);
1899                                 ssimplify[0]= simplify[0];
1900                                 ssimplify[1]= simplify[1];
1901                         }
1902
1903                         if(sd.surfnor) {
1904                                 float *snor= RE_strandren_get_surfnor(obr, strand, 1);
1905                                 VECCOPY(snor, sd.surfnor);
1906                         }
1907
1908                         if(dosurfacecache && num >= 0) {
1909                                 int *facenum= RE_strandren_get_face(obr, strand, 1);
1910                                 *facenum= num;
1911                         }
1912
1913                         if(sd.uvco) {
1914                                 for(i=0; i<sd.totuv; i++) {
1915                                         if(i != sd.override_uv) {
1916                                                 float *uv= RE_strandren_get_uv(obr, strand, i, NULL, 1);
1917
1918                                                 uv[0]= sd.uvco[2*i];
1919                                                 uv[1]= sd.uvco[2*i+1];
1920                                         }
1921                                 }
1922                         }
1923                         if(sd.mcol) {
1924                                 for(i=0; i<sd.totcol; i++) {
1925                                         MCol *mc= RE_strandren_get_mcol(obr, strand, i, NULL, 1);
1926                                         *mc = sd.mcol[i];
1927                                 }
1928                         }
1929
1930                         sbound->end++;
1931                 }
1932
1933                 /* strandco computation setup */
1934                 if(path_nbr) {
1935                         strandlen= 0.0f;
1936                         curlen= 0.0f;
1937                         for(k=1; k<=path_nbr; k++)
1938                                 if(k<=max_k)
1939                                         strandlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1940                 }
1941
1942                 if(path_nbr) {
1943                         /* render strands */
1944                         for(k=0; k<=path_nbr; k++){
1945                                 float time;
1946
1947                                 if(k<=max_k){
1948                                         VECCOPY(state.co,(cache+k)->co);
1949                                         VECCOPY(state.vel,(cache+k)->vel);
1950                                 }
1951                                 else
1952                                         continue;       
1953
1954                                 if(k > 0)
1955                                         curlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
1956                                 time= curlen/strandlen;
1957
1958                                 VECCOPY(loc,state.co);
1959                                 mul_m4_v3(re->viewmat,loc);
1960
1961                                 if(strandbuf) {
1962                                         VECCOPY(svert->co, loc);
1963                                         svert->strandco= -1.0f + 2.0f*time;
1964                                         svert++;
1965                                         strand->totvert++;
1966                                 }
1967                                 else{
1968                                         sd.size = hasize;
1969
1970                                         if(k==1){
1971                                                 sd.first = 1;
1972                                                 sd.time = 0.0f;
1973                                                 VECSUB(loc0,loc1,loc);
1974                                                 VECADD(loc0,loc1,loc0);
1975
1976                                                 particle_curve(re, obr, psmd->dm, ma, &sd, loc1, loc0, seed, pa_co);
1977                                         }
1978
1979                                         sd.first = 0;
1980                                         sd.time = time;
1981
1982                                         if(k)
1983                                                 particle_curve(re, obr, psmd->dm, ma, &sd, loc, loc1, seed, pa_co);
1984
1985                                         VECCOPY(loc1,loc);
1986                                 }
1987                         }
1988
1989                 }
1990                 else {
1991                         /* render normal particles */
1992                         if(part->trail_count > 1) {
1993                                 float length = part->path_end * (1.0f - part->randlength * r_length);
1994                                 int trail_count = part->trail_count * (1.0f - part->randlength * r_length);
1995                                 float ct = (part->draw & PART_ABS_PATH_TIME) ? cfra : pa_time;
1996                                 float dt = length / (trail_count ? (float)trail_count : 1.0f);
1997
1998                                 /* make sure we have pointcache in memory before getting particle on path */
1999                                 psys_make_temp_pointcache(ob, psys);
2000
2001                                 for(i=0; i < trail_count; i++, ct -= dt) {
2002                                         if(part->draw & PART_ABS_PATH_TIME) {
2003                                                 if(ct < pa_birthtime || ct > pa_dietime)
2004                                                         continue;
2005                                         }
2006                                         else if(ct < 0.0f || ct > 1.0f)
2007                                                 continue;
2008
2009                                         state.time = (part->draw & PART_ABS_PATH_TIME) ? -ct : ct;
2010                                         psys_get_particle_on_path(&sim,a,&state,1);
2011
2012                                         if(psys->parent)
2013                                                 mul_m4_v3(psys->parent->obmat, state.co);
2014
2015                                         if(use_duplimat)
2016                                                 mul_m4_v4(duplimat, state.co);
2017
2018                                         if(part->ren_as == PART_DRAW_BB) {
2019                                                 bb.random = random;
2020                                                 bb.offset[0] = part->bb_offset[0];
2021                                                 bb.offset[1] = part->bb_offset[1];
2022                                                 bb.size[0] = part->bb_size[0] * pa_size;
2023                                                 if (part->bb_align==PART_BB_VEL) {
2024                                                         float pa_vel = len_v3(state.vel);
2025                                                         float head = part->bb_vel_head*pa_vel;
2026                                                         float tail = part->bb_vel_tail*pa_vel;
2027                                                         bb.size[1] = part->bb_size[1]*pa_size + head + tail;
2028                                                         /* use offset to adjust the particle center. this is relative to size, so need to divide! */
2029                                                         if (bb.size[1] > 0.0f)
2030                                                                 bb.offset[1] += (head-tail) / bb.size[1];
2031                                                 }
2032                                                 else
2033                                                         bb.size[1] = part->bb_size[1] * pa_size;
2034                                                 bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2035                                                 bb.time = ct;
2036                                                 bb.num = a;
2037                                         }
2038
2039                                         pa_co[0] = (part->draw & PART_ABS_PATH_TIME) ? (ct-pa_birthtime)/(pa_dietime-pa_birthtime) : ct;
2040                                         pa_co[1] = (float)i/(float)(trail_count-1);
2041
2042                                         particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2043                                 }
2044                         }
2045                         else {
2046                                 state.time=cfra;
2047                                 if(psys_get_particle_state(&sim,a,&state,0)==0)
2048                                         continue;
2049
2050                                 if(psys->parent)
2051                                         mul_m4_v3(psys->parent->obmat, state.co);
2052
2053                                 if(use_duplimat)
2054                                         mul_m4_v3(duplimat, state.co);
2055
2056                                 if(part->ren_as == PART_DRAW_BB) {
2057                                         bb.random = random;
2058                                         bb.offset[0] = part->bb_offset[0];
2059                                         bb.offset[1] = part->bb_offset[1];
2060                                         bb.size[0] = part->bb_size[0] * pa_size;
2061                                         if (part->bb_align==PART_BB_VEL) {
2062                                                 float pa_vel = len_v3(state.vel);
2063                                                 float head = part->bb_vel_head*pa_vel;
2064                                                 float tail = part->bb_vel_tail*pa_vel;
2065                                                 bb.size[1] = part->bb_size[1]*pa_size + head + tail;
2066                                                 /* use offset to adjust the particle center. this is relative to size, so need to divide! */
2067                                                 if (bb.size[1] > 0.0f)
2068                                                         bb.offset[1] += (head-tail) / bb.size[1];
2069                                         }
2070                                         else
2071                                                 bb.size[1] = part->bb_size[1] * pa_size;
2072                                         bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
2073                                         bb.time = pa_time;
2074                                         bb.num = a;
2075                                         bb.lifetime = pa_dietime-pa_birthtime;
2076                                 }
2077
2078                                 particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
2079                         }
2080                 }
2081
2082                 if(orco1==0)
2083                         sd.orco+=3;
2084
2085                 if(re->test_break(re->tbh))
2086                         break;
2087         }
2088
2089         if(dosurfacecache)
2090                 strandbuf->surface= cache_strand_surface(re, obr, psmd->dm, mat, timeoffset);
2091
2092 /* 4. clean up */
2093 #if 0 // XXX old animation system
2094         if(ma) do_mat_ipo(re->scene, ma);
2095 #endif // XXX old animation system
2096         
2097         if(orco1)
2098                 MEM_freeN(sd.orco);
2099
2100         if(sd.uvco)
2101                 MEM_freeN(sd.uvco);
2102         
2103         if(sd.mcol)
2104                 MEM_freeN(sd.mcol);
2105
2106         if(uv_name)
2107                 MEM_freeN(uv_name);
2108
2109         if(states)
2110                 MEM_freeN(states);
2111         
2112         rng_free(rng);
2113
2114         psys->flag &= ~PSYS_DRAWING;
2115
2116         if(psys->lattice){
2117                 end_latt_deform(psys->lattice);
2118                 psys->lattice= NULL;
2119         }
2120
2121         if(path_nbr && (ma->mode_l & MA_TANGENT_STR)==0)
2122                 calc_vertexnormals(re, obr, 0, 0);
2123
2124         return 1;
2125 }
2126
2127 /* ------------------------------------------------------------------------- */
2128 /* Halo's                                                                                                                                */
2129 /* ------------------------------------------------------------------------- */
2130
2131 static void make_render_halos(Render *re, ObjectRen *obr, Mesh *UNUSED(me), int totvert, MVert *mvert, Material *ma, float *orco)
2132 {
2133         Object *ob= obr->ob;
2134         HaloRen *har;
2135         float xn, yn, zn, nor[3], view[3];
2136         float vec[3], hasize, mat[4][4], imat[3][3];
2137         int a, ok, seed= ma->seed1;
2138
2139         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
2140         copy_m3_m4(imat, ob->imat);
2141
2142         re->flag |= R_HALO;
2143
2144         for(a=0; a<totvert; a++, mvert++) {
2145                 ok= 1;
2146
2147                 if(ok) {
2148                         hasize= ma->hasize;
2149
2150                         VECCOPY(vec, mvert->co);
2151                         mul_m4_v3(mat, vec);
2152
2153                         if(ma->mode & MA_HALOPUNO) {
2154                                 xn= mvert->no[0];
2155                                 yn= mvert->no[1];
2156                                 zn= mvert->no[2];
2157
2158                                 /* transpose ! */
2159                                 nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2160                                 nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2161                                 nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2162                                 normalize_v3(nor);
2163
2164                                 VECCOPY(view, vec);
2165                                 normalize_v3(view);
2166
2167                                 zn= nor[0]*view[0]+nor[1]*view[1]+nor[2]*view[2];
2168                                 if(zn>=0.0f) hasize= 0.0f;
2169                                 else hasize*= zn*zn*zn*zn;
2170                         }
2171
2172                         if(orco) har= RE_inithalo(re, obr, ma, vec, NULL, orco, hasize, 0.0, seed);
2173                         else har= RE_inithalo(re, obr, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
2174                         if(har) har->lay= ob->lay;
2175                 }
2176                 if(orco) orco+= 3;
2177                 seed++;
2178         }
2179 }
2180
2181 static int verghalo(const void *a1, const void *a2)
2182 {
2183         const HaloRen *har1= *(const HaloRen**)a1;
2184         const HaloRen *har2= *(const HaloRen**)a2;
2185         
2186         if(har1->zs < har2->zs) return 1;
2187         else if(har1->zs > har2->zs) return -1;
2188         return 0;
2189 }
2190
2191 static void sort_halos(Render *re, int totsort)
2192 {
2193         ObjectRen *obr;
2194         HaloRen *har= NULL, **haso;
2195         int a;
2196
2197         if(re->tothalo==0) return;
2198
2199         re->sortedhalos= MEM_callocN(sizeof(HaloRen*)*re->tothalo, "sorthalos");
2200         haso= re->sortedhalos;
2201
2202         for(obr=re->objecttable.first; obr; obr=obr->next) {
2203                 for(a=0; a<obr->tothalo; a++) {
2204                         if((a & 255)==0) har= obr->bloha[a>>8];
2205                         else har++;
2206
2207                         *(haso++)= har;
2208                 }
2209         }
2210
2211         qsort(re->sortedhalos, totsort, sizeof(HaloRen*), verghalo);
2212 }
2213
2214 /* ------------------------------------------------------------------------- */
2215 /* Displacement Mapping                                                                                                          */
2216 /* ------------------------------------------------------------------------- */
2217
2218 static short test_for_displace(Render *re, Object *ob)
2219 {
2220         /* return 1 when this object uses displacement textures. */
2221         Material *ma;
2222         int i;
2223         
2224         for (i=1; i<=ob->totcol; i++) {
2225                 ma=give_render_material(re, ob, i);
2226                 /* ma->mapto is ORed total of all mapto channels */
2227                 if(ma && (ma->mapto & MAP_DISPLACE)) return 1;
2228         }
2229         return 0;
2230 }
2231
2232 static void displace_render_vert(Render *re, ObjectRen *obr, ShadeInput *shi, VertRen *vr, int vindex, float *scale, float mat[][4], float imat[][3])
2233 {
2234         MTFace *tface;
2235         short texco= shi->mat->texco;
2236         float sample=0, displace[3];
2237         char *name;
2238         int i;
2239
2240         /* shi->co is current render coord, just make sure at least some vector is here */
2241         VECCOPY(shi->co, vr->co);
2242         /* vertex normal is used for textures type 'col' and 'var' */
2243         VECCOPY(shi->vn, vr->n);
2244
2245         if(mat)
2246                 mul_m4_v3(mat, shi->co);
2247
2248         if(imat) {
2249                 shi->vn[0]= imat[0][0]*vr->n[0]+imat[0][1]*vr->n[1]+imat[0][2]*vr->n[2];
2250                 shi->vn[1]= imat[1][0]*vr->n[0]+imat[1][1]*vr->n[1]+imat[1][2]*vr->n[2];
2251                 shi->vn[2]= imat[2][0]*vr->n[0]+imat[2][1]*vr->n[1]+imat[2][2]*vr->n[2];
2252         }
2253
2254         if (texco & TEXCO_UV) {
2255                 shi->totuv= 0;
2256                 shi->actuv= obr->actmtface;
2257
2258                 for (i=0; (tface=RE_vlakren_get_tface(obr, shi->vlr, i, &name, 0)); i++) {
2259                         ShadeInputUV *suv= &shi->uv[i];
2260
2261                         /* shi.uv needs scale correction from tface uv */
2262                         suv->uv[0]= 2*tface->uv[vindex][0]-1.0f;
2263                         suv->uv[1]= 2*tface->uv[vindex][1]-1.0f;
2264                         suv->uv[2]= 0.0f;
2265                         suv->name= name;
2266                         shi->totuv++;
2267                 }
2268         }
2269
2270         /* set all rendercoords, 'texco' is an ORed value for all textures needed */
2271         if ((texco & TEXCO_ORCO) && (vr->orco)) {
2272                 VECCOPY(shi->lo, vr->orco);
2273         }
2274         if (texco & TEXCO_STICKY) {
2275                 float *sticky= RE_vertren_get_sticky(obr, vr, 0);
2276                 if(sticky) {
2277                         shi->sticky[0]= sticky[0];
2278                         shi->sticky[1]= sticky[1];
2279                         shi->sticky[2]= 0.0f;
2280                 }
2281         }
2282         if (texco & TEXCO_GLOB) {
2283                 VECCOPY(shi->gl, shi->co);
2284                 mul_m4_v3(re->viewinv, shi->gl);
2285         }
2286         if (texco & TEXCO_NORM) {
2287                 VECCOPY(shi->orn, shi->vn);
2288         }
2289         if(texco & TEXCO_REFL) {
2290                 /* not (yet?) */
2291         }
2292         
2293         shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
2294         
2295         do_material_tex(shi);
2296         
2297         //printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2], 
2298         //vr->co[0], vr->co[1], vr->co[2]);
2299
2300         displace[0]= shi->displace[0] * scale[0];
2301         displace[1]= shi->displace[1] * scale[1];
2302         displace[2]= shi->displace[2] * scale[2];
2303         
2304         if(mat)
2305                 mul_m3_v3(imat, displace);
2306
2307         /* 0.5 could become button once?  */
2308         vr->co[0] += displace[0]; 
2309         vr->co[1] += displace[1];
2310         vr->co[2] += displace[2];
2311         
2312         //printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]); 
2313         
2314         /* we just don't do this vertex again, bad luck for other face using same vertex with
2315                 different material... */
2316         vr->flag |= 1;
2317         
2318         /* Pass sample back so displace_face can decide which way to split the quad */
2319         sample  = shi->displace[0]*shi->displace[0];
2320         sample += shi->displace[1]*shi->displace[1];
2321         sample += shi->displace[2]*shi->displace[2];
2322         
2323         vr->accum=sample; 
2324         /* Should be sqrt(sample), but I'm only looking for "bigger".  Save the cycles. */
2325         return;
2326 }
2327
2328 static void displace_render_face(Render *re, ObjectRen *obr, VlakRen *vlr, float *scale, float mat[][4], float imat[][3])
2329 {
2330         ShadeInput shi;
2331
2332         /* Warning, This is not that nice, and possibly a bit slow,
2333         however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
2334         memset(&shi, 0, sizeof(ShadeInput)); 
2335         /* end warning! - Campbell */
2336         
2337         /* set up shadeinput struct for multitex() */
2338         
2339         /* memset above means we dont need this */
2340         /*shi.osatex= 0;*/              /* signal not to use dx[] and dy[] texture AA vectors */
2341
2342         shi.obr= obr;
2343         shi.vlr= vlr;           /* current render face */
2344         shi.mat= vlr->mat;              /* current input material */
2345         shi.thread= 0;
2346         
2347         /* TODO, assign these, displacement with new bumpmap is skipped without - campbell */
2348 #if 0
2349         /* order is not known ? */
2350         shi.v1= vlr->v1;
2351         shi.v2= vlr->v2;
2352         shi.v3= vlr->v3;
2353 #endif
2354
2355         /* Displace the verts, flag is set when done */
2356         if (!vlr->v1->flag)
2357                 displace_render_vert(re, obr, &shi, vlr->v1,0,  scale, mat, imat);
2358         
2359         if (!vlr->v2->flag)
2360                 displace_render_vert(re, obr, &shi, vlr->v2, 1, scale, mat, imat);
2361
2362         if (!vlr->v3->flag)
2363                 displace_render_vert(re, obr, &shi, vlr->v3, 2, scale, mat, imat);
2364
2365         if (vlr->v4) {
2366                 if (!vlr->v4->flag)
2367                         displace_render_vert(re, obr, &shi, vlr->v4, 3, scale, mat, imat);
2368
2369                 /*      closest in displace value.  This will help smooth edges.   */ 
2370                 if ( fabs(vlr->v1->accum - vlr->v3->accum) > fabs(vlr->v2->accum - vlr->v4->accum)) 
2371                         vlr->flag |= R_DIVIDE_24;
2372                 else vlr->flag &= ~R_DIVIDE_24;
2373         }
2374         
2375         /* Recalculate the face normal  - if flipped before, flip now */
2376         if(vlr->v4) {
2377                 normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2378         }       
2379         else {
2380                 normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
2381         }
2382 }
2383
2384 static void do_displacement(Render *re, ObjectRen *obr, float mat[][4], float imat[][3])
2385 {
2386         VertRen *vr;
2387         VlakRen *vlr;
2388 //      float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
2389         float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
2390         int i; //, texflag=0;
2391         Object *obt;
2392                 
2393         /* Object Size with parenting */
2394         obt=obr->ob;
2395         while(obt){
2396                 add_v3_v3v3(temp, obt->size, obt->dsize);
2397                 scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
2398                 obt=obt->parent;
2399         }
2400         
2401         /* Clear all flags */
2402         for(i=0; i<obr->totvert; i++){ 
2403                 vr= RE_findOrAddVert(obr, i);
2404                 vr->flag= 0;
2405         }
2406
2407         for(i=0; i<obr->totvlak; i++){
2408                 vlr=RE_findOrAddVlak(obr, i);
2409                 displace_render_face(re, obr, vlr, scale, mat, imat);
2410         }
2411         
2412         /* Recalc vertex normals */
2413         calc_vertexnormals(re, obr, 0, 0);
2414 }
2415
2416 /* ------------------------------------------------------------------------- */
2417 /* Metaball                                                                                                                              */
2418 /* ------------------------------------------------------------------------- */
2419
2420 static void init_render_mball(Render *re, ObjectRen *obr)
2421 {
2422         Object *ob= obr->ob;
2423         DispList *dl;
2424         VertRen *ver;
2425         VlakRen *vlr, *vlr1;
2426         Material *ma;
2427         float *data, *nors, *orco=NULL, mat[4][4], imat[3][3], xn, yn, zn;
2428         int a, need_orco, vlakindex, *index;
2429         ListBase dispbase= {NULL, NULL};
2430
2431         if (ob!=find_basis_mball(re->scene, ob))
2432                 return;
2433
2434         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
2435         invert_m4_m4(ob->imat, mat);
2436         copy_m3_m4(imat, ob->imat);
2437
2438         ma= give_render_material(re, ob, 1);
2439
2440         need_orco= 0;
2441         if(ma->texco & TEXCO_ORCO) {
2442                 need_orco= 1;
2443         }
2444
2445         makeDispListMBall_forRender(re->scene, ob, &dispbase);
2446         dl= dispbase.first;
2447         if(dl==0) return;
2448
2449         data= dl->verts;
2450         nors= dl->nors;
2451         if(need_orco) {
2452                 orco= get_object_orco(re, ob);
2453
2454                 if (!orco) {
2455                         /* orco hasn't been found in cache - create new one and add to cache */
2456                         orco= make_orco_mball(ob, &dispbase);
2457                         set_object_orco(re, ob, orco);
2458                 }
2459         }
2460
2461         for(a=0; a<dl->nr; a++, data+=3, nors+=3) {
2462
2463                 ver= RE_findOrAddVert(obr, obr->totvert++);
2464                 VECCOPY(ver->co, data);
2465                 mul_m4_v3(mat, ver->co);
2466
2467                 /* render normals are inverted */
2468                 xn= -nors[0];
2469                 yn= -nors[1];
2470                 zn= -nors[2];
2471
2472                 /* transpose ! */
2473                 ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
2474                 ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
2475                 ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
2476                 normalize_v3(ver->n);
2477                 //if(ob->transflag & OB_NEG_SCALE) negate_v3(ver->n);
2478                 
2479                 if(need_orco) {
2480                         ver->orco= orco;
2481                         orco+=3;
2482                 }
2483         }
2484
2485         index= dl->index;
2486         for(a=0; a<dl->parts; a++, index+=4) {
2487
2488                 vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2489                 vlr->v1= RE_findOrAddVert(obr, index[0]);
2490                 vlr->v2= RE_findOrAddVert(obr, index[1]);
2491                 vlr->v3= RE_findOrAddVert(obr, index[2]);
2492                 vlr->v4= 0;
2493
2494                 if(ob->transflag & OB_NEG_SCALE) 
2495                         normal_tri_v3( vlr->n,vlr->v1->co, vlr->v2->co, vlr->v3->co);
2496                 else
2497                         normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
2498
2499                 vlr->mat= ma;
2500                 vlr->flag= ME_SMOOTH;
2501                 vlr->ec= 0;
2502
2503                 /* mball -too bad- always has triangles, because quads can be non-planar */
2504                 if(index[3] && index[3]!=index[2]) {
2505                         vlr1= RE_findOrAddVlak(obr, obr->totvlak++);
2506                         vlakindex= vlr1->index;
2507                         *vlr1= *vlr;
2508                         vlr1->index= vlakindex;
2509                         vlr1->v2= vlr1->v3;
2510                         vlr1->v3= RE_findOrAddVert(obr, index[3]);
2511                         if(ob->transflag & OB_NEG_SCALE) 
2512                                 normal_tri_v3( vlr1->n,vlr1->v1->co, vlr1->v2->co, vlr1->v3->co);
2513                         else
2514                                 normal_tri_v3( vlr1->n,vlr1->v3->co, vlr1->v2->co, vlr1->v1->co);
2515                 }
2516         }
2517
2518         /* enforce display lists remade */
2519         freedisplist(&dispbase);
2520 }
2521
2522 /* ------------------------------------------------------------------------- */
2523 /* Surfaces and Curves                                                                                                           */
2524 /* ------------------------------------------------------------------------- */
2525
2526 /* returns amount of vertices added for orco */
2527 static int dl_surf_to_renderdata(ObjectRen *obr, DispList *dl, Material **matar, float *orco, float mat[4][4])
2528 {
2529         VertRen *v1, *v2, *v3, *v4, *ver;
2530         VlakRen *vlr, *vlr1, *vlr2, *vlr3;
2531         float *data, n1[3];
2532         int u, v, orcoret= 0;
2533         int p1, p2, p3, p4, a;
2534         int sizeu, nsizeu, sizev, nsizev;
2535         int startvert, startvlak;
2536         
2537         startvert= obr->totvert;
2538         nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr; 
2539         
2540         data= dl->verts;
2541         for (u = 0; u < sizeu; u++) {
2542                 v1 = RE_findOrAddVert(obr, obr->totvert++); /* save this for possible V wrapping */
2543                 VECCOPY(v1->co, data); data += 3;
2544                 if(orco) {
2545                         v1->orco= orco; orco+= 3; orcoret++;
2546                 }       
2547                 mul_m4_v3(mat, v1->co);
2548                 
2549                 for (v = 1; v < sizev; v++) {
2550                         ver= RE_findOrAddVert(obr, obr->totvert++);
2551                         VECCOPY(ver->co, data); data += 3;
2552                         if(orco) {
2553                                 ver->orco= orco; orco+= 3; orcoret++;
2554                         }       
2555                         mul_m4_v3(mat, ver->co);
2556                 }
2557                 /* if V-cyclic, add extra vertices at end of the row */
2558                 if (dl->flag & DL_CYCL_U) {
2559                         ver= RE_findOrAddVert(obr, obr->totvert++);
2560                         VECCOPY(ver->co, v1->co);
2561                         if(orco) {
2562                                 ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
2563                         }
2564                 }       
2565         }       
2566         
2567         /* Done before next loop to get corner vert */
2568         if (dl->flag & DL_CYCL_U) nsizev++;
2569         if (dl->flag & DL_CYCL_V) nsizeu++;
2570         
2571         /* if U cyclic, add extra row at end of column */
2572         if (dl->flag & DL_CYCL_V) {
2573                 for (v = 0; v < nsizev; v++) {
2574                         v1= RE_findOrAddVert(obr, startvert + v);
2575                         ver= RE_findOrAddVert(obr, obr->totvert++);
2576                         VECCOPY(ver->co, v1->co);
2577                         if(orco) {
2578                                 ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
2579                         }
2580                 }
2581         }
2582         
2583         sizeu = nsizeu;
2584         sizev = nsizev;
2585         
2586         startvlak= obr->totvlak;
2587         
2588         for(u = 0; u < sizeu - 1; u++) {
2589                 p1 = startvert + u * sizev; /* walk through face list */
2590                 p2 = p1 + 1;
2591                 p3 = p2 + sizev;
2592                 p4 = p3 - 1;
2593                 
2594                 for(v = 0; v < sizev - 1; v++) {
2595                         v1= RE_findOrAddVert(obr, p1);
2596                         v2= RE_findOrAddVert(obr, p2);
2597                         v3= RE_findOrAddVert(obr, p3);
2598                         v4= RE_findOrAddVert(obr, p4);
2599                         
2600                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2601                         vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
2602                         
2603                         normal_quad_v3( n1,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2604                         
2605                         VECCOPY(vlr->n, n1);
2606                         
2607                         vlr->mat= matar[ dl->col];
2608                         vlr->ec= ME_V1V2+ME_V2V3;
2609                         vlr->flag= dl->rt;
2610                         
2611                         add_v3_v3(v1->n, n1);
2612                         add_v3_v3(v2->n, n1);
2613                         add_v3_v3(v3->n, n1);
2614                         add_v3_v3(v4->n, n1);
2615                         
2616                         p1++; p2++; p3++; p4++;
2617                 }
2618         }       
2619         /* fix normals for U resp. V cyclic faces */
2620         sizeu--; sizev--;  /* dec size for face array */
2621         if (dl->flag & DL_CYCL_V) {
2622                 
2623                 for (v = 0; v < sizev; v++)
2624                 {
2625                         /* optimize! :*/
2626                         vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, v));
2627                         vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, v));
2628                         add_v3_v3(vlr1->v1->n, vlr->n);
2629                         add_v3_v3(vlr1->v2->n, vlr->n);
2630                         add_v3_v3(vlr->v3->n, vlr1->n);
2631                         add_v3_v3(vlr->v4->n, vlr1->n);
2632                 }
2633         }
2634         if (dl->flag & DL_CYCL_U) {
2635                 
2636                 for (u = 0; u < sizeu; u++)
2637                 {
2638                         /* optimize! :*/
2639                         vlr= RE_findOrAddVlak(obr, UVTOINDEX(u, 0));
2640                         vlr1= RE_findOrAddVlak(obr, UVTOINDEX(u, sizev-1));
2641                         add_v3_v3(vlr1->v2->n, vlr->n);
2642                         add_v3_v3(vlr1->v3->n, vlr->n);
2643                         add_v3_v3(vlr->v1->n, vlr1->n);
2644                         add_v3_v3(vlr->v4->n, vlr1->n);
2645                 }
2646         }
2647         /* last vertex is an extra case: 
2648                 
2649                 ^       ()----()----()----()
2650                 |       |     |     ||     |
2651                 u       |     |(0,n)||(0,0)|
2652                 |     |     ||     |
2653                 ()====()====[]====()
2654                 |     |     ||     |
2655                 |     |(m,n)||(m,0)|
2656                 |     |     ||     |
2657                 ()----()----()----()
2658                 v ->
2659                 
2660                 vertex [] is no longer shared, therefore distribute
2661                 normals of the surrounding faces to all of the duplicates of []
2662                 */
2663         
2664         if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U))
2665         {
2666                 vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m,n) */
2667                 vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0,0));  /* (0,0) */
2668                 add_v3_v3v3(n1, vlr->n, vlr1->n);
2669                 vlr2= RE_findOrAddVlak(obr, UVTOINDEX(0, sizev-1)); /* (0,n) */
2670                 add_v3_v3(n1, vlr2->n);
2671                 vlr3= RE_findOrAddVlak(obr, UVTOINDEX(sizeu-1, 0)); /* (m,0) */
2672                 add_v3_v3(n1, vlr3->n);
2673                 VECCOPY(vlr->v3->n, n1);
2674                 VECCOPY(vlr1->v1->n, n1);
2675                 VECCOPY(vlr2->v2->n, n1);
2676                 VECCOPY(vlr3->v4->n, n1);
2677         }
2678         for(a = startvert; a < obr->totvert; a++) {
2679                 ver= RE_findOrAddVert(obr, a);
2680                 normalize_v3(ver->n);
2681         }
2682         
2683         
2684         return orcoret;
2685 }
2686
2687 static void init_render_dm(DerivedMesh *dm, Render *re, ObjectRen *obr,
2688         int timeoffset, float *orco, float mat[4][4])
2689 {
2690         Object *ob= obr->ob;
2691         int a, a1, end, totvert, vertofs;
2692         VertRen *ver;
2693         VlakRen *vlr;
2694         MVert *mvert = NULL;
2695         MFace *mface;
2696         Material *ma;
2697         /* Curve *cu= ELEM(ob->type, OB_FONT, OB_CURVE) ? ob->data : NULL; */
2698
2699         mvert= dm->getVertArray(dm);
2700         totvert= dm->getNumVerts(dm);
2701
2702         for(a=0; a<totvert; a++, mvert++) {
2703                 ver= RE_findOrAddVert(obr, obr->totvert++);
2704                 VECCOPY(ver->co, mvert->co);
2705                 mul_m4_v3(mat, ver->co);
2706
2707                 if(orco) {
2708                         ver->orco= orco;
2709                         orco+=3;
2710                 }
2711         }
2712
2713         if(!timeoffset) {
2714                 /* store customdata names, because DerivedMesh is freed */
2715                 RE_set_customdata_names(obr, &dm->faceData);
2716
2717                 /* still to do for keys: the correct local texture coordinate */
2718
2719                 /* faces in order of color blocks */
2720                 vertofs= obr->totvert - totvert;
2721                 for(a1=0; (a1<ob->totcol || (a1==0 && ob->totcol==0)); a1++) {
2722
2723                         ma= give_render_material(re, ob, a1+1);
2724                         end= dm->getNumTessFaces(dm);
2725                         mface= dm->getTessFaceArray(dm);
2726
2727                         for(a=0; a<end; a++, mface++) {
2728                                 int v1, v2, v3, v4, flag;
2729
2730                                 if( mface->mat_nr==a1 ) {
2731                                         float len;
2732
2733                                         v1= mface->v1;
2734                                         v2= mface->v2;
2735                                         v3= mface->v3;
2736                                         v4= mface->v4;
2737                                         flag= mface->flag & ME_SMOOTH;
2738
2739                                         vlr= RE_findOrAddVlak(obr, obr->totvlak++);
2740                                         vlr->v1= RE_findOrAddVert(obr, vertofs+v1);
2741                                         vlr->v2= RE_findOrAddVert(obr, vertofs+v2);
2742                                         vlr->v3= RE_findOrAddVert(obr, vertofs+v3);
2743                                         if(v4) vlr->v4= RE_findOrAddVert(obr, vertofs+v4);
2744                                         else vlr->v4= 0;
2745
2746                                         /* render normals are inverted in render */
2747                                         if(vlr->v4)
2748                                                 len= normal_quad_v3( vlr->n,vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
2749                                         else
2750                                                 len= normal_tri_v3( vlr->n,vlr->v3->co, vlr->v2->co, vlr->v1->co);
2751
2752                                         vlr->mat= ma;
2753                                         vlr->flag= flag;
2754                                         vlr->ec= 0; /* mesh edges rendered separately */
2755
2756                                         if(len==0) obr->totvlak--;
2757                                         else {
2758                                                 CustomDataLayer *layer;
2759                                                 MTFace *mtface, *mtf;
2760                                                 MCol *mcol, *mc;
2761                                                 int index, mtfn= 0, mcn= 0;
2762                                                 char *name;
2763
2764                                                 for(index=0; index<dm->faceData.totlayer; index++) {
2765                                                         layer= &dm->faceData.layers[index];
2766                                                         name= layer->name;
2767
2768                                                         if(layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
2769                                                                 mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
2770                                                                 mtface= (MTFace*)layer->data;
2771                                                                 *mtf= mtface[a];
2772                                                         }
2773                                                         else if(layer->type == CD_MCOL && mcn < MAX_MCOL) {
2774                                                                 mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
2775                                                                 mcol= (MCol*)layer->data;
2776                                                                 memcpy(mc, &mcol[a*4], sizeof(MCol)*4);
2777                                                         }
2778                                                 }
2779                                         }
2780                                 }
2781                         }
2782                 }
2783
2784                 /* Normals */
2785                 calc_vertexnormals(re, obr, 0, 0);
2786         }
2787
2788 }
2789
2790 static void init_render_surf(Render *re, ObjectRen *obr, int timeoffset)
2791 {
2792         Object *ob= obr->ob;
2793         Nurb *nu=0;
2794         Curve *cu;
2795         ListBase displist= {NULL, NULL};
2796         DispList *dl;
2797         Material **matar;
2798         float *orco=NULL, mat[4][4];
2799         int a, totmat, need_orco=0;
2800         DerivedMesh *dm= NULL;
2801
2802         cu= ob->data;
2803         nu= cu->nurb.first;
2804         if(nu==0) return;
2805
2806         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
2807         invert_m4_m4(ob->imat, mat);
2808
2809         /* material array */
2810         totmat= ob->totcol+1;
2811         matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2812
2813         for(a=0; a<totmat; a++) {
2814                 matar[a]= give_render_material(re, ob, a+1);
2815
2816                 if(matar[a] && matar[a]->texco & TEXCO_ORCO)
2817                         need_orco= 1;
2818         }
2819
2820         if(ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
2821
2822         makeDispListSurf(re->scene, ob, &displist, &dm, 1, 0);
2823
2824         if (dm) {
2825                 if(need_orco) {
2826                         orco= makeOrcoDispList(re->scene, ob, dm, 1);
2827                         if(orco) {
2828                                 set_object_orco(re, ob, orco);
2829                         }
2830                 }
2831
2832                 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2833                 dm->release(dm);
2834         } else {
2835                 if(need_orco) {
2836                         orco= get_object_orco(re, ob);
2837                 }
2838
2839                 /* walk along displaylist and create rendervertices/-faces */
2840                 for(dl=displist.first; dl; dl=dl->next) {
2841                         /* watch out: u ^= y, v ^= x !! */
2842                         if(dl->type==DL_SURF)
2843                                 orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
2844                 }
2845         }
2846
2847         freedisplist(&displist);
2848
2849         MEM_freeN(matar);
2850 }
2851
2852 static void init_render_curve(Render *re, ObjectRen *obr, int timeoffset)
2853 {
2854         Object *ob= obr->ob;
2855         Curve *cu;
2856         VertRen *ver;
2857         VlakRen *vlr;
2858         DispList *dl;
2859         DerivedMesh *dm = NULL;
2860         ListBase disp={NULL, NULL};
2861         Material **matar;
2862         float *data, *fp, *orco=NULL;
2863         float n[3], mat[4][4];
2864         int nr, startvert, a, b;
2865         int need_orco=0, totmat;
2866
2867         cu= ob->data;
2868         if(ob->type==OB_FONT && cu->str==NULL) return;
2869         else if(ob->type==OB_CURVE && cu->nurb.first==NULL) return;
2870
2871         makeDispListCurveTypes_forRender(re->scene, ob, &disp, &dm, 0);
2872         dl= disp.first;
2873         if(dl==NULL) return;
2874         
2875         mul_m4_m4m4(mat, ob->obmat, re->viewmat);
2876         invert_m4_m4(ob->imat, mat);
2877
2878         /* material array */
2879         totmat= ob->totcol+1;
2880         matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
2881
2882         for(a=0; a<totmat; a++) {
2883                 matar[a]= give_render_material(re, ob, a+1);
2884
2885                 if(matar[a] && matar[a]->texco & TEXCO_ORCO)
2886                         need_orco= 1;
2887         }
2888
2889         if (dm) {
2890                 if(need_orco) {
2891                         orco= makeOrcoDispList(re->scene, ob, dm, 1);
2892                         if(orco) {
2893                                 set_object_orco(re, ob, orco);
2894                         }
2895                 }
2896
2897                 init_render_dm(dm, re, obr, timeoffset, orco, mat);
2898                 dm->release(dm);
2899         } else {
2900                 if(need_orco) {
2901                   orco= get_object_orco(re, ob);
2902                 }
2903
2904                 while(dl) {
2905                         if(dl->col > ob->totcol) {
2906                                 /* pass */
2907                         }
2908                         else if(dl->type==DL_INDEX3) {
2909                                 int *index;
2910
2911                                 startvert= obr->totvert;
2912                                 data= dl->verts;
2913
2914                                 for(a=0; a<dl->nr; a++, data+=3) {
2915                                         ver= RE_findOrAddVert(obr, obr->totvert++);
2916                                         VECCOPY(ver->co, data);
2917
2918                                         mul_m4_v3(mat, ver->co);
2919
2920                                         if (orco) {
2921                                                 ver->orco = orco;
2922                                                 orco += 3;
2923                                         }
2924                                 }
2925
2926                                 if(timeoffset==0) {
2927                                         float tmp[3];
2928                                         const int startvlak= obr->totvlak;
2929
2930                                         zero_v3(n);
2931                                         index= dl->index;
2932                                         for(a=0; a<dl->parts; a++, index+=3) {
2933